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Abstract— When developing systems of systems, requirements tend to be redundant especially when running large numbers of projects, 
with many requirements per project, and diverse sources of requirements. It is therefore necessary to consolidate requirements by identifying 
the ones that are equivalent in order to avoid redundant work. The aim of this paper is to evaluate requirement similarity measurement to 
support analysts when linking equivalent requirements. The evaluation is conducted based on the requirements management process of an 
Italian company in the defense and aerospace domain. Our empirical investigation combines a controlled experiment with graduate students 
and an industrial case study. Results clearly show that one cannot expect any significant advantage in general. The level of support provided 
by similarity measures significantly depends on their level of credibility, that is the extent to which similarity measurement reliably indicates 
the equivalence of requirements. On average, given the credibility distribution observed in our industrial case study, showing similarity 
measurement to analysts is expected to: 1) improve by 20% the number of equivalence links identified per minute and 2) decrease by 40% 
the number of incorrect links. Finally, we investigate whether there is an effective way to combine human judgment and similarity 
measurement to effectively determine equivalence links. Based on machine learning, our approach yielded positive results both in terms of 
the correctness of the links and the speed at which they are established. Moreover, this hybrid solution is effective even when the credibility 
of similarity measurement is half the average we observed in our industrial case study. In conclusion, our results confirm and complement 
past empirical studies on the practical benefit, in terms of both quality and speed, of adopting requirement similarity measurement for linking 
equivalent requirements.  
 
Index Terms— Experiment, Case study, Requirements tracing, Requirements consolidation, Similarity measure, Machine Learning. 

——————————   !   —————————— 
1 Introduction 

Software systems requirements engineering is “the 
process of discovering the purpose of software system, by 
identifying stakeholders and their needs, and 
documenting these in a form that supports analysis, 
communication, and subsequent implementation” [1]. 
When properly performed, requirements engineering is 
an opportunity to reduce costs and increase the quality of 
software systems. But when requirements are incomplete 
or incorrect, this can lead to the development of 
inadequate software products, significant delays, or 
project terminations.  

One particularly important aspect is the identification 
of equivalent requirements to avoid assigning the same 
requirement to different developers and performing 
redundant tasks [2]. This is particularly common when 
requirements are numerous and many stakeholders are 
involved in defining them.  

This paper focuses on assessing the use of similarity 
measurement between pairs of requirements in terms of 
correctly and efficiently linking equivalent requirements. 
Consistent with previous studies [3], we capture these 
two properties through variables referred to as the 
Quality and Speed of requirements linking, that will be 
further defined below. One important aspect is that we 
investigate how reliable similarity measurement is at 
capturing equivalence, and what this impacts quality and 

speed in realistic conditions. We will refer to the 
reliability of similarity measurement as Credibility and 
define its measurement at a later stage. In order to 
achieve both realism and sufficient control, our empirical 
investigation combines a controlled experiment with 
master students and a case study in collaboration with an 
Italian company in the defense and aerospace domain. 

1.1 Research Questions 
To fully investigate the impact of similarity measurement 
we addressed the following research questions: 

R.Q.!1. Does! showing! the! similarity! measure! affect! the!
performance!of!linking!equivalent!requirements?!

Performance is assessed both in terms of quality and 
speed. Because identifying equivalent requirements is a 
time-consuming task [4,5], the intent of similarity 
measurement is to decrease the effort required to link 
equivalent requirements (Speed). Furthermore, a false 
negative link would eventually cause doing the same job 
twice while a false positive link would eventually cause 
user dissatisfaction. This is what we will refer to as 
quality in this context, using several complementary 
measures to capture mistakes in linking requirements. 
Since results in [3] suggest that a similarity measure 
helped improve both quality and speed when applied to 
university project requirements, this research question 
aims both at replicating such results and investigating 
whether they generalize to industrial requirements. 
Investigating this question requires sufficient control to 
avoid confounding effects and will therefore be 
investigated through a controlled experiment. 
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R.Q.!2. What! is! the! impact! of! credibility! on! quality! and!
speed?! Are! improvements! in! quality! or! speed! due! to!
similarity!measurement!positively!and!significantly!related!
to!credibility?!

In general, we expect that low credibility similarity 
measures would confuse analysts in linking equivalent 
requirements; this would eventually impact negatively 
both quality and speed. Therefore it is important to 
investigate, using the same controlled experiment as in 
R.Q.1, the possibility of an interaction effect between 
using similarity measurement and its credibility, on both 
quality and speed, for a realistic set of requirements pairs. 
Such an effect must be modeled and the minimal 
threshold of credibility value below which similarity 
measurement is counter-productive must be determined.  

R.Q.!3. Given! the! level! of! credibility! observed! in! an!
industrial! case! study,! can! we! expect! significant! benefits!
from!using!similarity!measurement?!

Based on realistic credibility distributions in industrial 
requirements pairs, using our model of interaction effect 
developed in R.Q.2, we want to investigate if similarity 
measurement improves quality and speed in classifying 
industrial requirements. !

R.Q.!4. Can!we! combine! expert! requirement! linking! and! a!
similarity! measure! to! build! an! optimal! equivalence!
prediction!model?! Is! it!better! than!using! either! of! the! two!
sources!of!information!alone?!

Human classifications and similarity measures are two 
different sources of information regarding the 
equivalence of a given requirements pair. The strategy we 
investigate here applies machine learning to combine 
these two sources into a hybrid equivalence prediction 
model. The basic idea is that this prediction model, based 
on data analysis, would empirically determine how to 
optimally weigh the two sources of information. 
According to R.Q.2, the level of support provided by 
using similarity measurement may depend on the level of 
credibility of the measurement. Since in practice, we 
cannot predict the value of credibility of a given similarity 
measure for a given set of requirements pairs, it is 
important to investigate if we could use a hybrid 
equivalence prediction model to mitigate the effects of 
possible low credibility values.  

1.2 Empirical approach 

1.2.1 Linking process 
The activity of linking artifacts (e.g., equivalent 
requirements), which is also sometimes referred to as 
tracing, can be decomposed in two sequential sub-
activities: searching and classifying. The sub-activity of 
searching the artifacts is concerned with searching among 
a large number of artifacts (e.g., requirement pairs) for 
specific ones featuring a relevant property (e.g., 
equivalent pairs). Similarity measures can support this 
sub-activity by effectively ranking the artifacts according 
to their likelihood to be relevant; the top-ranked artifacts 

are referred to as candidates. The sub-activity of classifying 
the artifacts is concerned with establishing the type of 
relation between a pair of artifacts (e.g., establishing two 
requirements as equivalent or not) among candidates. 
The classification sub-activity is a human decision: the 
analyst, following the previously defined ranking of 
artifacts, classifies each pair until he believe that the 
remaining pairs are not worth considering. 

1.2.2 Approaches for measuring the support 
provided by similarity measures 

There are two main approaches to measure the level of 
support provided by a similarity measure to the linking 
process. They are referred to as study of methods and study 
of humans, respectively in [4]. 
! Study of methods: this post-mortem analysis relies on 

the principle that a pair of artifacts should be linked 
when the measured similarity is higher than a given 
threshold. Hence, the less the difference between 
actual and suggested links, the higher the support 
provided by the similarity measure. A given 
performance metric (e.g., Lag, Precision, Recall) 
measures a given aspect of support. Examples of such 
studies are reported in several articles 
[2,4,6,7,8,9,10,11]. The advantage of this approach is 
that, once a post-mortem analysis tool has been 
developed, and the actual links have been established, 
then the analysis process is entirely automated. This 
allows for the comparison of a large number of 
similarity measures on a given set of links. In addition, 
because no human analysts are involved, real 
requirements can be used without raising 
confidentiality issues. The main drawback of this 
approach is to entirely ignore the “classification” sub-
activity. Not considering this human decision process 
essentially results in not accounting for human factors 
in the overall linking process. 

! Study of humans: this consists in measuring the 
differences in human performance when tracing 
artifacts with and without the support of similarity 
measurement. Examples of this approach are reported 
in [3,12,13]. Its main strength is in observing the real 
phenomenon under study rather than simulating it. 
Moreover, the classification sub-activity is accounted 
for. In all past studies, such studies have been 
performed using students in a laboratory setting. The 
main problem with these studies lies in the artificial 
artifacts being used, rather than the subjects. It is 
expectedly difficult to use professionals as subjects, 
willing to link artifacts without the support of a 
similarity measure. An industrial case can therefore 
help study professionals, working on industrial 
requirements with the support of a given similarity 
measure. But is usually impossible to observe their 
performance without it and therefore obtain a baseline 
of comparison. The use of students does not represent 
a significant threat to external validity: past studies 
revealed that there is no significant difference between 
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masters students and professionals in performing 
activities related to requirements engineering [14,15].  
However, in artificial settings, the artifacts being 
traced cannot usually be actual industrial ones due to 
non-disclosure constraints. Though there are open-
source projects that provide (real) artifacts to be used, 
they usually do not include requirements. 
Additionally, a laboratory setting limits the number of 
artifacts to link and hence the statistical power of our 
subsequent analysis. 

1.2.3 Our approach  
Our aim is to measure the benefits of using similarity 
measurement when linking equivalent requirements. To 
do so, we combine the strengths of post-mortem analysis 
and human-based observation, as described above.  
Figure 1 sketches the activities (white background 
rectangles) and information (wavy-bottom rectangles) 
involved in the designed empirical process. The main 
hypothesis is that similarity measurement supports the 
classification sub-activity when it reliably captures 
equivalence (credibility). We first enacted an industrial 
case study (Section 3) where our tool PROUD (Section 3.2) 
has been used to detect equivalent requirements. This 
case study featured the highest level of realism as it 
involved real industrial requirements. In order to 
measure the support on the searching sub-activity we 
adopted the standard approach of measuring the Lag 
metric on the industrial requirements as proposed by 
Hayes et al. in [4]; this measured the ranking 
effectiveness. However, as discussed above, in order to 
properly assess the support of similarity measurement on 
the linking activity, we needed to take into consideration 
the classification sub-activity also. On this case study, an 
expert established the requirements links using PROUD 
only. Therefore, we cannot directly assess, on real 
requirements, the impact of using similarity 
measurement. We therefore decided to complement this 
case study with a controlled experiment aimed at 
measuring the impact of similarity measurement on the 
classification sub-activity. To produce adequate 
experimental objects, we modified the dataset coming 
from the industrial case study through sampling and 
modifications to meet the constraints of a controlled 
experiment and conform to the non-disclosure agreement 
with our industrial partner. Though the experiment, 
conducted in a laboratory setting, gave us the highest 
level of control, this somewhat artificial set of 
requirements may have biased the results and affect 
external validity. Therefore we decided to combine the 
results of a controlled experiment with the results of the 
case study to alleviate this problem. More specifically, we 
designed an experiment (Section 4) where equivalent 
requirements are pre-determined, defined a credibility 
measure for similarity measurement among requirements 
pairs, and used credibility as an interaction factor when 
assessing the impact of similarity measurement on the 
effectiveness (Quality) and efficiency (Speed) of 

classifying equivalent links. Once verified that credibility 
is a significant factor, using a realistic distribution of 
credibility from our industrial case study featuring actual 
requirements, we assessed the benefits that can be 
expected from using such similarity measures in practice. 
Our strategy was hence to combine a controlled 
experiment and an industrial case study to achieve the 
best balance between control and realism. The evaluation 
of Machine Learning to combine human judgment and 
similarity measures (see Section 1.1 R.Q. 4) was done 
following the experiment by using WEKA [16]. 

1.3 Structure of the paper  
The rest of the paper is structured as follows; Section 2 
reports on past works related to the present study. 
Section 3 describes the case study and Section 4 reports 
the experiment planning. Section 5 reports and discusses 
the results. Section 6 concludes the paper.  

2 Related Works 

Natural Language Processing (NLP) is a field of computer 
science concerned with the interactions between 
computers and human (natural) languages. Classical 
applications include the search for a set of documents that 
are similar to a given text; NLP supports humans by 
providing similarity measures related to the searched 
texts. In our case, NLP is used to measure the similarity 
among requirements; the similarity measure is used to 
rank the requirement pairs according to their likelihood 
of being redundant. The role of NLP in requirements 
engineering has been described by Ryan in [17] as a 
promising approach to support the requirements 
engineering process due to the increasing complexity of 
the systems to develop and hence of the requirements to 
manage. NLP has been applied in different areas of 
software engineering and in particular to link artifacts at 
different levels of abstraction including high-level to low-
level requirements [10,12], requirements to design  
[18,19,20], requirements to source code [9,13,21], 
functional requirements to java code [7,8], requirements 
to defect reports [22]. Several studies have also suggested 
that NLP could support several requirements engineering 
activities including linking customer wishes to product 
requirements [23], consolidating requirements [2], 
reasoning about inconsistencies [24], supporting reuse 
[25], and domain analysis [26,27].  

Stierna and Rowe [25] reported an industrial 
experience in applying information retrieval techniques 
where the requirements of existing systems are matched 
with the requirements of new systems for identifying 
reuse opportunities. Our approach is similar except for 
the fact that we aim to identify both proactive and 
reactive reuse opportunities; in other words, it is 
important for us to identify potential reuse from 
developed systems (reactive reuse) but also take 
advantage of the commonalities among new systems 
being concurrently developed (proactive reuse - product 
line engineering).  
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Figure 1. The activities (white background rectangles) and information (wavy-bottom rectangles) involved in the overall process to measure 
the impact of linking equivalent requirements based on similarity measurement. 

Several studies regard the adoption of information 
retrieval techniques to develop feature models, which in 
turn support the visualization of commonalities and 
variability among systems. Alves et al. present in [28] an 
explorative study and propose a framework and a 
research agenda. Jhon et al. [29] report on an industrial 
case study where information retrieval techniques 
reduced expert load (i.e., Speed in our context) by more 
than 60%. We also aim at reducing expert effort in 
commonality identification through techniques that “are 
independent from space or time, techniques that can be 
applied anytime, anywhere, by almost every person 
without domain knowledge.” [29]   

Hayes and Dekhtyar [5] discussed the need for future 
empirical investigations on the effects of automated 
support in requirements linking. Hayes et al. [4] outlined 
two directions of research; one on methods and the other 
on their influence on human performance. They state: 
“The validation of utility requires the study of the users 
as much as it requires the study of methods.” Hayes et al. 
also reported a pilot study, involving three subjects, 
supporting the hypothesis that “the accuracy of computer 
generated candidate traces affects the accuracy of traces 
produced by the analysts” [30]; i.e., the automated 
classification impacts on the human classifaction. 

Natt Och Dag et al. report in [3]  a controlled 
experiment where the adoption of the ReqSimile tool 
improved speed and quality in linking similar 
requirements. Our research focus is very similar to [3], 
though important differences in experimental design and 
measurement exist. Given their positive results, we 
decided to include in PROUD the same information 
retrieval technique developed into ReqSimile. We share 
with them the objective of providing effective automated 
support to link similar requirements when dealing with 
high numbers of requirements. Consistent with the 
authors’ explicit call for replications [3], we build on their 
work in an attempt to confirm and extend their results. 
Commonalities between the present empirical study and 
that in [3] include: 
! A controlled experiment in an academic setting. 
! The use of two adapted versions of the same tool to 

maximize instrumentation validity. 
! The dependent variables (Quality and Speed). 

The main difference between the present study and that 
in [3] is the treatment being investigated: we study the 
impact of providing similarity measurement to subjects 
instead of providing both such measurement and a 
ranking of all requirement pairs. The motivation was to 
assess, in isolation, the effect of showing similarity 
measurement on subject’s decisions regarding a 
requirement pair, and more specifically the classification 
sub-activity (see Section 2). The impact of ranking 
accuracy, measured for example with the Lag metric [4], 
should be studied independently.  Further differences 
include: 
! We investigate if the level of support provided by 

similarity measurement changes according to the 
requirements set on which it is used. In particular, our 
expectation is that similarity measurement is useful 
when it reliably captures similarity (high credibility), a 
property that may greatly vary across sets of 
requirements. Having modeled the impact of 
credibility on the effect of similarity measurement on 
requirement pairs’ equivalence classification, we 
assess the likely benefits to be obtained by PROUD in 
realistic industrial conditions based on a case study. 

! The controlled experiment adopted a cross-
randomized design to avoid potential bias from 
subjects’ characteristics. 

! In the controlled experiment, we ensured that the 
numbers of equivalent and non-equivalent 
requirement pairs were the same; this to avoid the 
impact of unbalanced data on statistical analysis. 

! Time measurement for requirement pairs’ 
classifications was automated; this enabled the 
measurement of time for each classification 
individually. 

3 Case Study  

3.1 Context 

3.1.1 Company profile 
Finmeccanica is the main Italian industrial group 
operating globally in the aerospace, defense and security 
sectors, and is one of the world's leading groups in the 
fields of helicopters and defense electronics. It has 
revenues of 15 Billion Euros and invests 1.8 Billion Euros 
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(12% of turnover) a year in R&D activities. SELEX Sistemi 
Integrati (also known as SELEX SI) is the Finmeccanica 
Company focusing on the design of systems of systems; it 
aims to be the European leader in the definition and 
integration of sensors and systems for defense, 
coastal/maritime surveillance, and air traffic 
management. SELEX SI (SELENIA until 2005) has about 
fifty years of experience in system integration and a 
customer base in more than 150 countries, with plants in 
Italy, the UK (SELEX System Integrations Ltd), Germany 
(SELEX Sistemi Integrati GmbH), and the US (SELEX 
Sistemi Integrati Inc). 

The context of this study is the development of 
systems of systems. A system of systems is not only large, 
distributed, adaptive and complex; its main peculiarity is 
that it is structured into components (i.e. systems) that 
can work independently from each other though their 
cooperation provides a functionality that is greater than 
the sum of their functionalities. !

3.1.2 Causes and management of equivalent 
requirements 

In the context of systems of systems, 
redundant/equivalent requirements have different 
implications depending on their context:  
! Mistake: When the equivalent requirements belong to 

the same system, this is considered as a mistake. 
! Reuse opportunity: When the equivalent 

requirements belong to different systems they 
represent a reuse opportunity. In the early 
specification stage, equivalent requirements represent 
a proactive opportunity to avoid redundant work. The 
term proactive stems from the software product line 
engineering community and denotes that though 
reuse may not already be an option, it can be achieved 
by a proactive approach [31,32,33,34,35,36].  

Both cases above call for supporting the identification of 
requirements that are semantically equivalent. In the 
context of our case study (SELEX SI), requirements tend 
to be redundant due to the following reasons: 
! Large number of requirements: each project includes 

around 500 requirements. 
! Several ongoing, concurrent system development 

projects: five in our case study. 
! Multiple sources: the requirements are elicited and 

written by several stakeholders that belong to 
different projects or different departments involved in 
the same project. 
Experience from applying product line engineering 

shows that investing in reuse does not always pay off; the 
success factor consists in applying the right reuse strategy 
[37] with the right amount of investment [38] on the right 
asset (e.g., components, test cases, requirements) [39] 
without underestimating non-technical aspects (e.g., 
current organization). When SELEX SI started the 
development of six different products, it was clear that it 
would be wrong not to contemplate taking advantage of 
their commonalities. In order to reason on what and how 

to reuse, it is mandatory to have an understanding of the 
variability and commonalities of the systems to develop. 
This activity is called domain analysis. Among the several 
ways to enact domain analysis [40], linking equivalent 
requirements is particularly non-invasive for the actual 
organization, scalable, and it supports requirements 
consolidation [2,3,41]. Hence, in order to support the 
requirement engineering process, and the domain 
analysis phase in particular, we developed an open-
source tool called PROUD, which incorporates linguistic 
engineering techniques for supporting commonalities 
identification. 

3.2 A Proactive Reuse OpportUnity Discovery tool 
The tool PROUD (Proactive Reuse OpportUnity 
Discovery) has been developed on Microsoft ActiveX 
COM® technology; we adopted Microsoft .NET 
Framework 2.0®, Microsoft® Visual Studio® 2008 as 
development environment and C# as programming 
language. PROUD works as a plug-in of a commercial 
CASE tool called Enterprise Architect® by Sparx 
Systems®.  

Prior to identifying commonalities, PROUD supports 
requirements quality assurance. When processing the 
natural language in which the requirements are 
expressed, it checks their compliance to rules defined in 
the requirement specifications guidelines developed by 
SELEX SI. Requirements are then classified according to a 
pre-defined industrial taxonomy; examples of 
requirements categories are: user interface, simulation, 
and authentication.  

When the requirements are found to comply with the 
specifications guidelines then they are analyzed for 
semantic equivalence. This activity is supported by 
PROUD in three stages: requirements selection, 
commonality identification, and commonality 
visualization. 
! Requirements selection: in order to reduce human effort, 

it is important that PROUD allows the user to select 
the requirements that were not already analyzed for 
redundancy in the past. PROUD allows the user to 
define which requirements need to be analyzed with 
respect to which other according to several criteria, 
including creation time, correctness, classification, 
name of the package in which the requirement is 
stored, presence or absence of a particular word in the 
requirement text or its title. This is expected to 
support the user in commonality identification among 
a set of new projects as well as the consolidation 
activity between a set of consolidated requirements 
and new requirements. 

! Commonality identification: given the requirements 
selected in the previous step, PROUD computes the 
similarity measure on all their possible pairs. The 
similarity measure is computed by applying a natural 
language processing technique as reported in [3]; all 
the requirement pairs are ranked according to the 
measure reported in the first column in Figure 2. At 
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this point, the user classifies the current requirement 
pair as equivalent or not. 

! Commonality visualization: When all selected 
requirements have been classified for equivalence, 
PROUD automatically delete redundant requirements 
(i.e., equivalent requirements pairs belonging to the 
same project) and it produces artifact to visualize 
commonalities and variability among projects 
including requirements matrixes, pie charts, and UML 
feature models [42]. Such artifacts are then refined by 
analysts because, though important, the equivalence 
between requirements is just one of several aspects of 
projects commonalities. Eventually, analysts and 
project managers can effectively observe the 
commonalities among the projects developed and to 
develop; this supports reasoning about the right reuse 
strategy to apply and the related projects’ planning 
[31,32,33,34,35,36]. !

3.3 Sampling strategy  
The external validity of our case study [43] is particularly 
high due to the following reasons:  
1. It contains real industrial requirements. 
2. It is based on a recent project. 
3. The number of requirements is large. 

Table 1 reports the main characteristics of our case study 
at SELEX SI regarding five different projects on systems 
of systems. In order to make the study manageable, we 
sampled a subset of 983 requirement pairs to study out of 
a population of nearly three million possible pairs. Figure 
3 reports the distributions, for this sample of requirement 
pairs, of similarity measurement and the number of 
words per requirement. Among these 983 requirements 
pairs, 183 were equivalent. 

The 983 classified requirements pairs were selected 
using a mix random and ranking-based sampling 
strategy. First, we analyzed the top 391 pairs as ranked by 
PROUD in order to get as many equivalent pairs as 
possible. Because most of the requirements pairs are non-
equivalent, a pure random sampling would have yielded 
a very small number of equivalent requirements, thus 
making any analysis difficult. We stopped analyzing the 
ranked pairs after finding 72 nonequivalent pairs in a 
row. We then continued by randomly sampling 592 pairs 
from the remaining pairs. Sampling is done without 
replacement and the number of sampled pairs is driven 
by how much time can realistically be dedicated by an 
expert to manually analyze requirements.  

3.4 Preliminary results 
In order to evaluate the level of support provided by 
PROUD for linking equivalent requirements we first 
computed the Lag metric. The Lag metric, as introduced 
by Hayes et al. in [4], is a measure of ranking 
effectiveness that represents the number of non 
equivalent requirement pairs that have a higher similarity 
than equivalent requirement pairs, on average among all 
equivalent requirement pairs. In other words, it 

represents the number of non-equivalent requirement 
pairs that need to be analyzed, on average, before 
analyzing an equivalent pair. Using PROUD’s ranking, 
we obtain a Lag metric value of 0.77, as opposed to 4.36 
when randomly selecting requirements pairs among the 
sample of 983. This means that, for each equivalent 
requirement pair, on average, PROUD saves the analyst 
the effort required to classify more than three non-
equivalent requirements pairs. Note that this estimated 
gain is a lower bound based on the sampled 983 
requirements pairs, which contain a much higher 
percentage of equivalent requirements (18%) than the 
complete set of pairs. Therefore, assuming that we found 
all the existing equivalent requirements (183 out of more 
than three million, or 0.00586% of all pairs) while 
sampling 983 requirements pairs, using PROUD’s 
ranking, we obtain a Lag metric value of 0.77, as opposed 
to 16,976 when randomly selecting requirements pairs 
from the complete set. Though the number of detected 
equivalent requirements pairs is a lower bound for the 
entire set, the fact that the random sampling did not find 
any after rank 255 suggests this is close to the actual 
number. Formally then, based on the lower and upper 
bounds computed for the estimated gain in the analysis 
above, for each equivalent requirements pair, PROUD 
saves the analyst the effort to classify between 3 to 16,975 
non-equivalent pairs. However, the latter number is 
much closer to reality.  
      Another issue is that the above evaluation doesn’t take 
into account the support provided by PROUD for the 
classification sub-activity. As a matter of fact, we had 
positive feedback from our industry partners regarding 
the support provided by showing similarity 
measurement. Neither the Lag metric nor any other 
information retrieval metrics (i.e. Precision, Recall, etc.) 
would allow us to assess the gain related to human 
classification. We therefore complemented our industrial 
case study with a controlled experiment as described in 
the following section. 

4 Experimental Planning 

4.1 Goal and task 
We want to assess the impact of using similarity 
measurement on the speed and quality at which humans 
can determine the equivalence of requirement pairs but 
we want to do so by accounting for such measurement’s 
credibility, as discussed above. We will achieve this goal 
by means of a controlled experiment that will allow us to 
precisely model the interaction effect of credibility. 
Furthermore, we want to use these results to assess the 
likely benefits of using similarity measurement in an 
industrial context, by accounting for actual credibility 
distributions for actual requirement pairs in a large 
system.  
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Figure 2. Commonalities identification: the requirement pairs are 
ranked according to similarity measurement, the analyst clicks on 
“coincides” when the current requirements pair is equivalent or 
“Unrelated” otherwise. 
 

Table 1. Case study characteristics.!
Application!domain Systems!of!Systems
Industry Selex!SI
Number!of!projects 5
Total!number!of!requirements 2500
Total!number!of!possible!requirements!pairs 3123750
Sample!size!(classified!pairs) 983
Equivalent!requirements!pairs 183 !
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Figure 3. Case study data - distributions of similarity measurement 
and number of words per requirement. 

4.2 Participants 
Our controlled experiment was conducted at the 
University of Rome, Tor Vergata, and experiment subjects 
were 32 students taking a graduate course in empirical 
software engineering in the Department of Informatics, 
Systems and Production engineering (DISP). The course is 
given in the final year of a two year master-level 
education program in Informatics and Computer 
Engineering. All the students during previous bachelor 
and masters courses received extensive teaching on all the 
different phases of the software lifecycle, including 
requirements engineering. Most of the students had some 
industrial experience or worked as private consultants. 

Subjects were not pressured to participate in the 
experiment. In fact we clearly explained that their course 
grade would not be related to their presence or 
performance during the experiment. This is an approach 

we have successfully adopted over several years in other 
experiments. 

4.3 Variables 

4.3.1 Treatments  
The independent variable investigated is the linkage 
method used by subjects to deem if a requirement pair is 
equivalent or not. The associated treatments being 
compared are the following three linkage methods: 
! Pure: Simply read the text of the two requirements of 

the current pair. In other words, no similarity measure 
is used (Figure 5 (a)). 

! Supported: Read the text of the two requirements of 
the current pair and consider their similarity 
measurement as additional information (Figure 5 (b)). 

! Combined: The same procedure as in Supported 
above is used by the human subject to establish 
equivalence. Then, consistent with the rationale 
described in Section 1.1 R.Q. 4, this human opinion is 
combined, using machine learning, with the similarity 
measure, to build a predictive model of requirement 
pair equivalence (Figure 5 (c)). 

Machine Learning

Text Req. 1

Text Req. 2

Similarity 
Measure

Link

Text Req. 1

Text Req. 2

Similarity 
Measure

Link

Text Req. 1

Text Req. 2

Link  
!

Figure 4. The different linkage methods: Pure (a), Supported (b), 
Combined (c). 

4.3.2 Dependent variables 
We are interested in two dependent variables: 
! Quality: This captures, using different measures, the 

correctness of linking requirements pairs. A link is 
considered correct if its two requirements are indeed 
equivalent. A false negative would eventually lead to 
redundant work whereas a false positive would 
eventually result into client dissatisfaction. To enable 
the measurement of the quality of links, the correct 
links of all the requirement pairs were assigned 
beforehand by an expert, who has extensive 
experience in teaching requirements engineering and 
dealing with industrial requirements in the chosen 
application domain. In order to mitigate validity 
threats, requirements equivalence was established 
prior to the experiment execution. Moreover, as 
described in Section 5.1, we compared the equivalence 
links established by the expert to the decision majority 

(b)!(a) (c)
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by the subjects on each of the 144 requirement pairs. 
Results show to be perfectly consistent between the 
two. We adopted the following measures of quality, 
which are standard when assessing classifications 
based on confusion matrices [44]: 
o Accuracy: the fraction of the classifications that 

are correct; i.e., (true positive + true negative) / 
(true positive + true negative + false positive + 
false negative). 

o Precision: the fraction of retrieved documents that 
are relevant; i.e., (true positive) / (false positive + 
true positive).  

o Recall: the fraction of relevant documents that are 
retrieved; i.e., (true positive) / (false negative + 
true positive).  

o True negative rate: the fraction of non-retrieved 
documents that are irrelevant; i.e., (true negative) 
/ (false positive + true negative). 

o False positive rate: is the fraction of retrieved 
documents that are irrelevant; i.e., (false positive) 
/ (false positive + true negative). 

o False negative rate: is the fraction of non-retrieved 
documents that are relevant; i.e., (false negative) 
/ (false negative + true negative).  

o Speed: Because requirements linkage is a time-
consuming task [3,27], similarity measurement is also 
aimed at decreasing the effort required to classify two 
requirements as equivalent or not. We measured 
speed as the number of links established per minute. 
Since PROUD provides the initial time and the final 
time for each link with precision in seconds, we 
compute speed as (60/(final time – initial time)). 

4.4 Hypotheses  
The following experiment hypotheses are derived from 
the above mentioned research questions. We will refer to 
the three treatments associated with our independent 
variable, that is the method followed for linking 
requirements: Pure, Supported, and Combined. 
! R.Q.! 1! Does! showing! the! similarity! measure! affect! the!

performance!of!linking!equivalent!requirements?!
H10 Supported results in the same number of linked 

requirements per minute as Pure. 
H20 Supported results in the same proportion of 

correct links as Pure. 
H30 Supported results in the same precision as Pure. 
H40 Supported results in the same recall as Pure. 
H50 Supported results in the same true negative rate 

as Pure. 
H60 Supported results in the same false positive rate 

as Pure. 
H70 Supported results in the same false negative rate 

as Pure. 

! R.Q.! 2!What! is! the! impact! of! credibility! on! quality! and!
speed?!Does!using!the!similarity!measure!improve!quality!
or!speed!of!linking!requirements?!Does!it!only!do!so!when!

its!credibility! is!high?!Does! it!decrease!quality!and! speed!
when!credibility!is!low?!
H80 The credibility of the similarity measure does 

not significantly interact with the Supported 
method in terms of number of linked requirements 
per minute. 

H90 The credibility of the similarity measure does 
not significantly interact with the Supported 
method in terms of correctness of the 
requirement links. 

! R.Q.! 3! Given! the! level! of! credibility! observed! in! an!
industrial! case! study,! can! we! expect! significant! benefits!
from!using!similarity!measurement?!
H100! Given! a! realistic! level! of! credibility,! Supported!

results! in! the! same!number!of! linked! requirements!
per!minute!as!does!Pure.!

H110! Given! a! realistic! level! of! credibility,! Supported!
results! in! the! same!proportion!of! correct! links!as!
Pure.!!

! R.Q.! 4! Can! we! combine! expert! requirement! linking! and! a!
similarity!measure!to!build!an!optimal!equivalence!prediction!
model?! Is! it! better! than! using! either! of! the! two! sources! of!
information!alone?!
H120! Combined!results!in!the!same!proportion!of!correct!

linkage!decisions!as!does!Supported!and!Pure.!!
H130! Combined!is!as!precise!as!Supported!and!Pure.!
H140! Combined! results! in! the! same! proportion! of!

correctly!identified!equivalent!links!(recall)!as!does!
Supported!and!Pure.!

H150! Combined!results!in!the!same!proportion!of!correct!
identified! nonequivalent! links! (true! negative! rate)!
as!does!Supported!and!Pure.!!

H160! Combined! results! in! the! same! proportion! of!
incorrect! equivalent! links! (false! positive! rate)! as!
does!Supported!and!Pure.!!

H170! Combined! results! in! the! same! proportion! of!
incorrect!nonequivalent!links!(false!negative!rate)!as!
does!Supported!and!Pure.!

H180! Given! a! realistic! level! of! Credibility,! Combined!
results! in! the! same!proportion!of! correct! links!as!
does!Supported!and!Pure.!

Because the combination of human decision and 
similarity measurement requires a negligible 
computational time, we assume (and don’t test) that 
Combined results in the same number of linked requirements 
per minute as does Supported.  

4.5 Objects 
In order to adopt a cross randomized experimental 
design, we use two sets of requirements. In our 
experiment, each set was composed of 72 pairs; the 
number of pairs was decided based on the estimated 
number of requirements pairs the subjects could handle 
within the experiment time.  
The requirements to link were randomly selected from 
the case study and then sanitized to meet the non-
disclosure agreement with our industrial partner. This 
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gave us the possibility to use a set of realistic 
requirements.  Moreover, in order to facilitate statistical 
analysis, we selected requirements pairs according to the 
following strategy:  
o Proportion of equivalent requirements: Requirements 

pairs were selected in order to achieve an equal 
number of equivalent and non-equivalent pairs; 
having a balanced dataset greatly facilitates statistical 
analysis.  

o Credibility distribution: In order to assess how reliable 
is our similarity measure, we defined Credibility as 1-
|similarity measure – human link| where human link is 
the subjective judgment of an expert regarding the 
equivalence of a requirements pair: 1! when the 
requirement pair is classified as equivalent and 0 
otherwise. The more correlated similarity 
measurements and expert judgments are, the higher 
Credibility is, within a [0 , 1] range. Given this 
definition, we selected requirements pairs having a 
wide Credibility distribution (see Figure 5). This helped 
better analyze the statistical interaction of Credibility 
with the performances of linkage methods.!

!
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Figure 5. Distribution of Credibility among the requirements pairs in 
the experiment. 

4.6 Experiment design 
We adopted a cross randomized design consisting of two 
rounds. In each round, subjects inspected 72 pairs of 
requirements, in a random order, and decided about their 
semantic equivalence. A nominal duration for each round 
was suggested but not enforced. 

We developed two sets of 72 requirements pairs; one 
set for each round. Subjects were randomly assigned to 
one of two groups, each working on a different set of 
requirements pairs and with a different version of 
PROUD (with and without similarity) in each round; both 
rounds and both groups involve the same number of 
subjects. This cross-randomized design helped avoid the 
following confounding effects on our dependent 
variables:  

! Subjects skills: All subjects applied both 
treatments in a random order 

! Learning effects: Both treatments were applied in 
equal proportion of subjects across rounds. 

Experimental subjects attended a training of four 
hours a couple of weeks before the experiment execution 

in order to ensure they were competent to perform the 
tasks. 

4.7 Experimental materials 
As mentioned above, we used two versions of PROUD 
developed specifically for the experiment. They provided 
only the minimal functionalities to run the experiment 
and the two versions were exactly the same except for the 
feature showing similarity measures (see Figure 4, that is 
the treatment we are evaluating).  

For!each! requirements!pair! linkage,!PROUD! records!
in!a!log"file!the!following!information:!
! Initial time: Actual starting time in seconds. 
! Identifiers of each of the two requirements. 
! Number of words for each of the two 

requirements. 
! Text of the two requirements. 
! Similarity measurement. 
! Type of link established by human (equivalent 

or nonequivalent). 
! Final time: Actual ending time in seconds. 

Therefore the required time for a human to link a 
requirements pair is computed as final time less initial 
time. 

4.8 Procedure 
The experiment was run in one two-hour lab session in 
the fall 2008. The first 30 minutes were dedicated to 
present an overview of the functionality of the two 
versions of the tool. The differences between versions 
were communicated without favoring one over the other. 

In!order! to!avoid!bias,!no!hypotheses!were! revealed!
and! it!was!made! very! clear! that!we! didn’t! know!what!
results! to! expect! from! the! experiment.! Of! course,! no!
information! was! given! to! subjects! regarding! the!
proportion!of! equivalent! requirements!pairs.!During! the!
presentation!we!presented!to!the!entire!lab!the!procedure!
to! follow,! the! tasks,! and! the! type! of!material! that! they!
were!going!to!receive!and!use!during!the!experiment.!

No subject was allowed to discuss his or her work 
with another student during the experiment. The material 
was both in paper and electronic forms. Paper material 
consisted of the general experiment instructions and 
rules; this was given to subjects at the beginning of the lab 
session. The electronic material included a set of 72 
requirements pairs and a version of the tool, to use by a 
given subject, in a given experiment round, according to 
randomized assignments. The lab provided an internet 
connection; the material was delivered to specific subjects 
by email. 

The following procedure was instructed to students: 
1 Upload the email with experimental material and 

instructions from the experimenters, 
2 Extract and install the version of the tool that is 

attached to the email. 
3 While installing, overwrite any existing file. 
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4 Extract and open the file attached in the email 
containing the specific set of requirement pairs. 

5 Randomize the requirement pairs order by clicking 
on a specific button (see the button at bottom-right 
side of Figure 2). Recall that such randomization 
helps avoid confounding effects between showing 
similarity measurement and ranking, the latter being 
measured by the Lag metric. 

6 Link each requirement pair, in the given order, as 
equivalent or not. 

7 When done or after around 45 minutes, send an 
email to the experimenters containing the log-file 
created by PROUD. 

8 Wait for the acknowledgment of receipt from the 
experimenters. 

9 If no acknowledgment is received within a few 
minutes, contact the experimenters. Otherwise, read 
the incoming email and start the second round by 
enacting again the steps 2 to 8 above. 
The! use! of! email! prevented! deviations! from! the!

experiment! design.! It! helped! avoid! confusion! in! the!
delivery! of! the!material! to! the! right! subjects! and! in! the!
source!of!the!log!files!received.!!

5 Results analysis and Discussion 

5.1 Validation and Pre-processing of the data 
The log-files recorded by PROUD went through pre-
processing before analysis. Two Java applications were 
developed for that purpose, both available at 
www.eseg.uniroma2.it.  

Past studies revealed that experts commit both errors 
of omission (false negative) and commission (false 
positive) in linking requirements when attempting to 
establish true equivalence links among requirements 
pairs [2,5]. In order to detect such errors, we compared 
the expert decisions with those of the participants. A first 
application (A1) takes as input all the subject log-files and 
computes in an output file the most common decision 
among participants (equivalent or nonequivalent) for 
each requirements pair. This was then compared with 
expert decisions and consistency was verified on each of 
the 144 requirements pairs. Expert judgment turned out 
to coincide with that of the majority of the subjects and 
increased our trust in the former.  

Application A2 takes in input all the log-files and 
expert judgment files and provides as output a single file 
classifying all subject decisions as true positive, true 
negative, false positive, and false negative. The raw data 
was then imported into analysis tools: JMP® for statistical 
analysis and WEKA for machine learning [16]. 

In order to verify the subjects’ adherence to 
experiment rules and procedures, and the absence of 
errors in treatment assignments or usages, both A1 and 
A2 included a validation step where sanity checks were 
performed on the subjects’ log-files: 
! No more than one link per subject per requirement 

pair. 

! Pairs were linked in a random order. 
! Subjects adopted the right version of PROUD, on the 

right set of requirements pairs, during the right 
experiment round. 

5.2 R.Q. 1 Does showing the similarity measure 
affect the performance of linking equivalent 
requirements?  

5.2.1 R.Q. 1 a) Quality 
Table 2 reports the experiment results in terms of 
standard confusion matrix classification criteria for the 
Pure (2nd column) and Supported (3rd column) linkage 
methods. Results show that Pure actually outperforms 
Supported, though often by small margins.  

Table 3 reports the p-value obtained when comparing 
the two linkage methods, by means of a two-tailed, Z-
score test [45] for proportions, in terms of true/false 
negative/positive rates and precision. Results indicate 
that all differences in proportions, though often very 
small, are statistically significant (" = 0.05).  

Table 2 Quality of Pure versus Supported linkage methods. 

Pure Supported
True!positive 986 929
True!negative 919 874
False!positive 86 92
False!negative 60 83
Accuracy 0.9288 0.9115
Recall!or!true!positive!rate 0.9426 0.9180
False!positive!rate 0.0855 0.0952
True!negative!rate 0.9144 0.9047
False!negative!rate 0.0573 0.0820
Precision 0.9197 0.9098  

Table 3 Statistical tests for Pure versus Supported linkage methods. 
Measure Hypothesys P"value

Accuracy H2
0 0.0000

Recall!or!true!positive!rate H3
0 0.0000

False!positive!rate H4
0 0.0000

True!negative!rate H5
0 0.0000

False!negative!rate H6
0 0.0000

Precision H7
0 0.0000 !

5.2.2 R.Q. 1 b) Speed 
Table! 4! reports! the! average!number! of! links! established!
per! minute! (2nd! row)! for! Pure! and! Supported.! These!
distributions!depart!significantly! from!normality!and!we!
therefore! used! the! non"parametric,! Mann–Whitney–
Wilcoxon! test! to! assess! the! significance!of!differences! in!
speed.! Table! 4! also! reports! the! p"value! obtained! when!
comparing!the!Pure!and!Supported,!which!shows!there!is!
no! statistically! significant! difference.! In! conclusion,!
showing! similarity!measure! did! not! significantly! affect!
the! speed! of! human! analysts! in! classifying! equivalent!
requirements.!!!
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Table 4 Comparing the speed of Supported and Pure. 
Pure Supported

Classifications!per!minute 6.54 6.32

H1
0!(P"value) 0.275 !

5.2.3 R.Q. 1 c) Discussion 
Against all expectations, similarity measures appeared to 
be counterproductive for supporting the classification of 
equivalent requirements. This contrasts with past studies 
[3] where similarity measurement yielded improvements 
both in terms of quality and speed. Possible reasons for 
this difference are considered below: 
1) Differences in subjects: It would be difficult to 

understand why master students (current 
experiment) would perform significantly worse than 
bachelor students (experiment in [3]) when provided 
with similarity measurement. 

2) Difference in similarity measurement: Since PROUD 
and reqSimile [3] use the same natural language 
technique to measure similarity, this is not possible. 

3) Differences in proportions: Having a balanced 
proportion of equivalent and non-equivalent 
requirements should not impact the results as both 
treatments should be equally affected. 

4) Differences in requirements pairs: Similarity 
measures are based on heuristics and may be more 
or less reliable at predicting equivalence (credibility), 
depending on the specific requirements considered. 
This seems to be the most likely reason and is 
therefore investigated next.  

5.3 R.Q. 2 What is the impact of credibility on quality 
and speed? Are improvements in quality or 
speed due to similarity measurement positively 
and significantly related to credibility? 

In general, we expect that unreliable similarity measures 
would confuse analysts in linking requirement pairs; this 
might eventually negatively impact both quality and 
speed. Hence, if our experiment is based on a set of 
requirements pairs for which similarity measures are 
poor indicators of similarity, Pure decisions might fare 
better than Supported ones. Given the similarity 
measurement provided by PROUD, we need to analyze 
whether for the requirements pairs with higher 
credibility, Supported outperforms Pure in terms of 
accuracy or speed. To do so, we investigate interaction 
effects between similarity and credibility on accuracy and 
speed. 

5.3.1 R.Q. 2 a) Quality 
We statistically tested the existence of an interaction effect 
between Method and Credibility on correctness by 
applying logistic regression. This regression technique is 
used as the dependent variable, Correctness, is binary (i.e., 
are two linked requirements equivalent or not?) and we 
therefore tackle a classification problem. The regression 
model in Table 5 features both a Method variable and an 
interaction term multiplying Method and Credibility. This 
is meant to capture a possible interaction effect. As we 

can see, the interaction term is statistically significant, 
though Method is not. This suggests the presence of a 
strong interaction effect. 

To better understand what that interaction effect 
implies, it is better to look at an interaction plot [46], as 
depicted in Figure 6, which plots actual values. This helps 
us visualize how the probability of link correctness varies 
according to the type of Method and Credibility. In Figure 6 
we can see that the Supported correctness curve crosses 
the Pure line around a Credibility value of 0.6, above 
which the similarity measure helps improves correctness 
(i.e., the probability for the link to be correct). !

5.3.2 R.Q. 2 b) Speed 
Because speed is defined on a ratio scale, we used least 
squares regression to study its relationship with linkage 
method and credibility. From Table 6 we can see that once 
again the interaction effect between Credibility and Method 
is statistically significant whereas the main effect term for 
Method is not. 

As for correctness, the interaction plot in Figure 7 
depicts the interaction effect between linkage method and 
the level of credibility on speed. Once again, Supported is 
beneficial above a Credibility threshold of roughly 0.6.  

Table 5 Logistic regression for correctness 

Parameter!Estimates
Term Estimate Std!Error ChiSquare Prob>ChiSq
Intercept "2.56 0.0859 894.72 <.0001
Method[Supported"Pure] 0.1030 0.1235 0.700 0.40

(Credibility"0,5632)*!
Method[Supported"Pure]

"3.15 0.4806 43.19 <.0001

H8
0 P"value! <.0001

Nominal!Logistic!Fit!for!Correctness

 
Table 6 Standard least squares regression for speed. 

Parameter!Estimates
Term Estimate Std!Error tRatio Prob>|t|
Intercept 6.546 0.168 39.040 <.0001
Method[Supported"Pure] "0.209 0.239 "0.87 0.383

(Credibility"0.56338)*!
Method[Supported"Pure]

6.396 0.956 6.690 <.0001

H9
0 P"value! <.0001

Standard!Least!Squares!Regression!For!Speed

!
!
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Figure 6. Interaction plots for correctness between Credibility and 
Method (Pure or Supported). 
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Figure 7. Interaction plots for speed between Credibility and Speed 
(Pure or Supported). 

5.3.3 R.Q. 2 c) Discussion 
There is an interaction effect between linkage method and 
credibility for both correctness and speed. In addition, it 
is interesting to note that the linkage method has no main 
effect neither for correctness nor speed. In other words, 
results suggest that for supporting the analysts in 
classifying equivalent requirement pairs, showing 
similarity measurement is beneficial, on a given set of 
requirements pairs, only when its credibility is above a 
given threshold. It would therefore be important to 
investigate how to write requirements in order to 
maximize the credibility of a used similarity measure, if at 
all applicable. Perhaps requirements templates can be 
devised to make the requirements more amenable to 
similarity measurement.   

Moreover, given the facts that i) the average 
Credibility of the requirements pairs adopted in the 
experiment is around 0.55 (see Figure 5), and ii) showing 
similarity measurement support quality and speed only 
when Credibility is higher than about 0.6, it becomes clear 
why in our experiment, when not accounting for 
interaction effects, similarity did not seem to help 
improve either correctness or speed (see Table 2). 

Given that in practice we do not know the 
distribution of credibility values for a set of requirements, 
we cannot assess beforehand the expected benefits of 
applying similarity measures. We can also draw 
additional conclusions: 
! The impact of credibility probably explains the 

disagreement between the results of Table 2 and the 
previous study reported in [3]. Credibility needs to be 
measured and reported to be able to compare studies 
on the use of similarity measures for requirements 
linking.  

! It is important to account for the following 
considerations: 
o One must adopt a natural language processing 

technique leading to a reliable similarity measure 
in a given context (e.g., requirements template),  

o One must adapt requirements templates to the 
used similarity measure, to ensure maximum 
credibility (e.g., use of a domain model to make 
vocabulary consistent) 

o If none of the above is possible, one must use the 
similarity measure only when appropriate (if it can 

be determined) and in a decision process using 
different sources for classifying requirement pairs. 
This is addressed by R.Q.4 in Section 5.5.5 where a 
machine learning model is used to combine expert 
linking with similarity measurement to provide an 
optimal classification.  

! Credibility is a necessary factor to measure and 
account for when assessing the effect of similarity 
measures. In fact, standard confusion matrix criteria 
(e.g., precision, recall) based on rankings are not 
appropriate measures to account for the classification 
sub-activity (see Section 1.2.1). !

! One must investigate and characterize, in the context 
of application, the level of credibility that can be 
expected in real requirements so as to assess the 
expected benefits from similarity measurement in 
terms of quality and speed. Thus an informed decision can 
be made on whether or not to use such technology, 
using the procedure we propose in the next section.  

5.4 R.Q. 3 Given the level of credibility observed in 
an industrial case study, can we expect 
significant benefits from using similarity 
measurement? 

In order to answer this question we must analyze 
credibility in a representative set of real requirements. We 
ran an industrial case study where a domain expert 
analyzed about a thousand of requirement pairs; 183 
requirements turned out to be equivalent. Our goal was 
to ensure sufficient numbers of analyzed and equivalent 
requirements pairs to enable statistical analysis. 

The requirements links on this case study were 
established by the expert following the Supported 
method. Therefore, we cannot use them to compare the 
Pure and Supported methods on real requirements. But 
since in R.Q. 2, based on our controlled experiment we 
observed a significant interaction effect between 
credibility and the linkage method, our approach is to 
assess the expected benefits of using similarity 
measurement by interpreting the regression model 
obtained via the experiment in light of the observed 
Credibility distribution in the industrial requirements set 
(Figure! 5). The possible differences in human 
performance when classifying requirements in the 
experiment and the industrial case study should be low 
because the experiment requirements were drawn and 
adapted from the industrial requirements. Moreover, 
such possible differences should affect both treatments 
equally.  

In general, since the average Credibility of the 
requirements pairs was around 0.81, and since our 
experiment has shown that similarity measurement 
improves both quality and speed when Credibility is 
higher than 0.6, we expect benefits in the industrial case 
study. More precisely, according to Figure!5, around 75% 
of requirement pairs have a Credibility value higher than 
0.6 and should therefore benefit from the use of similarity 
measurement.  
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5.4.1   R.Q. 3 a) Quality 
The ratio of correct links in the experiment dataset for 
Pure links is 0.929 (see Figure 6). Hence, the expected gain 
from similarity measurement can be assessed in the case 
study requirements by subtracting 0.928 from the 
predicted correctness using the model in Table 5. Figure 9 
describes the distribution of this gain in correctness for 
the industrial requirements pairs. According to Figure 9, 
the impact is positive in more than 90% of the cases. 

The average gain is 0.028. Because the percentage of 
incorrect classifications with Pure is 7.1% (i.e., 1 - 0.929) 
then the expected percentage of incorrect classifications 
adopting Supported is 4.3% (i.e., 1 – 0.929 – 0.028). 
Therefore, in an industrial setting, showing similarity 
measurement reduced, on average, the number of 
incorrect links by 40% (i.e., 1 - 4.3/7.1).  

Table 7 reports the p-value resulting from applying a 
one-tailed Z-test score comparing the proportions of the 
expected correctness on real requirements pairs of the 
two linkage methods. Results clearly show that the 
difference is statistically significant. 

5.4.2 R.Q. 3 b) Speed 
The average number of links classified per minute in the 
experiment dataset for Pure links is 6.54. According to the 
least squares regression model (Table! 6) on the 
experiment dataset, the number of classifications per 
minute (when using Supported) is: 2.73 + 6.39*Credibility. 
Hence, the average gain in speed expected from 
Supported is 1.36 links per minute, defined as: -
3.81+6.39*0.81, by subtracting 6.54 from 2.73 + 
6.39*Credibility. Hence, in an industrial setting, showing 
similarity measurement increased speed by 20%.  

Figure 10 describes the distribution of the gain 
among the industrial dataset of requirements. According 
to Figure 10, showing similarity measurement has a 
positive impact on speed (a positive gain) in more than 
95% of the cases. The maximum gain is around 2.6 links 
per minutes while, though expected to be very rare in 
practice, showing similarity measurement can decrease 
speed up to three links per minute. 

In order to test the difference between the expected 
speed of Pure and Supported on industrial requirements 
we adopted a one-tailed Wilcoxon Signed Rank test. The 
expected speed of Supported was represented by a 
distribution obtained by applying the regression model 
obtained via the experiment on the observed Credibility 
distribution in the industrial requirements set (Table 6). 
Consistent with our assumption, we are using the Pure 
speed distribution from the experiment as this is not 
available in the industrial case study. Table 8 reports the 
p-values, that clearly show that the difference in speed is 
statistically significant. 
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Figure 8. Distribution of Credibility among requirements pairs in the 
industrial case study. 
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Figure 9. Expected variation in quality when using Supported, when 
compared to Pure, on real requirements pairs. 

Table 7 Testing differences among linkage methods of expected 
correctness on real requirements pairs. 

Pure Supported
Expected!Correctness 0.929 0.956

!H10
0!!(P"value) 0.0000   
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Figure 10. Expected variation in speed when using Supported, when 

compared to Pure, on real requirements pairs. 
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Table 8 Testing differences among linkage methods of expected 
speed on real requirements pairs. 

Mean StdDev Mean StdDev
Expected!Speed 6.55 7.75 7.91 1.30

!H11
0!!(P"value)

Pure Supported

0.00000  
 

5.4.3 R.Q. 3 c) Discussion 
Given the distributions of Credibility in an industrial case 
study, using the experiment data for modeling the 
relationship between link correctness and credibility and 
linkage method, we investigated the expected 
improvement in both quality and speed resulting from 
using similarity measurement. The above results confirm 
what was reported in [3] and thus suggest that similarity 
measures should be used to help people link equivalent 
requirements. 

5.5 R.Q. 4 Can we combine expert requirement 
linking and a similarity measure to build an 
optimal equivalence prediction model? Is it 
better than using either of the two sources of 
information alone? 

Results from our experiment (R.Q. 3) and past studies [3] 
support the hypothesis that using similarity measure can 
increase both the quality and speed of humans when 
linking equivalent requirements. However, according to 
the results obtained for R.Q.2, the use of a similarity 
measure can also be counterproductive for requirements 
pairs whose similarity measurement has low credibility. 
Moreover, we note that the level of credibility of a given 
similarity measure on a given set of requirements cannot 
be estimated a priori. In fact, credibility may change 
according to: 1) the specifics of the natural language 
processing technique used to measure requirements’ 
similarity, 2) the intrinsic characteristics of the natural 
language in which requirements are expressed in a given 
context.  Therefore, we need to investigate whether 
similarity measures can support humans in linking 
equivalent requirements in a more robust way. The 
strategy we investigate here applies machine learning to 
combine human classification and similarity 
measurement into a hybrid equivalence prediction model. 
The basic idea is that this prediction model, based on data 
analysis, would empirically determine how to weigh the 
two sources of information when they disagree. To 
investigate the effectiveness of this idea we use the 
experiment data subset for Supported links and report the 
results below. 

5.5.1 R.Q. 4 a) Quality 
In order to investigate the quality of a hybrid equivalence 
prediction model using human links and similarity 
measurement in input, we tried several machine learning 
techniques including logistic regression, Bayes network, 
and a Decision Table/Naïve Bayes hybrid classifier 
(DTNB) [47]. In the present paper, we will report the 
results of DTNB since this is the machine learning 
technique that fared the best. To evaluate this hybrid 

equivalence prediction model we applied a 10-fold cross-
validation approach [16]. The adoption of cross-validation 
is a standard approach for assessing prediction models in 
order to obtain realistic and generalizable results.  

Table 9 provides various confusion matrix metrics for 
assessing the quality of the three linkage methods 
according to the experiment data. The first two columns 
in Table 9 were already presented in! Table! 2! and are 
reported here to facilitate comparisons among linkage 
methods. We can clearly see improvements with respect 
to all evaluation criteria for the Combined method when 
compared to Pure and Supported. One question is 
whether these differences are significant.!!

Table 10 reports the p-values resulting from applying 
a one-tailed Z-test score comparing proportions (see 
Section 4.3.2) related to various accuracy measures of 
Combined to the two other linkage methods. Results 
clearly show that all difference are statistically significant 
for all quality criteria.  

The Combined linkage method provides better 
correctness for establishing requirements pair 
equivalence.  The questions are then to determine its 
performance on industrial requirements and how 
dependent is this result on credibility values. 

Table 9 Accuracy of linkage methods based on experimental results. 

Accuracy 0.9288 0.9115 0.9348
Recall!or!true!positive!rate 0.9426 0.9180 0.9428
False!positive!rate 0.0856 0.0952 0.0734
True!negative!rate 0.9144 0.9048 0.9266
False!negative!rate 0.0574 0.0820 0.0572
Precision 0.9198 0.9099 0.9289

Pure Supported Combined

!

Table 10 Testing differences among linkage methods on 
experimental results. 

Pure!vs!Combined Supported!vs!Combined

Accuracy H12
0 0.0000 0.0000

Recall!or!true!positive!rate H13
0 0.0000 0.0000

False!positive!rate H14
0 0.0000 0.0000

True!negative!rate H15
0 0.0000 0.0000

False!negative!rate H16
0 0.0000 0.0000

Precision H17
0 0.0000 0.0000

P"value
Hypothesys

!
5.5.2 R.Q. 4 b) Expected benefits on the quality of 

industrial requirements 
The average correctness in the experiment dataset 
concerning only Pure links is 0.929 (see Figure 6). Hence, 
the expected gain in correctness by combining similarity 
and human classification, can be computed on real 
requirements by subtracting 0.929 from the correctness 
predicted by the Combined model in the previous section. 
Figure 11 describes the gain distribution for Combined 
among the industrial requirements set. According to 
Figure 11, combining similarity and human classification 
shows a positive gain in quality in more than 90% of the 
cases. The average gain is 0.034; this means that the 
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percentage of incorrect classifications decreases up to 
3.7% (when using Combined, the expected ratio of 
incorrect classifications is: 1 – 0.929 – 0.034). Hence, in an 
industrial setting, combining similarity measurement 
reduced, on average, the number of incorrect links by 
48% with respect to Pure (i.e., 1 – 3.7/7.1). Table 11 
reports the p-value resulting from applying a one-tailed 
Z-test score comparing proportions related to the 
expected correctness of Combined to the two other 
linkage methods. Results show that the difference 
between Combined and Pure is statistically significant 
while the difference between Combined and Supported is 
not. 

5.5.3 R.Q. 4 c) Robustness 
Though both Combined and Supported are affected 

by requirements’ credibility, our expectation is that 
Combined is more robust than Supported to low 
credibility values. This is justified by the fact that it 
combines two sources of information, human links and 
similarity measurement. Figure 12 shows the interaction 
plot in terms of logistic regression, of the three linkage 
methods. The Pure and Supported curves correspond to 
the model in Figure 6 and the Combined curve 
corresponds to a logistic regression model predicting 
correctness based on the DTNB model output and 
credibility, trying to model the interaction between the 
two. Figure 12 shows that the Combined curve crosses the 
Pure line earlier on the Credibility range than the 
Supported curve. Combined therefore requires a lower 
level of credibility to provide benefit when compared to 
Supported, thus making similarity measurement 
applicable to a wider set of contexts. In other words, 
Combined is more robust to low credibility than 
Supported.  

5.5.4 R.Q. 4 d) Discussion 
Combined improves both the quality of links 

(Accuracy, Recall, False positive rate, True negative rate, 
False negative rate, Precision) when compared to both 
Pure and Supported linkage methods. Hence, though the 
level of credibility of the experiment dataset is 
significantly lower than for the industrial case study, 
when using Combined, similarity measurement is 
nevertheless beneficial (Table 9). In other words we went 
from a situation where similarity measurement was at 
best not beneficial (Supported) to a situation where it is 
significantly valuable in terms of correctness 
improvement, when used in combination with human 
decisions (Combined).It is interesting to observe that 
Combined outperformed Supported both in the 
experiment and in the industrial datasets. This result is 

confirmed by analyzing Figure 12; Combined 
outperforms Supported on the entire credibility range. 
However, the higher the credibility, the lower the 
differences between the performances of Combined and 
Supported. In fact, according to Table 11, their difference 
is statistically significant on the experiment dataset while 
it is not significant on the industry dataset (where the 
credibility is higher).  
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Figure 11. Expected variation in quality from Combined when 
compared to Pure on real requirements pairs. 
 

Table 11. Testing differences among linkage methods of expected 
correctness on real requirements pairs. 

 

Pure!Vs!Combined! Supported!vs!Combined!!
Expected!correctness!!

H18
0!(P"value)

0.0000 0.1873
!

Results from Table 9 are consistent with Figure 12: 
Combined is better regarding correctness than Pure when 
Credibility is higher than 0.47, that is significantly lower 
than the average (0.55) observed in the experiment. In 
other words, when using the hybrid prediction model 
described above, the minimum Credibility from which the 
use of similarity measurement provides benefits 
decreases from 0.6 to 0.47, thus making similarity 
measurement more robust to low values of credibility. 

In conclusion, combining human classification with 
similarity measure is expected to provide higher 
performances in respect to single sources. Moreover, such 
performances are less sensitive to credibility thus making 
the application of similarity measurement applicable to a 
wider context.  

5.6 Threats to Validity 
In the following we discuss the threats to validity related 
to our empirical procedure using the terminology and 
concepts reported by Wohlin et al. in [48]. 
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Figure 12. Correctness versus Credibility and type of linkage method – Logistic regression. 
 

5.6.1 Conclusion validity 
Conclusion validity is concerned with the experimenter’s 
ability to draw conclusions about relations between the 
treatment and the outcome of the experiment [48]. The 
threats related to statistical assumptions and type-I error 
rates are negligible due to the fact that we used non-
parametric tests and obtained very small p-values on 
most statistical tests. Since measurement was automated 
and the data validated (Section 5.1), in our view threats 
related to the reliability of measurement are unlikely. The 
adopted cross-randomized design allows subjects to 
apply all the treatments in a random order. This is 
expected to mitigate the threats related to reliability of 
treatment implementation, random irrelevance in 
experimental setting, and random heterogeneity of 
subjects. 

5.6.2 Internal validity 
Internal validity issues arise from variables that are 
confounded with independent variables, thus making the 
effect of the latter on the dependent variable difficult to 
analyze. The ability of the experimenter to establish 
causality between treatments and the observed effect on 
the dependent variable is then compromised. Threats 
related to maturation should be unlikely because of our 
experimental design. Regarding the ability of subjects to 
deal with requirements written in English, we are pretty 
confident about the subjects’ ability to deal with technical 
English because many of the books in courses they passed 
were written in English. Social threats should be low as 
well because subjects had nothing to gain from the actual 
outcome of the experiment. 

5.6.3 Construct validity 
Construct validity is concerned with the validity of 
measurement. Our measurement was very similar to that 
in [3]. We avoided mono-operation bias by adopting a 
large amount of requirement pairs to link and an equal 
amount of equivalent and nonequivalent pairs. Threats of 

mono-method bias should be unlikely since we adopted 
six different measures for correctness and they all yielded 
similar results. This also mitigates the fishing threat. 
Regarding experimenter expectancies, we have seen the 
use of PROUD was on average counterproductive; 
moreover, we weren’t interested in demonstrating that 
the usage PROUD was beneficial but we wanted to 
investigate how the support provided by similarity 
measurement was dependent on its reliability to properly 
measure equivalence. Though the adoption of a balanced 
proportion of equivalent requirements is not realistic,  
this balanced design facilitated the experiment data 
analysis and yielded a better correctness prediction 
model, that could then yield more realistic results when 
applied to the case study industrial requirements.  

5.6.4 External validity 
External validity is related to generalization of the results. 
Though controlled experiments with students present 
general challenges with respect to external validity, the 
students were suitably trained for the tasks. The 
controlled experiment was relied upon to model the 
relationship between the correctness and speed of 
establishing requirements equivalence and similarity, 
while accounting for the credibility of similarity 
measurement. However, an industrial case study was 
used to obtain realistic distribution for credibility, and 
thus assess in a realistic fashion what benefits to expect 
from using similarity measurement.  

6 Conclusions and Future Work 
The application context of our work is the 
defense/aerospace domain where a significant 
proportion of requirements tend to be redundant due to 
large numbers of projects, requirements per project, and 
diverse sources of requirements.  
This paper makes the following contributions:  
1. We propose a novel approach to evaluate the benefit 

of showing requirement similarity measurement to 
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analysts in terms of effectiveness and efficiency for 
linking equivalent requirements: The approach 
consists in combining an industrial case study and a 
controlled experiment to obtain both sufficient control 
and realism. One important point is our investigation 
of how the level of support provided by similarity 
measurement can be affected by the requirements set 
on which it is used and the specific properties of the 
similarity measure. Hence, we designed an 
experiment with known equivalence links among 
requirements and we defined a "credibility" measure 
to assess the reliability of similarity measurement, that 
is how accurately it reflects the actual correctness of 
links between requirements. We then used credibility 
as an interaction factor with similarity in our data 
analysis. Once the interaction effect of credibility with 
similarity is modeled using the experiment data, we 
used a realistic credibility distribution from an 
industrial case study to assess the likely benefits of 
using similarity measurement on realistic 
requirements. Our controlled experiment involved 
thirty graduate students and an industrial case study 
with one thousand requirements pairs with known 
equivalence links and computed similarity and 
credibility values. 

2. We show that similarity measurement has an 
interaction effect with credibility: Results suggest 
that similarity measurement must be above a given 
credibility level to be beneficial. When credibility is 
low, it may even be counterproductive and negatively 
affect the correctness of linking equivalent 
requirements. Such a result can be used by future 
evaluations of similarity measures; they can estimate 
the likely benefits of showing similarity measurements 
for classifying requirements by adopting the 
interaction effects observed in our experiment.  

3. We evaluate the benefits of similarity measurement 
on industrial requirements: Given the level of 
credibility observed on a large industrial case study, 
using the similarity measurement is expected, on 
average: 1) to improve by 20% the amount of 
equivalence links established per minute and 2) to 
decrease by 40% the amount of incorrectly established 
links. This confirms and extends past empirical 
studies regarding the practical benefit of using 
similarity measurement when establishing 
equivalence links among requirements, both in terms 
of correctness and speed. 

4. We propose and evaluate an approach for combining 
human decisions and similarity measurement: The 
idea is to combine and weight measurement and 
human decisions in such a way to alleviate their 
individual weaknesses.  We empirically evaluated the 
benefits of building prediction models based on these 
two sources of information by using various statistical 
and machine learning techniques. A practical result is 
that such hybrid models make the use of similarity 
measurement beneficial for lower values of credibility, 

both for correctness and speed, thus making the 
application of similarity measurement applicable to a 
wider context. Moreover, such hybrid models  
outperform the performance of showing similarity 
measurement, and significantly so for low levels of 
credibility. In conclusion, the combination of human 
decisions and similarity measurements makes the use 
of the latter more effective, efficient and more widely 
applicable.   

Though the presented study focuses only on linking 
equivalent requirements, there is no reason why the 
above results should not be independent of the specific 
type of similarity measure or artifacts (expressed in 
natural language) being linked. 

Future works include the evaluation of other 
similarity measures and the use of machine learning to 
predict the number of remaining artifacts to link.  
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