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Abstract
The use of test coverage measures (e.g., block coverage)
to control the software test process has become an
increasingly common practice. This is justified by the
assumption that higher test coverage helps achieve higher
defect coverage and therefore improves software quality.
In practice, data often shows that defect coverage and test
coverage grow over time, as additional testing is
performed. However, it is unclear whether this
phenomenon of concurrent growth can be attributed to a
causal dependency, or if it is coincidental, simply due to
the cumulative nature of both measures. Answering such
a question is important as it determines whether a given
test coverage measure should be monitored for quality
control and used to drive testing.
Although this is no general answer to the problem above,
we propose a procedure to investigate whether any test
coverage criterion has a genuine additional impact on
defect coverage when compared to the impact of just
running additional test cases. This procedure is
applicable in typical testing conditions where the
software is tested once, according to a given strategy, and
where coverage measures are collected as well as defect
data. We then test the procedure on published data and
compare our results with the original findings. The study
outcomes do not support the assumption of a causal
dependency between test coverage and defect coverage, a
result for which several plausible explanations are
provided.
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1. Introduction

Testing is one of the most effort-intensive activities
during software development [2]. A great deal of research
is directed towards development of new, improved test

methods. One way to better control testing - and thus
improve test resource allocation - is to measure estimators
(referred to as test coverage) of the percentage of defects
detected during testing (referred to as defect coverage). A
large number of test coverage measures have been
proposed and studied. They range from simple measures
counting the program blocks covered to data-flow based
measures looking at the definition and use of variables.

Many of these test coverage measures have been
investigated in terms of their subsumption relationships,
the ease with which complete coverage can be achieved,
and the ways they can be used to drive test case
generation and selection [9] [12] [16] [22] [24]. Several
additional studies reporting the application of test
coverage measures to control or improve test efficiency
have been published [3] [23] [28]. More importantly in
the context of our research, researchers have attempted to
build defect coverage models based on test coverage
measures [1] [5] [6] [7] [8] [10] [14] [15] [17] [19] [21]
[25] [29]. The basic assumption, regardless of the
modeling strategy, is that there is some (significant)
causal effect between test coverage and defect coverage.

However, since both test coverage and defect coverage
increase with test intensity or time, it is not surprising that
empirical data usually show a relationship. But it does not
necessarily mean that additional test coverage drives the
detection of new defects. The question investigated in this
paper is how to test whether a given test coverage
measurement, or several of them combined, are actually
having a significant impact on defect coverage. It is also
important that any solution be usable in typical testing
conditions. The main focus of this paper is to present an
easily replicable procedure that is based on simulation
techniques and is designed to investigate the relationship
between test coverage and defect coverage. Data coming
from Horgan et al. [13] are used to exemplify the
procedure and show how it can yield more precise results.

The structure of the paper is as follows. We first give a
precise definition of the problems associated with using
test coverage measures for controlling test effectiveness.



Then, in Section 3, we present a simulation-based
procedure to test the impact of test coverage on defect
coverage. Section 4 provides the results of applying our
simulation-based procedure. The paper concludes with a
summary of the work done and proposes directions for
future research.

2. Problem Statement

When a relationship is observed between test coverage
and defect coverage, it is commonly assumed to support
the hypothesis that test coverage leads to defect coverage.
However, is this assumption really capturing reality? This
has important practical implications as it justifies why
testing should be coverage driven, or evaluated based on
coverage achievement. Therefore, it is important that test
coverage measures be validated as significant defect
coverage drivers.

Another, perhaps more plausible, interpretation of any
empirical relationship between a test coverage measure
and defect coverage is that they are both driven by more
testing (referred to as test intensity).  This is the typical
dilemma of interpreting a relationship as causal or
coincidental.

One way to approach the problem above would be to
determine whether test coverage has any additional
impact on defect coverage as compared to test intensity
alone. In other words, this is equivalent to assess whether
test coverage is still a statistically significant indicator of
defect coverage, when the effect of test intensity has
already been accounted for. One approach is to determine
whether the combined effect of test intensity and test
coverage can better explain the variations in defect
coverage than test intensity alone.  If this is the case, then
one can conclude that evidence suggests that test coverage
has a significant additional impact on defect coverage.

In cases where testing is mainly driven by test
coverage, test intensity and test coverage cannot be
differentiated. But in typical situations, this is not the
case. In addition, defect and test coverage data are usually
collected at a few discrete points in time, e.g., at the end
of each testing phase such as unit, integration, or system
testing. This requires an analysis approach taking into
considerations these practical constraints. In the data set
used in this paper, we will see that test intensity only take
three possible values. Due to the design of the original
study from which the data are drawn, all systems showed
identical test intensity (i.e., number of test cases) at the
end of each test phase, that is when coverage
measurement was taken.

In order to test the significance of the impact of test
coverage on defect coverage, we will therefore define a
procedure that can be easily used in a context where
defect and test coverage data are collected at a few

discrete points in the testing process. This procedure will
be based on Monte-Carlo simulation and can be easily
automated.

3. Testing the Impact of Test Coverage

This section presents the procedure we use to test
whether test coverage has a significant impact on defect
coverage. We first present the rationale, relate it to the
fundamentals of statistical testing, and then describe the
procedure in detail. This procedure has been designed to
work in a typical context where testing is not coverage
driven and where test and defect coverage data are
collected at a few points in time, e.g., at the end of testing
activities such as unit, integration, or system testing.

3.1. Rationale

Using statistical testing terminology, our goal here is
to test the following null hypothesis: test coverage has no
additional impact on defect coverage as compared to test
intensity alone. In order for us to test this hypothesis, we
need to estimate what would be the “strength” of the
relationship between test coverage and defect coverage
assuming the null hypothesis would be true. If the
strength of this relationship is measured in terms of
goodness of fit or correlation (e.g., R2), we need to
estimate the expected R2 distribution under the null
hypothesis. Such a distribution can then be used for the
purpose of statistical testing by comparing R2 in the
observed sample to the distribution, and assessing the
probability of obtaining an equivalent or higher R2.  If this
probability is small (say below 0.05 or 0.01), we can
confidently reject the null hypothesis and assume that the
impact of test coverage on defect coverage is plausible.
Otherwise, the null hypothesis cannot be rejected and
there is no supporting evidence that test coverage has any
impact on defect coverage that is not already explained by
test intensity.

The main issue now is to devise a method to compute
the expected R2 distribution under the null hypothesis. We
typically have to work with a sample of projects for which
we have defect and test coverage data (usually for several
test coverage measures), corresponding to certain test
intensity values (e.g., number of test cases, test effort),
and collected at the end of various testing activities or
phases. At an intuitive level, what the procedure below
does is to use the sample test and defect coverage
distributions to estimate the respective population
distributions. Then, it uses these estimated population
distributions to generate the expected R2 distribution by
only taking into account the test intensity information in
the sample.
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Figure 1. Explaining the relationship between defect and test coverage.

In order to allow for an analysis across systems of
varying functional size it is recommended to normalize
test intensity using any suitable measure of functional
size, e.g., function points. The validity of specific test
intensity and coverage measures is context-dependent and
will not be discussed here, as it does not affect the
procedure presented in this paper. However, it is worth
noting that defining a meaningful test intensity measure
requires to carefully assess their underlying assumptions.
For example, if larger systems happen to be more difficult
to test (diseconomies of scale), a measure of test effort per
function point would not be a valid measure of test
intensity. In other words, equal test intensity values may
not be comparable across systems of different sizes.

In order to illustrate the principles, let us assume we
only have one test coverage measure tc (e.g., block
coverage) and dc, capturing defect coverage. For example,
although the relationship between tc and dc does not have
to be linear1, the sample data could look like the
scatterplot in Figure 1. Typical test data sets are
composed of data vectors containing defect and test
coverage data, test effort, and number of test cases run.
Across systems, such data vectors can be grouped
according to test intensity levels (e.g., groups are depicted
by rectangles in Figure 1). There are several strategies
that can be adopted for data collection. Coverage and test
intensity data can be collected at the completion of test
phases (e.g., like in Figure 1), or on a regular basis, e.g.,
daily, weekly. The former strategy is applicable in a
context of organizations with a well defined test process
and strategy, which are expected to yield similar test

                                                
1 If the relationship is not linear, e.g., exponential, it can be linearized to
facilitate the analysis.

intensities across systems for each of the test phases.
Regarding the latter data collection strategy, daily
measurement is probably necessary for organizations that
develop small and medium software programs. For
organizations that develop large software systems, over
long periods of time, weekly measurement might be
sufficient. In any case, it is important to collect coverage
and test intensity data at sufficient granularity level to
allow for the grouping, across systems, of data vectors
showing similar test intensities. The number of groups
does not matter so much, as long as the number of
observations within groups is large enough for the
estimation of the population distributions.

The example of Figure 1 shows coverage data
collected from measurement of 12 programs (or any other
type of object under test) and groups them according to
three test phases: unit test, integration test, system test.
Groups are depicted by rectangles. For the sake of
simplicity, we only consider one test coverage measure
here. We can imagine that, corresponding to each test
phase, there are unknown population distributions for tc

and dc. These distributions can be then estimated using the
sample distributions on these dimensions. The idea is now
to generate, through simulation, a large number of
scatterplots (e.g., > 1000) such as the one in Figure 1 by
using the estimated population distributions on tc and dc

and sampling from them independently. Each simulated
sample would have exactly the same number of
observations corresponding to each group as the original
sample. Following that simulation procedure, the test
intensity effect is preserved since we sample from the
corresponding tc and dc distributions for each test phase.
However, since we ignore the pairing between defect
coverage and test coverage (as independent sampling is



performed for the two distributions), no coverage
relationship is preserved if not already accounted for by
test intensity. If test coverage is important, we would
expect the simulated samples to show, on average, a
poorer correlation than the actual sample, where both test
intensity and test coverage effects on defect coverage
should be visible. In other words, the R2 distribution of
the simulated scatterplots is the distribution we would
expect under the null hypothesis and it can be used to test
how likely is the sample R2 value under this condition.
Such procedure can also be used when using several test
coverage measures and multivariate regression.

3.2 Procedure for Statistical Testing

This section presents a procedure that can be used to
compute the R2 distribution characterizing the relationship
between tc and dc which is expected under the null
hypothesis, that is when it is assumed that defect coverage
is only driven by test intensity. Such a distribution can
then be used for the purpose of testing whether our null
hypothesis can be rejected based on available evidence,
that is the actual sample R2.

3.2.1. Hypothesis definition. The null hypothesis is
defined as H0: Remp

2 = R0
2.

Remp
2 is the actual sample R2, i.e. the (multivariate)

regression coefficient R2, relating dc to ti and tc, as
calculated based on the available data set.

R0
2 is the (multivariate) regression coefficient under

the null hypothesis (H0), when defect coverage dc is
related to test intensity ti only.

3.2.2. Definitions and formalism. The notation below is
used to represent the available data on test intensity, test
coverage, and defect coverage.

Test intensity: 1 to k > 1 levels of test intensity: ti(1), …,
ti(k), with ti(1) < … < ti(k);

Each level may correspond to the completion of a test
phase, for example. Depending on the specific context,
test intensity may be measured in terms of test cases, test
effort, or any other measure that adequately captures the
amount of testing applied to a piece of software.

Test coverage: 1 to m > 0 test coverage measures, e.g.,
block, decisions; 1 to n > 0 test objects, e.g. modules,
units, programs, sub-systems; A data set TC of m*n*k
test coverage measurements tcs(j|h), with 1 ≤ s ≤ m, 1 ≤ j ≤
n, 1≤ h ≤ k:

for ti(1): tc1(1|1), …, tc1(n|1), …, tcm(1|1), …, tcm(n|1);
for ti(2): tc1(1|2), …, tc1(n|2), …, tcm(1|2), …, tcm(n|2);
…
for ti(k): tc1(1|k), …, tc1(n|k), …, tcm(1|k), …, tcm(n|k);

Defect coverage: A data set DC of n*k defect coverage
measurements dc(j|h), with 1 ≤ j ≤ n, 1≤ h ≤ k:

for ti(1): dc(1|1), …, dc(n|1);
for ti(2): dc(1|2), …, dc(n|2);
…
for ti(k): dc(1|k), …, dc(n|k);
Defect coverage is calculated as the cumulated number

of defects found at a given test intensity, divided by the
total number of defects.

Both test and defect coverage measurements are
usually expressed as percentages.

3.2.3. Procedure to construct the test distribution. A
five-step procedure is defined to construct the test
distribution for R2 under the null hypothesis (i.e.,
probability distribution of R0

2):

Step P1: Estimate Theoretical Distributions for all
Coverage Measures

For each coverage criterion (test and defect), find the
best fit distributions D(tc1|1), …, D(tcm|1), D(dc|1) to the
sample data of test intensity level ti(1). Finding the best
distributions and fitting its parameters can be easily
automated by using adequate tools such as BestFit [4].
Specific statistical tests (e.g., Chi-square, Kolmogorov-
Smirnov, Anderson-Darling [26]) are usually helpful to
find the analytical distribution, e.g., Normal, Beta,
Weibull, with the closest fit to the data and to determine
whether any subset is a plausible representation of the
population distribution.

Step P2: Derive Coverage Conditional Distributions for
Subsequent Test Intensity Levels

Since test coverage and defect coverage measurements
are cumulated, dependencies between the distributions of
coverage measurements of subsequent test intensity levels
are to be expected. The dependencies between
distributions D(tcs|1) and D(tcs|2), D(tcs|2) and D(tcs|3), …,
D(tcs|k-1) and D(tcs|k), can be modeled by using the
“envelope method” as described in [26]. If normal
distributions are used, and linear dependency can be
assumed, the envelope method involves running a least
squares regression analyses between the same test
coverage measurements of different test phases. Details
on how to model dependencies between distributions by
using least squares regression are given in Section 4,
illustrated by an example.

To make sure that a realistic population is generated
when using simulation, it is important to guarantee that
dependencies within samples are explicitly modeled. The
dependencies due to the cumulative nature of the data sets
are to a large degree conserved by using the envelope
method. However, it is still possible that simulated data
sets are outside a realistic range, e.g., they may show a
decreasing coverage. This is caused by the fact that fitting



based on the empirical sample may yield distributions
whose domain is larger than the realistic sampling ranges.
Thus, to avoid unrealistic sampling from fitted
distributions, the following lower and upper bounds for
test and defect coverage have to be enforced when
necessary:

0 ≤ tc1(1) ≤ tc1(2) ≤ … ≤ tc1(k) ≤ 100%, with tc1(h) ∈
D(tc1|h), h = 1, …, k.

0 ≤ tc2(1) ≤ tc2(2) ≤ … ≤ tc2(k) ≤ 100%, with tc2(h) ∈
D(tc2|h), h = 1, …, k.

…
0 ≤ tcm(1) ≤ tcm(2) ≤ … ≤ tcm(k) ≤ 100%, with tcm(h) ∈

D(tcm|h), h = 1, …, k.
0 ≤ dc(1) ≤ dc(2) ≤ … ≤ dc(k) ≤ 100%, with dc(h) ∈

D(dc|h), h = 1, …, k.

Step P3: Perform the Monte-Carlo Simulation
By independently sampling from the test and defect

coverage distributions modeled in Steps P1 and P2,
Monte-Carlo simulation can be used to generate N data
sets that conserve the distribution properties of the
original data sets TC and DC. For a large N, the generated
data sets should provide a representative picture of what
samples should look like under the null hypothesis. This
stems from the fact that defect and test coverage
distributions are sampled independently for each test
intensity level, thus ignoring any possible relationship
between these measures. Latin Hypercube sampling [26]
can be applied in order to speed up the convergence of the
simulated distributions towards the theoretical population
distribution from which the sample is drawn. In this
context, N>1000 data sets usually provide an adequate
level of precision for the estimated population
distribution.

Step P4: Derive the R2 Distribution under the Null
Hypothesis

For each of the N data sets generated in Step P3,
(multivariate) regression analysis is performed between
defect and test coverage measures and the corresponding
R2 is calculated. The sample of N R2’s can then be used
for the purpose of statistical testing, as described below.

3.2.4. Testing the null hypothesis. To test the null
hypothesis H0, the following steps have to be performed:

Step T1: Set α
Set significance level α to a given risk level of falsely

rejecting the null hypothesis. Typical levels are 5% or
1%.

Step T2: Calculate Remp
2

Calculate Remp
2 based on data sets TC and DC by

performing (multivariate) regression, e.g., by calculating
the regression line dc = a + b1 * tc1 + b2 * tc2 + … + bm *

tcm in case of linear relationship. Using the notation
above, tcs stands short for the measurement of a given
coverage measure across all test intensity levels and test
objects, i.e., tcs (*|*).

Step T3: Perform Statistical Test
To compare Remp

2 with the sample of N R2-values
computed on simulated samples as calculated in Step P4,
compute the number of R2 instances that are above Remp

2.
If this number represents a percentage of N larger than α,
then the null hypothesis cannot be rejected. In this case,
we cannot conclude that test coverage has a significant
impact on defect coverage.

4. Case Study

Based on data that was generated during an experiment
conducted by the University of Iowa and the
Rockwell/Collins Avionics Division [13], this section
illustrates how to apply the statistical testing procedure
defined in Section 3.2.

4.1. Background Information

The purpose of the experiment was to investigate the
relationship between the coverage of program constructs
during testing and defect coverage. For this purpose,
based on one specification, 12 program versions were
developed independently, the program sizes ranging from
900 to 4000 uncommented lines of code. Then, test
coverage and defect coverage were measured in three
subsequent test phases: unit test (UT), integration test
(IT), and acceptance test (AT). Because the programs
were also exposed to field trials, a realistic approximation
of the total number of defects (ranging from 5 to 10
defects) contained in each program could be made, thus
allowing for a sensible calculation of actual defect
coverage during test. An important prerequisite for the
procedure defined in Section 3 is that, in each test phase,
an equal level of test intensity be applied to the programs.
In the experiment conducted by Horgan et al. this
prerequisite was fulfilled since each program was subject
to exactly the same set of test cases in each test phase. It
should also be noted that information on test coverage
was not used to influence testing, e.g., by driving the
generation of test cases such that test coverage is
systematically increased.

In the experiment, test coverage was measured for four
criteria: block, decision, c-uses, and p-uses coverage [18].
Blocks and decisions are constructs contained in the
control flow of a program. Typical examples of blocks in
a program are consecutive code fragments that execute
together and do not contain branches. Decisions are
defined by the possible values of a branch predicate. C-



use and p-use are data flow oriented coverage measures.
They represent special cases of definition-use pairs
associated with program variables, i.e. first use of variable
in a calculation, and first use of variable in a predicate
after last modification (or definition). Each coverage
criterion was measured for each program version at the
end of each test phase using the ATAC (Automatic Test
Analysis for C) tool [18].

4.2. Description of Available Data Set

Table 1 shows the raw data for defect coverage (dc)
and the four test coverage (tc) measures taken from 12 test
objects at three levels of test intensity (test phases UT, IT,
and AT). The measurements (gray shaded area) are
expressed in terms of cumulated numbers over phases,
and presented in percentages.

4.3. Generation of Test Distribution

This section describes step by step how the procedure
to construct the test distribution (Section 3.2) can be
applied to the raw data presented in Table 1.

Step P1: Estimate Theoretical Distributions for all
Coverage Measures

With the help of the tool BestFit, for each coverage
criterion (test and defect), suitable analytical distributions
D(tblock|UT), D(tdecision|UT), D(tc-use|UT), D(tp-use|UT),
D(dc|UT) were derived through fitting 21 possible
distributions against the sample data.  The distributions of
type D(*|{IT,AT}) are derived in Step P2, as they are
conditional on the UT coverage values.

In all cases, and for each of the three test statistics
(Chi-square, Kolmogorov-Smirnov, Anderson-Darling),
the normal distribution turned out to be among the
subgroup of plausible theoretical distributions. In other
words, there is a high probability that the empirical data
could have been produced by the fitted Normal(µ, σ).
Based on this result, and to facilitate subsequent analysis
steps (i.e., application of envelope method), we decided to
use the normal distribution across the board, for all phases
and criteria. Table 2 shows the fitted normal distributions
for all test phases, not only UT. The main reason to do so
is to make sure that assuming a normal theoretical
distribution makes sense for all test phases, although the
fitted distributions for IT and AT are not actually used in
the simulation procedure below. Although it is expected
here to be low, it is easy to check the sensitivity of the
overall test results to the selected theoretical distributions
by performing the analysis below, using various analytical
coverage distributions.

Table 1. Raw data (taken from [13]).

Test object

(n = 12)

Test intensity level

(k =3)

Test coverage measure

(m = 4)

Defect coverage measure

Program version Test phase block c-use decision p-use defect

1 UT - IT - AT 65 - 85 - 95 60 - 83 - 96 36 - 71 - 88 30 - 66 - 84 22.22 – 66.67 – 88.89
2 UT - IT - AT 59 - 71 - 78 57 - 76 - 90 37 - 73 - 87 34 - 60 - 72 28.57 - 71.43 - 100
3 UT - IT - AT 62 - 77 - 88 56 - 80 - 96 37 - 63 - 78 38 - 63 - 78 30 - 70 - 100
4 UT - IT - AT 70 - 83 - 95 50 - 67 - 84 43 - 67 - 82 32 - 47 - 58 11.11 - 55.56 - 100
5 UT - IT - AT 44 - 74 - 88 45 - 70 - 87 27 - 60 - 77 26 - 58 - 74 42.86 - 57.14 - 100
6 UT - IT - AT 64 - 86 - 98 57 - 81 - 95 28 - 72 - 90 22 - 59 - 72 42.86 - 42.86 - 100
7 UT - IT - AT 56 - 79 - 91 44 - 72 - 87 33 - 69 - 82 23 - 49 - 57 55.56 - 88.89 - 100
8 UT - IT - AT 60 - 76 - 91 69 - 84 - 96 29 - 62 - 78 37 - 61 - 71 37.5 - 62.5 - 100
9 UT - IT - AT 68 - 80 - 90 56 - 74 - 86 42 - 63 - 79 42 - 59 - 72 22.22 - 44.44 - 100
10 UT - IT - AT 68 - 88 - 97 55 - 81 - 96 41 - 78 - 92 36 - 68 - 85 20 - 60 - 100
11 UT - IT - AT 71 - 86 - 97 56 - 78 - 93 42 - 72 - 89 38 - 64 - 80 20 - 50 - 100
12 UT - IT - AT 57 - 80 - 94 55 - 82 - 94 32 - 66 - 86 29 - 61 - 79 33.33 - 50 - 100

Table 2. Fitted Normal distributions - Normal(Mean, Standard deviation).

Test intensity
level

Distributions of coverage measures

block c-use decision p-use defect

UT Normal(62,7.56) Normal(55,6.59) Normal(35.6,5.76) Normal(32.25,6.37) Normal(30.52,12.53)

IT Normal(80.42,5.32) Normal(77.33,5.52) Normal(68,5.41) Normal(59.58,6.19) Normal(59.96,13.07)

AT Normal(91.83,5.57) Normal(91.67,4.58) Normal(84,5.29) Normal(73.5,8.85) Normal(99.07,3.21)



Step P2: Derive Coverage Conditional Distributions for
Subsequent Test Intensity Levels (Test Phases)

The cumulative nature of the coverage measurements
contained in the sample creates dependencies between
distributions of a particular coverage measure across
subsequent test phases. The main dependency is caused
by the monotonicity of cumulative data, e.g., for a
particular program, block coverage at the end of phase IT
cannot be smaller than at the end of phase UT. Figure 2
illustrates the monotonicity of a coverage measure by the
fact that the related distributions shift from left to right. It
can also be seen from Figure 2 that, due to overlapping
distributions of subsequent phases, independent random
sampling may violate the monotonicity condition. To
ensure that this does not happen and that the Monte-Carlo
sampling presented below is realistic, dependencies
between the distributions of subsequent test phases have
to be modeled explicitly through conditional distributions,
e.g., IT block coverage distribution as a function of a
specific UT block coverage value.

The regression results in Table 3 provide the equation
of the least squares line y = a*x + b and the standard error
of the y-estimate Sxy. The Sxy statistic is the standard
deviation of the vertical distances of each point from the
least squares line. Least squares regression assumes that
the error of the data about the least squares line is
normally distributed. Thus, if y = a*x + b is the equation
of the least squares line, we can model the conditional
distribution as y = Normal(a*x + b, Sxy). An example is
shown in Figure 3 where, for any value sampled from the
fitted distribution of block coverage measurements in
phase UT (block(UT)), the related conditional distribution

of block coverage for IT is calculated as Normal(50.601 +
0.48089*block(UT), 4.07).
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Figure 2. Fitted distributions of block coverage
measurements for subsequent test phases.

The full set of best-fit (UT) and conditional
distributions is shown in the Table 4. As expected,
conditional distributions show a reduced variance. In
addition to the monotonicity condition, which is taken
care of by the envelope method, the table entries specify
the maximum boundary (no coverage measurement can
be greater than 100%) and non-negativity (no coverage
measurement can be less than 0%) conditions. One
special case should be noted: Since 11 out of 12
measurements of defect coverage in phase AT were equal
to 100%, the envelope method was not applicable. Thus,
the actual fitted distribution, with almost no variance, was
used. This is clearly an idiosyncrasy of this data set as, for
real-life systems, defects are likely to slip to the field.

0.00

0.06

42 50 58 66 74

68

72

76

80

84

88

92

42 46 50 54 58 62 66 70 74

y = block(IT)

x = block(UT)

Regression line:
y = 50.601+0.481*x
SXY = 4.0705

Normal (62, 7.56) 

Normal (50.601+0.48089*block(UT), 4.07) 

0.0

0.168
74

80
86

92

(Conditional distribution) 

block(UT) = 62 

Figure 3. Example of how to apply the envelope method.



Table 3. Regression summary between block coverage (UT) and block coverage (IT).

Dependent Variable: IT (block)
R = 0.68344744, R² = 0.46710040, adjusted R² = 0.41381044
F(1, 10) = 8.7653, p < 0.01427, standard error of estimate: 4.0705

N=12 Coefficients Coef. Std. Error t-value (10) p-level

Intercept a = 50.60138 10.13895 4.990792 0.000545

UT (block) b = 0.48089 0.16243 2.960618 0.014273

Table 4. Summary of fitted and conditional distributions used for Monte Carlo simulation.

Coverage
criterion

UT IT AT

block Normal (62, 7.56)
Constraint:

if block (UT) < 0 then 0

Normal (50.601 + 0.481 * block (UT), 4.07)
Constraints:

if block (IT) < block (UT) then block (UT)

else if block (IT) > 100 then 100

Normal (14.801 + 0.957 * block (IT), 2.37)
Constraints:

if block (AT) < block (IT) then block (IT)

else if block (AT) > 100 then 100

c-uses Normal (55, 6.59)
Constraint:

if c-uses (UT) < 0 then 0

Normal (41.664 + 0.649 * c-uses (UT), 3.66)
Constraints:

if c-uses (IT) < c-uses (UT) then c-uses (UT)

else if c-uses (IT) > 100 then 100

Normal (30.586 + 0.790 * c-uses (IT), 1.48)
Constraints:

if c-uses (AT) < c-uses (IT) then c-uses (IT)

else if c-uses (AT) > 100 then 100

decision Normal (35.6, 5.76)
Constraint:

if decision (UT) < 0 then 0

Normal (55.909 + 0.340 * decision (UT), 5.29)
Constraints:

if decision (IT) < decision (UT) then decision (UT)

else if decision (IT) > 100 then 100

Normal (21.913 + 0.913 * decision (IT), 1.99)
Constraints:

if decision (AT) < decision (IT) then decision (IT)

else if decision (AT) > 100 then 100

p-uses Normal 32.25, 6.37)
Constraint:

if p-uses (UT) < 0 then 0

Normal (48.846 + 0.395 * p-uses (UT), 5.93)
Constraints:

if p-uses (IT) < p-uses (UT) then p-uses (UT)

else if p-uses (IT) > 100 then 100

Normal (-8.956 + 1.384 * p-uses (IT), 2.34)
Constraints:

if p-uses (AT) < p-uses (IT) then p-uses (IT)

else if p-uses (AT) > 100 then 100

defect Normal (30.52, 12.53)
Constraint:

if defect (UT) < 0 then 0

Normal (47.528 + 0.407 * defects (UT), 12.62)
Constraints:

If defect (IT) < defect (UT) then defect (UT)

else if defect (IT) > 100 then 100

Normal (99.07, 3.21)
Constraints:

if defect (AT) < defect (IT) then defect (IT)

else if defect (AT) > 100 then 100

Table 5. Regression summary for multivariate linear regression with empirical sample.

Dependent Variable: DEFECT
R = 0.88979071, R² = 0.79172750, adjusted R² = 0.76485363
F(4, 31) = 29.461, p < 0.00000, standard error of estimate: 14.687

N=36 B Std. Error of B T(31) p-level

Intercept -13.3470 23.87424 -0.55905 0.580142

BLOCK -1.1240 0.52737 -2.13141 0.041090

C_USE 1.5858 0.53125 2.98506 0.005493

DECISION 1.5666 0.46126 3.39640 0.001889

P_USE -0.9448 0.50283 -1.87887 0.069693



Step P3: Perform the Monte-Carlo Simulation
Using the distributions specified in Table 4, 1000 data

sets were generated with Monte Carlo simulation (Latin
Hypercube sampling). For each of the five coverage
measures (test and defect) 36 data points were generated,
12 data points for each of the three test phases (UT, IT,
AT). Simulated samples are therefore comparable to the
actual sample in the sense that they are based on the same
coverage distributions.

For this task we used the tools Microsoft Excel [20]
and @Risk [27].

Step P4: Derive the R2 Distribution under the Null
Hypothesis

For each of the 1000 data sets generated in Step P3 the
(multivariate) regression coefficient R2 is calculated, that
is on each data set a multivariate linear regression
analysis is performed:

dc = a0 + a1* tblock + a2* tc-uses + a3* tdecision + a4* tp-uses + eps

For this task we used the tool Stata [11], which allows
for an easy automation of such an iterative procedure.

The distribution of 1000 R2-values, as shown in Figure
4, constitutes the distribution to be expected under the
null hypothesis. As explained in the next section, this is
going to be used to test whether the observed R2 value is
likely under the null hypothesis, i.e., test coverage has no
impact of its own on defect coverage.

4.4. Result of Statistical Testing

Using the R2 distribution described above, and to test
the null hypothesis H0, the following steps were
performed:

Step T1: Set α
The significance level α was set to 5%.

Step T2: Calculate Remp
2

Remp
2 was calculated based on empirical data sets TC

and DC by performing multivariate linear regression2.
The regression summary is shown in Table 5. It provides
the value of the empirical regression coefficient, Remp

2 =
0.7917, which is surprisingly high. Moreover, the low p-
levels indicate that the various test coverage criteria
complement each other with respect to their predictive
power on defect coverage.

                                                
2 Just by looking at the data, there was no graphical evidence of non-
linearity. Of course, in case of doubt, appropriate tests for linearity and
scale transformations should be performed.

Step T3: Perform Statistical Test
To reject the null hypothesis H0, since we selected α =

5%, the value of Remp
2 must be greater than the 95%-

quantile of the test distribution (see Figure 4).
With Remp

2 = 0.7917 < 0.8888 = 95%-quantile, the null
hypothesis cannot be rejected. For this data set, the results
do not support the claim that test coverage has a
significant, additional impact on defect coverage when the
effect of test intensity is already accounted for. If this data
came from real projects, then nothing in the results would
suggest that test case generation would be improved by
following a test coverage-driven strategy.

0.0

5.5

11.0

0.76 0.840.60 0.68 0.92 1.00

Remp
2 = 0.7917

95% quantile = 0.8888

median = 0.8234

Figure 4. Distribution of generated R2-values
with median and 95%-quantile.

5. Conclusions and Future Work

This paper presented a simulation-based procedure to
test the impact of test coverage (e.g., block coverage) on
defect coverage in realistic testing and data collection
conditions.  The main issue raised here is that a
relationship between test coverage and defect coverage
does not necessarily mean there is a causal relationship. It
is plausible to assume that both test coverage and defect
coverage are driven by test intensity, the amount of
testing performed (e.g., number of test cases). This would
then lead to an empirical relationship between test and
defect coverage measures. Concluding on the existence of
a significant causal relationship between test coverage
and defect coverage would have important practical
consequences, as it would suggest that testing should be
driven by such test coverage. It is therefore important to
test whether test coverage really impacts defect coverage
when the test intensity effect is accounted for.

We have shown here how the procedure we propose
can be used and in which circumstances. The data we
used did not suggest that any of the test coverage
measures, even when used together, has any additional
effect on defect coverage when test intensity was already
accounted for. Of course, such a result is expected to vary



across environments, depending on the distribution of
defects, the type of defects, etc.

This result sheds a new light on the conclusions of the
original study conducted by Horgan et al., where the
authors suspected that “there’s a correlation between the
number of faults detected in a version and the coverage of
its program constructs”. Based on their data, our
procedure provides a precise answer to that question.

One of the preconditions of using our procedure is that
test coverage is not the main driver of the testing process
(e.g. the design of test cases). In cases where this is not
true, then test intensity cannot really be differentiated
from test coverage. This can be easily checked by looking
at the relationship between the number of test cases
executed and the increase in test coverage.

The relationship between defect coverage, test
intensity, testability, and test coverage (or its various
definitions) is complex. However, it needs to be modeled
and tested in environments where early testing phases
need to be controlled. In particular, we believe testability
may explain the large variations observed in the
relationship between defect and test coverage. Our future
work encompasses the development of a series of case
studies and experiments to study these complex
relationships and find optimal ways to model them.
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