
The Role of Deliberate Artificial Design
Elements in Software Engineering Experiments

Jo E. Hannay, Member, IEEE Computer Society, and Magne Jørgensen

Abstract—Increased realism in software engineering experiments is often promoted as an important means of increasing

generalizability and industrial relevance. In this context, artificiality, e.g., the use of constructed tasks in place of realistic tasks, is seen

as a threat. In this paper, we examine the opposite view that deliberately introduced artificial design elements may increase knowledge

gain and enhance both generalizability and relevance. In the first part of this paper, we identify and evaluate arguments and examples

in favor of and against deliberately introducing artificiality into software engineering experiments. We find that there are good

arguments in favor of deliberately introducing artificial design elements to 1) isolate basic mechanisms, 2) establish the existence of

phenomena, 3) enable generalization from particularly unfavorable to more favorable conditions (persistence of phenomena), and

4) relate experiments to theory. In the second part of this paper, we summarize a content analysis of articles that report software

engineering experiments published over a 10-year period from 1993 to 2002. The analysis reveals a striving for realism and external

validity, but little awareness of for what and when various degrees of artificiality and realism are appropriate. Furthermore, much of the

focus on realism seems to be based on a narrow understanding of the nature of generalization. We conclude that an increased

awareness and deliberation as to when and for what purposes both artificial and realistic design elements are applied is valuable for

better knowledge gain and quality in empirical software engineering experiments. We also conclude that time spent on studies that

have obvious threats to validity that are due to artificiality might be better spent on studies that investigate research questions for which

artificiality is a strength rather than a weakness. However, arguments in favor of artificial design elements should not be used to justify

studies that are badly designed or that have research questions of low relevance.

Index Terms—Artificiality, realism, generalization, theory, experiments, research methods, empirical software engineering.

Ç

1 MOTIVATION

IN experiments, variables are controlled in order to isolate
the outcomes of deliberate interventions, thus creating a

situation that is usually not representative of everyday life.
This structural artificiality is the methodological essence of
control that allows the drawing of inferences about
treatment-outcome relations from experimental results [91].

In addition, experiments in many disciplines, including
software engineering, typically display what one may call
situational artificiality. This type of artificiality pertains to
the experimental ingredients (e.g., subjects, treatments,
settings, tasks, and materials) and is defined relative to
the target of applicability or generalization. For example,
subjects, treatments, and materials may be artificial relative
to the software industry because resources dictate that one
uses what is at hand and does what it is possible to
complete in the time available. In contrast to structural
artificiality, which is mandatory within the framework of
experiments, situational artificiality may vary according to
both practical and analytical considerations.

Software engineering is a field of practice and the goal of
research in empirical software engineering is to address

issues that are of interest and use to the software industry.
Several authors (ourselves included) have argued that, in
order to achieve this goal, situational artificiality should be
minimized. This means that the realism and representa-
tiveness of experimental subjects, treatments, settings, tasks,
and materials relative to industrial software development
situations should be increased (while retaining the structur-
al artificiality necessary for causal inference) so that the
results of such experiments may be generalized and
transferred to the software industry more easily [52], [66],
[93], [95]. Such arguments are implicitly based on the idea
that experimental results are generalizable when experi-
mental situations are immediately similar to industrial
situations or when there is a simple statistical route from
sample to population based on known probability distribu-
tions. As a result, realism is seen as an important design
goal, while situational artificiality is seen as a logistically
imposed necessary evil that hampers the usefulness of the
results to the industry.

However, there are other modes of generalization that rely
less on mimicking real-world situations and that allow
generalization on the basis of deep or structural similarities,
e.g., basic underlying mechanisms. In these modes, carefully
administered artificiality may be essential for generalization.
For example, when small and artificial programming tasks
are introduced merely as substitutes for real-world soft-
ware projects due to the lack of resources, this clearly
limits the usefulness of the results. In contrast, when such
tasks are included as a deliberate design element in order
to better understand or identify causal relationships with
respect to a situation such as learning through feedback,

242 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

. The authors are with the Simula Research Laboratory, Department of
Software Engineering, Pb. 134, NO-1325 Lysaker, Norway, and the
Department of Informatics, Industrial Systems Development Group,
University of Oslo, Pb. 1080 Blindern, NO-0316 Oslo, Norway.
E-mail: {johannay, magnej}@simula.no.

Manuscript received 20 June 2007; revised 11 Jan. 2008; accepted 21 Jan.
2008; published online 11 Feb. 2008.
Recommended for acceptance by N. Maiden.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2007-06-0195.
Digital Object Identifier no. 10.1109/TSE.2008.13.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

the artificiality may increase the usefulness of the study.
In this paper, we focus on the role of such deliberately
introduced situational artificiality in software engineering
experiments. Rather than minimizing situational artificial-
ity, we find arguments for optimizing it according to the
kind of knowledge that one wishes to acquire. Studies using
artificial design elements are to be understood as comple-
mentary to studies that are high in realism.

Whereas using structural artificiality is part of the
standard procedure for conducting experiments and situa-
tional realism is receiving the attention that it deserves in
empirical software engineering, the use of situational
artificiality as a deliberate means of acquiring knowledge
is, as far as we know, explicitly discussed in depth neither
in textbooks nor in advanced literature in empirical soft-
ware engineering.1 Our goal is to draw attention to this
deficit by pointing out the potential for increased knowl-
edge acquisition that lies in the well-planned use of artificial
design elements in software engineering experiments.
Although we also promote experiments with more situa-
tional realism, we think that it is important that the present
focus on increased realism in empirical software engineer-
ing should not also lead to the stigmatization of experi-
ments in which situational artificiality may be used
constructively. The review presented in this paper suggests
that, for most authors, realism is viewed as a design goal by
default, while artificiality is something to be excused and
avoided. Only a few authors consider the possibility of
deliberately utilizing situational artificiality in their designs.

Although the issues of realism and artificiality apply to
several types of empirical study, our focus in this paper is
on experiments, that is, empirical studies in which a
deliberate intervention is administered in order to study
treatment-outcome relations. Experiments are, by design
and convention, caught in the crossfire between realism and
artificiality because the structural artificiality that is
necessary for control would also seem to result in what is
perceived as undesired situational artificiality.

The main body of this paper has two parts: an analytical
part in which we evaluate and discuss arguments pertain-
ing to the potential roles of artificial design elements in
software engineering experiments (Section 2) and an
empirical part in which we analyze points of view and
the state of practice concerning artificiality by a content
analysis of articles that report software engineering experi-
ments published over the 10-year period 1993-2002 (Sec-
tion 3). At the end (Section 4), we discuss the implications of
our findings in Sections 2 and 3 for empirical software
engineering. Section 5 concludes.

2 SITUATIONAL ARTIFICIALITY IN EXPERIMENTS

The terms “artificiality” and “realism” are used in various
ways, not only in everyday life but also in experimental
science. As a result, the classification of something as artificial
or realistic, as well as discussions of whether experimental
artificiality is good or bad, are often confounded by

discussions about what it is to be artificial or real. For the
present discussion, we will make the following simple
decision: The defining concept is that of realism in terms of
actual situations in the software industry. Often the term
“mundane realism” is used to refer to the correspondence of
an experiment’s environment to everyday environments. In
our discussion, something is then artificial if it deviates from
what is realistic in terms of situations occurring in the
software industry. This corresponds to how the terms have
been used in the empirical software engineering literature
[52], [56], [66], [93] and in the reviewed articles. There are also
other relevant uses of these terms which we will encounter
later on.

For us, the important aspect of artificiality lies in the
element of deliberateness in order to achieve certain goals
[92]. While the structural artificiality that pertains to the
treatment intervention in experiments is, of course, delib-
erate, this aspect of artificiality is not the issue here. Our
focus is on situational artificiality, which is explained as
follows: Cronbach et al. [24], [25] and Shadish et al. [91] list
subjects (units), treatments, outcomes, and settings as the
operational variables from which one generalizes. In
addition, since software engineering can be said to be a
design science concerning artifacts [92], we also include the
operational variables tasks and materials. The suite of these
six variables constitutes the situational variables of an
experiment. Situational artificiality and situational realism
then pertain to the degree to which an experiment’s
situational variables are similar (by surface similarity, see
the following) to corresponding situational variables in the
software industry.

2.1 Situational Artificiality and the Problem of
Applicability

The applicability of experimental results is usually ex-
pressed through principles of generalization. This involves
mapping, in one way or another, the situational variables of
the experiment to the corresponding variables in the target
domain to which one wishes to generalize. The principle of
statistical generalization is based on drawing a sample from a
population where both the population and the sample have
known probability distributions. This allows one to general-
ize by mapping experimental variables to target variables
through formal statistical inference [43]. However, for the
situational variables that are relevant to software engineer-
ing, it is difficult to fulfill the necessary definedness
conditions for population and sample. This is a general
problem in social and behavioral sciences [91], [110], with
which empirical software engineering shares essential
methodological issues.

In response to this general problem, Shadish et al. [91]
refer to earlier work by scholars such as Brunswick, Meehl,
and Cronbach and summarize patterns of argument for
generalized causal inference for use in the absence of
perfect random sampling. These patterns of argument
define analytical generalization and embody five principles:

1. surface similarity,
2. ruling out irrelevancies,
3. making discriminations,
4. interpolation and extrapolation, and
5. causal explanation.

HANNAY AND JØRGENSEN: THE ROLE OF DELIBERATE ARTIFICIAL DESIGN ELEMENTS IN SOFTWARE ENGINEERING EXPERIMENTS 243

1. In other fields relevant to software engineering, such as management
and social and behavioral sciences, deliberate situational artificiality has
been given particular attention in, e.g., a special edition of the Journal of
Economic Methodology [97] and in textbooks, e.g., [34], [69].

Table 1 summarizes these principles. Note that the use of
such a pattern of argument does not automatically entail
valid generalization. Each use of a pattern must be justified
individually.

The mapping of experimental situational variables for
each of these five principles relies on arguments of construct
validity and external validity. Generalization with respect to
construct validity concerns the mapping from the situa-
tional variables to the constructs (concepts) that they are
intended to represent, that is, from specific to abstract, while
generalization with respect to external validity concerns the
inference that a causal relationship holds over relevant
variants of the situational variables, that is, in other concrete
situations [91, chapter 11] (see Fig. 1). Each of the five
principles will, in practice, appeal more strongly to either
construct validity or external validity. For example, surface
similarity could be used to relate experimental variables
directly to target variables without involving constructs,
thus emphasizing external validity, while causal explana-
tion might involve the constructs of theory and would
therefore emphasize construct validity to a greater extent.

Arguments for increased realism in software engineering
experiments assume that generalizing is done only on the
principles of surface similarity and statistical generalization.
However, these principles, which rely on representative-
ness and realism (and are therefore the most vulnerable to
artificiality) only represent one mode of generalizing.

Generalizing by causal explanation (i.e., Principle 5), on
the other hand, relies on finding causal relationships that
underlie several seemingly disparate phenomena [91], [105].
This principle searches for deep or structural similarities
between experimental and target situations. In medicinal

research, many important findings are based on mouse
trials, the rationale for which is the deep similarity of mouse
and human DNA, although mice are not men as judged by
surface similarity. In empirical software engineering,
artificial problems may be structurally similar to realistic
tasks with respect to task complexity and students might
share the deep similarity of comprehension-related cogni-
tion with professionals.

244 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

TABLE 1
Principles of Generalization

Fig. 1. Analytical generalization through construct validity and external
validity. Generalization with respect to external validity is done by
arguing that what is observed for a situational variable in the experiment
will also be observed for variants of that variable in the software industry.
This type of argument may follow one or several of the five principles
mentioned in Section 2.1. Generalization with respect to construct
validity is done by arguing that a situational variable stands for an
abstract construct (concept) that, by virtue of its abstraction, also stands
for situational variables in the software industry to which one wishes to
generalize. The argumentation that situational variables “stand for”
constructs, and vice versa, may again follow one or more of the five
principles mentioned in Section 2.1.

Deep or structural similarities may not correspond to
similar surface similarities [91, p. 369] and opting to
generalize by using only surface similarities runs the risk
of generating only partial knowledge. Note that arguing on
the level of deep and structural similarities requires such
similarities to be established beforehand, either empirically
or theoretically.

In what follows, we will investigate the claim that
artificiality is beneficial for acquiring additional deeper
structural knowledge and that realism, not artificiality, may
stand in the way of knowledge gain and generalization in
software engineering. However, deliberate artificiality does
not replace realism: It complements it. The timeliness of
either depends on the kind of knowledge that one is
attempting to acquire [55].

2.2 Deliberate Artificial Design Elements

Inspired by Mook [77], we consider four ways in which
deliberate artificial design elements on situational variables
may promote knowledge acquisition: isolating basic mechan-
isms, demonstrating the existence of phenomena, demonstrating
the persistence of phenomena, and relating to theory. These are
covered in Sections 2.2.1-2.2.4. Section 2.2.5 discusses the
assumption of reductionism that is inherent in these
arguments.

2.2.1 Isolating Basic Mechanisms

According to Webster [107], laboratory experiments have
features well suited to investigating general principles,
independent of time and place,2 and artificiality is essential
for building such abstract knowledge. An example in point
is the experiment that shows that a feather and a lead ball
drop at the same rate in a vacuum. This experiment has an
artificial design element (the vacuum) that does not occur
naturally on earth and therefore succeeds in isolating the
effects of gravitation. To describe motion in everyday
conditions, one must add the effects of air resistance as
well. However, our understanding benefits from isolating
these two basic mechanisms: gravitation accelerates motion
and air resistance retards motion. Modularizing knowledge
and explaining observations in terms of basic mechanisms
relates phenomena to one another at levels other than the
intuitive. This, in turn, allows for wider applicability of the
obtained knowledge.

For this purpose, the fact that the conditions necessary
for isolating basic mechanisms are not representative of
everyday life is beside the point because natural conditions
may not allow the observation of the mechanisms under
investigation. Webster states that “Trying to recreate
natural settings in the laboratory is a misdirection of effort
and is sure to fail. . . . An experiment is useful when we can
see the operating theoretical forces in sharp relief. The
simpler the experiment, the better it is for developing
theory” [107, p. 62].

Isolating basic mechanisms pertains to both identifying
basic mechanisms and investigating them. Generalization

need not be the immediate incentive in an experiment that
primarily seeks to identify basic mechanisms; instead, this
may be left to future studies. Generalization may be the
focus in an experiment that investigates a basic mechanism
if one postulates that the same mechanism is operative in a
real-world context, in which case, analytic generalization
principle 5 (causal explanation) is useful, rather than
generalization through realism and representativeness.

There are, of course, basic or underlying mechanisms to
be investigated in software engineering. During our work
on a review on the use of theory [42], we found several
candidates for basic mechanisms that may be worth
isolating and investigating further. For example, Laitenber-
ger et al. [65] construct a probabilistic model in which one
may formalize the posited causal mechanisms as to why
perspective-based reading (PBR) leads to better inspection
effectiveness than checklist-based reading (CBR). The
posited mechanisms (extracted from the argumentation in
[83], [82], [64]) consist of a two-step sequential relationship.
PBR gives an increased likelihood of detecting defects
targeted by a given perspective (defect subset focus), which
leads to a decreased likelihood of detecting defects outside
this focus (defect detection overlap), which, in turn, yields
better inspection effectiveness. The basic mechanisms here
are subset focus and detection overlap. That it is interesting to
study these underlying mechanisms further is demon-
strated by the fact that computation and simulation in the
probabilistic model show that the mechanisms are largely
independent of each other, which is incompatible with the
intuitive close relationship that was posited above [65].
However, although several authors refer to basic mechan-
isms when explaining observed phenomena, few actually
investigate them (Section 3).

Conducting empirical studies designed to investigate the
effects of the mechanisms in the above example would
require one to administer reading perspectives with varying
and even unrealistic degrees of “abilities” regarding focus
and overlap. Here, artificial perspectives may help one
understand how the mechanisms work so that one may
control them in order to develop even better PBR.

A basic mechanism is basic, relative to the frame of
reference that one uses for one’s research. In empirical
software engineering, the top-level defining frame of
reference may often be described as determining what the
effects of applying a given software engineering technology used
by certain developers in a given setting are. Relative to this top-
level frame, one may then ask deeper questions such as
what the underlying (basic) mechanisms in technology, devel-
opers, and settings are which make certain combinations of these
outperform others. Frames of reference might change in a
hierarchic manner: In order to investigate a certain basic
mechanism, one might want to ask what the underlying
mechanisms for that mechanism are, and so on.

There have been previous calls for the study of basic or
underlying mechanisms. For instance, Basili et al. state that
building a body of knowledge from families of experiments,
along with the ability to carry out families of replications,
“allows organizations to integrate their experiences by
making explicit the ways in which experiences differ . . . or
are similar and allowing the abstraction of basic principles

HANNAY AND JØRGENSEN: THE ROLE OF DELIBERATE ARTIFICIAL DESIGN ELEMENTS IN SOFTWARE ENGINEERING EXPERIMENTS 245

2. That knowledge is general does not mean that it purports to cover all
domains. Scope conditions delineate the domain of knowledge. Furthermore,
conditionalization states the conditions under which various consequences
(possibly disparate but related) may be derived from the knowledge (see,
e.g., [16], [73]).

from this information” [12] (emphasis added), and Höst
et al. [51] conclude that researchers need to capture
underlying explanatory variables to a greater degree.

2.2.2 Existence of Phenomena

Artificial design elements may be used to demonstrate the
existence of a (predicted) phenomenon. Mook states that
“we may be asking whether something can happen rather
than whether it typically does happen” [77]. The notion of an
exhibit is a useful instrument for demonstrating the
existence of a phenomenon. An exhibit is an experiment
design “which reliably induces some specific regularity (or
’effect’ or ’phenomenon’)” [98], that is, a design purpose-
fully created to bring out a phenomenon. Such findings “do
not represent a class of real-world phenomena: they define
one” [77]. Hence, demonstrating the existence of phenom-
ena does not focus primarily on generalization but may be
the first step in a series of investigations that may
eventually lead to generalization.

For example, in order to highlight subject behavior that
relates to risk, “potential loss” may be operationalized by
extreme treatments such as software projects that may
threaten a company’s survival [59], although the intention
may be to investigate risk in typical situations. The
deliberate use of students as subjects may bring out
phenomena related to learning and critical assessment
(since students are assumed to be in the “learning mode”
and are also being formally assessed regularly). Short tasks
where immediate feedback may be given to subjects are
another example of artificial treatments designed to bring
out learning effects [37].

2.2.3 Persistence of Phenomena

Deliberate artificiality may be used to highlight a mechan-
ism against the backdrop of a particularly disadvantageous
environment. For example, Waller and Zimbelman [106]
examine the dilution effect, which is a bias during human
judgment toward underemphasizing relevant information
due to the presence of less relevant information. Waller and
Zimbelman investigate the mechanism in an auditing
setting because it is supposed that the auditing setting
inhibits errors of judgment and that, therefore, the
persistence of dilution in auditing would imply its
persistence in other settings that are less inhibiting. Thus,
persistence may be used to generalize analytically by
principle 4 (interpolation and extrapolation) from less to
more favorable situations.

In software engineering experiments, we may, for
example, add artificial elements such as inexperienced
users for one of the tools in a study of development tools. If
the tool performs just as well as or better than competing
tools used by more experienced developers, there are
reasons for believing that the tool would perform (even)
better in the more favorable situation constituted by
experienced users. In other words, we may be in a better
position to generalize from the studied situation to larger
sets of real situations than what might be reasonable from
more realistic experiments.

Failed demonstrations of the existence of a phenomenon
may sometimes be viewed as demonstrations of the
persistence of the opposite phenomenon whenever the

notion of “opposite phenomenon” is meaningful. For
example, if learning does not manifest itself in presumed
learning-inducing conditions, then the absence of learning,
i.e., unaltered behavior, can be seen to persist in these
conditions, which should induce altered behavior. This
suggests the absence of learning a fortiori in more realistic
environments [37]. Although existence and persistence are
dually related in this manner, their generalization is not:
One may generalize by argument of persistence but not by
argument of existence.

2.2.4 Relating to Theory

Theories and models are ways of organizing abstraction.
Abstraction is essential to scientific understanding and
researchers use abstraction in order to outline the particular
constructs (concepts) and relationships of interest for a
particular problem [8], [88], [108]. The applicability and
explanatory power of a theory then depends (among other
things) on the capability of such abstraction to capture
salient features of a lesser or a wider range of phenomena.

Several scholars (e.g., Lucas [70], Lynch [71], Webster
[107], and Yin [110]) argue that generalization should be done
primarily through the abstraction provided by theories. That
is, the nature of experiments is such that observations
obtained from them cannot be generalized to real life without
reference to an encompassing theoretical framework. Gen-
eralizing through theory involves generalization principle 5
(causal explanation) in particular since causal explanation is
the essence of explanatory theories [101], [90].

Relating experiments to theories means that, rather than
generalizing to the real world, empirical studies should
relate to theories, which are then, somehow, applied to the
real world. The issue is then the extent to which the study
reflects the constructs and relationships of the theory and
not how representative the study is of a real setting. Thus,
Hogarth [48] explicitly refers to representativeness with
respect to the constructs of a theory. Other uses of the terms
“realism,” “representative,” and “generalizability” also
pertain to constructs rather than to concrete situational
variables in the real world. For example, Carlsmith et al.
[20] compare mundane realism with experimental realism,
which concerns how well the experiment involves the
subjects (which is a construct validity issue). Aronson et al.
[5] further introduce psychological realism, which concerns
the extent to which psychological mechanisms that occur in
the experiment are the same as those that occur in everyday
life (see also [6]).

The argument of generalizing through theory simply

places an increased emphasis on construct validity, i.e., the

relationship between an experiment’s situational variables

on the one hand and theoretical constructs on the other. In

fact, a relationship to abstract constructs is often implicit in

empirical research. Although experimenters study treat-

ment-outcome relations between specific situational vari-

ables, it is often the cause-effect relationship between

general concepts or constructs that is of interest, even

though the links to these constructs are often left implicit in

practice. When relating to abstract theoretical constructs,

which lack surface similarity to the industry, artificial

246 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

situational variables in experiments may yield increased

construct validity and hence strengthen the link to theory.
This increased emphasis on construct validity also leads

some scholars to dismiss external validity as a basis for

generalization. External validity pertains to generalization
over variants of situational variables. However, one might
argue that situational variables are specific and that it is
meaningless to speak of their “variations.” Webster con-
cludes that “1) External Validity is the wrong question to
ask, 2) experimental results never generalize directly to
other situations, and 3) experiments must become more, not
less, artificial to be most useful in understanding everyday

group processes” [107, p. 60].
For example, in an experiment that investigated judg-

ment upon uncertain information, Abdel-Hamid et al. [1]
used student subjects in a role-playing game that simulated
a software project over several stages. At the beginning of
the simulation, initial productivity estimates were given to
the subjects and, at each stage, the subjects were given
status reports of the project’s progress and were asked to
provide new estimates. The study found that the subjects’

estimates tended toward the lowest of the initial estimate
and the implicit estimates given in the status reports. This
finding contradicts predictions based on theories on
anchoring [46], [100], which state that biases in judgment
arise from both initial estimates and successive supplied
estimates. The study was artificial in that the entire
simulation took only about 1 hour; however, from the
perspective of theory, the value of the study lies not in its

representativeness of reality but in its relation to the
theoretical construct of “anchoring” in a software engineer-
ing context. In this case, the existing theory may be refined
by conditioning it with respect to uncertainty.3

If the obligation of generalizing results to the industry
does not lie with the experimenter, the onus is on the theory
to be applicable to real life. This “blaming the theory” [97]
is, of course, a source of dispute because, for those who are
concerned that experiments lack applicability in the first

place, the problem has seemingly been pushed even farther
into abstract realms and away from, for example, the
software industry. Given that an experiment enjoys high
construct validity with theoretical constructs (due to its
deliberate artificial design elements), how does one relate
this experiment to real life through theory (Fig. 2)?

The answer to this question lies in the construct validity
between a theory’s constructs and the situational variables
in real life (Fig. 1). But, whereas the construct validity
between constructs and experimental variables may often
be assessed through statistical means, the construct validity
between constructs and real-world variables are often less
tractable. Therefore, purely argumentative reasoning may
have to be employed in order to establish the construct
validity between constructs and real-world variables. We
present three examples of such reasoning. The first two
have in common that no strict logical link from theory to
practice is enforced. Rather, the application of theory relies
on extratheoretical arguments (Fig. 3).

The first argument is to dismiss the issue as irrelevant,
“because the [theoretical] processes [that] we dissect in the
laboratory also operate in the real world” [77]. The
processes mentioned in the above quotation are our basic
mechanisms (Section 2.2.1) and, according to a reductionist
view, these are just as real as other more natural
phenomena, although basic mechanisms may be integrated
with other processes in a real-world situation. Thus, if one
observes the theorized anchoring effect in an artificial role-
playing experiment such as the one above, then the theory
and the experiment enable us to understand that anchoring
can occur in a software engineering context, although, in a
real situation, anchoring may be masked or reversed by
other processes (for example, “endowment” [58]). Note that
one must adhere to reductionism in order to claim that
anchoring, as a process, survives in more complex situa-
tions even when it is not manifest (presumably because it is
being masked by other processes). According to this line of
argument, of all scientific knowledge, what applies to the
real world is this type of understanding that is offered by the
development of theory.

The second related argument is based on the nature of
theories. Theories are often conceptual simplifications of a
complex reality designed to facilitate understanding.
Theories are therefore not necessarily true in reality (which
we may never truly understand) but are instead approx-
imations that are useful for particular purposes (e.g.,
education, technology development, prediction, and further
understanding). Examples abound: the ideal gas model,
quantum electrodynamics as expressed by Feynman dia-
grams, rational choice theory, the models of cognition, etc.
Whether such theories are justified and the degree to which
they, in fact, represent the way that the world is are
epistemological issues. In any event, the transfer of knowl-
edge from such theories to real life does not follow
deductive rules. In addition, the causal relationships

HANNAY AND JØRGENSEN: THE ROLE OF DELIBERATE ARTIFICIAL DESIGN ELEMENTS IN SOFTWARE ENGINEERING EXPERIMENTS 247

Fig. 2. How can an experiment relate to the field when it is not

representative of it?
Fig. 3. Applying theory to the field by extratheoretical argument.

3. Ten percent of the subjects’ grades depended on their performance on
this exercise. This may not be representative of the actual cost commitment
in a real setting. However, it is worth studying anchoring, even in the
absence of cost commitment, so that one may understand and build theory
on the isolated effect of anchoring.

specified in theories are, by nature, incomplete in the sense

that a cause is usually neither necessary nor sufficient for

the effect to occur.4

All this means that extratheoretical knowledge is

required to put a theory to work and this requires a lot of

training and experience [38]. In short, by their very nature,

understanding and explanation never apply directly to the

field but “must be applied intelligently, making all the

adjustments that are required from case to case” [38]. Thus,

deciding whether anchoring applies to a specific estimation

process is a matter of experience and, perhaps, intuition.5

Perhaps, a more appealing scenario, at least for experi-

mentalists, is the one depicted in Fig. 4. Here, the link

between theory and field is not argued for directly but is

demonstrated by a range of experiments. In the figure, the

experiments toward the left relate more strongly to

theoretical constructs and the ones toward the right relate

more strongly to the software industry, while the ones in

between have some situational variables that relate to

theory and some that relate to the industry. In the leftmost

experiments, artificial design elements may be appropriate

and, in the rightmost experiments, realistic design elements

may be appropriate. (Of course, other types of study, in

addition to experiments, are also highly relevant and not

only on the realistic end of the scale.)
It is important to realize the theory centeredness in the

scenario in Fig. 4: The more realistic and representative of

the software industry an experiment is, the more specific it

becomes and, hence, the less general it becomes. Thus, the

potential for generality lies in the abstraction of theory,

while the series of experiments simply demonstrates the

viability of this potential in terms of ever more concrete

exemplars.
Although there might seem to be a temporal implication

that artificial experiments should be done prior to realistic

ones, this need not be the case. Artificial experiments may

be conducted in response to a desire to investigate some

phenomenon at a deeper level than what might have been

done previously. This should be particularly relevant for
the current state of empirical software engineering.

An instance of the scenario in Fig. 4 is given in [106].
Waller and Zimbelman present a bridging strategy for
generalizing theoretical propositions via the laboratory to
field settings by conducting experiments with different
degrees of artificiality/realism. It is not expected that one
and the same experiment should cover the whole spectrum.
Thus, for experiments that are focused entirely inward
toward theory, realism is only an issue in as much as it is
not present: “Experimenters suppress mundane realism,
employing generic tasks and settings that do not resemble
’real-world’ tasks and settings but nevertheless activate the
. . . mechanism underlying [the theory]” [106]. On the way
toward validating theoretical propositions in the real world,
other experiments may retain certain artificial aspects while
seeking realism with respect to others and, finally, studies
that are entirely focused on realism (and holism) may be
conducted to complement the other studies.

2.2.5 Holism, Ecology, and Complex Systems

The arguments in Sections 2.2.1-2.2.4 for adding deliberate
artificiality rely on the assumption that the world may be
analyzed in a reductionist fashion. This assumption, along
with the usefulness of artificiality, is challenged by several
schools. Some of the more systematic views on the issue
come from directions inspired by probabilistic functionalism,
a direction in psychological research founded by Brunswik
[41]. These directions, which study many of the social and
behavioral processes relevant to empirical software engi-
neering, are skeptical of the usefulness and even the
possibility of isolating mechanisms and phenomena.
Furthermore, they are skeptical of Fisher’s factorial design
[33] (the experiment design usually adopted in empirical
software engineering) because it imposes the principle of
orthogonality of causes on research. While appropriate for
some disciplines (e.g., agriculture, which motivated Fisher’s
views), the assumption of orthogonality is seen as inap-
propriate for disciplines in which the researcher has little
control over the environment such as software engineering.

Rather, the appropriate object of study for probabilistic
functionalists is an ecology: “the organism-environment
system as a whole, where the behavior of the organism is
molded by the forces of adaptation and intertwined with
the properties of the environment” [57, p. 404]. In ecological
models, the holistic intertwining of the object of study with
its environment is accompanied by entangled probabilistic
relationships, which is “causally ambiguous, because the
relationships between cause . . . and effect . . . are uncertain
in both directions . . . ” [23] (see also [22], [40]). The causal
ambiguity inherent in ecological models makes isolating
causes less meaningful.

Moreover, the central methodological tenet for general-
izability in probabilistic functionalism is representative de-
sign, which entails sampling from an entire ecology, that is,
sampling all relevant situational variables (not just sub-
jects). Note that this idea is apparent in Shadish et al.’s
insistence that one should ensure construct and external
validity for all the situational variables (Section 2.1).6

248 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

4. Mackie makes the point succinctly by stating that a cause is an INUS

condition, that is, “an insufficient but necessary part of a condition, which
itself is unnecessary but sufficient for the result” [72]. For example, a match is
an INUS condition for lighting a fire. For the strategy of lighting a fire with a
match, the match is insufficient on its own but is necessary, and lighting a
fire by this strategy is not the only way (unnecessary), although it is
sufficient.

5. Intuition in the sense of Hogarth [47] and Dreyfus and Dreyfus [29] is a
result of experience and learning. 6. Campbell was Brunswik’s student.

Fig. 4. Applying theory to field by progressive experimentation.

Hammond states that representative design “simply means
that the circumstances of an experiment should be
representative of the conditions to which the result of the
experiment are intended to apply” [39], which is more or
less the message for empirical software engineering in [93].

Thus, the holistic arguments of probabilistic functional-
ism and its focus on the representativeness of the real-world
leave little room for artificial design elements. Furthermore,
it is easy to see that software engineering may be described
in holistic terms: Any stage of software development can be
seen to be comprised of a multitude of entangled
psychological, sociological, and technological interactions.
The question then becomes: How may the uses of
artificiality that we discussed in Sections 2.2.1-2.2.4 be
defended in light of this?

One answer may be seen by considering complex systems.
Complex systems are systems (e.g., physical, biological,
artificial, and social) that have a large number of parts with
many interactions [92]. These interactions may have all sorts
of effects on overall causal relationships, including cancella-
tion, enhancements, and reversals [91, chapter 12]. In
addition, emergent phenomena may arise which, in one sense
or another, are more than their constituent parts [7], [9].

Simon [92] distinguishes between strong emergence and
weak emergence. The former entails a creative principle
where the effects of strong emergence cannot be deduced
from one of the interacting mechanisms alone and, hence,
this principle does not lend itself to a reductionist
explanation. Weak emergence, on the other hand, is also
synergistic, but, although its effects might be nontrivial, it
is still possible to deduce weakly emergent phenomena
from properties of the individual parts. An example,
drawn from [92], is an object’s pull of gravity on another
object. This phenomenon cannot be studied without the
presence of at least two objects, even though gravitation is a
property of isolated objects. Weak emergence remains in the
realms of reductionism. Simon further argues that complex
systems (at least those that are within our capabilities to
fathom) have inherent hierarchical structure in such a way
that they are “nearly decomposable systems.” This means
that complex systems may be seen as being composed of
subsystems that have high-frequency interactions within
themselves but have low-frequency interactions between
them. As an approximation, it is therefore possible to reason
about a given subsystem disregarding other subsystems or
its role in the system as a whole.7 Simon suggests that this
inherent structure is an evolutionary necessity not just in
the biological sense but as a general principle of stability
and fitness for systems that evolve and survive (such as the
social and technological systems relevant to software
development). The simplification that the approximation
of near decomposability gives us suffices to make complex
systems tractable in a reductionistic manner.8 Simon states,

“For this reason, we should not despair of unraveling the
web of causes” [92, p. 207].

To summarize, the reality of software development is
certainly complex and is comprised of multiple inter-
mingled relationships. Nevertheless, there are substantive
arguments in favor of factoring out and studying (by using
deliberate artificiality) subunits of causal relationships from
the whole, at the very least, because of the difficulty of
conducting studies and building understanding solely by
holistic approaches.

3 ATTITUDES AND STATE OF PRACTICE

Section 2 discussed analytically how situational artificiality
may be used constructively in empirical software engineer-
ing. In order to get an impression of attitudes and practices
regarding situational artificiality in empirical software
engineering, we also carried out a qualitative content
analysis of articles describing software engineering experi-
ments. Our research questions for the analysis were the
following:

1. What are the attitudes toward situational realism versus
situational artificiality in experiment design and analysis?

2. What is the state of practice with regard to deliberate
artificial design elements?

3.1 Method of Analysis

The objective of a content analysis is to elicit semantic content
from texts in a systematic manner. Qualitative content
analysis [62], [36] draws on the ideas of classical quantitative
content analysis [63]. Whereas quantitative content analysis is
based on (mechanical) word counts, qualitative content
analysis relies on semantic analyses of larger portions of text.
Central to both approaches is a stepwise process of abstrac-
tion from the text base to the message or meaning expressed
in the text. This involves abstracting text passages (the
recording units) into prototypical sentences (codes) and then
categorizing the codes into thematic categories that represent
semantic meanings. We follow the steps of content analysis as
summarized in [85].

3.1.1 Sampling Strategy

The very first step is to determine the material to be
analyzed. Our focus in this paper is on experiments. We
therefore assessed all 103 articles9 found to be describing
experiments identified by Sjøberg et al. [96] from a total of
5,453 articles published in nine leading software engineer-
ing journals and three conference proceedings from the
decade 1993-2002. These journals and conference proceed-
ings were considered to be leaders in software engineering,
in particular empirical software engineering. The journals
are listed as follows: ACM Transactions on Software Engineer-
ing Methodology (TOSEM), Empirical Software Engineering
(EMSE), Computer, IEEE Software, IEEE Transactions on
Software Engineering (TSE), Information and Software Technol-
ogy (IST), Journal of Systems and Software (JSS), Software
Maintenance and Evolution (SME), and Software: Practice and

HANNAY AND JØRGENSEN: THE ROLE OF DELIBERATE ARTIFICIAL DESIGN ELEMENTS IN SOFTWARE ENGINEERING EXPERIMENTS 249

7. In quantum electrodynamics, Feynman diagrams model interactions
between photons and electrons in an infinite recursion. Thus, quantum
electrodynamics is a complex system with infinite feedback loops.
Computation would be impossible were it not for the fact that successive
iterations of feedback at increasing recursive depth cancel each other out to
a tolerable degree so that local computation on subsystems suffices [31].
Simon applies this principle to social systems as well [92].

8. Approximation based on inherent structure is the key here. This is
very much in the spirit of modern-day science, where models are sufficient
approximations “as substitutes for a complete understanding that science
may not be able to attain” [88, p. 70].

9. Due to limitations of space, the 103 articles are not referenced.
However, the data analysis and catalog of the articles may be provided
upon request to the corresponding author.

Experience (SP&E). The conferences are the International
Conference on Software Engineering (ICSE), the IEEE
International Symposium on Empirical Software Engineer-
ing (ISESE), and the IEEE International Symposium on
Software Metrics (METRICS).

The term “experiment” is used in an inconsistent manner
in the software engineering community. Furthermore, it is
often used synonymously with the term “empirical study.”
Therefore, Sjøberg et al. [96] defined a controlled experiment
in software engineering as a study in which individuals or
teams (the experimental units) conduct one or more software
engineering tasks for the purpose of comparing different
populations, processes, methods, techniques, languages, or
tools (the treatments). Randomized experiments (in which
units are assigned randomly to treatments) and quasi-
experiments (in which units are assigned nonrandomly to
treatments) in the sense of [91] were both included because
both experiment designs are widely used in empirical
software engineering [66]. In this paper, we consistently use
the term “experiment” in the above-mentioned sense of
“controlled experiment.” The process of selecting articles was
determined on the basis of predefined criteria, as suggested in
[60] (see [96] for full details).

3.1.2 Recording Unit

Our recording units, that is, the basic units of text chosen for
analysis, were passages of text (sentences or paragraphs)
that ostensibly bore relevance to the thematic categories (A-
C) below. Although the entirety of an article was scanned, a
particular emphasis was placed on sections that described
experiment design, threats to validity, discussions, and
conclusions.

3.1.3 Themes

Content analyses may relate to predefined themes. Alter-
natively, they may be exploratory, where themes are
defined as a result of the analysis. We used the former
approach, defining themes of interest that provided the
context for our analysis on the basis of the research
questions stated above. As this is often necessary in initial
research, we decided to use 15 percent of the material to test
the reliability of the themes (hence introducing an “in-
ductive” element [75]). As a result, one of the themes was
phrased more precisely before all articles were analyzed
according to the revised set of themes. The themes are listed
as follows:

A. Focus on realism. The design and rationale of the
experiments are discussed and assessed according to
immediate likenesses to industrial situations.

B. Focus on understanding. The design and rationale of
the experiments are discussed and assessed accord-
ing to an increased understanding of the phenomena
under investigation, despite situational artificiality.

C. Deliberate artificial design elements. The design and
rationale of the experiments are discussed and
assessed according to deliberate artificiality in one
or more of the following respects:

. isolation of basic mechanisms,

. existence of phenomena,

. persistence of phenomena,

. relating to theory, and

. ecology and holism (in contrast).

These themes are intended to categorize phrases and, hence,
articles into those that employ deliberate artificial design
elements (Theme C) and those that do not (Themes A and
B). Among the latter, we wish to distinguish between two
kinds of phrase/article: those that simply view artificiality
as a threat because it compromises likenesses to industry
(Theme A) and those that hold that or investigate whether
an increased understanding is possible, in spite of situa-
tional artificiality (Theme B). The three themes express three
quite distinct attitudes toward situational artificiality. Texts
on content analysis state that categories should be exhaus-
tive and mutually exclusive. However, high-level themes
such as the above may be exempted from this requirement
because they categorize the so-called latent meanings of a
text, which may be several, and, so, a phrase may express
more than one theme [63].

3.1.4 Conducting the Analysis

The above themes (A-C) served as targets for the content
analysis. The semantic content of text passages was
determined using a bottom-up process (e.g., see [36] for
examples and references). Each text passage that satisfied
the definition of a recording unit (Section 3.1.2) was
analyzed for its manifest content (the visible content), which
was extracted and expressed in short form. These short
forms were then used to abstract codes, that is, headings
under which the passages may be summarized. The resulting
codes are listed in Table 2. Our next step was to map the
codes in Table 2 to the predefined themes: codes 1-5 map to
Theme A, codes 6-11 map to Theme B, and codes 12 and 13
map to Theme C.10

The first author analyzed all of the articles. The second
author then independently analyzed a random selection of
33 (29 percent) of the articles. Of these 33 articles, nine
(27 percent) were discussed with respect to matters of
interpretation (eight) and oversights (one). The discussions
concerning matters of interpretation were prompted by
subtle differences in our interpretations of the meaning of
certain passages. The net adjustment of the first author’s
categorization for the selected 33 articles was an addition of
one count to Theme A.

3.1.5 Limitations

The main limitations of this study are bias with respect to
the selection of publications and threats to reliability. The
former is addressed in [96].

Threats to reliability address the interpretative process of
the content analysis. Reliability consists of stability (whether
the process is stable over time), reproducibility (whether
other researchers may replicate the process), and accuracy
(whether the process yields what is specified) [63]. Stability
is assessed by replicating the study and accuracy is assessed
relative to another process which is assumed to be correct.

250 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

10. In contrast, in a purely exploratory content analysis, the codes would
give rise to categories, which would then be the bases for creating themes
that describe the analyst’s high-level interpretation of whatever is being
analyzed. Thus, the themes would be generated primarily from the data
rather than from research questions, as in the case here.

Both of these measures are difficult to assess at present,
although accuracy is somewhat supported by the rate of
agreement indicated in Section 3.1.4. Hence, reproducibility
is the aspect of reliability that is most relevant to this
present study.

Interpretive research is a product of the objects of study
and the persons who interpret them. As such, content
analysis is a systematic method for determining the
reviewers’ perceptions of a text. Although several meanings
may be elicited from a given text, content analysis should
yield reproducible results within a given interpretative
framework. In our case, this framework was given by 1) the
predefined themes (Section 3.1.3), 2) the motivation for our
analysis, and 3) our expectations of the results. Thus, our
motivation was to bring into discussion the possibilities of
deliberate artificiality and our expectations were that the
overwhelming majority of the articles would have passages
that we would classify under Theme A, few would have
passages that we would classify under Theme B, and very
few would fall under Theme C. Reproducibility is threa-
tened if it is not possible for other researchers to enter the
same interpretive framework as that of the current study or
if the motivation and expectations are seen as unreasonable.
The main threat in these respects is that both reviewers had
similar motivations and expectations, although they have
diverse backgrounds as researchers. We therefore encou-
rage other researchers to replicate this study.

3.2 Findings

We found that 73 of the 103 reviewed articles had text
passages pertaining to Theme A, 16 articles had passages
pertaining to Theme B, and seven had passages pertaining to
Theme C. Nine articles had passages from both Themes A
and B and six articles had passages from both Themes A
and C. One article had passages from both Themes B and C.
Thus, in total, we found that 80 of the 103 reviewed articles
discuss the issues of realism, representativeness, or artifici-
ality according to the three themes. Table 3 summarizes.

The trends for each theme over the years covered by the
analysis are indicated in Fig. 5. It seems evident that the
number of articles that exhibit a theme follows the trend of
the total number of articles that describe experiments for a
particular year. Our data does not suggest that any of the
themes gained or lost in prevalence over the years.

In order to see whether there was a higher prevalence of
a particular theme in a certain research area or within a
certain community, we performed similar analyses for
software engineering topics and for authors and affiliations.
Software engineering topics were defined in two ways:
1) according to the IEEE Keyword Taxonomy [54], which is
an extended version of the ACM Computing Classification
System [2], and 2) according to a scheme developed by
Glass et al. [35] (see [96] for details). As observed in [96], the
two prominent areas of software engineering in which
experiments are conducted are code inspections and walk-
throughs (35 percent of the 103 article) and object-oriented
design methods (8 percent of the 103 articles), while the
numbers of experiments are limited for other areas. No
particular prevalence was evident in any topic. If anything,
the number of articles that exhibited any of our themes
within a topic seemed to be determined by the total number
of articles that described experiments for that topic.
Nothing of interest emerged for authors or affiliations.

Passages that were relevant to the themes were found in
all parts of an article: external validity sections, design
sections, conclusions, introductions, abstracts, and even
footnotes. Our general impression is that very few articles
had up-front discussions regarding the role of artificiality as
such. We now describe our findings in more detail.

3.2.1 Focus on Realism

Categorizations under Theme A were typically due to
discussions of threats to external validity. A typical phrase
is: “One of the limitations of this study is the use of student
subjects. Hence, one should be careful in generalizing the
results of this experiment to professional programmers”
[13]. Several articles claimed to have succeeded in creating
realistic situations: “With respect to external validity, we
took a specification from a real application context to deal
with an inspection object that was representative of an
industrial development situation. Moreover, we used

HANNAY AND JØRGENSEN: THE ROLE OF DELIBERATE ARTIFICIAL DESIGN ELEMENTS IN SOFTWARE ENGINEERING EXPERIMENTS 251

TABLE 3
Number of Articles That Discuss Themes A-C

TABLE 2
Codes Generated from Text Passages

inspection activities that had been implemented in a

number of professional development environments” [15]

or “The experiment was conducted with professional

developers and with documents from an industrial context,

so these factors should pose little threat to external validity”

[11]. Some articles argue that certain situational variables

that are traditionally viewed as being artificial are, in fact,

realistic for the purpose at hand: “The subjects [who were

students] had some prior experience with process-oriented

modeling; this is precisely the population [that] we sought

to generalize to. The existing information systems work-

force in [the] industry today has prior experience in PO

modeling, and it is important to gain insights into the

relative performance of such individuals with the newer

OO models” [4].
Two particularly telling examples are the following

quotations from external validity discussions: “The results

for the generic documents cannot be generalized to the

[organization-specific] documents due to the difference in

nature between the two sets of documents. The results for

the [organization-specific] documents, on the other hand,

may be valid since we used parts of real [organization-

specific] documents,” [11] and “Clearly, the results for the

generic documents cannot be generalized to specific

application domain documents of the organization” [64].

Here, external validity is viewed as being dealt with

through the use of the specific documents of an industrial

partner and, at the same time, generic documents are seen

as less generalizable. Another example expresses much the

same: “Our study was performed with subjects and code

documents from a single organization. While this enjoys

greater external validity than doing studies with students in

a ’laboratory’ setting, it is uncertain the extent to which the

results can be generalized to other organizations” [65].

These examples, together with the large amount of
material classified under Theme A, illustrate four things:
First, there is a strong focus on imitating industrial
situations in experiments. Second, artificiality is overwhel-
mingly perceived as posing a threat to generalization and is
therefore something to be minimized.

Third, “external validity” seems to be used synony-
mously with “generalizability,” although external validity
is but one aspect of generalizability together with construct
validity. In addition, it is assumed that conducting an
experiment in an industrial setting will increase external
validity automatically. Fourth, generalizability is viewed
overwhelmingly in terms of surface similarity (principle 1)
and in terms of statistical generalization.

Given that the external validity of an experiment is
understood as the robustness of inferences across variants of
situational variables [91], then conducting an experiment in
a specific industrial context, at the outset, more likely affects
external validity adversely (when arguing in terms of
surface similarity) because the results do not transfer to
other organizations unless the situational variables of those
organizations are very similar to those of the experiment.
Therefore, the use of specific industrial situations demands
explicit justification with regard to external validity and
generalizability as much as the use of design elements of
lesser degrees of realism does.

Generalization relies on both external validity and on
construct validity. Issues of external validity were discussed
in 66 of the 103 articles [96], but construct validity was
discussed in only 15 articles. (Note that we reviewed
whether authors discuss these validity issues and not the
quality of the studies with regard to these issues.) Construct
validity is necessary for relating specific experimental
situations to constructs on a level sufficiently abstract to
allow the transfer of results beyond the specific. The lack of

252 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

Fig. 5. Articles classified to themes per year.

discussions of construct validity therefore corroborates our
general impression that generalization is intended at a
superficial level only. (There was no evident trend in the
amount of discussions of construct validity being men-
tioned over the 10-year period.)

3.2.2 Focus on Understanding

Passages from Theme B represent a shift of focus away from
realism. Instead, a certain emphasis is placed on under-
standing phenomena, in spite of experimental situations
that may not be realistic or representative of industry.
Examples of passages in Theme B are: “The specific purpose
of these experiments is to produce empirical results to
support some of the concepts central to the research,” [44]
and “It is important to stress that the scope of this research
is novel and ambitious and that the current results comprise
more of a ’proof of concept’ than a set of findings to be
widely used by the community of practitioners. . . . we
make no claims for ’truth’, rather we present some results
that others might attempt to refute, thereby extending
knowledge and understanding in the field” [104].

Some of the passages acknowledge the idea that general-
izability need not depend on the particular situational
variables administered in an experiment: “Experiments in a
student setting can always be questioned concerning
validity in an industrial environment. In this case, this is
not regarded as particular critical as one objective of the
course is to model an industrial environment. In particular
it should be noted that the study is based on comparison of
different methods for effort estimation and the evaluation
should provide similar results independent of the environ-
ment (university or industry)” [80]. Note that this relies on
principles of generalization other than those that depend on
immediate likenesses.

3.2.3 Deliberate Artificial Design Elements

Seven articles had passages that we categorized under
Theme C. This theme takes the modest appreciation of
artificiality expressed by Theme B to a more active level in
that it pertains to issues of artificiality as a deliberate means
of acquiring knowledge or takes an active position against
artificiality. Table 4 summarizes the findings for Theme C.

Isolation of basic mechanisms. Among the 103 reviewed
articles, we found two articles that stated explicitly that
artificiality was introduced in order to isolate mechanisms.
The first article states that “comprehension may be affected
by factors other than [the] type of construct used. In this
experiment, an attempt was made to minimize these factors,”
[13] and then goes on to describe the deliberate situational
artificiality introduced into tasks and materials to minimize
these other factors: “Both code segments were very small, the
programming style was the same, and procedure and

function name tokens were eliminated in both” [13]. The
second article introduced artificiality only in materials:
“Because the focus of the study was on effectiveness and
efficiency of testing, the spreadsheets contained no faults.
This may be unrealistic; however, including faults in the
spreadsheets would have confounded the data about testing
effectiveness and efficiency since the subjects would not be
focused on the single task of testing the spreadsheets” [89].

In addition, we found one article that argued in favor of
artificial design elements post hoc: “The software systems
used for the experiments were not large and may not be
representative of real software systems. . . . it may be that to
control and isolate the effect of inheritance on the main-
tainability of object-oriented software, small systems are
required otherwise the effect may become too difficult to
detect” [26]. However, this afterthought does not, in our
opinion, represent a deliberate act. One article also
describes modifying tasks in a manner related to our
discussion: “Both groups then ’solved’ a system design
problem that was intentionally designed to be data
intensive” [53]. In order to investigate the theory of
cognitive fit [103], [3], a real-world problem was made
more data intensive (and, hence, less process intensive) so
as to act as a match for a data-centered methodology in
comparison to a process-centered methodology. However,
although a situational variable is modified, it is not clear
that the variable becomes artificial in the sense of becoming
unrealistic (Section 2). These two examples were therefore
not included in our analysis.

Three articles explicitly suggest (future) steps to inves-
tigate basic mechanisms (but without mentioning deliberate
artificiality for isolating them.) One states: “We will attempt
to separate the effects of some external sources of variation
from the effects due to changes in the process structure . . .
We hope to identify mechanisms that drive the costs and
benefits of inspections so that we can engineer better
inspections” [81]. Another states: “A more appropriate
hypothesis may be that a three-step process (playing,
teaching, playing) is more successful than just teaching”
[28]. The third claims: “A comprehensibility index or metric
would have to involve the factors of naming, commenting
and structure, as well as others, but it is not clear, a priori,
what the relative weights should be for these factors in the
overall index. We suggest that such weights are best
determined as a result of measurement of performance
evaluations on the target group of users” [32].

Thus, there seems to be some awareness of the
usefulness of identifying basic mechanisms and even some
awareness that introducing situational artificiality deliber-
ately may be a way of accomplishing this. However, there
seems to be a general lack of actual investigation of basic
principles (with or without deliberate artificiality). Relative

HANNAY AND JØRGENSEN: THE ROLE OF DELIBERATE ARTIFICIAL DESIGN ELEMENTS IN SOFTWARE ENGINEERING EXPERIMENTS 253

TABLE 4
Number of Articles That Discuss Deliberate Artificial Design Elements (Theme C)

to the top-level frame of reference of determining what the
effects of applying a given software engineering technology used
by certain developers in a given setting are (Section 2.2.1), one
may ask where, in the “hierarchy of basic mechanisms,”
software engineering experiments are situated at present. It
is not trivial to operationalize the concept of this hierarchy,
but our impression, after examining the research questions
in the 103 articles describing experiments, is that the
experiments are at or very near the top-level, that is,
underlying mechanisms are rarely investigated.

This impression is corroborated by findings on the use of
theory in the same set of articles [42] since basic mechan-
isms are essential ingredients in explanatory theories. Only
24 of the 103 reviewed articles employ theory in the service
of explaining the investigated cause-effect relationships. Of
these, only three actually evaluate theories and thereby
potentially investigate basic mechanisms. The impression
that there is very little further investigation into underlying
explanatory basic principles is also supported by the fact
that all but a very few theories are used in more than one
article [42].

Existence of phenomena. Among the 103 reviewed articles,
we found three that designed the experiment with the
explicit purpose of demonstrating the existence of phenom-
ena. For example: “The manipulations chosen for this
experiment were designed to maximize our ’signal-to-noise’
ratio in testing the relationships among the constructs
specified in our model” [59]. The experimenters deliberately
administered an extreme but favorable treatment that is
atypical of everyday software development. Another ex-
ample is this: “There is some question about the level of
industrial usage of the code reading technique employed.
Inspection techniques in industry tend to be less formal, but
consequently less easily taught, and their successful
application requires a significant amount of experience.
For this reason it was felt that the subjects would perform
better with a technique that is more methodical to apply
and hence the code reading technique was kept” [87].

In addition, three articles argue in terms of the existence
of phenomena in postexperiment comments. These argu-
ments are defensive in nature and do not imply a
purposeful introduction of conditions that are favorable
for demonstrating the existence of a phenomenon. Here is
an example: “One possible explanation for the poor
performance of the control subjects is that they were college
students, not professional programmers. The goal of the
experiment, however, was to demonstrate improvement
due to the treatment condition” [74].

Persistence of phenomena. Two of the reviewed articles
argue in terms of deliberate situational artificiality to show
the persistence of phenomena (generalizing from unfavor-
able to favorable conditions): “If the effort experience base
[the method under investigation] does not work when the
projects are almost identical, then it is hard to believe that it
will work in an industrial environment (where hopefully all
projects are unique in some way)” [80]. The second article
has a paragraph that argues in terms of both persistence
and existence: “The programming task, while perhaps
unrepresentative of real-world conditions, was designed
to address the effect of treatments whose outcomes should

be similar irrespective of the simplicity or complexity of the
task. That is, if exception handling coverage on this
admittedly simple task is poor, one can hardly hope that
it would be much better on programs of higher complexity.
Hence, the programming task used in this study serves as a
barometer that warns against expecting substantial im-
provement in the real world and, concomitantly, implies
that steps taken to increase exception handling coverage in
simple programs would be similarly effective on more
complex ones” [74].

In addition, six articles give defensive or post hoc
arguments that relate to the persistence of phenomena.
Four use these arguments to defend the design of the
experiment (“erring on the conservative side”). For exam-
ple, an article that investigates estimation judgments based
on fallible information states: “The inclusion of such
additional cues [as found in a realistic setting] would not
have altered the fundamental experimental task, namely,
weighing two sets of unreliable information (initial esti-
mates and status information) in estimating the project
team’s software productivity” [1]. Another example is this:
“Hence, although our cost-benefit results may not be as
good with students as with professional developers, our
findings are conservative with respect to the calculation of
cost-benefit levels” [15]. Of the two remaining articles that
argue post hoc, one concludes in retrospect: “Even in the
case of a highly contrived problem . . . , which was
essentially designed to be dealt with by a specialisation
solution, subjects still seemed to find the flat version easier
to work with” [21]. The experiment is not described as
having introduced artificial treatments (problems) deliber-
ately in order to obtain a specific kind of knowledge.
Nevertheless, the observed failure of a treatment that
presumably favors a specialization solution implies (assum-
ing validity) that a realistic problem will stimulate such a
solution even less.

Relating to theory. Although 24 articles use theory to
explain the investigated cause-effect relationship [42], none
argues that artificiality is an asset when relating to theory.
(However, one of the articles that explicitly mentions the
deliberate introduction of artificial design elements for
demonstrating existence also uses theory.)

Moreover, among the 24 articles that use theory, all but
seven discuss experimental external validity relative to the
software industry (while only four consider construct
validity). Hence, one must assume that most researchers
intend to generalize to the real world rather than relate to
the constructs of theory in the sense of Section 2.2.4.

Interestingly, the seven articles that do not discuss
experimental external validity all have in common that they
refer to theories that deal with cognition, which is, one could
argue, a topic that is relatively independent of the specific
type of subjects and settings in an experiment. Two of the
seven articles argue that students are appropriate for such
tasks. One refers to [49] and states: “Advanced students and
professional programmers are statistically similar in terms of
comparing their mental representation and various perfor-
mance measures” [44]. The other refers to [102] and states:
“Novice analysts are not biased by experience with other
methodologies and have not had time to adopt a personal

254 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

’favorite’ methodology” [53]. However, only one of the seven
articles discusses construct validity.

Theories are not used for providing a theoretical frame-
work or paradigm within which studies are conducted and
interpreted. Rather, most of the theories are used somewhat
locally to support and motivate the study rather than the
study being conducted as a result of theoretical delibera-
tions [42]. This lack of theory centeredness may be one
reason that authors seemingly do not relate their experi-
ments to theory in the strong sense of Section 2.2.4 (using
deliberate artificial design elements).

Ecology and holism. One article argues in holistic terms:
“In this research, the focus is upon studying diagram clarity
in realistic situations. Therefore, we chose a holistic
approach rather than a reductionist approach. In a holistic
approach, the system (or the model of a system) is tested
without decomposing it into component parts” [67].
Furthermore, they refer to [109] and state that “a reduc-
tionist approach is fruitless for investigating realistic
systems because differences are due to an infinite combina-
tion of interactions. In the present study, the holistic
approach yields the important benefit of increasing ecolo-
gical validity . . . via studying the actual, complete diagram
versus a more artificial, piecemeal, diagram. Employing a
holistic approach, a researcher is afforded the opportunity
to combine and apply highly reliable and valid findings
inside a contextually valid experimental design” [67].

One article argues holistically but with the prospect of
future reduction: “Rather than studying each principle
separately, we examine the Coad and Yourdon principles as
a whole for a number of reasons: . . . As a first step, we want to
see whether the application of these principles as a whole
[has] any practical significance before designing more
complicated experiments where the various principle
effects would have to be isolated from each other” [17].11

3.3 Focus on Multimethod Research

Many arguments in favor of artificial design elements
emphasize that artificiality and realism should complement
each other and be introduced in various degrees over
several studies. Hence, we were interested in whether the
reviewed articles expressed perspectives of this nature.
However, passages to this effect were heavily confounded
with (very frequent) general phrases regarding the view
that laboratory research should be complemented by more
realistic studies and it was difficult to determine whether
these phrases pertained to artificiality that was deliberately
introduced. Therefore, we refrained from doing a struc-
tured analysis of this issue.

However, here is one insightful, albeit atypical, example:
“Student based experiments can provide useful results for

several reasons. First, they can be used to focus weak
hypotheses on phenomena which appear to be important.
These hypotheses can then be tested in more realistic
settings with a better chance of important and interesting
findings. Second, they can be used as a basis for deciding
whether a hypothesis is worth investigating further in, e.g.,
an industrial case study” [18]. A more typical example
expresses concerns for external validity: “All these threats
are inherent to running classroom experiments and can
only be overcome by conducting replications with people,
products, and processes from an industrial context” [14].

3.4 Summary

In summary, the research questions posed at the beginning
of Section 3 may be answered as follows: With regard to the
state of practice, our findings confirmed our expectations.
The overwhelming majority of the articles had passages
belonging to Theme A (focus on realism), only a few had
passages pertaining to Theme B (focus on understanding),
and very few had passages pertaining to Theme C
(deliberate artificial design elements).

With regard to attitude, the overwhelming majority of the
reviewed articles are concerned about limiting artificiality on
the grounds that it is a threat to the external validity of their
study. Relating to theory and generalization through theory is
also not a primary concern. The main focus is thus on
1) generalizing through arguments of surface similarity (and
ruling out irrelevancies in the sense of ticking off these threats
as dealt with) and 2) attempting statistical generalization.

4 DISCUSSION

We now discuss the implications of our content analysis in
Section 3 in the context of our earlier analytical delibera-
tions in Section 2. We also suggest ways to incorporate
artificial design elements in future studies.

4.1 Implications

We believe that the prevailing attitude toward artificiality
indicated by our analysis may have had unfortunate
consequences for experiments in empirical software en-
gineering (including our own). Generalizing only through
immediate likenesses and viewing artificiality as a vice
entail that one misses out on valuable opportunities to
investigate additional aspects of issues of interest. Indeed,
our content analysis reveals that there is a uniformity in the
way experiments are being conducted in this respect. A
consequence is that new knowledge is not acquired and
only certain (superficial) aspects of a problem are revealed.
For example, in several areas of empirical software
engineering, considerable experimentation has been done
and replications (even close ones) in some of these areas
continue to produce diverging results [96]. Although this
may not be surprising considering the complexity of
experimental situations in empirical software engineering,
there might also be other reasons for such divergence. Höst
et al. observe that “seemingly identical replications of
controlled experiments result in different conclusions” and
that “this indicates that the research community has not
managed to capture the relevant underlying explanatory
variables satisfactorily” [51].

HANNAY AND JØRGENSEN: THE ROLE OF DELIBERATE ARTIFICIAL DESIGN ELEMENTS IN SOFTWARE ENGINEERING EXPERIMENTS 255

11. It should be noted that the specific term “ecological validity” in
Brunswik’s original formulation denotes the relationship between so-called
distal criteria (stimuli from the environment) and proximal cues (the
translation of these stimuli) in a perceiving organism in the environment
[22], [23]. However, “ecological validity” is very often used in the sense of
“representativeness” or “external validity,” a usage that deviates from
Brunswik’s intention [41]. This is the case for the reference to ecological
validity in the quotation above and also for the reference in the following
quotation found during our review: “Population validity concerns the
generalization of the results to other subjects; ecological validity concerns
the generalization of the results to other settings or environmental
conditions similar to the experimental setting or condition” [84].

It is vital that experiments in empirical software
engineering do not become static repetitions of each other
on only one level of inquiry (see also [76]). Hence, the quest
for realism should not mask other modes of experimenta-
tion. Both the literature and the examples found in our
analysis suggest that generalization is not necessarily
facilitated by only conducting studies in real situations.
Indeed, the role of realism with respect to generalization
seems to be misunderstood in several instances. In what
follows, we offer some recommendations as to how one
might incorporate both realistic and artificial design
elements into research.

4.2 The Purpose of One’s Empirical Study

Varying degrees of artificiality and realism are appropriate at
different stages of empirical inquiry. Concentrating entirely
on artificiality is as pointless as expending all one’s energy on
realism. Therefore, in order to reap benefits from both
realistic and artificial design elements, it is essential that
researchers view their studies as part of an iterative stepwise
process for the refinement and transfer of knowledge in
which empirical studies fulfill a wide spectrum of roles.

Conscious decisions regarding realism, artificiality, and
the purpose of one’s study carry with them the obligation to
make conscious decisions regarding the mode by which one
wishes to argue for generalization. However, explicit
arguments as to if and, if so, by which mode one intends
to generalize are seldom given in articles that report
software engineering experiments [96]. In particular, this
is the case for the articles that we managed to classify
according to our themes in Section 3. This increases the
obscurity as to the roles of realistic and artificial design
elements that are, in fact, used in the various studies.

That empirical studies should play a variety of roles is, of
course, something that all empirical disciplines strive for.
This is also echoed in empirical software engineering. For
example, Juristo and Moreno [56] state that one must first
determine a cause-effect model under controlled conditions.
Thereafter, one can use in vivo studies on the “early
adopters” in the industry (in the language of technology
acceptance models [86], [78]). However, more relevant for
this discussion are frameworks that relate explicitly to
deliberately introduced artificiality. One example already
mentioned (Section 2.2.4) is the bridging strategy of Waller
and Zimbelman [106]. Also, Davis and Holt [27] describe
the relationships among theoretical, experimental, and
natural environments and classify experiments into five
different types, with decreasing degrees of artificiality:
theory component test, theory test, stress test, search for empirical
regularities, and field test. A theory test is conducted on the
domain for which a theory gives prediction. This could
pertain to the isolation of basic mechanisms and/or to
demonstrating the existence of phenomena. A stress test, on
the other hand, examines the performance of a theory on more
complex (realistic) domains. This might pertain to demon-
strating the persistence of phenomena. Theory component
tests are conducted in more artificial domains, typically in
order to examine why a theory test does not confirm a theory
(isolation of basic mechanisms, existence of phenomena).
Searches for empirical regularities are not conducted with
any close reference to theory and a field test is an experiment

in which only treatment variables are controlled and every-
thing else is realistic. The review in [42] suggests that most
experiments in empirical software engineering are searches
for empirical regularities.

Both frameworks mentioned above involve theory.
Artificial design elements are particularly important when
building or relating to theory. Although theories for
software engineering are not yet common, we think that
this is about to change [10], [30], [42], [45], [61], [94], [95],
[99], so it is important to be aware of the role of deliberate
artificial design elements.

Our analysis shows that there is some awareness of the
different roles that empirical studies might play. However,
this awareness does not seem to affect how artificiality is
addressed in experiments. Furthermore, we have seen that
uses of theory do not seem to have affect attitudes toward
artificiality.

Experiments need not be theory driven nor do they have
to be artificial. However, the position of one’s study in
relation to theory and artificiality should be the result of
conscious decisions. If one uses realistic design elements in
a particular study, it is necessary to provide arguments for
why realism is essential and to present sound arguments for
why artificiality may be detrimental to the study. If one uses
artificial design elements, it is necessary to provide
convincing arguments for why this is essential and for
why realism may be detrimental. What is not sufficient is to
accept realism as the default alternative without providing
specific details of how the realistic design elements will
benefit the study.

4.3 Future Directions

We have argued that experiments that contain design
elements that are deliberately artificial are useful, but the
real test of their utility lies in conducting such experiments.
An added incentive is that conducting experiments with
artificial design elements need not demand the often vast
amount of resources that experiments high in mundane
realism demand. Consequently, artificial experiments can
often be made small and such small-scale experiments may
be integrated into other frameworks such as seminars, field
studies, and other experiments.

Our review revealed that it is common to conduct
experiments where situational artificiality clearly poses a
threat, followed by arguments to compensate with realistic
replications. However, a study with validity threats does not
become more valid by virtue of future studies. Rather than
advocate attempts to compensate for an experiment’s
inadequacy by conducting realistic replications, we suggest
that one use frameworks (e.g., [106], [27]) that incorporate
situational artificiality in a deliberate and purposeful manner.
If a study cannot, for logistical reasons, fulfill the necessary
elements of realism that one’s research question demands
(and, hence, will have obvious threats relative to this research
question), one should instead conduct studies that 1) address
research questions that are related by theory or by frame-
works such as the ones mentioned above and 2) are suitable
for the resources that one has at one’s disposal. Using artificial
design elements for, for example, the purposes suggested in
this paper, gives the opportunity to investigate research
questions for which artificiality is not a threat.

256 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

In addition, empirical metaresearch should validate the
usefulness of artificial situational design elements. Several
scholars point to what seems to be a general assumption in
many empirical sciences: that mundane realism automati-
cally leads to increased generalizability [20], [68]. Our
review indicates that this assumption is widely assumed in
empirical software engineering as well. The assumption
has, however, come under attack. Campbell states that “a
statement to the effect that research is valid because it takes
place in a real organization or that a method is invalid
because it is used in a laboratory study is no argument at all
and is unbecoming [of] a scientist/scholar” [19]. Locke [68]
concludes that it is impossible to determine a priori that
realism leads to better generalizability. He calls for
empirical evidence and initiated comparative reviews of
laboratory and field experiments within the three disci-
plines of industrial-organizational psychology, organiza-
tional behavior, and human resource management. (The
results indicate a strong correspondence between the two
types of experiment with regard to the direction of effect
and a slightly lesser correspondence with regard to the size
of effect [69].) We are not aware of any such studies in
empirical software engineering, although there have been
studies that compared the use of students and professionals
as subjects [50]. Thus, studies that compare software
engineering experiments (and studies of other types) that
possess artificial elements (even those introduced by
accident or default) with realistic studies should be
conducted.

It is also worth considering whether, if a desired
phenomenon occurs in artificial laboratory settings, one
might not attempt to create these artificial settings in the
industry if feasible. This is the reverse of mimicking field
settings in experiments. As an example, Ilgen [55] refers to
the teaching machine of Nash et al. [79], where a learning
environment was honed in the laboratory, but, at the same
time, the methods were designed to be implementable in
the field in specially constructed learning centers. This idea
may be applied to software engineering as well.

Devising better methods for designing, for estimating
effort, for learning a new technology, etc., demands not only
that we descriptively investigate averages but also that we
investigate extremes (the best and the worst learners,
designers, estimators, etc.) in order to identify what it is
that makes the best performers do so well. The study of
extremes is, in fact, foundational to the four ways in which
we discussed the use of deliberate artificial design elements
in this paper. Thus, a shift from descriptive research to
research that will produce better software engineering
technology (methods, techniques, languages, and tools)
demands a greater appreciation of the opportunities offered
by experiments that contain deliberately introduced artifi-
cial design elements.

5 CONCLUSION

In disciplines relevant to software engineering, many
scholars argue in favor of artificiality in experiments, while,
in empirical software engineering, realism is the dominating
goal and artificiality is mainly applied and addressed
apologetically. Our analysis of attitudes toward situational

realism and artificiality in experiments reveals a one
sidedness that, in the long run, may have negative
consequences for the diversity of knowledge acquisition.
We encourage a more balanced view regarding the benefits
of deliberately introduced artificiality and the benefits of
deliberate realism. Well-designed and well-analyzed artifi-
cial experiments need not be viewed as inferior to realistic
experiments, provided that the reasons for using artificial
design elements are sound.

We have given analytical arguments for and examples of
the kinds of knowledge acquisition for which deliberately
introduced artificial design elements may be used. We
encourage researchers to utilize these and other possible
opportunities offered by artificial experiments. Finally, we
believe that the usefulness of realistic and artificial design
elements can only be understood fully from the perspective
of multimethod frameworks that incorporate full ranges of
realism and artificiality for various purposes.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referees for their
insightful in-depth comments. The authors also wish to
thank Chris Wright for proofreading the article, Vigdis By
Kampenes, Amela Karahasanovi�c, Ove Hansen, Nils-Kris-
tian Liborg, and Anette Rekdal for their work in extracting
articles and data that describe experiments, and Jørgen
Busvold and Magnar Martinsen for their assistance in
compiling and formatting data.

REFERENCES

[1] T.K. Abdel-Hamid, K. Sengupta, and D. Ronan, “Software Project
Control: An Experimental Investigation of Judgment with Fallible
Information,” IEEE Trans. Software Eng., vol. 19, no. 6, pp. 603-612,
June 1993.

[2] ACM Computing Classification System, http://www.acm.org/
class, 2004.

[3] R. Agarwal, “Cognitive Fit in Requirements Modeling: A Study of
Object and Process Methodologies,” J. Management Information
Systems, vol. 13, no. 2, pp. 137-162, 1996.

[4] R. Agarwal, P. De, and A.P. Sinha, “Comprehending Object and
Process Models: An Empirical Study,” IEEE Trans. Software Eng.,
vol. 25, no. 4, pp. 541-556, July/Aug. 1999.

[5] E. Aronson, T.D. Wilson, and R.M. Akert, Social Psychology: The
Heart and the Mind. HarperCollins, 1994.

[6] E. Aronson, T.D. Wilson, and M.B. Brewer, “Experimentation in
Social Psychology,” The Handbook of Social Psychology, fourth ed.,
D.T. Gilbert, S.T. Fiske, and G. Lindzey, eds., chapter 3, vol. 1,
pp. 99-142, McGraw-Hill, 1998.

[7] R. Axelrod and M.D. Cohen, Harnessing Complexity: Organizational
Implications of a Scientific Frontier. Basic Books, 2001.

[8] S.B. Bacharach, “Organizational Theories: Some Criteria for
Evaluation,” Academy of Management Rev., vol. 14, no. 4, pp. 496-
515, 1989.

[9] Y. Bar-Yam, Dynamics of Complex Systems (Studies in Nonlinearity).
Westview Press, 2003.

[10] V.R. Basili, Empirical Software Eng., editorial, vol. 1, no. 2, pp. 105-
108, Jan. 1996.

[11] V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S.
Sorumgard, and M.V. Zelkowitz, “The Empirical Investigation of
Perspective-Based Reading,” Empirical Software Eng., vol. 1, no. 2,
pp. 133-164, Jan. 1996.

[12] V.R. Basili, F. Shull, and F. Lanubile, “Building Knowledge
through Families of Experiments,” IEEE Trans. Software Eng.,
vol. 25, no. 4, pp. 456-473, July/Aug. 1999.

[13] A.C. Benander, B. Benander, and H. Pu, “Recursion versus
Iteration: An Empirical Study of Comprehension,” J. Systems and
Software, vol. 32, no. 1, pp. 73-82, 1996.

HANNAY AND JØRGENSEN: THE ROLE OF DELIBERATE ARTIFICIAL DESIGN ELEMENTS IN SOFTWARE ENGINEERING EXPERIMENTS 257

[14] A. Bianchi, F. Lanubile, and G. Visaggio, “A Controlled Experi-
ment to Assess the Effectiveness of Inspection Meetings,” Proc.
Seventh IEEE Int’l Symp. Software Metrics, pp. 42-50, 2001.

[15] S. Biffl, B. Freimut, and O. Laitenberger, “Investigating the Cost-
Effectiveness of Reinspections in Software Development,” Proc.
23rd Int’l Conf. Software Eng., pp. 155-164, 2001.

[16] T. Boswell and C. Brown, “The Scope of General Theory,”
Sociological Methods and Research, vol. 28, no. 2, pp. 154-185, 1999.

[17] L.C. Briand, C. Bunse, and J.W. Daly, “A Controlled Experiment
for Evaluating Quality Guidelines on the Maintainability of
Object-Oriented Designs,” IEEE Trans. Software Eng., vol. 27,
no. 6, pp. 513-530, June 2001.

[18] L.C. Briand, C. Bunse, J.W. Daly, and C. Differding, “Technical
Communication: An Experimental Comparison of the Maintain-
ability of Object-Oriented and Structured Design Documents,”
Empirical Software Eng., vol. 2, no. 3, pp. 291-312, Sept. 1997.

[19] J.P. Campbell, “Labs, Fields, and Straw Issues,” Generalizing from
Laboratory to Field Settings, E.A. Locke, ed., pp. 269-279, Lexington
Books, 1986.

[20] J.M. Carlsmith, P.C. Ellsworth, and E. Aronson, Methods of
Research in Social Psychology. Addison-Wesley, 1976.

[21] M. Cartwright, “An Empirical View of Inheritance,” Information
and Software Technology, vol. 40, no. 14, pp. 795-799, Dec. 1998.

[22] R.W. Cooksey, Judgment Analysis: Theory, Methods and Applications.
Academic Press, 1996.

[23] R.W. Cooksey, “The Methodology of Social Judgement Theory,”
Thinking and Reasoning, vol. 2, no. 2/3, pp. 141-173, 1996.

[24] L.J. Cronbach, Designing Evaluations of Social and Educational
Programs. Josey-Bass, 1982.

[25] L.J. Cronbach, S.R. Ambron, S.M. Dornbusch, R.D. Hess, R.C.
Hornik, D.C. Phillips, D.F. Walker, and S.S. Weiner, Toward Reform
of Program Evaluation. Josey-Bass, 1980.

[26] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood, “Evaluating
Inheritance Depth on the Maintainability of Object-Oriented
Software,” Empirical Software Eng., vol. 1, no. 2, pp. 109-132, Jan.
1996.

[27] D.D. Davis and C.A. Holt, Experimental Economics. Princeton Univ.
Press, 1993.

[28] A. Drappa and J. Ludewig, “Simulation in Software Engineering
Training,” Proc. 22nd Int’l Conf. Software Eng., pp. 199-208, 2000.

[29] H.L. Dreyfus and S.E. Dreyfus, Mind over Machine. The Free Press,
1988.

[30] A. Endres and D. Rombach, A Handbook of Software and Systems
Engineering: Empirical Observations, Laws and Theories. Fraunhofer
IESE Series on Software Eng., Pearson Education, 2003.

[31] R.P. Feynman, QED: The Strange Theory of Light and Matter.
Penguin Science, 1985.

[32] K. Finney, K. Rennolls, and A. Fedorec, “Measuring the
Comprehensibility of Z Specifications,” J. Systems and Software,
vol. 42, no. 1, pp. 3-15, July 1998.

[33] R.A. Fisher, The Design of Experiments. Oliver and Boyd, 1935.
[34] Group Processes, M. Foschi and E.J. Lawler, eds. Nelson-Hall, 1994.
[35] R.L. Glass, I. Vessey, and V. Ramesh, “Research in Software

Engineering: An Analysis of the Literature,” Information and
Software Technology, vol. 44, no. 8, pp. 491-506, 2002.

[36] U.H. Graneheim and B. Lundman, “The Challenge of Qualitative
Content Analysis,” Nurse Education Today, vol. 24, pp. 105-112,
2004.

[37] T.M. Gruschke and M. Jørgensen, “Assessing Uncertainty of
Software Development Effort Estimates: Learning from Outcome
Feedback,” Proc. 11th IEEE Int’l Symp. Software Metrics, p. 4, 2005.

[38] F. Guala, “Economics in the Lab: Completeness vs. Testability,”
J. Economic Methodology, vol. 12, no. 2, pp. 185-196, 2005.

[39] K.R. Hammond, “Upon Reflection,” Thinking and Reasoning, vol. 2,
nos. 2/3, pp. 239-248, 1996.

[40] K.R. Hammond, T.R. Brehmer, and D.O. Steinmann, “Social
Judgement Theory,” Human Judgment and Decision Processes,
pp. 271-312, 1975.

[41] K.R. Hammond and T.R. Stewart, The Essential Brunswik. Oxford
Univ. Press, 2001.

[42] J.E. Hannay, D.I.K. Sjøberg, and T. Dybå, “A Systematic Review of
Theory Use in Software Engineering Experiments,” IEEE Trans.
Software Eng., vol. 33, no. 2, pp. 87-107, Feb. 2007.

[43] W.L. Hays, Statistics, fifth ed. Wadsworth Publishing, 1994.
[44] S.M. Henry and K. Todd Stevens, “Using Belbin’s Leadership Role

to Improve Team Effectiveness: An Empirical Investigation,”
J. Systems and Software, vol. 44, no. 3, pp. 241-250, Jan. 1999.

[45] J.D. Herbsleb and A. Mockus, “Formulation and Preliminary Test
of an Empirical Theory of Coordination in Software Engineering,”
Proc. Fourth Joint European Software Eng. Conf./ACM SIGSOFT
Symp. Foundations of Software Eng., pp. 112-121, 2003.

[46] R. Hogarth, “Beyond Discrete Biases: Functional and Dysfunc-
tional Aspects of Judgmental Heuristics,” Psychological Bull.,
vol. 90, no. 2, pp. 197-217, 1981.

[47] R.M. Hogarth, Educating Intuition. Univ. of Chicago Press, 2001.
[48] R.M. Hogarth, “The Challenge of Representative Design in

Psychology and Economics,” J. Economic Methodology, vol. 12,
no. 2, pp. 253-263, 2005.

[49] R.W. Holt, D.A. Boehm-Davis, and A.C. Schultz, “Mental
Representations of Programs for Student and Professional
Programmers,” Proc. Second Workshop Empirical Studies of Pro-
grammers, pp. 33-46, 1987.

[50] M. Höst, B. Regnell, and C. Wohlin, “Using Students as Subjects:
A Comparative Study of Students and Professionals in Lead-Time
Impact Assessment,” Empirical Software Eng., vol. 5, no. 3, pp. 201-
214, Nov. 2000.

[51] M. Höst, C. Wohlin, and T. Thelin, “Experimental Context
Classification,” Proc. 27th Int’l Conf. Software Eng., 2005.

[52] F. Houdek, “External Experiments—A Workable Paradigm for
Collaboration between Industry and Academia,” Lecture Notes on
Empirical Software Eng., N. Juristo and A.M. Moreno, eds., vol. 12,
chapter 4, pp. 133-166, World Scientific, 2003.

[53] G.S. Howard, T. Bodnovich, T. Janicki, J. Liegle, S. Klein, P. Albert,
and D. Cannon, “The Efficacy of Matching Information Systems
Development Methodologies with Application Characteristics: An
Empirical Study,” J. Systems and Software, vol. 45, no. 3, pp. 177-
195, Mar. 1999.

[54] IEEE Keyword Taxonomy, http://www.computer.org/mc/key
words/software.htm, 2004.

[55] D.R. Ilgen, “Laboratory Research: A Question of When, Not If,”
Generalizing from Laboratory to Field Settings, E.A. Locke, ed.,
pp. 257-267, Lexington Books, 1986.

[56] N. Juristo and A.M. Moreno, Basics of Software Engineering
Experimentation. Kluwer Academic, 2003.

[57] P. Juslin, “Representative Design: Cognitive Science from a
Brunswikian Perspective,” The Essential Brunswik, K.R. Hammond
and T.R. Stewart, eds. Oxford Univ. Press, pp. 404-408, 2001.

[58] D. Kahneman, J.L. Knetsch, and R.H. Thaler, “The Endowment
Effect, Loss Aversion, and Status Quo Bias: Anomalies,”
J. Economic Perspectives, vol. 5, no. 1, pp. 193-206, 1991.

[59] M. Keil, L. Wallace, D. Turk, G. Dixon-Randall, and U. Nulden,
“An Investigation of Risk Perception and Risk Propensity on the
Decision to Continue a Software Development Project,” J. Systems
and Software, vol. 53, no. 2, pp. 145-157, Aug. 2000.

[60] B.A. Kitchenham, “Procedures for Performing Systematic Re-
views,” Keele Univ. Technical Report TR/SE-0401/NICTA Tech-
nical Report 0400011T.1, 2004.

[61] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C.
Hoaglin, K. El Emam, and J. Rosenberg, “Preliminary Guidelines
for Empirical Research in Software Engineering,” IEEE Trans.
Software Eng., vol. 28, no. 8, pp. 721-734, Aug. 2002.

[62] S. Kracauer, “The Challenge of Qualitative Content Analysis,” The
Public Opinion Quarterly, special issue on int’l comm. research,
vol. 16, no. 4, pp. 631-642, Winter 1952.

[63] K. Krippendorff, Content Analysis: An Introduction to Its Methodol-
ogy, second ed. Sage, 2004.

[64] O. Laitenberger and J.M. DeBaud, “Perspective-Based Reading of
Code Documents at Robert Bosch GMBH,” Information and
Software Technology, vol. 39, no. 11, pp. 781-791, Oct. 1997.

[65] O. Laitenberger, K. El Emam, and T.G. Harbich, “An Internally
Replicated Quasi-Experimental Comparison of Checklist and
Perspective Based Reading of Code Documents,” IEEE Trans.
Software Eng., vol. 27, no. 5, pp. 387-421, May 2001.

[66] O. Laitenberger and H.D. Rombach, “(Quasi-)Experimental
Studies in Industrial Settings,” Lecture Notes on Empirical Software
Eng., N. Juristo and A.M. Moreno, eds., vol. 12, chapter 5, pp. 167-
227, World Scientific, 2003.

[67] K.B. Lloyd and D.J. Jankowski, “A Cognitive Information
Processing and Information Theory Approach to Diagram Clarity:
A Synthesis and Experimental Investigation,” J. Systems and
Software, vol. 45, no. 3, pp. 203-214, Mar. 1999.

258 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

[68] E.A. Locke, “Generalizing from Laboratory to Field: Ecological
Validity or Abstraction from Essential Elements,” Generalizing
from Laboratory to Field Settings, E.A. Locke, ed., pp. 3-9, Lexington
Books, 1986.

[69] Generalizing from Laboratory to Field Settings, E.A. Locke, ed.
Lexington Books, 1986.

[70] J.W. Lucas, “Theory-Testing, Generalization, and the Problem of
External Validity,” Sociological Theory, vol. 21, no. 3, pp. 236-253,
2003.

[71] J.G. Lynch Jr., “Theory and External Validity,” J. Academy of
Marketing Science, pp. 367-376, 1999.

[72] J.L. Mackie, “Causes and Conditions,” Causation, Oxford Readings
in Philosophy, E. Sosa and M. Tooley, eds., pp. 33-55, Oxford
Univ. Press, 1993.

[73] B. Markovsky, “The Structure of Theories,” Group Processes,
M. Foschi and E.J. Lawler, eds., pp. 3-24, Nelson-Hall, 1994.

[74] R.A. Maxion and R.T. Olszewski, “Eliminating Exception Hand-
ling Errors with Dependability Cases: A Comparative Empirical
Study,” IEEE Trans. Software Eng., vol. 26, no. 9, pp. 888-906, Sept.
2000.

[75] P. Mayring, “Qualitative Content Analysis,” Forum Qualitative
Sozialforschung/Forum: Qualitative Social Research, vol. 1, no. 2,
http://www.qualitative-research.net/fqs-texte/2-00/2-00may
ring-e.htm, June 2000.

[76] J. Miller, “Replicating Software Engineering Experiments: A
Poisoned Chalice or the Holy Grail,” Information and Software
Technology, vol. 47, pp. 233-244, 2005.

[77] D.G. Mook, “In Defense of External Invalidity,” Am. Psychologist,
vol. 38, pp. 379-387, 1983.

[78] G.A. Moore, Crossing the Chasm, revised ed. Harper Business, 2002.
[79] A.N. Nash, J.P. Muczyk, and F.L. Vettori, “The Relative Practical

Effectiveness of Programmed Instruction,” Personnel Psychology,
vol. 24, pp. 397-410, 1971.

[80] M.C. Ohlsson, C. Wohlin, and B. Regnell, “A Project Effort
Estimation Study,” Information and Software Technology, vol. 40,
nos. 11/12, pp. 831-839, Dec. 1998.

[81] A.A. Porter, H. Siy, A. Mockus, and L. Votta, “Understanding the
Sources of Variation in Software Inspections,” ACM Trans.
Software Eng. Methodology, vol. 7, no. 1, pp. 41-79, 1998.

[82] A.A. Porter and L. Votta, “Comparing Detection Methods for
Software Requirements Inspections: A Replication Using Profes-
sional Subjects,” Empirical Software Eng., vol. 3, no. 4, pp. 355-379,
Dec. 1998.

[83] A.A. Porter, L.G. Votta, and V.R. Basili Jr., “Comparing Detection
Methods for Software Requirements Inspections: A Replicated
Experiment,” IEEE Trans. Software Eng., vol. 21, no. 6, pp. 563-575,
June 1995.

[84] S. Ramanujan, R.W. Scamell, and J.R. Shah, “An Experimental
Investigation of the Impact of Individual, Program, and Organiza-
tional Characteristics on Software Maintenance Effort,” J. Systems
and Software, vol. 54, no. 2, pp. 137-157, Oct. 2000.

[85] C. Robson, Real World Research, second ed. Blackwell Publishing,
2002.

[86] E.M. Rogers, Diffusion of Innovations, fifth ed. Free Press, 2003.
[87] M. Roper, M. Wood, and J. Miller, “An Empirical Evaluation of

Defect Detection Technique,” Information and Software Technology,
vol. 39, no. 11, pp. 763-775, Oct. 1997.

[88] A. Rosenberg, Philosophy of Science: A Contemporary Introduction.
Routledge, 2001.

[89] K.J. Rothermel, C.R. Cook, M.M. Burnett, J. Schonfeld, T.R.G.
Green, and G. Rothermel, “WYSIWYT Testing in the Spreadsheet
Paradigm: An Empirical Evaluation,” Proc. 22nd Int’l Conf.
Software Eng., pp. 230-239, 2000.

[90] W.C. Salmon, “Four Decades of Scientific Explanation,” Scientific
Explanation XIII, Minnesota Studies in the Philosophy of Science,
P. Kitcher and W.C. Salmon, eds. pp. 3-219, Minnesota Press, 1989.

[91] W.R. Shadish, T.D. Cook, and D.T. Campbell, Experimental and
Quasi-Experimental Designs for Generalized Causal Inference. Hought-
on Mifflin, 2002.

[92] H.A. Simon, The Sciences of the Artificial, third ed. MIT Press, 1996.
[93] D.I.K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A.

Karahasanovi�c, E. Koren, and M. Voká�c, “Conducting Realistic
Experiments in Software Engineering,” Proc. 18th Int’l Symp.
Empirical Software Eng., pp. 17-26, Oct. 2002.

[94] D.I.K. Sjøberg, T. Dybå, B.C.D. Anda, and J.E. Hannay, “Building
Theories in Software Engineering,” Advanced Topics in Empirical
Software Eng., F. Shull, J. Singer, and D.I.K. Sjøberg, eds. Springer-
Verlag, 2008.

[95] D.I.K. Sjøberg, T. Dybå, and M. Jørgensen, “The Future of
Empirical Methods in Software Engineering Research,” Proc. Conf.
Future of Software Eng., pp. 358-378, 2007.

[96] D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A.
Karahasanovi�c, N.K. Liborg, and A.C. Rekdal, “A Survey of
Controlled Experiments in Software Engineering,” IEEE Trans.
Software Eng., vol. 31, no. 9, pp. 733-753, Sept. 2005.

[97] R. Sugden, “Experiment, Theory, World: A Symposium on the
Role of Experiments in Economics,” J. Economic Methodology,
vol. 12, no. 2, pp. 177-184, 2005.

[98] R. Sugden, “Experiments as Exhibits and Experiments as Tests,”
J. Economic Methodology, vol. 12, no. 2, pp. 291-302, 2005.

[99] W.F. Tichy, “Should Computer Scientist Experiment More? 16
Excuses to Avoid Experimentation,” Computer, vol. 31, no. 5,
pp. 32-40, May 1998.

[100] A. Tversky and D. Kahneman, “Judgement under Uncertainty:
Heuristics and Biases,” Science, vol. 185, no. 27, pp. 1124-1131,
Sept. 1974.

[101] B. Van Fraassen, The Scientific Image. Oxford Univ. Press, 1980.
[102] I. Vessey and S.A. Conger, “Requirements Specification: Learning

Object, Process, and Data Methodologies,” Comm. ACM, vol. 37,
no. 5, pp. 102-113, 1994.

[103] I. Vessey and D. Galletta, “Cognitive Fit: An Empirical Study of
Information Acquisition,” Information Systems Research, vol. 2,
pp. 63-84, Mar. 1991.

[104] R. Vinter, M. Loomes, and D. Kornbrot, “Applying Software
Metrics to Formal Specifications: A Cognitive Approach,” Proc.
Fifth IEEE Int’l Symp. Software Metrics, pp. 216-223, 1998.

[105] S. Vosniadou and A. Ortony, “Similarity and Analogical Reason-
ing: A Synthesis,” Similarity and Analogical Reasoning, S. Vosniadou
and A. Ortony, eds., pp. 1-17, Cambridge Univ. Press, 1989.

[106] W.S. Waller and M.F. Zimbelman, “A Cognitive Footprint in
Archival Data: Generalizing the Dilution Effect from Laboratory to
Field Settings,” Organizational Behavior and Decision Processes,
vol. 91, pp. 254-268, 2003.

[107] M. Webster Jr., “Experimental Methods,” Group Processes,
M. Foschi and E.J. Lawler, eds., pp. 43-69, Nelson-Hall, 1994.

[108] D.A. Whetten, “What Constitutes a Theoretical Contribution?”
Academy of Management Rev., vol. 14, no. 4, pp. 490-495, 1989.

[109] J. Whiteside, S. Jones, P.S. Levy, and D. Wixon, “User Performance
with Command, Menu, and Iconic Interfaces,” Proc. ACM Conf.
Human Factors in Computing Systems, pp. 185-191, 1985.

[110] R.K. Yin, “Case Study Research: Design and Methods,” Applied
Social Research Methods Series, third ed., vol. 5, Sage Publications,
2003.

Jo E. Hannay received the Cand.Scient. degree
in computer science from the University of Oslo
in 1995 and the PhD degree in type theory and
logic from the University of Edinburgh in 2001.
He was an IT developer in the insurance
industry. He is currently an associate professor
at the University of Oslo and a visiting research-
er at the Simula Research Laboratory. His
interests include the use and development of
theories in empirical software engineering, the

nature of knowledge that is useful to software engineering, and the
development of validated constructs for software engineering. He is a
member of the IEEE Computer Society.

Magne Jørgensen received the Dipl.Ing. de-
gree in wirtschaftswissenschaften from the Uni-
versity of Karlsruhe, Karlsruhe, Germany, in
1988 and the Dr.Scient. degree in informatics
from the University of Oslo in 1994. He was a
software developer, project leader, and man-
ager. He is currently a professor of software
engineering at the University of Oslo and a
member of the Software Engineering Research
Group at the Simula Research Laboratory, Oslo,

working on judgment-based software cost estimation.

HANNAY AND JØRGENSEN: THE ROLE OF DELIBERATE ARTIFICIAL DESIGN ELEMENTS IN SOFTWARE ENGINEERING EXPERIMENTS 259

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

