
39

Chapter 4

Using software history to

guide deployment of coding

standards
Authors: Cathal Boogerd, Leon Moonen

Abstract: In spite of the widespread use of coding standards and tools enforcing their

rules, there is little empirical evidence supporting the intuition that they prevent the

introduction of faults in software. Therefore, we propose to use information from software

and issue archives to link standard violations to known bugs. In this chapter we introduce

such an approach and apply it to three industrial case studies. Furthermore, we discuss how

to use the historical data to address two practical issues in using a coding standard: which

rules to adhere to, and how to rank violations of those rules.

4.1 Introduction

Coding standards have become increasingly popular as a means to ensure software quality

throughout the development process. They typically ensure a common style of programming, which

increases maintainability, and prevent the use of potentially problematic constructs, thereby

increasing reliability. The rules in such standards are usually based on expert opinion, gained by

years of experience with a certain language in various contexts. Over the years various tools have

become available that automate the checking of rules in a standard, helping developers to locate

potentially difficult or problematic areas in the code. These include commercial offerings (e.g., QA-

C1, K72, CodeSonar3) as well as academic solutions (e.g., [Johnson, 1978] [Engler, 2000] [Flanagan,

2002]). Such tools generally come with their own sets of rules, but can often be adapted such

that also custom standards can be checked automatically. In a recent investigation of bug

characteristics, Li et al. argued that early automated checking has contributed to the sharp

decline in memory errors present in software [Li, 2006]. However, in spite of the availability of

appropriate standards and tools, there are several issues hindering adoption.

1 www.programmingresearch.com

2 www.klocwork.com

3 www.grammatech.com

40 Using software history to guide deployment of coding standards

Automated inspection tools are notorious for producing an overload of non-conformance warnings

(referred to as violations in this chapter). For instance, 30% of the lines of one of the projects used in

this study contained such a violation. Violations may be by-products of the underlying static

analysis, which cannot always determine whether code violates a certain check or not. Kremenek et

al. observed that all tools suffer from such false positives, with rates ranging from 30-100%

[Kremenek, 2004]. Furthermore, rules may not always be appropriate for all contexts, and many of

their violations can be considered false positives. For instance, we find that one single rule is

responsible for 83% of all violations in one of the analyzed projects, which is unlikely to only point

out true problems. As a result, manual inspection of all violating locations adds a significant

overhead without clear benefit.

Although coding standards can be used for a variety of reasons, such as maintainability or

portability, in this chapter we will focus on their use for fault prevention. From this viewpoint, there

is an even more ironic aspect to enforcing ineffective rules. Any modification of the software has a

non-zero probability of introducing a new fault, and if this probability exceeds the reduction

achieved by fixing the violation, the net result is an increased probability of faults in the software

[Adams, 1984].

Therefore, in previous work [Boogerd, 2008-a], [Boogerd, 2009] we investigated the link between

violations and known faults in two software archives using the MISRA standard [MISRA, 2004], a

widely adopted industrial standard for C. We found that a small subset of the rules can be linked to

known faults, but that this set differs between the two cases investigated. In this chapter, we expand

the previous case studies and show how to use the same approach to address a number of practical

challenges.

4.1.1 Challenges

Given the fact that interaction of code and coding standard can vary so dramatically, and that it has a

great impact on the coding habits of developers, managing a coding standard for a software project is

not a trivial task. Specifically, we identify two challenges:

1. Which rules to use from a standard? A standard may be widely adopted, but still contain rules

that, at first sight, do not look appropriate for a certain project. In addition, when comparing

several different coding standards an explicit evaluation of individual rules can help in

selecting the right standard.

2. How to prioritize a list of violations? Although a standard may be carefully crafted and

customized for a project, developers may still be faced with too many violations too fix given

the limited time. To handle this problem most efficiently, we need to prioritize the list of

violations, and define a threshold to determine which ones have to be addressed, and which

ones may be skipped.

In other words, we define a rule selection criterion and a violation ranking strategy. We discuss our

approach in Section 4.2, introduce our cases in Section 4.3 and discuss results of the approach in

Section 4.4. We evaluate the results and describe how to meet the challenges in Section 4.5. Finally,

we compare with related work in Section 4.6 and summarize our findings in Section 4.7.

 Cathal Boogerd, Leon Moonen 41

Figure 4.1 Measurement process overview

4.2 Approach

The approach uses a Software Configuration Management (SCM) system and its accompanying

issue database to link violations to faults. Such an issue database contains entries describing

observed problems or change requests, and these issues can be linked to the source code

modifications made to solve it. Using this system impacts the definition of our measures: we define a

violation to be a signal of non-conformance of a source code location to any of the rules in a coding

standard; a bug to be an issue in the database for which corrective modifications have been made to

the source code (the fix); those original faulty lines constitute the fault.

Measuring violations Figure 4.1 illustrates the steps involved in the measurement process. First we

select the range of releases relevant to the study, i.e., the ones part of the selected project. We iterate

over all the releases, retrieved from the source repository (1), performing a number of operations for

each. From a release, we extract the configuration information (2) necessary to run the automatic

code inspection (3), which in turn measures the number of violations. This configuration information

includes the set of files that are to be part of the measurements, determined by the project‟s build

target. We record this set of files and take some additional measurements (4), including the number

of lines of code in the release.

4.2.1 Matching faults and violations

Matching requires information on the precise location(s) of a fault. We start gathering this

information by checking which file versions are associated with bugs present in the issue database

(5). We proceed to compute a difference with previous revisions, indicating which changes were

made in order to solve the issue, and marking the modified lines. When all issues have been

processed, and all lines are marked accordingly, the complete file history of the project is traversed

to propagate violations and determine which ones were involved in a fix. All this takes place in the

Line Tagger (6), described below.

42 Using software history to guide deployment of coding standards

Figure 4.2 File-version and annotation graphs

Using the set of files recorded in (2) the Line Tagger constructs a file version graph, retrieving

missing intermediate file versions where necessary. For every file-version node in the graph, we

record the difference with its neighbors as annotation graphs. An example is displayed in Figure 4.2.

The round nodes denote file versions, each edge in that graph contains an annotation graph,

representing the difference between the two adjoining nodes. Lines in the annotation graph can be

either new (light grey), deleted (black) or modified (dark grey, pair of deleted and new line).

Using the file-version graph, matching faulty and violating lines becomes straightforward. To

compute the true positive ratio, we also need the total number of lines, defined as the number of

unique lines over the whole project history. What we understand by unique lines is also illustrated in

Figure 4.2: if a line is modified, the modified version is considered a new unique line. This makes

sense, as it can be considered a new candidate for the code inspection. In addition, it means that

violations on a line present in multiple versions of a file are only counted once. Our line tagging is

similar to the tracking of fix lines in [Kim, 2007-b], although we track violations instead.

4.2.2 Determining significance of matchings

Dividing the number of hits for a certain rule (violations on faulty lines) by the total number of its

violations results in the desired true positive rate. But it does not give us a means to assess its

significance. After all, if the code inspection flags a violation on every line of the project, it would

certainly result in a true positive rate greater than zero, but would not be very precise or efficient. In

fact, any random predictor, marking random lines as faulty, will, with a sufficient number of

attempts, end up around the ratio of faulty lines in the project. Therefore, assessing significance of

the true positive rate means determining whether this rate is significantly higher than the faulty line

ratio. This will give us an intuition as to whether the matchings are simply chance or not.

We model this by viewing the project as a large repository of lines, with a certain percentage p of

those lines being fault-related. A rule analysis marks n lines as violating, or in other words, selects

these lines from the repository. A certain number of these (r) is a successful fault-prediction. This is

compared with a random predictor, which selects n lines randomly from the repository. Since the

number of lines in the history is sufficiently large and the number of violations comparably small, p

remains constant after selection, and we can model the random predictor as a Bernoulli process (with

p = p and n trials). The number of correctly predicted lines r has a binomial distribution; using the

cumulative distribution function (CDF) we can compute the significance of a true positive rate (r/n).

 Cathal Boogerd, Leon Moonen 43

Because we know that only files that were actually changed contain faults, we only consider lines

from these files for the analysis. This is a stricter requirement for significance than including also

non-changed files.

4.2.3 Requirements

There are two important requirements for the approach that should be considered when replicating

this study. The first is that of the strict definition of which files are part of the analysis as well as

what build parameters are used, as both may influence the lines included in the subsequent analysis,

and thus the number of faults and violations measured. The second requirement is a linked software

version repository and issue database. The link may be (partially) reconstructed by looking at the

content of commit log messages, or be supported by the database systems themselves, as in our case.

Many studies have successfully used such a link before [Li, 2006] [Sliwerski, 2005] [Kim, 2006-b]

[Weiß, 2007] [Kim, 2007-c] [Williams, 2005] [Kim, 2006-a].

4.3 Three case studies

4.3.1 Projects

For this study we selected three projects from NXP 4, denoted TVoM, TVC1 and TVC2. The first

project was a part of our pilot study [Boogerd, 2008-b], the second was previously studied in

[Boogerd, 2009], the third one has been added in this chapter. We shortly describe each of them

below.

TVoM is a typical embedded software project, consisting of the driver software for a small SD-card-

like device. When inserted into the memory slot of a phone or PDA, this device enables one to

receive and play video streams broadcasted using the Digital Video Broadcast standard. The

complete source tree of the latest release contains 148KLoC of C code, 93KLoC C++, and

approximately 23KLoC of configuration items in Perl and shell script (all reported numbers are non-

commented lines of code). The real area of interest is the C code of the actual driver, which totals

approximately 91KLoC.

TVC1 and TVC2 are software components of the NXP TV platform (referred to as TVC, for TV

component). Both are part of a larger archive, structured as a product line, primarily containing

embedded C code. This product line has been under development for five years and most of the code

to be reused in new projects is quite mature. We selected from this archive the development for two

different TV platforms: TVC1 comprises 40 releases from June 2006 until April 2007; TVC2 has 50

releases between August 2007 and November 2008.

In all these projects, no coding standard or inspection tool was actively used. This allows us to

actually relate rule violations to fault-fixing changes; if the developers would have conformed to the

standard we are trying to assess, they would have been forced to immediately remove all these

violations. The issues we selected for these projects fulfilled the following conditions: (1) classified

as „problem‟ (thus excluding feature implementation); (2) involved with C code; and (3) had status

„concluded‟ by the end date of the project.

4 www.nxp.com

44 Using software history to guide deployment of coding standards

Coding standard

The standard we chose for this study is the MISRA standard, first defined by a consortium of

automotive companies (The Motor Industry Software Reliability Association) in 1998.

Acknowledging the widespread use of C in safety-related systems, the intent was to promote the use

of a safe subset of C, given the unsafe nature of some of its constructs [Hatton, 1995]. The standard

became quite popular, and was also widely adopted outside the automotive industry. In 2004 a

revised version was published, attempting to prune unnecessary rules and to strengthen existing ones.

Implementation

The study was implemented using Qmore and CMSynergy. Qmore is NXPs own front-end to QA-C

version 7, using the latter to detect MISRA rule violations. Configuration information required by

Qmore (e.g., preprocessor directives, include directories) is extracted from the configuration files

(Makefiles driving the daily build) that also reside in the source tree. For the measurements, all C

and header files that were part of the daily build were taken into account. The SCM system in use at

NXP is CMSynergy, featuring a built-in issue database. All modifications in the SCM are grouped

using tasks, which in turn are linked to issues. This mechanism enables precise extraction of the

source lines involved in a fix.

4.4 Results

Three tables list the results for each of the three cases: TVoM in Table 4.1, TVC1 in Table 4.2, and

TVC2 in Table 4.3. In these tables we display detailed results for all the significant rules, that is, the

ones that outperformed a random predictor with significance level α = 0.05. Also, we include three

categories of aggregated results: all rules, non-significant rules, and significant rules. For each of

these, the second and third columns hold the total number of violations and the number of those that

could be linked to fixes (i.e., true positives). The fourth and fifth hold the true positive ratio and its

significance. The last column displays the number of issues for which at least one involved line

contained a violation of the rule in question.

4.4.1 Case comparison

Noticeable are the differences in the set of significant rules between the three cases. All cases agree

on only one rule, 8.1, which states:

“Functions shall have prototype declarations and the prototype shall be visible at both

the function definition and call.”

A possible explanation of this is that some functionality may be implemented at first without too

much attention for quality, so a function prototype is forgotten. Since it is new code, it will likely be

changed a number of times before it is mature, and as a result is easily linked to a bug fix.

The agreement is (as expected) higher between the two cases from the TVC archive, which have

eight rules in common: 1.1, 5.1, 8.1, 10.1, 10.2, 12.5, 14.10, and 19.5. Especially interesting is the

concentration of rules in chapter 10 of the standard concerning arithmetic type conversions. For

instance, rule 10.1 states that the value of an integer expression should not be implicitly converted to

another underlying type (under some conditions). The reason for these rules to show up so

prominently in our results is that the core code of TCV projects consists of data stream handling and

manipulation, which is also the most complex (and fault-prone) part of the code. This leads to a

concentration of fixes and these particular violations in that part of the code. Also in an informal

discussion with an architect of the TVC project, the chapter 10 rules were identified as potentially

 Cathal Boogerd, Leon Moonen 45

related to known faults. In fact, the development team was making an effort to study and correct

these violations for the current release.
 M

IS
R

A
 r

u
le

T

o
ta

l
v

io
la

ti
o

n
s

T

ru
e

p
o

si
ti

v
es

(a

b
s)

T

ru
e

p
o

si
ti

v
es

(r

a
ti

o
)

S

ig
n

if
ic

a
n

ce

Is

su
es

 c
o
v

er
ed

5.3 2 1 0,50 0,97 1

8.1 56 15 0.27 0.99 2

8.5 2 1 0.50 0.97 1

9.2 2 1 0.50 0.97 1

11.1 38 10 0.26 0.97 4

12.7 91 22 0.24 0.98 5

12.13 36 10 0.28 0.98 1

14.2 258 68 0.26 1.00 9

16.9 2 1 0.50 0.97 1

All rules 9898 572 0.06 n/a 25

Non-significant rules 9411 443 0.05 n/a 25

Significant rules 487 129 0.26 n/a 16

Table 4.1 Summary of rules for TVoM

These results suggest the importance of tailoring a coding standard to a specific domain, as the

observed violation severity differs between projects. These differences are clearly smaller within a

single archive, showing that it is feasible to employ this approach in longer-running projects, with

regular updates to assess whether rules should be included or excluded from the set of adhered rules.

4.4.2 Limitations

This section points out some limitations of the approach, how we deal with them, and to what extent

they influence the results of the approach.

Measurement correctness

Some residual faults may be present in the software at the end of development that remain invisible

to the approach. However, Fenton et al. found in their case study that the number of faults found in

prerelease testing was an order of magnitude greater than during 12 months of operational use

[Fenton, 2000]. Furthermore, the development only ends after the product has been integrated into

the clients‟ products, and therefore all major issues will have been removed. Also, it is possible that

some violations, removed in non-fix modifications, pointed to latent faults. However, this category is

typically small. For instance, in TVC1 this accounts for only 3% of the total number of violations,

and is therefore unlikely to change the existing results significantly.

46 Using software history to guide deployment of coding standards

M

IS
R

A
 r

u
le

T

o
ta

l
v

io
la

ti
o

n
s

T

ru
e

p
o

si
ti

v
es

(a

b
s)

T

ru
e

p
o

si
ti

v
es

(r

a
ti

o
)

S

ig
n

if
ic

a
n

ce

Is

su
es

 c
o
v

er
ed

1.1 7 2 0.29 0.99 2

3.4 22 4 0.18 0.98 1

5.1 65 25 0.38 1.00 1

8.1 35 5 0.14 0.97 3

10.1 1081 179 0.17 1.00 35

10.2 15 6 0.40 1.00 2

11.3 532 58 0.11 1.00 13

12.5 148 21 0.14 1.00 8

12.13 15 4 0.27 1.00 1

14.8 88 10 0.11 0.96 4

14.10 63 10 0.16 1.00 5

19.5 25 4 0.16 0.97 1

All rules 51529 1743 0.03 n/a 121

Non-significant rules 49433 1415 0.03 n/a 118

Significant rules 2096 328 0.16 n/a 52

Table 4.2 Summary of rules for TVC1

Finally, the matching between violations and faults may be an underestimation. Some fault-fixes

only introduce new code, such as the addition of a previously forgotten check on parameter values.

Overestimation is less likely, although not all lines that are part of a fix may be directly related to the

fault (for instance, moving a piece of code). Even so, violations on such lines still point out the area

in which the fault occurred. In addition, by computing significance rates we eliminated rules with

coincidental matchings.

Generalizing results

Since results differ significantly between projects, it is difficult to generalize them. They are

consistent in the sense that there is a small subset of rules performing well, while no relation can be

found for the other (non-significant) rules.

However, the rules themselves differ. There are a number of important factors that play a role in this

difference. In discussing this, we must separate the cases by archive rather than project.

 Cathal Boogerd, Leon Moonen 47

M

IS
R

A
 r

u
le

T

o
ta

l
v

io
la

ti
o

n
s

T

ru
e

p
o

si
ti

v
es

(a

b
s)

T

ru
e

p
o

si
ti

v
es

(r

a
ti

o
)

S

ig
n

if
ic

a
n

ce

Is

su
es

 c
o
v

er
ed

1.1 116 8 0.07 0.96 8

1.2 73 6 0.08 0.97 7

5.1 169 11 0.07 0.96 4

5.2 27 3 0.11 0.98 2

6.1 5 1 0.20 0.99 1

6.2 8 3 0.38 1.00 2

8.1 160 15 0.09 1.00 8

9.2 15 8 0.53 1.00 1

10.1 4006 204 0.05 1.00 44

10.2 40 10 0.25 1.00 5

10.6 190 13 0.07 0.98 7

12.1 2698 210 0.08 1.00 45

12.4 91 9 0.10 1.00 8

12.5 584 116 0.20 1.00 28

12.6 302 27 0.09 1.00 9

12.7 1653 108 0.07 1.00 19

13.1 4 2 0.50 1.00 1

13.2 1256 119 0.09 1.00 34

13.3 265 43 0.16 1.00 11

14.6 4 1 0.25 0.99 2

14.10 135 22 0.16 1.00 14

15.2 4 2 0.50 1.00 1

16.10 1620 133 0.08 1.00 30

17.4 935 72 0.08 1.00 8

19.5 27 4 0.15 1.00 2

20.10 4 1 0.25 0.99 1

All rules 77158 3143 0.04 n/a 96

Non-significant rules 62767 1992 0.03 n/a 86

Significant rules 14391 1151 0.08 n/a 77

Table 4.3 Summary of rules for TVC2

48 Using software history to guide deployment of coding standards

Since results differ significantly between projects, it is difficult to generalize them. They are

consistent in the sense that there is a small subset of rules performing well, while no relation can be

found for the other (non-significant) rules. However, the rules themselves differ. There are a number

of important factors that play a role in this difference. In discussing this, we must first separate the

cases by archive rather than project, since these factors differ more between archives than within

archives.

One difference between the TVoM archive and the TVC archive is that the former is a single, new

project, whereas the latter is an archive containing five years of development. To counter influences

of maturity of code, we only analyzed the new and edited code in TVC. There are two further major

factors that were not under our control: (1) the application domain; and (2) the development team.

TVC contains a significant number of domain-specific algorithms and procedures, affecting the type

of code written and violations introduced, and requiring specialized developers.

When comparing projects within the TVC archive, these two factors also play a role. Although the

team is mostly the same, developers join and leave over the course of the two projects, that together

span almost 2.5 years. The type of TV component developed is the same in both projects, but the

hardware platform for which the software is written is different, also impacting the type of violations

introduced.

Finally, note that the set of rules analyzed for these cases is always a subset of all the rules in the

MISRA standard (typically 50-60%), as in none of the cases violations were found for all rules.

However, the analyzed rules cover almost all of the topics (i.e., chapters) of the standard. Only rules

from chapters 4 (two rules on character sets) and 7 (one rule on constants) were not present.

4.5 Discussion

In this section, we will discuss how to use the results of our approach to meet the two challenges as

identified in Section 4.1: rule selection and ranking.

4.5.1 Rule selection

There are three criteria involved in rule selection: the true positive rate, its significance, and the

number of issues covered. The first tells us how likely a violation is to point to a faulty location, the

second indicates whether this number is due to chance, and the third expresses the effectiveness of

the rule. In this chapter, we have used the significance as a cutoff measure to eliminate rules that

have a relatively high true positive rate simply because they occur so often. Using only the

significant rules reduces the number of violations to inspect by 95% in TVoM, while still covering

64% of the issues covered by all the rules. For TVC1 and TVC2 reduction is 96% and 81%, with

43% and 80% of the total issues covered, respectively. The number of rules can be further reduced

by setting a threshold for the true positive rate until the desired balance between number of

violations and issues covered has been reached. For instance, setting a threshold of 0.10 for the true

positive rate in TVC2 induces a reduction of 98% with a coverage of 41%. This explicit tradeoff

between number of violations and number of covered issues makes the approach especially useful

when introducing a coding standard in a legacy project with many violations.

4.5.2 Rule ranking

While rule selection is performed when choosing a coding standard, rule ranking is the problem of

presenting the most relevant violations to a developer at compile time. From a fault prevention point

 Cathal Boogerd, Leon Moonen 49

of view, the most logical ranking criterion is the true positive rate. However, there is the added

problem of the number of violations to inspect. Even with a customized standard, an inspection run

may result in too many violations to inspect in a single sitting. In this case, one may define a

maximum number of violations to present, but it is also possible to set a maximum on the number of

issues to inspect. Using the true positive ratio attached to each violation we can compute the

expected number of issues covered in a ranking. A contrived example would be finding two

violations of rule 13.1 (TP = 0.50) and four of 20.10 (TP = 0.25) in TVC2: in this case we expect to

find two issues (2 * 0.5 + 4 * 0.25). Since we may expect solving real issues to require significantly

more time than inspecting violations, limiting inspection effort based on this number can be useful.

4.6 Related work

In recent years, many approaches have been proposed that benefit from the combination of data

present in SCM systems and issue databases. Applications range from an examination of bug

characteristics [Li, 2006], techniques for automatic identification of bug-introducing changes

[Sliwerski, 2005] [Kim, 2006-b], bug-solving effort estimation [Weiß, 2007], prioritizing software

inspection warnings [Kim, 2007-a] [Kim, 2007-b], prediction of fault-prone locations in the source

[Kim, 2007-c], and identification of project-specific bug-patterns, to be used in static bug detection

tools [Williams, 2005] [Kim, 2006-a].

Software inspection (or defect detection) tools have also been studied widely. Rutar et al. studied the

correlation and overlap between warnings generated by the ESC/Java, FindBugs, JLint, and PMD

static analysis tools [Rutar, 2004]. They did not evaluate individual warnings nor did they try to

relate them to actual faults. Zitser et al. evaluated several open source static analyzers with respect to

their ability to find known exploitable buffer overflows in open source code [Zitser, 2004]. Engler et

al. evaluate the warnings of their defect detection technique in [Engler, 2001]. Heckman et al.

proposed a benchmark and procedures for the evaluation of software inspection prioritization and

classification techniques [Heckman, 2008]. Unfortunately, the benchmark is focused at Java

programs.

Wagner et al. compared results of defect detection tools with those of code reviews and software

testing [Wagner, 2005]. Their main finding was that bug detection tools mostly find different types

of defects than testing, but find a subset of the types found by code reviews. Warning types detected

by a tool are analyzed more thoroughly than in code reviews. Li et al. analyze and classify fault

characteristics in two large, representative open-source projects based on the data in their SCM

systems [Li, 2006]. Rather than using software inspection results they interpret log messages in the

SCM.

More similar to the work presented in this paper is the study of Basalaj [Basalaj, 2006]. While our

study focuses on a sequence of releases from a single project, Basalaj takes an alternative viewpoint

and studies single versions from 18 different projects.

These are used to compute two rankings, one based on warnings generated by QA C++, and one

based on known fault data. For 12 warning types, a positive rank correlation between the two can be

observed (reportedly, nearly 900 warning types were involved in the study). Wagner et al. evaluated

two Java defect detection tools on two different software projects [Wagner, 2008]. Similar to our

study, they investigated whether inspection tools were able to detect defects occurring in the field.

Their study could not confirm this possibility for their two projects. Apart from these two studies, we

are not aware of any other work that reports on measured relations between coding rules and actual

faults. There is little work published that evaluates the validity of defects identified by automated

50 Using software history to guide deployment of coding standards

software inspection tools, especially for commercial tools. One reason is that some license

agreements explicitly forbid such evaluations, another may be the high costs associated with those

tools.

The idea of a safer subset of a language, the precept on which the MISRA coding standard is based,

was promoted by Hatton [Hatton, 1995]. In [Hatton, 2004] he assesses a number of coding standards,

introducing the signal to noise ratio for coding standards, based on the difference between measured

violation rates and known average fault rates. He assessed MISRA C 2004 in [Hatton, 2007], arguing

that the update was no real improvement over the original standard, and “both versions of the

MISRA C standard are too noisy to be of any real use”. This study complements these assessments

by providing new empirical data and by investigating opportunities for selecting an effective non-

noisy subset of the standard.

4.7 Conclusions

In this chapter, we have discussed an approach that uses historical software data to customize a

coding standard. The results from our three case studies indicate that rule performance in fault

prevention differs significantly between projects, stressing that such customization is not a luxury

but a must. After all, adhering to rules that are not related to faults may increase, rather than

decrease, the probability of faults in the software.

We return to the challenges as stated in the introduction and summarize how our approach can assist

in meeting them:

 Which rules to use from a standard? In a customization step, rules can be selected based on

the measured true positive rate and the number of issues covered by each rule. The true

positive rate expresses the likelihood of pointing to actual faults, and includes a mechanism

to exclude accidental matches.

 How to prioritize a list of violations? Violations can be ranked using the measured true

positive rate. In addition, this measure can be used to compute the expected number of issues

covered, which is useful in defining a threshold in the number of violations that need to be

inspected.

Of course, fault prevention is only one of the reasons for choosing a coding standard, so also other

criteria (such as maintainability and portability) should be considered in rule selection and ranking.

Nevertheless, the historical approach allows us to quantify the fault prevention performance of rules

and makes the tradeoff of rule adherence with regard to this aspect explicit.

Acknowledgements: The authors wish to thank the people of NXP for their support in this

investigation.

4.8 References

[Adams, 1984] E.N. Adams. Optimizing Preventive Service of Software Products. IBM J. of

Research and Development, 28(1): pp. 2-14, 1984

[Basalaj, 2006] W. Basalaj. Correlation between coding standards compliance and software quality.

In White paper, Programming Research Ltd., 2006

 Cathal Boogerd, Leon Moonen 51

[Boogerd, 2008-a] C. Boogerd and L. Moonen. Assessing the Value of Coding Standards: An

Empirical Study. Proc. 24th IEEE Int. Conf. on Software Maintenance, pp. 277-286. IEEE, 2008

[Boogerd, 2008-b] C. Boogerd and L. Moonen. Assessing the Value of Coding Standards: An

Empirical Study. Technical Report TUD-SERG-2008-017, Delft University of Technology, 2008

[Boogerd, 2009] C. Boogerd and L. Moonen. Evaluating the relation between coding standard

violations and faults within and across versions. Proceedings of the Sixth IEEE Working Conference

on Mining Software Repositories (MSR). IEEE. To Appear

[Engler, 2000] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking System Rules Using System-

Specific, Programmer-Written Compiler Extensions. Proc. 4th Symp. on Operating Systems Design

and Implementation, pp. 1-16, 2000

[Engler, 2001] D. Engler, D.Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behavior: a

general approach to inferring errors in systems code. Symp. on Operating Systems Principles, pp.

57-72, 2001

[Fenton, 2000] N.E. Fenton and N. Ohlsson. Quantitative Analysis of Faults and Failures in a

Complex Software System. IEEE Trans. Softw. Eng., 26(8). (2000)

[Flanagan, 2002] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata.

Extended static checking for java. Proc. ACM Conf. on Programming Language Design and

Implementation (PLDI), pp. 234-245. ACM, 2002

[Hatton, 1995] L. Hatton. Safer C: Developing Software in High-integrity and Safety-critical

Systems. McGraw-Hill, New York, 1995

[Hatton, 2004] L. Hatton. Safer language subsets: an overview and a case history, MISRA C.

Information & Software Technology, 46(7): pp. 465-472, 2004

[Hatton, 2007] L. Hatton L. Language subsetting in an industrial context: A comparison of MISRA C

1998 and MISRA C 2004. Information & Software Technology, 49(5): pp. 475-482, 2007

[Heckman, 2008] S. Heckman and L. Williams. On establishing a benchmark for evaluating static

analysis alert prioritization and classification techniques. ESEM ‟08: Proc. 2nd ACM-IEEE Int.

Symp. on Empirical Software Eng. and Measurement, pp. 41-50. ACM., 2008

[Johnson, 1978] S.C. Johnson. Lint, a C program checker. Unix Programmer‟s Manual, volume 2A,

chapter 15, pp. 292-303. Bell Laboratories, 1978

[Kim, 2006-a] S. Kim, T. Zimmermann, K. Pan, and E.J. Whitehead Jr. Automatic Identification of

Bug- Introducing Changes. Proc. 21st IEEE/ACM Int. Conf. on Automated Software Eng. (ASE),

pp. 81-90. IEEE, 2006

[Kim, 2006-b] S. Kim, K. Pan, and E.J. Whitehead Jr. Memories of bug fixes. Proc. 14th ACM

SIGSOFT Int. Symp. on Foundations of Software Eng. (FSE), pp. 35-45. ACM, 2006

[Kim, 2007-a] S. Kim and M.D. Ernst. Prioritizing Warning Categories by Analyzing Software

History. Proc. 4th Int. Workshop on Mining Software Repositories (MSR), page 27. IEEE, 2007

[Kim, 2007-b] S. Kim and M.D. Ernst. Which warnings should I fix first? Proc. 6th joint meeting of

the European Software Eng. Conf. and the ACM SIGSOFT Int. Symp. on Foundations of Software

Eng., pp. 45-54. ACM, 2007

[Kim, 2007-c] S. Kim, T. Zimmermann, E.J. Whitehead Jr., and A. Zeller. Predicting Faults from

Cached History. Proc. 29th Int. Conf. on Software Eng. (ICSE), pp. 489-498. IEEE, 2007

52 Using software history to guide deployment of coding standards

[Kremenek, 2004] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler. Correlation Exploitation in

Error Ranking. Proc. 12th ACM SIGSOFT Int. Symp. on Foundations of Software Eng. (FSE), pp.

83-93. ACM, 2004

[Li, 2006] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have things changed now?: an

empirical study of bug characteristics in modern open source software. Proc. 1st Workshop on

Architectural and System Support for Improving Software Dependability (ASID), pp. 25-33. ACM,

2006

[MISRA, 2004] MISRA (2004). Guidelines for the Use of the C Language in Critical Systems.

MIRA Ltd., http://www.misra.org.uk/ , ISBN 0-9524156-2-3

[Rutar, 2004] N. Rutar and C.B. Almazan. A comparison of bug finding tools for java. ISSRE‟04:

Proc. 15th Int. Symp. on Software Reliability Engineering, pp. 245-256. IEEE, 2004

[Sliwerski, 2005] J. Sliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? Proc.

Int. Workshop on Mining Software Repositories (MSR). ACM, 2005

[Wagner, 208] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and M. Schwalb. An evaluation

of two bug pattern tools for java. 1st Int. Conf. on Software Testing, Verification, and Validation, pp.

248-257. IEEE, 2008

[Wagner, 2005] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger. Comparing bug finding tools

with reviews and tests. Proc. 17th Int. Conf. on Testing of Communicating Systems (Test-Com‟05),

volume 3502 of LNCS, pp. 40-55. Springer, 2005

[Weiß, 2007] C. Weiß, R. Premraj, T. Zimmermann, and A. Zeller. How Long Will It Take to Fix

This Bug? Proc. 4th Int. Workshop on Mining Software Repositories (MSR), page 1. IEEE, 2007

[Williams, 2005] C.C. Williams and J.K. Hollingsworth. Automatic Mining of Source Code

Repositories to Improve Bug Finding Techniques. IEEE Trans. Software Eng., 31(6): pp.466-480,

2005

[Zitser, 2004] M. Zitser, R. Lippmann, and T. Leek. Testing Static Analysis Tools using Exploitable

Buffer Overflows from Open Source Code. Proc. 12th ACM SIGSOFT Int. Symp. on Foundations of

Software Eng., pp. 97-106. ACM, 2004

