Black-box System Testing of Real-Time Embedded
Systems Using Random and Search-based Testing

Andrea Arcurt, Muhammad Zohaib Igb&F, and Lionel Briand-2

! Simula Research Laboratory, P.O. Box 134, Lysaker, Norway.
2 Department of Informatics, University of Oslo
{arcuri, zohai b, bri and}@i nul a. no

Abstract. Testing real-time embedded systems (RTES) is in many ways chal-
lenging. Thousands of test cases can be potentially executed on arriaddus
RTES. Given the magnitude of testing at the system level, only a fully auto-
mated approach can really scale up to test industrial RTES. In this paper w
take a black-box approach and model the RTES environment usinghtg-U
MARTE international standard. Our main motivation is to provide a moretpra
cal approach to the model-based testing of RTES by allowing system teegbers

are often not familiar with the system design but know the application domain
well-enough, to model the environment to enable test automation. Envénan
models can support the automation of three tasks: the code generatioeofi-
ronment simulator, the selection of test cases, and the evaluation oftpeated
results (oracles). In this paper, we focus on the second task (tessestion)

and investigate three test automation strategies using inputs from UML/MARTE
environment models: Random Testing (baseline), Adaptive Randstingieand
Search-Based Testing (using Genetic Algorithms). Based on one iiadlgsise
study and three artificial systems, we show how, in general, no techisiqeéer

than the others. Which test selection technique to use is determined by the failu
rate (testing stage) and the execution time of test cases. Finally, we prapos
practical process to combine the use of all three test strategies.

Key words: Search based software engineering, branch distance, model based
testing, environment, context, UML, MARTE, OCL.

1 Introduction

Real-time embedded systems (RTES) represent a major piapof the software be-
ing developed [1]. The verification of their correctness figparamount importance,
particularly when these RTES are used for business or sefiéityal applications (e.g.,
controllers of nuclear reactors and flying systems). TgSRMES is particularly chal-
lenging since they operate in a physical environment coegbo$ possibly large num-
bers of sensors and actuators. The interactions with thieomment can be bound by
time constraints. For example, if the RTES of a gate is infny a sensor that a train
is approaching, then the RTES should command the gate te dtmgn before the train
reaches the gate. Missing such time deadlines can haverdisssonsequences in the
environment in which the RTES works. In general, the timifignteractions with the

real-world environment in which the RTES operates can haigraficant effect on the
resulting behavior of test cases.

In this paper our objective is to enable the black-box, aatteah testing of RTES
based on environment models. More precisely, our goal isgkensuch environment
modeling as easy as possible, and allow the testers to atgde®ting without any
knowledge about the design of the RTES. This is typicallyactical requirement for
independent system test teams in industrial settings.ditiad, the test must be auto-
mated in such a way to be adaptable and scalable to the spmmifjglexity of a RTES
and available testing resources. By adaptable, we meaa thst strategy should enable
the test manager to adjust the amount of testing to avaitelslaurces, while retaining
as high a fault revealing power as possible.

The system testing of a RTES requires interactions with titaah environment
or, when necessary and possible, a simulator. Unfortunatsdting the RTES in the
real environment usually entails a very high cost and in soases the consequences
of failures would not be acceptable, for example when leadinserious equipment
damage or safety concerns. In our context, a test case isiarsajof stimuli, generated
by the environment or its simulator, that is sent to the RTIE&user interacts with the
RTES, then the user would be considered as part of the em@onhas well. There is
usually a great number and variety of stimuli with differipgtterns of arrival times.
Therefore, the number of possible test cases is usuallylaege if not infinite. A test
case can also contain changes of state in the environmentahaaffect the RTES
behavior. For example, with a certain probability, somedinare components might
break, and that has effect on the expected and actual beluditiee RTES. A test case
can contain information regarding when and in which orddrigmer such changes.

Testing all possible sequences of environment stimul@sthanges is not feasible.
In practice, a single test case of an industrial RTES cowdtidaveral seconds/minutes,
executing thousands of lines of code, generating hundrfettiseads/processes running
concurrently, communicating through TCP sockets and/orsigBals, and accessing
the file system for I/O operations. Hence, systematic tgstrategies that have high
fault revealing power must be devised.

The complexity of modern RTES makes the use of systematiimgetechniques,
whether based on the coverage of code or models, difficufppyavithout generating
far too many test cases. Alternatively, manually selecéind writing appropriate test
cases based on human expertise for such complex systent beofar too challenging
and time consuming. If any part of the specification of the RTHanges during its de-
velopment, a very common occurrence in practice, then nestycases might become
obsolete and their expected output would potentially nedsktrecalculated manually.
The use of an automated oracle is hence another essentigleragnt when dealing
with complex industrial RTES.

In this paper we present a Model-Based Testing (MBT) [2] méthogy to carry
out system testing of RTES in a fully automated, adaptabie saalable way. We tailor
the principles of Adaptive Random Testing (ART) [3] and $SbaBased Testing (SBT)
[4] to our specific problem and context. For our empiricalleation, we use Random
Testing (RT) [5] as baseline. One main advantage of ART and SBhat it can be
tailored to whatever time and resources are available &img when resources are

expended and time is up, we can simply stop their applicatidimout any side effect.
A coverage-based strategy could not be, for example, upiexd at any time. Further-
more, ART and SBT attempt, through different heuristicanximize the chances to
trigger a failure within time constraints. We will also semhtheir combined use can be
helpful to gain the most out of testing resources in pracifite RTES under test (SUT)
is treated as a black box: no internal detail or model of itsavéor is required, as per
our objectives. The first step is to model the environmemnigitie UML standard and
its MARTE profile, the latter being necessary to capture-tiea¢ properties. The use
of international standards rather than academic notaisodistated by the fact that our
solutions are meant to be applied by our industry partnengr&nment models support
test automation in three different ways:

— The environment models describe some of the structural ehduboral properties
of the environment. Given an appropriate level of detadytbnable the automatic
generation of an environment simulator to satisfy the djpeneeds of software
testing.

— The models can be used to generate automated oracles. Tutdéor example be
invariants and error states that should never be reachduelgnvironment during
the execution of a test case (e.g., an open gate while a sraasising). In general,
error states can model unsafe, undesirable, or illegasstatthe environment. We
used error states as oracles in our case studies.

— Test cases can be automatically selected based on the maglatgvarious heuris-
tics to maximize chances of fault detection. In our caseistude use ART and
SBT.

In this paper we focus on the third item above and assess RT, &il SBT on the
production code of a real industrial RTES. Due to space caimé$, and because our
focus in this paper is test automation, we do not explain taitlbow to use UML/-
MARTE to model the environment of a RTES and how simulatoreccah be automat-
ically generated (which we investigated in [6]). To the tefsbur knowledge, no MBT
automation results for ART and SBT on an actual RTES havele@n reported in the
research literature. Since no freely available RTES wa#adla, we also constructed
three different artificial RTES in order to extend our invgation and better understand
the influence of various factors on test cost-effectiversesh as the failure detection
rate. The use of publicly available artificial RTES will alfailitate future empirical
comparisons with our work since, due to confidentiality ¢aaists, our industrial case
study cannot be made public.

The paper is organized as follows. Section 2 provides arveerof related work.
How the context is modeled and simulated is shortly disaligs&ection 3. Section 4
describes the different strategies we used to generatea®ss. Their empirical valida-
tion is described in Section 5 and threats to validity areulised in Section 6. Finally,
Section 7 concludes the paper.

2 Related Work

A large body of literature has been dedicated to test RTEEGrdason of space, here
we can only give a very brief and incomplete overview.

Most of the approaches to test RTES are based on violatimgtitméng constraints
[7] or checking their conformance to a specification [8]. Bpecification is generally
a formal model of the system and this model is then used torgengest cases. A num-
ber of approaches have been proposed over the years to sudldeeabove problem.
The most widely discussed approaches model the system Tsiteyl Automata [9].
A number of Timed Automata extensions, such as Timed I/O matta [10], have also
been used for conformance testing. For the same purpose, $éiddeéchart [11], Ex-
tended Finite State Machines [12] and Attributed Event Gram[13] have also been
used.

There are several works using SBT techniques for testirfigrdift aspects of RTES
[14], as for example identify deadline misses [15] and testiinctional properties [16].

The work presented here is significantly different from mbstabove approaches
as we adopt, for practical reasons presented above, a btackpproach to system
testing that relies on modeling the RTES environment rathan its internal design
properties. As noted above, this is of practical importaaséndependent system test
teams usually do not have easy access to precise desigmatfon. Most existing work
does not focus on system testing, hence their emphasis oelimpthe RTES internal
behavior and structure. Another difference of practicgbdmance, though this is not
detailed in this paper, is that we use UML and its standareresions for modeling the
environment. Last but not least, as opposed to publishedstadies (e.g., [13, 12]), we
assess our test strategies on the actual production codemdastrial RTES.

3 Environment Modeling & Simulation

For RTES system testing, software engineers would typidslresponsible for devel-
oping the environment models. Therefore, the modelingdagg should be familiar to
them and therefore based on software engineering standardther words, it is im-
portant to use a modeling language for environment modefiagis widely accepted
and used by software engineers. Furthermore, standardimptinguages are widely
supported in terms of tools and training. The Unified Modglimnguage (UML) and
its extensions are therefore a natural choice to considauricontext.

Several modeling and simulation languages are availableambe used for model-
ing and simulating the context (e.g., DEVS [17]). But in oase using these simulation
languages raises a number of issues, including the facstifatare engineers in the
development team are usually not familiar with the notatiand concepts of such lan-
guages.

Higher level programming languages (such as Java or C) sarbalused as simu-
lation languages. The major problem with the use of suchuagegs is the low level of
abstraction at which they “model” the environment. Thewafe engineers will have to
deal with all the programming language constructs (suchraats) while at the same
time trying to focus on the details of the environment itself

RTES testing through an environment simulator faces thstmreof how time is
handled. Indeed, many properties of the RTES depend on etstime time constraints
are fulfilled or not. Ideally, we would like to be able to siraté the passing of time in a
deterministic way, but it is not always possible for large @aomplex RTES.

The opposite approach to time simulation would be to run tRERwith its sim-
ulated environment using the real clock of the CPU used tdahrarempirical analysis.
On one hand, it has the benefit that we do not have any particatestraint on the
type of RTES that can be analyzed. On the other hand, it adde and variance in the
scheduled time events. If time constraints of the RTES amngtight (e.g., in the order
of few milliseconds), then this approach is not a viable apti

In our work, we have used UML/MARTE as a simulation languadedels are de-
veloped in UML as classes and their state-machines. Thedelmare then transformed
into Java using model to text transformations. The actigiind actions are written in
Java and are converted into Java method calls. This was@jgteofor the RTES con-
sidered in this paper. For other types of RTES, differengpmming languages could
be necessary. Notice that our methodology is general. Weeciava only for prac-
tical reasons. In particular, in our empirical analyses Wkt face the problem of
the garbage collector interfering with time propertiese Garbage collector was never
called during the execution of a test case.

4 Automated Testing

4.1 Test Case Representation

In our context, a test case execution is akin to executingetivironment simulator.
Each state machine represents a component of the environfrtesre can be more
instances of a state machine with different settings toassmt different sensors/actu-
ators of the same type. For example, in a gate controller RTeScan have a state
machine representing the trains. For each simulated traiwiv have an independent
running instance of that state machine. The domain modskd to identify how many
instances can or should run in parallel for each state macldased on the domain
model, there could be different possible configurationshefénvironment, but in this
paper we focus only on one fixed configuration.

In the behavioral models of the environment (i.e., the stedehines) there can be
non-deterministic parts. For example, a timeout transitiould be triggered within a
minimum and a maximum time value but the exact value canndebermined. This is
very typical when real-world components are modeled, incltior example there is
always a natural variance when time-related propertieseqmesented. Another exam-
ple is when we assign probabilitiesn the models to represent failure scenarios, as for
example the breakdown of sensors/actuators. In our coimexit data of a test case are
the choice of the actual values to use in these non-detesticievents.

In our modeling methodology, we have non-deterministicieé®only in the tran-
sitions between states. They can be in the trigger, the qaraddhe action of the tran-
sition. A transition might be taken several times, and thimber might be unknown
before executing the test case. Therefore, for each instahthe environment state
machines, for each non-deterministic choice, we allocatthé test case a vector of
possible values. The length of this vectol.i€ach time such non-deterministic choice
needs to be made, a value from the corresponding vectoeistedl Because the vector
has finite lengtH, it is used as a ring: The values are taken in order, and lafegjuest
for values, it starts again from the beginning of the vedtayure 1 shows an example.

Fig. 1. Example of a reduced UML/MARTE state machine.

Let the transitiorC — D have a non-deterministic choice|ii1], for example the
timeoutT € [0,1]. Given for examplé = 2, we would have a data vector containing
for example{0.4,0.32}. The first time the transitio® — D is taken, the valu®.4
is used fort the non-deterministic choice. The second ttheyalue0.32 is used. The
third time, the valué.4 is used again, and so on.

Givenn state machine instances, amdnon-deterministic choices in each of them
(for simplicity, because in general instances of differ@aichines will have a different
number of non-deterministic choices), we would have thahdast case contais =
nxmx[values, which can be represented as a vector. The choids afbitrary but has
significant consequences. On one hand, a small number abjesalues could make
it impossible to represent sequences of event patterntetihto failures in the RTES.
On the other hand, a high number of possible values will leddrtg vectors and might
harm the effectiveness of test selections techniques susR& and SBT (discussed in
more details in the next sections).

In our case studies, the values to include in the test caseag@tchosen before the
execution of the test cases. This means that the domain ¢ tredues should be static
and not depending on the dynamic execution of the test cesesxample, if a variable
is constrained within a minimum and maximum limit, then #gabsundaries should be
known before test execution. This is the case for the indBURTES analyzed in this
paper and for other RTES we have worked with. When this is reot#se, we would
need to enable the choice of non-deterministic optionsratme.

4.2 Testing Strategies

As described in the previous section, a test case can be seeveatorl/. Elements in
this vector can be of different types, but their domain ofdrahlues should be known.
Given D(i) the domain of theth variable inV’, we obtain that the number of possi-
ble valid test cases if[| D(¢)|, which is an extremely large number. An exhaustive
execution of all possible test cases is infeasible.

In this paper we consider the testing problem of samplingreeses to detect failures
of the RTES with automated oracles derived from the envirmtmodels. For all test
strategies, the oracle checks whether a transition to an state specified in the model
occurs during test execution. We choose and execute te=t oag at a time. We stop
sampling test cases as soon as a failure has been found.irs#ety that requires the
sampling of fewer test cases to detect failures should eisWydoe preferred.

The simplest, automated technique to choose test casesdeRalesting (RT). For
each variable i, we simply sample a value from its domain with uniform probghb
Although RT can be considered to be a naive technique, itéas shown to be effective
in many testing situations [18, 19].

Another technique that we investigate is Adaptive RT (AR3]) vhich has been
proposed as an extension of RT. The underlying idea of ARTasdiversity among test
cases should be rewarded, because failing test cases tbadthastered in contiguous
regions of the input domain. ART can be automated if one cdime&l@ meaningful
similarity function for test cases. To the best of our knalge, we are aware of no
previous application of ART to test RTES. In this paper wethseasic ART algorithm
described in [3].

Because in our case studies all the variable¥ iare numerical, for the distance
between two test case data vectdis and V2 we use the followinglis(V1,V2) =
> abs(V1[i]—V2[i])/|D(4)|. We sum the absolute difference of each variable weighted
by the cardinality of the domain of that variable. Often,she/ariables represent the
time in timeout transitions. Therefore, ART rewards diitgrs the triggering time of
events.

In this paper we also investigate the use of search algositiontackle the testing
of RTES. In particular we consider the use of Genetic Aldnis (GAs), which are
the most used search algorithms in the literature on sdzashd testing (SBT) [14].
To use search algorithms to tackle a specific problem, a fithesction needs to be
defined tailored to solve that problem. Search algorithndodixthe fithess function
to guide the search toward promising areas of the searcle sphe fitness function is
used to heuristically evaluate how “good” a test case isulrcase, the fitness function
is used to estimate how close a test case is from triggeriaguad in the RTES, that
is when at least one component of the environment entersransate. This is once
again determined by analyzing the environment models.

To tackle the testing problem described in this paper, weldped a novel fithess
function f that can be seen as an extension of the fitness functionsrthabamonly
used for structural testing [4] and MBT [20]. In our case, ¢fual is to minimize the
fitness functionf. If at least one error state is reached when a test case sitbda&l
is executed, thetf(V) = 0. For each error stat® in each state machine instance we
employ the so called approach levéland branch distancB. The approach level cal-
culates the minimum number of transitions in the state nmecto reach an error state
from the closest executed state. The branch distance istadezlristically score the
evaluation of the Object Constraint Language (OCL) coirdgsan the closest executed
state from which the approach level is calculated. The Wraligtance is used to guide
the search to find test data that satisfy those OCL consirairtransition could be trig-
gered several times but never executed because the guardréaithe branch distance,
we calculate it every time but then we only consider the mimmvalue it obtains. Be-
cause the branch distance is less important than the appl®zad, it is normalized in
the rangd0,1]. We use the following normalizing functioror(z) = z/(x + 1), which
has been shown to be better than other normalizing functiesed in the literature [21].
Notice that, in the case of MBT, it is not always possible ttrgkate the branch dis-

tance when the related transition has never been triggkrdidese cases, we assign to
the branch distancB its highest possible value.

The extension of the fitness function we make in this papeloésghe time prop-
erties of the RTES. Some of the transitions are triggeredwehéme-threshold is vio-
lated. For example, an error state could be reached if a Jangmtor does not receive
a message from RTES within a time limit. If such transitiorseon the path toward
the execution of the error states, then we need a way to reesirdata that get the exe-
cution closer to violate those time constraints. If a traosiis taken after a threshold
then we calculate the maximum consecutive tintliee state machine stays in the state
from which that transition can be triggered (this would beghme state from which the
approach level is calculated from). Then, to guide the $earecan use the following
heuristicT’ = z — ¢, wheret < z.

Finally, the fitness functioif for a test data vectdr is defined as:

FfV)y=ming(Ag(V) +nor(Te(V)) + nor(Bg(V))).

Notice that, to collect information such as the approackl|ede source code of the
simulator needs to be instrumented. This is automaticallyedvhen this code is gen-
erated from the environment models.

Once the fithess function is defined, we can use it to guide thadGselect test
cases. But GAs have many parameters that need to be set pafheér we use a Steady
State GA [4]. We employ rank selection with bia$ to choose the parents. A single
point crossover is employed with probabilify;..., = 0.75. This operator chooses a
random point inside the data vectdrsof the parentsz andsy. The elements in the
data vector after that splitting point are swapped betwietvto parent solutions. Each
of the L elements in a data vector is mutated with probability.. A mutation consists
of replacing a value with another one at random from the sasn@agh. The population
size is chosen to be 10. The optimal configuration of seamgbriéhms is in general
problem dependent [22]. Due to the large computational @ostnning our empirical
analysis, we have not tuned the GA. We simply use reasonabéeneter values given
in the literature of GAs.

5 Empirical Study

5.1 Case Study

To validate the novel approach presented in this paper, we &pplied it to test an
industrial RTES. The analyzed system is a very large and agontroller that inter-
acts with several sensors/actuators. The company thaidgchthe system is a market
leader in its field. For confidentiality reasons we cannoviol® full details of the sys-
tem. Information of the environment models of this RTES svted in Table 1. Notice
that for this case study there are several state maching$paaach of them there can
be one or more instances running in parallel at the same Eoreeach test case3 in-
stances of state machines run in parallel, each of them a#drseveral threads. The total
number of non-deterministic choices (NDCs®is The UML/MARTE context models

Table 1. Summary of the state machines of the environment of the industrial RYBS.stands
for “Non-Deterministic Choice”.

State Machine States Transitions Error States Instances NDCs for lastanc
S1 19 29 1 10 6
S2 4 7 0 11 2
S3 3 8 1 1 0
S4 5 5 0 1 0

were developed in IBM Rational Software Architect. Consiisy such as guards, were
expressed in OCL.

To facilitate future comparisons with the techniques dbscrin this paper, it would
be necessary to also employ a set of benchmark systems ¢hia¢ealy available to re-
searchers. Unfortunately, we have not found any RTES gattésthis criterion. There-
fore, in addition to our industrial case study, we have desilgthree artificial RTES,
called AP1, AP2 and AP3. Two of them are inspired by the intRiSRTES used in
this paper, whereas the third is inspired by the control ggstem described in [12].
The RTES are written in Java to facilitate their use on déférmachines and operating
systems. For the same reason, the communications betwe&THS and their envi-
ronments are carried out through TCP. The use of TCP was sdemgal to simplify the
connection of the RTES with its environment. For exampléhéf simulator of the en-
vironment is generated from the models using a differegetdanguage (e.g., C/C++),
then it will not be too difficult to connect to the artificial BB written in Java. These
RTES are all multithreaded. Table 2 summarizes the pragzesfithese artificial RTES.
In each of them, there is only one error state. We introdugdthind a single non-trivial
fault in each of these RTES.

Table 2. Properties of the three artificial problems. LoC stands for “Lines ofeCodhereas
NDC stands for “Non-Deterministic Choice”.

Artificial LoC of LoC of State States Transitions Instances Total NDCs
Problem RTES Environment Machines

AP1 227 259 1 5 7 10 20
AP2 409 271 1 5 7 2 4
AP3 337 318 2 9 13 5 18

5.2 Experiments

We have carried out two different sets of experiments. Oné¢hi® artificial problems,
and one for the industrial RTES. In all these experiments, wilue! for the non-
deterministic choices is set {o= 3. This means that the number of input variables
in each test case &) for AP1,12 for AP2,54 for AP3 and finally246 for the industrial
RTES.

In the first step of the experiments, we ran RT, ART and GA orhedche three
artificial problems. Because the execution of a single tasedaked0 seconds, we
stop each algorithm aftd000 sampled test case or as soon as one of the error state is
reached. Notice that the valué seconds is fixed, and it does not depend on the used
execution platform. Using faster hardware would not chatfgeamount of time re-
quired to run these experiments. The only requirement igthieshardware used for the
experiments is fast enough to sustain the CPU load withdrddacing delays higher
than a few milliseconds. Because in these simulations nfasiectime the CPU is in
idle state, the computers used in the experiments were ppgte.

For each test strategy and each case study, we ran the laigsii00 times with
different random seeds. Because these algorithms aremanehh, a large number of
experiments is required to obtain statistically significeesults. The total number of
sampled test cases is hence at ndost3 « 1000 * 100 = 900,000, which can take up
to 104 days on a single computer. To cope with this problem, we usgdsder to run
these experiments.

Given an upper bound abo0 test cases, it is not always the case that any of the test
strategies is able to trigger a failure in the RTES. In Tablee3Yeport how many times
each algorithm was able to do so out of tt experiments. Because the process of
detecting failures in 00 experiments can be considered to be a binomial process with
unknown probability [23], we use the Fisher Exact test to para the success rate of
RT with the ones of ART and GA. The significance level of théges set t00.05.
Results show that the only case in which there is no signifiddfierence in the success
rate is for problem AP2 when RT is compared to ART.

Table 4. Number of sampled test cases
Table 3. Success rate (out of 100 runs) to detect the first failure in the consid-
for the three artificial problems. ered industrial RTES. “SD” stands for
Standard Deviation.

Algorithm AP1 AP2 AP3

RT 6 35 49 - B
ART 0 40 74 Algorithm ~ Min Median Mean Max SD

GA 0 21 3 RT T 730 1310 012 1649
ART 1 755 1046 525 997
GA 1 990 1600 767 155.2

The second set of experiments has been carried out on artiatlBFES. In sys-
tem testing of RTES, the simulation of the environment cagdneral be run for any
arbitrary amount of time. But there should be enough timestwler possible the exe-
cution of all the functionalities of the RTES. For examptethe RTES for a train/gate
controller, we should run the simulation at least long etotagmake it possible for a
train to arrive and then leave the gate. Choosing for how tormgin a simulation (i.e.,
atest case) is conceptually the same as the choice of testrsaglength in unit testing
[24] (i.e., many short test cases or only few ones that argdprBut in contrast to unit
testing in which often the execution time of a test case i©éndrder of milliseconds,
in the system testing of RTES we have to deal with much longecion time. In this
paper, we run each test case forseconds. This choice has been made based on the
properties of the RTES and discussions with its softwartetses

We evaluated the use of RT, ART and GA to find failures in thi€BTWe could
not run this empirical analysis on a cluster due to techmieasons. We used a single
dedicated computer, and it took nearly ten days to run thegerienents. The failure
rate of the SUT in these experiments was quite high, so weatidse any upper bound
for the number of sampled test cases. The results of expetsnaee shown in Table 4.

To analyze the results in a sound manner we carried out a shtidtical tests
on the data presented in Table 4. We used paramietests to see whether there is
any statistical difference between the mean values of sinjgist cases among the
three analyzed algorithms. The scientific or practical ificance of these differences
is evaluated using the Cohen D coefficient. We also carri¢chon-parametric Mann-
Whitney U tests to see whether any of the results of theseitigws is stochastically
greater than the others. The scientific significance of ts$ is measured with the
Vargha-Delaney A statistic. For botktests and Mann-Whitney U tests the significant
level is set t00.05. For the Cohed D coefficient (valud, we classify the effect size
as follows [25]: small forabs(d) = 0.2, medium forabs(d) = 0.5, and finally large
for valueabs(d) = 0.8. In the case of Vargha-Delaney A statistic (vale we use
the following classification [26]: small foibs(a — 0.5) = .06, medium forabs(a —
0.5) = 0.14 and large fobs(a — 0.5) = 0.21. Table 5 summarizes the results of these
statistical tests.

Table 5. Results of the statistical tests for the data in Table 4.

Comparison t-tests p-value CohenD U-testp-value Vargha-Delaney A

RT vs ART 0.1588 0.2012 0.9708 0.5015
RT vs GA 0.2150 -0.1768 0.0334 0.4129
ART vs GA 0.0030 -0.4272 0.0193 0.4042

5.3 Discussion

In the results of the experiments on the artificial problehmsas in Table 3, we can see
that no testing technique generally dominates the othefsisGtatistically better on
the first problem, but it is the worst on the other two probleRmgarding RT and ART,
they are equivalent on the second problem, but RT is bestefirét, whereas ART is
best on the third problem.

The results in Table 3 for GA can be precisely explained. @ogeall the non-
error states and transitions in the environment modelseasfdlproblems is very easy,
practically all test strategies achieve this. The only cliffi part is the transition to the
error state. For the first problem AP1, that transition isyeetiransition with no guard.
After a time threshold, that transition is triggered. Theelditness function proposed
in this paper can take advantage of this information, reimgrtest cases that get closer
to violate that time constraint. In fact, for each test casecan automatically calculate
the time that it spends in the state that could lead to the state. This automated

fitness function produces an easy fitness landscape thateceffidiently searched by
GA. This explains the fact that GA gets to the error state 99%hetime, whereas RT
reaches it only in 6% of the time. However, why do we obtain smimworse results in
the other two problems AP2 and AP3? The reason is that thesditiumction in these
cases is practically a needle-in-the-haystack functiothé transition to the error state,
there is a guard that is checking whether one Boolean variabéqual to true. The
value of this variable depends on the interactions with th&, $articularly whether a
specific message has been received or not. This type of guaehrch-based testing
is a known, very difficult problem denoted as the flag probl@T.[In this case, the
fithess function provides no gradient, and this makes theletifficult. Unfortunately,
testability transformations [27] cannot be used in thissc@gcause in our context the
SUT is a black box. Even if we had access to the SUT, it woultlsti problematic,
because we are aware of no work dealing with the flag problerthéosystem testing
of concurrent programs. Though the above issue is a limitain practice, we can
automatically determine before running GA whether it witink.

Though we can explain why GA does not work well on AP2 and APRy does
it behave even worse than RT? The reason is exactly the samniicth ART is better
than RT: the diversity of the test cases. If there is no gradie the fithess function,
all the sampled test cases would have same fithess valuetlfeefitness landscape
would have a large plateau). So any new sampled test casal weudccepted and
added to the next generation in GA. The crossover operats dot produce any new
value in the data vectdr, it simply swaps values between two parent test cases. The
mutator operator does only small changes to a data vectoaube on average only
one variable is mutated. During the search, the offspring fgenetic material (i.e.,
the data vectors) that is similar to the one of the parentsréfbre, the diversity of
test cases during GA evolution is much lower than the one ofiiRfie hypothesis of
contiguous regions of faulty test cases is true for a RTES, tWwhen there is no gradient
in the fitness function, we would a-priori expect this foliag relationship regarding
the performance of testing strategiésd < RT < ART. For problems AP2 and AP3,
this is verified in the results of Table 3.

In the experiments on the industrial RTES, we can see thatsG#atistically worse
than the other approaches, although the difference is onllsnedium in size from
a scientific point of view. The results on the industrial RT&%®wn in Table 4 are
important to stress out that the choice of a testing straieg@so heavily dependent
on when the SUT is tested. The version of the industrial RT&RIun this paper was
not a finished product. It was in an early phase of developniére types of failure
scenarios introduced with our models were not somethinigviba fully tested before.
This explains the high failure rate shown in Table 4. Notfwa the failure raté can be
simply estimated from the mean value of RT, #e= 1/mean(RT). The reason is that
RT follows a geometric distribution with parameterthereforemean(RT) = 1/6. In
our case, we have = 1/131.9 = 0.007, which can be considered to be a high failure
rate.

5.4 Practical Guidelines

For high failure rates, it makes sense to use a simple RTadsiémore sophisticated
techniques, since the expected number of sampled testwaséd be low on average.
In practice, we would expect high failure rates at the beagpof the testing phase. The
failure rate would hence be expected to decrease througfdevelopment process as
faults get fixed. Therefore, we would expect to get good tesat RT at the beginning,
but then more sophisticated techniques could be requiredeatstages.

Our results lead us to suggest the following heuristics fyaBT, ART, and SBT
in practice: In the early stages of development and testitgn failure rates are still
high, one should use RT as it will be very efficient and quickiétect the first failure,
without requiring any overhead like ART or SBT. One exceptiothis rule is when the
time of executing a test case is high (e.qg., in the order oérsdwseconds or minutes),
where we then suggest to use ART as one should enforce tesitexediversity to
prevent the execution of too many test cases. Once theda#de decreases due to the
fixing of easy-to-detect faults, then use SBT, but only if a proper fithess functiontoan
derived automatically from the models, that is a fithesstiondhat is likely to provide
effective guidance for the search of failing test casesef@itse, use RT. ART should
not be used when the failure rate is low as the overhead afrdistcalculations would
get too high, due to the large number of test cases executed.

Figure 2 summarizes the above heuristic in a decision tréé ahows when to ap-
ply each testing technique. We provide practical advicandigg when to switch from
ART to RT below. But for the switch from RT to SBT, we need monepérical/theoret-
ical analyses to provide practical guidelines.

In the literature, it has been shown that ART can be twice ssda RT [3]. Let
us considet,. the execution time of a test cagg;, the execution time of a distance
calculation withd the total number of distances computédhe failure rate EF[RT)
and E[ART) the expected number of test cases sampled by RT and ART. We kno
that E[RT] = 1/6 and that, under optimal conditionB[ART| = E[RT]/2. We can
develop a heuristic that is based on the following equatijiRT]-t;. = E[ART] -t;.+
d-tq;s, Which is aloose approximation to determine the failure raté above which ART
is going to yield better results than RT. From that equatiofo)lows 6* ~ ith This
optimal threshold for ART for the failure rate can be estietbbefore test execution.
Finally, we can suggest to run ART fay26* iterations, but only as long as the number
of sampled test cases is not high enough to make the decisignitch to SBT. The
above recommendations are heuristics and will need to Haated and refined as we
gather more empirical data.

6 Threats to Validity

Due to the complexity of the industrial RTES used in the eiogirstudy of this paper,
we could not run the RTES and its simulated environment i sugvay to obtain a
precise and deterministic handling of clock time. We used@RU clock instead. This
could be unreliable if time constraints in the RTES are vightt as for example in the
order of milliseconds, because these constraints couldoteted due to unpredictable

High Failure Technique Technique
YES NO ART T RT T SBT

High Execution Good Fitness Beg;ming
Time? Function?

YES/ \\IO YES/ \NO

@ 0606

Fig. 2. Decision tree and and application timeline of the three analyzed testing stsategie

\ /

changes of load balance in the CPU because of unrelatedgsexeAlthough the time
constraints in this paper were in the order of seconds, thiglggm could still remain. To
evaluate whether our results are reliable, we hence sdladet of experiments, and we
re-ran them again with exactly the same random seeds. Wimebtaquivalent results.
For example, if RT for a particular seed obtained a failirgg base after sampling test
cases, then, when we ran it again with the same seed, it Waisgtiiring exactly43 test
cases. However, the experiments were not exactly the samex&mple, for debugging
purposes we used time stamps on log files. In these time staxmadl variances of a
few milliseconds were present, but this did not have anyceffe the testing results.
Notice that our novel methodology can obviously be applisd when time clocks are
simulated.

7 Conclusion

In this paper we proposed a black-box system testing metbggdrased on environ-
ment modeling and various heuristics for test case geweralihe focus on black-box
testing is due to the fact that system test teams are oft@pérdient from the devel-
opment team and do not have (easy) access to system designisxpOur objective
is to achieve full system test automation that scales uprtgelandustrial RTES and
can be easily adjusted to resource constraints. The emé&nnhmodels are used for
code generation of the environment simulator, selectisgydases, and the generation
of corresponding oracles. The only incurred cost by humstets is the development
of the environment models. This paper, due to space conttrdias focused on the
testing heuristics and an empirical study to determine tmalitions under which they
are effective, plus guidelines to combine them in practice.

In contrast to most of the work in the literature, the modgkmd the experiments
were carried out on an industrial RTES in order to achieveimas realism in our
results. However, in order to more precisely understanceumdhich conditions each
test heuristic is appropriate and how to combine them, weptemented this industrial
study with artificial case studies, that will be made pulliavailable to foster future
empirical analyses and comparisons.

We experimented with different testing heuristics, whiekidithe common property
to be easily adjustable to available time and resourcesdé&taesting (RT), Adaptive
Random Testing (ART) and Search-Based Testing using GeA&brithms (GAS).
All these techniques can be adjusted to project constragtisey can be run as long as
time and access to CPU are available. Though RT was originakkd as comparison
baseline, it turned out to be the best alternative undeaicecbnditions.

On the artificial problems, in one case GA is the best seagbrithm, and the
difference is very large. But on the other two cases, GA hasvbrst results, which are
due to poor fitness functions. In one case RT and ART are dguivaut in the other
two, RT is better in one case and worse in the other.

However, on the industrial RTES, results are quite diffefeam the artificial case
studies: there is no statistical difference between RT aRd,Avhereas GA is slightly
worse than the others (the effect size is betwamaail andmedium). After investigation,
this was found to be due to the RTES high failure rate and asfithenction that offered
little guidance to the search due to a Boolean guard comdifio support the claims
above, we followed a rigorous experimental method basedventfpes of statistical
analyses.

Based on our results, we have provided practical guidetmepply the three test-
ing technigues described in this paper, i.e. RT, ART, and ®Aact, none of them
dominates the others in all testing conditions and they rheastn practice, combined
to achieve better results. However, more empirical andréimal studies are needed to
develop more precise, practical guidelines.

One current limitation of our testing approach is that thendms of valid values
for the non-deterministic test inputs need to be statigy #euld be known before test
case execution. Research will need to be carried out to nlesigel testing strategies
for non-deterministic inputs that can only be determinediatime.

Acknowledgements

The work described in this paper was supported by the NoameBiesearch Council.
This paper was produced as part of the ITEA-2 project callERBE.

References

1. Douglass, B.P.: Real-time UML: developing efficient objects for edded systems.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA (0997

. Utting, M., Legeard, B.: Practical model-based testing: a tools apprcElsevier (2007)

3. Chen, T.Y,, Kuoa, F., Merkela, R.G., Tseb, T.: Adaptive mndesting: The art of test case
diversity. Journal of Systems and Software (JSS) (2010) (in press

4. McMinn, P.: Search-based software test data generation: AysiBeétware Testing, Verifi-
cation and Reliabilityl 4(2) (2004) 105-156

5. Myers, G.: The Art of Software Testing. Wiley, New York (1979)

6. Igbal, M.Z., Arcuri, A., Briand, L.: Environment Modeling with UMMARTE to Support
Black-Box System Testing for Real-Time Embedded Systems: Methogalog Industrial
Case Studies. In: ACM/IEEE International Conference on ModeldriZngineering Lan-
guages and Systems (MODELS). (2010)

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

. Clarke, D., Lee, I.: Testing real-time constraints in a process agebetting. In: IEEE
International Conference on Software Engineering (ICSE). (199550

. Krichen, M., Tripakis, S.: Conformance testing for real-time systeformal Methods in
System Desigi34(3) (2009) 238-304

. Alur, R, Dill, D.L.: A Theory of Timed Automata. Theoretical Computgciencel26

(1994) 183-235

En-Nouaary, A.: A scalable method for testing real-time systenféw&e Quality Journal

16(1) (2008) 3-22

Miicke, T., Huhn, M.: Generation of optimized testsuites for UML stadets with time. In:

IFIP international conference on testing of communicating system84j2(28-143

Zheng, M., Alagar, V., Ormandjieva, O.: Automated generatiotestf suites from formal

specifications of real-time reactive systems. Journal of Systems @fhdaBe (JSSB1(2)

(2008) 286-304

Auguston, M., Michael, J.B., Shing, M.T.: Environment behawiodels for automation of

testing and assessment of system safety. Information and Softwaredlegy (IST)48(10)

(2006) 971-980

Harman, M., Mansouri, S.A., Zhang, Y.: Search based softeagineering: A comprehen-

sive analysis and review of trends techniques and applications. TatRaport TR-09-03,

King’s College (2009)

Garousi, V., Briand, L.C., Labiche, Y.: Traffic-aware stressgting of distributed real-time

systems based on uml models using genetic algorithms. Journal ohByatel Software

(JSS)81(2) (2008) 161-185

Lindlar, F., Windisch, A., Wegener, J.: Integrating model-bassting with evolutionary

functional testing. In: International Workshop on Search-Basethvaoé Testing (SBST).

(2010)

Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of modelind amulation. Academic press

New York, NY (2000)

Duran, J.W., Ntafos, S.C.: An evaluation of random testing. IEEBsactions on Software

Engineering (TSE)Y0(4) (1984) 438-444

Arcuri, A., Igbal, M.Z., Briand, L.: Formal analysis of the effweness and predictability

of random testing. In: ACM International Symposium on Software Testimgy Analysis

(ISSTA). (2010)

Lefticaru, R., Ipate, F.: Functional search-based testing ftate snachines. In: IEEE

International Conference on Software Testing, Verification and ValidglioST). (2010)

525-528

Arcuri, A.: It does matter how you normalise the branch distanceanct based software

testing. In: IEEE International Conference on Software Testing, Watitin and Validation

(ICST). (2010) 205-214

Wolpert, D.H., Macready, W.G.: No free lunch theorems for ogz@tion. IEEE Transactions

on Evolutionary Computatiof(1) (1997) 67-82

Feller, W.: An Introduction to Probability Theory and Its Applicationsl.\I. 3 edn. Wiley

(1968)

Arcuri, A.: Longer is better: On the role of test sequence lengthfiwate testing. In: IEEE

International Conference on Software Testing, Verification and ValidglioST). (2010)

469-478

Cohen, J.: A power primer. Psychological bulleti1) (1992) 155-159

Vargha, A., Delaney, H.D.: A critique and improvement of the @mmon language effect

size statistics of McGraw and Wong. Journal of Educational and Beta\8tatistic25(2)

(2000) 101-132

Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, bke&el, A., Roper, M.: Testabil-

ity transformation. IEEE Transactions on Software Enginee3igd) (2004) 3-16

