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Abstract

The construction of any sizable software system involves many

agents, each with their own perspective of the system being built.

Viewpoints provide a framework for guiding and managing develop-

ment in a multiple-perspective setting, where a variety of agents with

different areas of concern collaborate towards building a system. In

this article, we explain the main concepts and techniques underlying

viewpoint-based development and illustrate them using a number of

examples.

Keywords. Perspectives, Separation of Concerns, Integration, Inconsis-

tency Management, Merging, Parallel Composition, Weaving.
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1 Introduction

Large-scale software development is necessarily a collaborative effort, in-

volving multiple agents (also called, participants or actors) with different

perspectives of the system they are trying to develop. Individual perspec-

tives are partial descriptions of the overall system, arising in response to the

specific responsibilities or roles assigned to the agents. These responsibili-

ties or roles may be organizationally-defined, be governed by the physical

distribution of agents across development sites, follow some pre-specified

structuring of the system at hand, or reflect the agents’ knowledge, experi-

ence, and descriptive capabilities.

Inevitably, the perspectives of those involved in the development pro-

cess overlap, interact or compete with one another, giving rise to a need for

coordination. The relationships between the perspectives, however, may be

far from obvious because the agents may use different vocabularies and rep-

resentation notations to express their concerns. Further, since development

may be done concurrently, different perspectives may be at different stages

of elaboration and hence subject to different development strategies.

The problem of how to guide and manage development in this setting -

multiple agents, diverse knowledge and expertise, heterogeneous representa-

tion notations, differing development strategies - is known as the “multiple
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perspectives problem”. In this article, we introduce viewpoints – a concep-

tual framework for addressing the multiple perspectives problem.

Intuitively, a viewpoint is an independent and locally-managed object

encapsulating a particular perspective. The main feature of viewpoint-based

development is its recognition of perspectives and the relationships between

them as first-class artifacts, so that perspectives can be directly defined by

users, and the relationships between them can be specified, modified, and

analyzed explicitly.

Viewpoints have often been studied as part of Requirements Engineer-

ing. Although the multiple-perspective problem is particularly acute during

the requirements gathering stage where a diverse group of stakeholers with

different goals and needs are involved, the problem is not restricted to it. In

fact, viewpoints arise with increasing frequency in software design and im-

plementation as well, due to such factors as evolution, functional variability,

globalization, etc.

It is not our intention to exhaustively examine all ramifications of view-

points in software engineering. Our main goal is instead to describe the

key ideas that motivate the use of viewpoints and to outline the integra-

tion activities that go hand in hand with them. To achieve our goal, we

are going to draw on a number of examples throughout the article. While
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we have tried to ensure reasonable breadth in our choice of examples, we

acknowledge that these examples are not reflective of the full range of the

applications of viewpoints reported in the literature. General references for

further details about viewpoints and their broader set of applications are

provided later in the article (see Section 7).

We use software models as the primary context for our examples. This

enables us to build on the growing familiarity of the general software en-

gineering community with modelling languages such as the UML (Unified

Modeling Language, 2003), hence alleviating the need to provide extensive

background on the notations used.

The remainder of this article is structured as follows:

We begin in Section 2 with an example of a multiple-perspective setting.

In Section 3, we introduce viewpoints as a vehicle for capturing perspectives.

In Section 4, we discuss how different viewpoints can be related using ex-

plicit relationships. We continue in Section 5 with reviewing the core design

principles underpinning viewpoints. In Section 6, we concentrate on the

most essential activity in viewpoint-based development, called integration,

and highlight the different facets of the problem. We conclude the article in

Section 7 with a summary and references for further reading.
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2 An Example of Multiple Perspectives

To illustrate multiple perspectives, we use a simple example capturing some

basic aspects of a Hospital Information System (HIS). A HIS is a a spe-

cialized kind of information system designed to manage the clinical and

administrative functions of a hospital.

An HIS has to meet the needs of a variety of stakeholders. This in-

cludes people at the management levels of the hospital, medical staff, tech-

nicians, administrators, and so on. These people clearly have different areas

of concern, and hence different perspectives. The perspectives are usually

expressed in different ways, and capturing them often necessitates the use

of different representation notations, chosen to be particularly appropriate

to the descriptions provided by each stakeholder.

Figure 1 shows a few representative perspectives in an HIS. The formal

specification of perspectives as structured models is seldom done directly by

the stakeholders, but rather by the requirements and design analysts. For

simplicity, we ignore this technicality and directly associate the models to

the stakeholders.

The perspectives in Figure 1 describe an HIS along different dimensions

and at different levels of abstraction. The hospital head focuses on the high-

level objectives of the system and expresses her view as a goal model in
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Figure 1: Example Perspectives in a Hospital Information System
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KAOS (van Lamsweerde, 2009) notation. In her model (P1 in the figure),

achieving patient satisfaction is declared as a top goal, and a decomposition

of this goal into more concrete and lower-level goals is provided.

The medical director uses a UML activity diagram (P2) to capture the

normal workflow for patient care at the hospital. The process begins with

diagnosis, after which a patient is classified as either an inpatient or an

outpatient. The patient then gets the proper care based on this classification

and is subsequently discharged.

The doctor and the nurse each contribute two perspectives, a UML class

diagram and a UML sequence diagram. The class diagrams (P3 and P5)

capture the concepts and associations relevant to each stakeholder, and the

sequence diagrams (P4 and P6) describe usage scenarios. The usage scenario

for the doctor (P4) concerns the routine visiting of a patient and updating

her medical record. The usage scenario given by the nurse (P6) captures

the daily check up conducted in a hospital ward, where a nurse evaluates

each patient individually, and notes her observations in the patient’s medical

chart.

Finally, the computer systems administrator, who is in charge of ensuring

the integrity and performance of the HIS, expresses a requirement that any

update made to the persistent data of the system should be logged in a file,
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so that problems can be tracked in case of a system failure. This requirement

is modelled as a rewrite rule for sequence diagrams (P7). If the left hand side

of the rule (denote L) matches a fragment of a sequence diagram, then that

fragment is rewritten with the right hand side of the rule (denoted R). The

left hand side would be deemed a match if update*() (i.e. a method whose

name begins with the “update” prefix) is called on a persistent data object.

If a match is found, the sequence diagram in question will be modified as

prescribed by R (the right hand side). That is, SystemLog.append() is called

after the update to append an entry to the system log.

The models in our example relate to one another in many ways. Some

of these relationships are readily identifiable. For example, the objects in

P4 are instances of the classes declared in P3, and the messages in P4

are occurrences of the class methods in P3. The relationship between P5

and P6 is similar. Another obvious pair of relationships are P7,P4 and

P7,P6. The match between the left hand side of P7 and P4 is {Object1 →

:Doctor, Object2 → :MedicalRecord, update*() → update()}. The P7,P6 relationship

is defined similarly.

There are also relationships whose existence is almost certain, but whose

details cannot be established with full certainty because of terminological

and structural differences between the perspectives. For example, an anal-
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ysis of P3 and P5 would hint at some possible overlaps between the two

perspectives: the Patient class in P3 is likely to be the same as that in P5;

MedicalRecord in P3 is likely to correspond to Chart in P5; and the aggregation

between Patient and MedicalRecord in P3 may be an alternative representation

of the assigned to link between Patient and Chart in P5. Unless these corre-

spondences are explicitly validated with the stakeholders, one can never be

entirely sure about their correctness. For example, it may turn out that

the doctor’s notion of Patient encompasses both inpatients and outpatients,

while the nurse may mean only inpatients when she refers to Patient in her

models. Similarly, MedicalRecord and Chart may be distinct entities.

There are several other relationships between the perspectives that are

less obvious:

• Since P3 and P5 most likely have overlaps, P4 and P6 will be related

as well, in the sense that they can access and modify shared objects.

For example, it is possible for a doctor and a nurse to both want to

update an individual patient’s chart simultaneously. Hence, P4 and

P6 may need to synchronize on accesses to shared objects.

• P2 implicitly characterizes the different states that a patient goes

through at the hospital. Hence P2 would be related to the design

of the Patient class in P3 and P5.

9



P1
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Doctor

P2

Medical Director
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P6
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Computer
Systems Administrator

Figure 2: Relationships between the Perspectives of Figure 1

• Finally, at a higher level of abstraction, all P2–P7 contribute to the

satisfaction of the system’s main objectives, and are, directly or indi-

rectly, traceable to the goals expressed P1.

In Figure 2, we have shown a bird’s eye view of the perspectives in our

example along with the relationships that capture the known or hypothesized

interlocking constraints on the structure and behaviour of the perspectives.

The use of perspectives made it a lot easier to ensure that all the stakeholders

are properly represented, and much less likely to miss information that is
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critical to the success of the system. At the same time, the flexibility to

have perspectives results in several inter-related models that need to be

maintained independently and may be inconsistent with one another.

Effective use of perspectives in system development requires a systematic

framework for management and integration of perspectives and resolving

their inconsistencies. Viewpoints, as we describe in the subsequent sections,

provide the foundation for such a framework.

3 Viewpoints

The basic building block for organizing and supporting multiple perspectives

is a viewpoint. A viewpoint can be thought of as a combination of the idea

of an agent, role, or knowledge source and the idea of a perspective. In

software terms, a viewpoint is a loosely coupled, locally managed object

which encapsulates a perspective about the system and domain, specified

in a particular representation notation. Each viewpoint is composed of the

following components, called slots:

• a domain delineating the part of the “world” the viewpoint is con-

cerned with;

• a representation style defining the notation used by the specification
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slot (below);

• a specification expressing the perspective of interest, represented in

the viewpoint’s style

Additionally, a viewpoint may contain knowledge of the process of its

design. This knowledge is captured using the following slots:

• a work plan describing the process by which the specification can be

built;

• a work record giving an account of the history and current state of

development

As an example, let us consider the specification provided by the medical

director (P2) in the motivating example of the previous Section. In Figure 3,

we have shown the complete viewpoint for this specification. The represen-

tation style of the viewpoint is UML activity diagrams, and the domain of

concern is patient care. The specification is the medical director’s current

knowledge about the procedure for processing patients at the hospital, ex-

pressed as a UML activity diagram. The work plan explains how to build an

activity diagram and how, and in what circumstances, to check consistency

with the other viewpoints. The work record gives the current state of the

specification and an account of its development in terms of the work plan.
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Figure 3: Complete Viewpoint for Perspective P2 of Figure 1

4 Relationships Between Viewpoints

The key feature that distinguishes viewpoint-based development from con-

ventional development methods is that viewpoints are built and maintained

independently of one another. This means that viewpoints are not just

projections of a common underlying specification, but rather distinct and

separately-evolving artifacts with potentially different vocabularies and frames
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of reference. As a result, one cannot merely rely on conventions (e.g., name

or identifier equivalence between elements of different viewpoints) to give

the desired relationships between the viewpoints. Instead, one needs to ex-

plicitly specify these relationships. Doing so is a critical prerequisite for any

meaningful integration of the viewpoints, and for ensuring that the impact

of changes made to the viewpoints can be properly analyzed, scoped, and

propagated.

A relationship typically refers to an (explicit) mapping between the con-

tents or interfaces of the specification slots in different viewpoints. In a

broader sense, a relationship may also encompass the “organizational struc-

ture” of the development team (i.e., the owners of the viewpoints). In this

article, we shall deal only with the former type of relationships, i.e., those

between specifications.

There is no general rule as to what constitutes an inter-viewpoint rela-

tionship. This depends on a variety of factors, most importantly the seman-

tics of the viewpoints involved, the stage of development the viewpoints are

in, and the degree of detail one wishes to capture in a relationship.

In the remainder of this section, we illustrate some common relationships

between specifications expressed as models. There is no restriction on the

number of specifications an individual relationship can connect, but usually,
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relationships are defined pairwise, i.e., they are between two specifications.

Our example relationships, shown in Figure 4, are all pairwise.

In Figure 4(a), we depict the relationship (denoted R) between the per-

spectives contributed by the doctor (previously shown in Figure 1). The re-

lationship specifies how the objects in the sequence diagram (V2) correspond

to the classes in the class diagram (V1) through “instance of” mappings, and

how the interaction messages in V2 correspond to the methods in V1 through

“occurrence of” mappings. If the two diagrams are assumed to be views on

a monolithic model of the system, this relationship is derivable from the

underlying model and can hence be left implicit. But as we stated earlier,

such an assumption is typically not made in viewpoint-based approaches,

and as a result, the relationships are always specified explicitly.

In Figure 4(b), the specifications involved are in different abstraction

layers. V1 is the extends–implements fragment of the meta-model for Java class

diagrams, and V2 – an instance class diagram conforming to the meta-model.

The relationship between these specifications is a type function mapping

each element of V2 to an element of V1. The relationship respects the struc-

ture of the specifications, in the sense that if it maps an edge e of V2 to

an edge u of V1, it will also map the endpoints of e to those of u. Such

preservation of structure ensures that the edges in the V2 are well-typed.
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Figure 4: Different Types of Relationships between Viewpoints
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Our next example, in Figure 4(c), shows the relationship between two

perspectives on the data schema of the hospital’s payroll subsystem. Both

perspectives are described as entity-relationship diagrams. The vocabularies

used by the perspectives differ, but there are conceptual overlaps between

the perspectives. These overlaps are specified by a mapping that equates

the corresponding elements. The relationship in Figure 4(c) states that the

entity referred to as StaffMember in V1 is the same as Employee in V2. Further

the relationship declares the name attribute of these two entities (as well as

the edges linking name to the respective entities) as being equivalent. For

a problem of this size, the relationship may be created by hand, but larger

problems require automation, usually achieved through heuristic techniques

for finding concept matches. These techniques are almost always inexact,

i.e., they may yield matches that are incorrect, or they may miss correct

matches. Despite this, the techniques can be of significant assistance to a

human expert for exploring the relationships between different stakeholder

vocabularies.

The relationships we talked about so far were expressed as collections of

tuples of the form (e1, e2) where e1 and e2 are elements of different speci-

fications. While tuple-based techniques are very common and widely used,

they are not the only possible way for specifying inter-viewpoint relation-
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ships. For example, a relationship may be expressed declaratively using

logical formulas. An example is given below:

In Figure 4(d), V1 and V2 are two alternative ways of expressing the

concept of a person along with their gender. V1 models gender as an at-

tribute of the Person class, whereas V2 models gender through sub-classing.

This structural discrepancy between the viewpoints is more conveniently

expressed using first-order logic formulas than tuples of mapped elements.

The formulas shown in the figure specify how Female and Male in V1 re-

late to Person in V2. To avoid ambiguity, predicate names in the formulas

are subscripted with a number denoting the model of origin. For example,

Person1 refers to Person in V1.

As a final illustration, we consider, in Figure 4(e), the relationship be-

tween viewpoints capturing different components of a system. In contrast

to all our previous examples, the relationship in Figure 4(e) is not between

the contents of the viewpoints involved, but rather between their interfaces

(viewpoint contents are not shown). Here, V1 denotes a user process that

accesses shared resources during its execution, and V2 is one such resource.

The relationship between V1 and V2 describes how the two components are

supposed to bind together, hence establishing a communication channel be-

tween them. More specifically, the relationship requires that the acquire (resp.
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release) action from V1 should synchronize with lock (resp. unlock) from V2.

5 Principles Underlying Viewpoints

The use of viewpoints in software engineering is motivated primarily by

the separation of concerns principle – the observation that, for a large and

complex system, it is more effective to build several partial specifications

that focus on individual concerns, rather than to attempt to construct a

single monolithic specification for the whole system.

Separation of concerns may be carried out along different dimensions.

For example, in the motivating problem described in Section 2, the areas of

concern were defined along the organizational roles of the involved partici-

pants (hospital head, doctors, nurses, etc.). A finer-grained separation could

result in developing independent viewpoints for every relevant participant,

e.g., individual doctors and nurses.

The factors influencing the choice of dimensions along which viewpoints

are built are many. They include, among others, the nature of the problem

at hand, organizational considerations, the degree of involvement of the

stakeholders, component architecture of the system, the development teams’

dynamics, and policies for future maintenance of the system.

Separation of concerns naturally leads to the related principle of het-
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erogeneity of representation. Viewpoints reinforce this principle by allowing

participants to choose the notation in which they want to describe their per-

spectives. The choice of notation for each viewpoint is recorded explicitly

in the representation style slot of that viewpoint.

The next major principle underlying viewpoints is decentralization – the

idea that the knowledge within each viewpoint is maintained and manipu-

lated locally. Decentralization moves away from any notion of a monolithic

system specification that can be managed globally. Such flexibility becomes

particularly crucial for development teams that are spread across multiple

geographical sites. Decentralization makes it possible for the members of

these teams to function independently without having to constantly coordi-

nate their work with one another.

A consequence of having multiple viewpoints in a project is the inevitable

inconsistencies that arise between them. The approach taken by viewpoints

is that of living with inconsistency. In other words, there is no requirement

that a set of viewpoints should always be consistent. This stance towards

inconsistencies draws on two important observations: Firstly, immediate

resolution of inconsistencies can be highly intrusive, particularly in early

stages of development, e.g., the requirements elicitation phase, where ambi-

guities and conflicts tend to occur too frequently. Having to address every
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inconsistency as soon as it arises can adversely affect productivity.

Secondly, maintaining consistency at all times can lead to premature

commitment to decisions that have not yet been sufficiently analyzed. For

example, resolving an inconsistency identified at the requirements stage may

require information from the detailed design stage which might not have yet

even started. Hence, any attempt to fix the inconsistency early on may fail

to amend the problem, and can in fact even worsen it.

Obviously, living with inconsistency should not be viewed as suggesting

living with defects in the final system. What this principle does promote is

the flexibility to deal with each inconsistency at the right time.

6 Viewpoint Integration

Viewpoint integration is primarily concerned with ensuring that a set of

viewpoints fit together in a consistent way while retaining their original

structure. In this sense, viewpoint integration is often synonymous with in-

consistency management. Despite the general desire to maintain viewpoints

as independent objects, there are situations where a collection of viewpoints

need to be combined into a single larger specification, e.g., to gain a unified

perspective, to build a complete blueprint for the system, or to better ex-

plore the interactions among viewpoints. To this end, viewpoint integration
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may further encompass three other activities, called merging, parallel com-

position and weaving. We briefly explain and exemplify each of these four

facets of integration.

6.1 Inconsistency Management

Consistency is usually defined using inter-viewpoint rules expressing the

desired constraints that must hold between viewpoints. As an example,

a consistency rule that one might want to express over the viewpoints in

Figure 4(a) is that each message in the sequence diagram has a corresponding

method in the class diagram. This is captured by the following rule:

ϕ = ∀msg , obj , cls · Target(msg , obj ) ∧R(obj , cls) =⇒

∃mtd ·MethodOf(mtd , cls) ∧R(msg ,mtd).

In the above formula, R(x, y) holds if x and y are related by an inter-

viewpoint relationship (see the relationship R in Figure 4(a)); Target(x, y)

holds if message x is invoked on object y in the sequence diagram; and

MethodOf(x, y) holds if x is a method of class y in the class diagram. In this

example, the viewpoints satisfy ϕ; but if we, say, remove the getRecord()

method from the Patient class in V1, the rule would no longer hold.

Inconsistency management is the process of handling the potential plethora

of consistency rules, an example of which was shown above, and dealing with
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the viewpoints when the rules fail to hold. Inconsistency management in-

volves several steps:

• Consistency checking, focusing on monitoring, detecting, and reporting

of consistency rule violations.

• Inconsistency classification, focusing on identifying the kinds of incon-

sistencies detected. Inconsistencies may be classified according to their

causes, or according to pre-defined kinds prescribed by developers.

• Inconsistency handling, focusing on acting in the presence of incon-

sistencies. For example, when an inconsistency is detected, the ap-

propriate response may be to ignore, tolerate, resolve, or circumvent

it.

• Inconsistency measurement, focusing on calculating the impact of in-

consistencies on different aspects of development, and prioritizing the

inconsistencies according to the severity of their impact. The actions

taken to handle an inconsistency typically depend on the results of

inconsistency measurement.
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Figure 5: Merge Result for the Viewpoints of Figure 4(c)

6.2 Merging of Viewpoints

The main goal of merging is unification of overlaps between viewpoints.

More precisely, given a set of viewpoints, merge combines the viewpoints

together in a way that only one copy of the overlapping parts is included in

the result. This property is known as non-redundancy.

To illustrate merge, consider the two viewpoints in Figure 4(c) and the

relationship that specifies their overlaps. Figure 5 shows the merge of these

viewpoints (with respect to the relationship between them). This merge is

redundancy-free because it has only one copy of the common parts. This

ensures that database instances created over the merged schema will not

have data redundancies.

Non-redundancy is only the most basic requirement for merge. View-

point merging is often subject to additional correctness criteria. The most
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notable of these criteria are:

• Completeness: Merge should not lose information, i.e., it should rep-

resent all the source viewpoints completely.

• Minimality : Merge should not introduce information that is not present

in or implied by the source viewpoints.

• Semantic Preservation: Merge should support the expression and preser-

vation of semantic properties. For example, if viewpoints are expressed

as state machines, one may want to preserve their temporal behaviours

to ensure that the merge properly captures the intended meaning of

the source viewpoints.

• Totality : Merge should be well-defined for any set of viewpoints,

whether or not they are consistent. This property is of particular

importance if one wants to tolerate inconsistency between the source

viewpoints.

These additional criteria are not universal to all model merging problems.

For example, completeness and minimality, in the strong sense described

above, may be undesirable if viewpoint merging involves conflict resolution

as well, in which case the final merge can potentially add or delete informa-

tion. Semantic preservation may be undesirable when one wants to induce a
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design drift or perform an abstraction during merge. Such manipulations are

usually not semantics-preserving. And, totality may be undesirable when

the source viewpoints are expected to seamlessly fit together. In such a case,

the source viewpoints should be made consistent before they are merged.

6.3 Parallel Composition of Behavioural Viewpoints

Parallel composition refers to the process of assembling a set of behavioural

viewpoints that capture different components of a system, and verifying that

the result fulfills the properties of interest.

In contrast to merge, the inter-viewpoint relationships built for parallel

composition are between the interfaces of the viewpoints, and not between

their internal contents. As such, the line of sight of the relationships into

the viewpoints is limited to the interfaces that the viewpoints expose to the

outside world. A second difference between parallel composition and merge

is that, in parallel composition, multiple copies of the same viewpoint may

be participating to denote the fact that the system has multiple components

of the same type.

Figure 6 shows a simple component diagram, expressed in the visual

modelling notation of the Darwin architectural language (Magee et al.,

1995). The diagram describes the interconnections between three concur-
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chart: CHART
lock
unlock

acquire
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acquire / lock
release / unlock

C1
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Figure 6: Interconnections between Concurrent Processes

rent processes in the hospital system: C1, the process taken by a doctor to

add a prescription to a patient’s chart; C2, the process taken by a nurse to

update a patient’s chart after a checkup; and C3, the process representing a

patient’s chart as a resource. The semantics of the relationships between the

processes in Figure 6 is the same as that of the relationship R in Figure 4(e),

discussed earlier.

The behaviours of C1–C3 are shown in Figures 7(a)–(c), respectively.

The notation used to describe these behaviours is Labelled Transition Sys-

tems (LTSs) (Milner, 1989). To make sure that patients’ charts are protected

against concurrent changes, accesses to C3 by C1 and C2 need to be mutually

exclusive.

The parallel composition of C1–C3 is shown in Figure 7(d). We have

used the LTS Analyzer (LTSA) tool (Magee & Kramer, 2006) for expressing

and computing the parallel composition. In Figure 7(e), we show the speci-
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CHART = (lock->unlock->CHART).

DOCTOR = (acquire->writePrescription->release->DOCTOR).

NURSE = (acquire->updateStatus->release->NURSE).

||SHARE = (doctor:DOCTOR||nurse:NURSE||{doctor,nurse}::chart:CHART)
/{doctor.chart.lock/doctor.acquire,doctor.chart.unlock/doctor.release,
  nurse.chart.lock/nurse.acquire,nurse.chart.unlock/nurse.release}.

(a)

(d)

(b)

(c)

(e)

DOCTOR acquire writePrescription

release

0 1 2

NURSE acquire updateStatus

release

0 1 2

CHART lock

unlock

0 1

COMPOSITION

doctor.chart.lock

nurse.chart.lock nurse.updateStatus

nurse.chart.unlock

doctor.writePrescription

doctor.chart.unlock

0 1 2 3 4

Figure 7: Specification of Processes and Their Parallel Composition

fication of the processes and their parallel composition in the input language

of the LTSA tool.

As seen from Figure 7(d), an update made by the doctor is preceded

by doctor.chart.lock (i.e., doctor’s request to acquire access to the chart), and
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followed by doctor.chart.unlock (i.e., doctor’s request to release the chart). The

same is true for the nurse: her update is preceded by nurse.chart.lock and

followed by nurse.chart.unlock. By computing a parallel composition like this,

one can verify that the updates are mutually exclusive.

6.4 Weaving of Aspectual Viewpoints

Weaving is the predominant notion of integration in Aspect-Oriented Soft-

ware Development (AOSD) (Filman et al., 2004). AOSD is an attempt to

provide better functional decomposition in complex systems. This can in

part be achieved by means of encapsulating different concerns into distinct

system components. However, some concerns defy encapsulation as they

cut across many parts of the system. A classic example of a cross-cutting

concern is logging which affects all logged activities in a system. The per-

spective of the Computer Systems Administrator (P7) in Figure 1 illustrated

this concern for sequence diagrams.

Given a set of cross-cutting concerns and a base system, weaving is

the process of incorporating the concerns into the base system. If no base

system is provided, weaving would refer to the process of incorporating the

given concerns into one another. Weaving operators may be implemented in

various ways depending on the nature of the base system and the concerns
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involved, and whether weaving is performed statically (at compile time) or

dynamically (at runtime).

Aspect-oriented languages usually come equipped with built-in constructs

for defining the weaving operator. For example, aspect-oriented program-

ming languages provide pointcut constructs by which programmers specify

where and when additional code (i.e., an aspect) should be executed in place

of or in addition to an already-defined behaviour (i.e., the base program).

In aspect-oriented modelling, weaving is usually defined by patterns, to be

chosen either manually or automatically using pattern matching techniques.

Similar to other integration activities, weaving may result in undesirable

side effects. Thus, automated analysis techniques may be required to ensure

that the result of weaving satisfies the desired correctness properties.

As an example, Figure 8 shows the result of weaving P7 in Figure 1

into P4 and P6 in the same figure. For this problem, weaving is performed

statically, and the weaving operator can be most conveniently implemented

using graph rewriting.

7 Conclusion and Further Reading

In this article, we gave a brief introduction to viewpoints as a vehicle for

addressing the multiple perspectives problem. We discussed the basic con-
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loop

:Nurse :Patient :Ward:Chart

getAllPatients()

getWard()

[more patients]

patients

getChart()

chart update()

P6 with P7 woven in

:SystemLog

append()

:Doctor :Patient :MedicalRecord

getRecord()

medicalRecord
update()

P4 with P7 woven in

:SystemLog

append()

Figure 8: Weaving of P7 (Figure 1) into P4 and P6 (same figure)

cepts involved in building software systems as a collection of inter-related

viewpoints, and explained the core integration activities associated with this

kind of development.

The principles upon which viewpoints are founded continue to be valu-

able and relevant in many areas of software engineering today. In particular,

several major challenges faced in the areas of global software engineering

(Herbsleb, 2007), and model-based development (France & Rumpe, 2007)

are intimately related to the problems that have been studied under the
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umbrella of viewpoints for the past two decades. The thread that ties these

areas to viewpoints is the pervasive need to manipulate systems made up

of many tangled artifacts, with potential inconsistencies in their design and

usage. This is indeed what viewpoints research has been aimed at all along.

In the light of the arguments presented in this article, viewpoint con-

cepts seem to be naturally applicable for expressing many properties and

structures in software development processes. Thus, the question arises why

no production-quality tools have been developed to date, incorporating all

the core viewpoint principles. We can see a number of tools with support

for multiple development views, e.g. UML-based tools; however, these tools

do not implement viewpoints in the sense we described here.

There are inherent properties to viewpoints that complicate their im-

plementation. In particular, implementing the various operators for match-

ing partial structures and creating and maintaining connections between

viewpoints is a challenging task. This is mainly due to the complexity of

the graph algorithms involved in the operators, and also to the potential

existence of structural and terminological mismatches between viewpoints,

which makes establishing precise inter-viewpoint relationships difficult.

In addition, it appears that the decentralized nature of viewpoints is

not fully compatible with the existing project management practices. Par-
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ticularly, for project management purposes, one would often like to define

milestones and demand progress reports from the analysts and developers.

Distributing the work across multiple viewpoints means that a distributed

consensus has to be reached if something like a milestone is required, but ar-

riving at a consensus in a distributed setting is not always straight-forward.

Another property of distributed systems applies here as well: the dif-

ficulty to build a global state. In the case of viewpoints, the notion of

an overarching document containing all specification information in a lin-

ear form is lacking. Of course, the local view expressed by a viewpoint

and the connections to other viewpoints is a perfect basis for a hypertext

document, but this does not automatically ensure that the viewpoints fit to-

gether properly and that they are consistent with one another. Developing

a more comprehensive and usable suite of tools based on viewpoints requires

first addressing the challenges discussed above. These challenges map out a

vision and an agenda for future research on viewpoints.

Numerous papers are available on viewpoints for further reading. Pro-

viding links to all these papers is not possible here due to space limitations.

Below, we outline the expository and technical references used as the ba-

sis for this article. These references together provide an extensive body of

bibliographic information on viewpoints.
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Specification of viewpoints and their relationships. Several frame-

works for specifying and inter-relating viewpoints in requirements engineer-

ing are surveyed in (Darke & Shanks, 1996). A more up to date bibliogra-

phy of viewpoints in requirements engineering is maintained by J. Leite at

http://www.requirementsviewpoints.blogspot.com/.

To read more about the applications of viewpoints in the broader context

of software engineering, one can refer to (Spanoudakis et al., 1996) where a

diverse agenda on viewpoints is provided.

The detailed anatomy of viewpoints and inter-viewpoint relationships,

as described in this article, is based on work on the ViewPoints framework

(Finkelstein et al., 1992; Nuseibeh et al., 1994; Nuseibeh et al., 2003). This

framework is largely attributed as having set forth the principal ideas of

viewpoint-based development as they exist today.

Inconsistency management. Several inconsistency management approaches

have been proposed, in general based on the success of the ViewPoints frame-

work. The main questions in this work centre on appropriate notations for

expressing consistency rules, and automated support for monitoring, diag-

nosis, and resolution of inconsistencies. A direct successor to the ViewPoints

framework is xlinkit – a lightweight application service that provides rule-

based consistency checking and diagnostics generation for distributed web
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content. This tool has been described in (Nentwich et al., 2003).

An overview of inconsistency management activities for viewpoints is

given in (Nuseibeh et al., 2000). Our discussion in Section 6.1 was based

on this reference. A detailed survey of existing inconsistency management

techniques is available in (Spanoudakis & Zisman, 2001).

Viewpoint merging. Several papers study merging of partial viewpoints

in specific domains including database schemata, requirements models, state

machines, and web ontologies. A survey of recent approaches to viewpoint

merging is available in (Sabetzadeh, 2008). The description in Section 6.2

was based on this reference.

Parallel composition. Parallel composition is a well-studied notion for

combining the behaviours of distributed system components, and has been

formally characterized for a variety of behavioural formalisms. Further detail

on analysis tools for concurrent distributed systems is available in (Magee

& Kramer, 2006).

Aspect weaving. Aspect-oriented concepts were originally coined for pro-

gramming languages, e.g. see AspectJ (Kiczales et al., 2001). Recently,

these concepts have been adapted to software models and applied to soft-

ware requirements and design viewpoints. The treatment of cross-cutting
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viewpoints in Section 6.4 is similar to the approach of (Whittle et al., 2007).

For further references on aspect-oriented modelling and aspect weaving,

see (France et al., 2007; Morin et al., 2009).
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