Automated goal-oriented error control
with applications to nonlinear elasticity

Marie E. Rognes and Anders Logg

Simula Research Laboratory

Error estimate

(RN

10° 10°

10*
#dofs

’Automated goal-oriented error control I: stationary variational problems’.

Marie E. Rognes and Anders Logg. In preparation. 2010.
1/16

Motivation I: Artificial bone implants may be
modelled using polymer-fluid mixtures (gels)

Find deformation and volume
fraction ¢ minimizing energy:

£(.6) = [W(w.0)dx
Q
constrained by balance of mass:

pdet(Vz) = ¢r

Quantity of interest
Shear stress at interface = 7

2/16

Motivation II: Linearization reduces the gel
problem to a linear elasticity problem, but ...

Wi(z,¢) =Wg(Va,¢)+det(Va)(Wra(d) + crm)
~— —_— ~——
Total potential Elastic Flory-Huggins

Linearized boundary value problem

0 — CT(¢1)[V u] - T(¢I>I7

dive = 0.

[R., Micek and Calderer, SIAP, 2009]

Challenges (and solutions)

1. The small deformation regime too restrictive. (Automated
differention!)

2. The full nonlinear problem is computationally intense.
(Automated goal-oriented error control!)

3/16

The FEniCS project (www.fenics.org)

Free Software for Automated Scientific Computing

Agenda Key components
1. Automation of discretization > High-level form language (UFL)
2. Automation of error control » Form compiler (FFC)
3. ... » Main interface (DOLFIN)
Generality Efficiency
Compiler

4/16

UFL closely resembles mathematical syntax (and
supports automated differentiation of forms)

F=Vz
¢ = ¢rdet(F)~"
Wrn(¢) =agIng + ...
W(z,¢)=...
ow

5= %F

Variational formulation
B(v;z) = / S-VwvdX
Q

Variational problem: find x
such that

B(v;x) =0 YveV

F = grad(x)
phi = phi_Ix*inv(det(F))

W_FH = a*phi*ln(phi) + ...

W = W_E + det(F)*(W_FH + c_FH)
S = diff(w, F)

v = TestFunction (V)

B = inner (S, grad(v))*dx

pde = VariationalProblem(B,
x = pde.solve ()

5/16

What is automated goal-oriented error control?
Input

» PDE: find v € V such that a(v,u) = L(v) VveV
» Quantity of interest/Goal: M :V — R

» Tolerance: € > 0

Challenge

Find V}, C V such that |[M(u) — M(up)| < € where uy, € V4, is
determined by
a(v,up) = L(v) Yv eV,

FEniCS/DOLFIN

pde
u_h

AdaptiveVariationalProblem(a - L, M)
pde.solve(1.0e-3)

6/16

Adaptivity = solve — estimate — indicate — refine

Solve up,

np < € : —

{nT}TETh

7 /16

The error measured in the goal is the residual of
the dual solution

1. Define residual

2. Introduce dual problem
Find z € V: a*(v,2) = M(v) YveV
3. Dual solution + residual = error
M(u) = M(up) = L(2) — a(z,up) = r(2) = r(z — 2n)

4. A good dual approximation Zj gives computable error
estimate

nn = 7(Zn)
5. Error indicators ... ?

8/16

Let us take Poisson’s equation as an example for

manual derivation of error indicators

a(v,u):/QVU-Vudx L(v):/ﬂvfdx

Recall error representation:
M(u) — M(up) =r(z) = / zf =V z-Vudx
Q

Residual decomposition

Z/ (f +divVu) + /v(—Vuh‘n)ds

—,_/ OT e et
TeT), Ror

Error indicators:
nr = [(Zn — 2z, Rr)1 + (21 — 20, [Ror])or|

Babuska and Rheinboldt, ’79, Verfurth ’'89, ’94, ’98, '00, Becker and Rannacher 01, ...

9/16

The residual decomposition can be automatically
computed for a class of residuals

Have: a— L and up, = r

Want: nr = |(Zn — 25, RT)T + (20 — 28, [Ror])o7|
Need: Residual decomposition Ry, Rgr for each cell T

Assumptions

Lor(v) =Y rr(v)
T

2. TT(U):/U-RT—i-/ v - Rar
T oT

3. Ry € Py(T), Rarle € Py(e) for some integer k,q

10/16

We can compute R; by solving a small
variational problem on each cell

Recall assumption:
rp(v) = / v-Rpdx +/ v-Ropr with Ryp e Py(T)
T ar

Let

> by : T — R such that byp|sr = 0 (Bubble)
> {¢i}q be a basis for Py(T)

b_T = Bubble(...)
Lemma R_T = TrialFunction(P_k)
Ry is uniquely determined by phi = TestFunction(P_k)
the equations
lhs = inner (b_T*phi, R_T)*dx
rhs = r(b_T*phi)
/ bro; - Ry dx = rr(bro;)
T pde = VariationalProblem(lhs, rhs)
i=:1,..,n R_T = pde.solve()

R. and Logg ’10 (In preparation)
11/16

We can compute Ryr by solving a small
variational problem on each facet of each cell

By assumption

TT(U)Z/U'Rle‘+/ v+ Ryr with Rgrle = Re € Pi(e)
T ar

Aim
To compute R, for each facet e C 9T for each cell T € Tj:
Let

» be : T'— R be such that be|gm. = 0

> {Y;}i% be a basis for Py(e) (NB: ¢; : T — R)

Lemma
R, is uniquely determined by the equations

/be¢i~Reds:rT(bewi)—/bewi-Rde i=1,...,m

e T

R. and Logg '10 (In preparation)

12 /16

An improved dual approximation can be
computed by higher-order extrapolation

Dual problem
a*(v,zp) = M(v) YveV,

can be generated and solved automatically.

Problem
With same discretization as primal: 7, = r(z3) = 0.

Suggested solution

Let Wy, D Vp. Improve approximation by a patch-based
least-squares curve fitting procedure:

zp— Zp = Epzp, FEp Vi — Wy

13 /16

The error estimates are virtually perfect for
Poisson on a 3D L-shape

Error estimate
g

=3
T

-1
10 H

- Error
i | ¢ Estimate
¢ | »== Summed indicators

1(54 165 10°
#dofs

a(v,u) = (Vv,Vuy,
M(u):/uds, I c oQ.
r

14 /16

The error estimates are highly satisfactory for a
three-field mixed elasticity formulation also

« - Error
¢—0 Estimate
»— Summed indicators

Error estimate

A A
A

10-4

a((t,v,m), (o, u,7)) = (1, Ac) + (div 7, u) + (v,dive) + (1,7) + (n, o)

M((U,U,n))Z/Fga-n-tds

15 /16

Adaptivity pays off for the nonlinear gel problem

/ S(a)2dX
T

. W =émp G(Hm\? = [l11%) + B~ ((det)™ — 1)) + (det F) (adn ¢ + b(1 — ¢) In(1 —) + co(1 —) + crrr)

M

from dolfin import *

Mesh and function space
mesh - UnitSquare(12, 12)
V = VectorFunctionSpace (mesh, "CG", 1)

Deformation
] x0 = Expression(("x[0]", "x[11"))
x = interpolate(x0, V)

Defornation gradient
= grad(x)
- variable(F)

S
===
RSIXT

EETY

Volume fraction
phi_I = 0.8
. phi = phi_T+inv(det(F))

Elastic potential

<<t W_E = 0.5+ ((inner(F, F) - 2) + (det(F)+x(-2) - 1))

[Pavravza
Flory-Huggins potential

a = 4.28001624e-05; b = 0.0428001624; c = 0.010354878

W_FH = a*phi+ln(phi) + b+(1 - phi)+ln(1-phi) + c+phi+(1-phi)

Total potential
r'{ scale = 1.e3; c_FH = 0.01338703463
W = scales(phi_ I+W.E + det(F)+(W.FH + c_FH))

Define stress-tensor
S = diff (W, F)

Define bilinear form
v TestFunction (V)
B - inner(s, grad(v))+dx

af

Define goal functional
M = S[0][1)+5[0] [1]+ds(0)

Define adaptive problem
pde = AdaptiveVariationalProblem(B, bcs=

1, M, u=x,

Solve problem
x = pde.solve(1.0)

1
1

16 /16

Adaptivity pays off for the

nonlinear gel problem

40

+—e Uniform
o—o Adaptive

0F

10°

104
#dofs

10°

108

16 /16

