Automated goal-oriented error control
for stationary variational problems

Marie E. Rognes and Anders Logg

Simula Research Laboratory

Error estimate

(RN

10° 10°

10*
#dofs

’Automated goal-oriented error control I: stationary variational problems’.

Marie E. Rognes and Anders Logg. In preparation. 2010.
1/11

The FEniCS project (www.fenics.org)

Free Software for Automated Scientific Computing

Agenda Key components
1. Automation of discretization > High-level form language (UFL)
2. Automation of error control » Form compiler (FFC)
3. ... » Main interface (DOLFIN)
Generality Efficiency
Compiler

2/11

What is automated goal-oriented error control?
Input

» PDE: find v € V such that a(v,u) = L(v) VveV
» Quantity of interest/Goal: M :V — R

» Tolerance: € > 0

Challenge

Find V}, C V such that |[M(u) — M(up)| < € where uy, € V4, is
determined by
a(v,up) = L(v) Yv eV,

FEniCS/DOLFIN

pde
u_h

AdaptiveVariationalProblem(a - L, M)
pde.solve(1.0e-3)

3/11

The error measured in the goal is the residual of
the dual solution

1. Define residual

2. Introduce dual problem
Find z € V: a*(v,2) = M(v) YveV
3. Dual solution + residual = error
M(u) = M(up) = L(2) — a(z,up) = r(2) = r(z — 2n)

4. A good dual approximation Zj gives computable error
estimate

nn = 7(Zn)
5. Error indicators ... ?

4/11

Let us take Poisson’s equation as an example for

manual derivation of error indicators

a(v,u):/QVU-Vudx L(v):/gvfdx

Recall error representation:
M(u) — M(up) =r(z) = / 2f =Vz-Vudx
Q

Residual decomposition

Z/ f—l—leVuh) /v(—Vuh-n)ds

TeT), Ror

Error indicators:

nr = |(Zn — zn, Rr)1 + (Zn — 2n, [Ror])or|

5/11

The residual decomposition can be automatically
computed for a class of residuals

Have: a— L and up, = r

Want: nr = |(Zn — 24, RT)7 + (20 — 21, [Ror])or|
Need: Residual decomposition Ry, Rgr for each cell T

Assumptions

Lor(v) =Y rr(v)
T

2. TT(U):/U-RT—i-/ v - Rar
T oT

3. Ry € Py(T), Rarle € Py(e) for some integer k,q

6/11

We can compute Ry and Ryr by solving small
local variational problems

Recall assumption:

T’T('U):/’U‘Rde—i-/a v- Rgr with RTEPk(T)
T T

Let
» bp : T'— R such that bp|gr = 0 (Bubble)
> {¢;}1, be a basis for P(T)

Lemma
Ry is uniquely determined by the equations

/TbT¢i - Ry dz = r7(bre;)

7/11

An improved dual approximation can be
computed by higher-order extrapolation

Dual problem
a*(v,zp) = M(v) YveV,

can be generated and solved automatically.

Problem
With same discretization as primal: 7, = r(z3) = 0.

Suggested solution

Let Wy, D Vp. Improve approximation by a patch-based
least-squares curve fitting procedure:

zp— Zp = Epzp, FEp Vi — Wy

8/11

The error estimates are virtually perfect for
Poisson on a 3D L-shape

Error estimate
g

=3
T

-1
10 H

- Error
i | ¢ Estimate
¢ | »== Summed indicators

1(54 165 10°
#dofs

a(v,u) = (Vv,Vuy,
M(u):/uds, I c oQ.
r

9/11

The error estimates are highly satisfactory for a
three-field mixed elasticity formulation also

« - Error
¢—0 Estimate
»— Summed indicators

Error estimate

A A
A

10-4

a((t,v,m), (o, u,7)) = (1, Ac) + (div 7, u) + (v,dive) + (1,7) + (n, o)

M((U,U,n))Z/Fga-n-tds

10/11

Goal-oriented adaptivity is worth it

TN

Outflux ~ 0.4087 £ 10~*
Uniform

1.000.000 dofs, > 3 hours
Adaptive

5.200 dofs, 127 seconds

from dolfin import *
class Noslip(SubDomain): ...

mesh = Mesh("channel-with-flap.xml.gz"
V = VectorFunctionSpace(mesh, "CG", 2)
Q - FunctionSpace(mesh, "CG", 1)

Define test functions and unknown(s)
(v, q) = TestFunctions(V * Q)

w = Function(V * Q)

(u, p) = (as_vector ((wl[0], w[11)), w[2])

Define (non-linear) form

n = FacetNormal(mesh)

p0 = Expression("(4.0 - x[0])/4.0")

F = (0.02+inner(grad(v), grad(u)) + inner(v, grad(u)=u))=*dx
- div(v)*p + g+div(uw) + pO*dot(v, n)+ds

Define goal and pde
M = u[0]*ds(0)
pde = AdaptiveVariationalProblem(F, bes=[...], M, u=w, ...)

Compute solution
(u, p) = pde.solve(l.e-4).split()

11/11

