
1 

 

Technical Report 2010-01:  

Model Transformations as a Strategy to Automate 
Model-Based Testing – A Tool and Industrial Case 

Studies, Version 1.0 
S. Ali, H. Hemmati, N.E. Holt, E. Arisholm, L.C. Briand 

{shaukat,hemmati,ninaeho,erika,briand}@simula.no 

Simula Research Laboratory and University of Oslo, Norway 

Abstract 

In recent years, Model-Based Testing (MBT) has attracted an increasingly wide interest from industry and 
academia. The beneficial use of MBT, however, requires tools that not only automate the testing process, but that 
also rely in an extensible and configurable architecture that make them adaptable to various contexts of 
application. Though a number of tools have been developed to support MBT, this technical report introduces a 
new approach for designing and developing MBT tools that is based on model transformation technology. We 
report on the experimental development of a novel MBT tool, TRansformation-based tool for Uml-baSed 
Testing (TRUST), which software architecture and implementation strategy supports configurable and extensible 
features such as input models, test models, coverage criteria, test data generation strategies, and test script 
languages. Based on two industrial case studies, we demonstrate the configurability and extensibility of TRUST. 
We also investigate the challenges and likely cost savings when compared to manual test generation.  

Keywords: model-based testing tool, model transformation, automatic test-case generation, model-driven 
development, state-based system, UML state machine, extensibility, configurability 
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1. Introduction 
Deriving test cases from a behavior model of a system, known as Model-Based Testing (MBT) [1], is 
not a new domain of research in software engineering [2]. However, in recent years, the level of 
interest in industry and academia has been rapidly increasing. This interest can be seen from the many 
academic studies [1, 3-7] and industrial projects [8-11] on model-based testing being reported. This 
suggests that there is an increasing awareness of the benefits offered by MBT[1] . But these benefits 
cannot be realized without having proper tool support, matching the needs of each specific context, for 
automating MBT [3].   

Many tools have been developed to support MBT [10-16]. However, all of them have at least one of 
the following drawbacks:  

• They do not support well-established standards for modeling the System Under Test (SUT). This 
makes it difficult to integrate MBT with the rest of the development process, which in turn makes 
the adaptation and use of MBT more costly.   

• They cannot be easily customized to different needs and contexts. For example, a tester may want 
to experiment with different test strategies to help target specific kinds of faults. Furthermore, 
constraints can evolve, e.g., the test script language in a company can change.  

Thus, we propose an MBT tool, TRansformation-based tool for Uml-baSed Testing (TRUST), whose 
software architecture and implementation strategy facilitate its customization to different contexts by 
supporting configurable and extensible features such as input models, test models, coverage criteria, 
test data generation strategies, and test script languages. We define configurability as the ability of 
selecting among different options provided by the tool for a feature. For example, the tool is 
configurable with respect to coverage criteria if it lets the user select among several coverage criteria 
such as all transitions and all round trip path coverage criteria [17]. We define extensibility as the 
ability of providing more options for a feature without any modification in the components that are not 
responsible for the feature. For example, providing support for generating test scripts in more 
languages is considered as extending the tool. 

Our approach, which is inspired from the Model-Driven Architecture (MDA) standard [18], relies on a 
series of model transformations to generate test cases. The main idea is to design a tool in such a way 
that its different components provide and require standard interfaces with input and output models 
based on standard metamodels. Each component in this tool is responsible for one feature (e.g., test 
model, test data, etc.) involved in the process of generating test cases. This separation of concerns and 
provision of standard interfaces make TRUST configurable and extensible. In addition, model 
transformation technology helps the developer upgrade the components with a new set of 
transformations from standard inputs into well-defined outputs.  

The approach allows instantiating new, context specific MBT tools by extending or configuring 
TRUST with customized features, such as input models, test models, coverage criteria, test data 
generation strategies, and test script languages. To demonstrate the configurability and extensibility of 
TRUST, we instantiated two tools for two case studies, by extending and configuring TRUST with 
different test models, coverage criteria, and test scripting languages. On the basis of the case studies, 
we also evaluate the costs, challenges, and likely benefits of TRUST in particular and MBT in general. 
Since the case studies concern systems whose behavior is mostly state driven, they are largely based 
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on input models represented as Unified Modeling Language (UML) state machines [19]. However, the 
description of our approach, many of our results, and lessons learned are not specific to state-based 
testing (SBT).  

The remainder of this technical report is organized as follows. Section 2 provides the relevant 
background on model-based testing and model-driven development, with a focus on SBT. Section 3 
introduces existing model-based testing tools and provides an analysis of their extensibility and 
configurability. Section 4 presents key requirements, architecture and implementation details of 
TRUST. In Section 5, we present experiences from two industrial case studies, in which we applied 
TRUST. Benefits and limitations of applying TRUST are discussed in Section 6. Finally, Section 7 
outlines future work and concludes the technical report.  

2. Background 
In this section, we define basic concepts relevant to model-based testing, with an emphasis on 
automated testing based on UML state machines. In addition, model transformation concepts from the 
model-driven development domain will be introduced since these are the basis for our test case 
generation approach.  

2.1 Model-based and state-based testing 
The general process of MBT that we use in this technical report starts with modeling the SUT and 
making it ready for test generation. The next step is deriving abstract test cases from the test ready 
model according to a test strategy, which is typically defined based on a test model and coverage 
criteria to guide its traversal [20]. Finally, executable test cases are generated using abstract test cases 
and input test data.  

In our case studies, we will apply this general MBT approach to state-based testing (SBT). Many 
systems, such as embedded real-time systems [21], telecommunication systems [2, 22], and 
multimedia systems [23], exhibit state-driven behavior. UML state machines, which are extensions of 
traditional Finite State Machines (FSM), can be used to model such behavior. Traditional FSMs 
cannot model software systems with concurrent behavior. Concurrency in UML state machines is 
modeled using composite states with two or more regions [19]. When modeling complex software 
systems with FSMs, the number of states and transitions can grow exponentially with system size. 
This can be handled by UML state machine features for modeling submachines. Many tools (e.g., [24, 
25]) support the modeling of UML state machines.   

To apply MBT on UML state machine as the input model, several test strategies are presented in the 
literature, such as piecewise, all transitions, all transitions k-tuples, all round-trip paths, M-length 
signature, and exhaustive coverage [17]. For example, the all round-trip strategy requires that all paths 
in a state machine that begins and ends with the same state must be covered. To cover all such paths, a 
test tree (consisting of nodes and edges corresponding to states and transitions in a state machine) is 
constructed by depth-first traversal of the state machine. The test tree corresponding to the all round-
trip strategy is called a transition tree. A node in the transition tree is a terminal node if the node 
already exists anywhere in the tree that has been constructed so far or is a final state in the state 
machine. Now, by traversing all paths in the transition tree, we cover all round trip paths and all 
simple paths (the paths in the state machine that begins with the initial state and ends with the final 
state) [17]. Another stopping criterion for the transition tree construction is proposed in [26], where a 
node is terminal if (i) it is a final state of the state machine or (ii) it is a node that already exists on the 
path that leads to the node. This stopping criterion makes the all round-trip strategy more rigorous, and 
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thus gives more coverage. This strategy has been experimentally evaluated to be more cost-effective 
than the all transitions and all transition pairs criteria [26]. Henceforth, the transition tree or all round-
trip paths coverage criterion refer to the modified versions proposed in [26].  

To automate testing based on UML state machines, test data must be generated to fire triggers 
associated with transitions, and the triggers typically require parameter values. Test data can be 
generated randomly from the possible set of values, or using more sophisticated techniques such as 
constraint solvers [27], or search-based techniques (for example using genetic algorithms for test data 
generation [28]) . 

Constraints defined on UML state machines, such as state invariants, guards, and pre/post conditions 
of triggers, should be evaluated during the execution of the generated test cases. As shown by many 
studies, this is a very effective way to detect failures [3, 29]. These constraints are usually written as 
OCL expressions in the context of UML. Examples of  available OCL evaluators are  OCLE 2.0 [30], 
OSLO [31], IBM OCL parser [32], and EyeOCL Software (EOS) evaluator [33].  

2.2 Model-Driven Architecture 
Model-Driven Architecture (MDA) is a software development approach initiated by Object 
Management Group (OMG) [34]. The MDA approach focuses on developing software based on the 
incremental development of models at various levels of abstraction. MDA aims at providing a set of 
guidelines with tool support to create, process, and transform models. This entails the reliance on a 
standardized modeling framework, such as the Eclipse Modeling Framework (EMF) [35]. Being an 
Eclipse-based modeling and code generation framework, EMF enables the construction of tools and 
applications based on models [35].  

2.2.1 The MDA Process 
A high level process illustrating the main phases of MDA development is shown in Figure 1. MDA 
defines three types of models at three levels of abstractions. A Computation Independent Model (CIM) 
focuses on the requirements of the system and its environment [18]. This model is independent from 
implementation and platform specific details such as information about the programming language to 
be used for the system implementation and the operating system on which the system will be 
deployed. Some well-known languages for CIM modeling are the Business Process Modeling 
Notation [36] and Business Process Definition Metamodel (BPDM) [37].  

A Platform Independent Model (PIM) is a system model that focuses on the operation of the system 
[18]. A PIM, however, is independent from how the system is going to be implemented (i.e., 
independent from the technical details of the development platform). PIMs can be modeled in generic 
languages such as UML or domain specific languages (DSL) such as WSDL [38] and PIM4Agents 
[39]. The transformation from CIM to PIM is manual. However, efforts are being made to automate 
the process [40, 41].  
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The third type of model defined in MDA is the Platform Specific Model (PSM). This model describes 
a system in terms of implementation constructs. For instance, if the implementation language of the 
system is Java, then the PSM will be defined in terms of Java constructs. The transformation from 
PIM to PSM models is mostly automated and performed using Model-to-Model (M2M) 
transformation languages. Well known M2M transformation languages include Kermeta [42] and ATL 
[43]. A typical process for M2M transformation is illustrated in Figure 2. 

 

 
FIGURE 2. THE PROCESS OF MODEL-TO-MODEL (M2M) TRANSFORMATION 

 

Using M2M transformation languages, we can define mapping rules that map elements of one 
metamodel to the elements of another metamodel. Once the rules are defined, a transformation engine 
uses these rules and transforms an instance of Metamodel A (Model A in Figure 2) into an instance of 
Metamodel B (Model B in Figure 2). We provide below a brief description of the languages that we 
used in the current implementation of TRUST. 

Atlas Transformation Language (ATL): ATL is a hybrid (declarative and imperative) language and a 
toolkit used to produce a set of target models from a set of source models [43]. It is recommended to 
use a declarative style to write rules, although complex rules may require using imperative features of 
the language. An advantage, though, is that the declarative style results in less transformation code as 
compared to writing transformations using imperative languages. This language therefore supports 
both styles of writing transformation rules. ATL is available as an open-source plug-in for Eclipse and 
uses EMF to handle the models.      

Kermeta: Kermeta is an environment for metamodeling based on an object-oriented DSL (Domain 
Specific Language). It is built as an extension to the Essential Meta Object Facility (EMOF) [44] and 
is available as an open-source Eclipse plug-in [42]. EMOF is used to specify the structure of a model 
but not its behaviour. Kermeta, on the other hand, allows operation semantics to be added to such 
object-oriented metamodels. Kermeta is aspect-oriented and strongly typed [42]. It can be used for 
many purposes, including the simulation of metamodel behaviour, the verification and validation of 
models against metamodels, the development of model-driven tools, and the transformation and 
weaving of models [45].  

The final step is the transformation of PSM into code [18]. There exist languages for Model-to-Text 
(M2T) transformations such as JET [46], Acceleo [46], Xpand [46], and MOFScript [47]. A typical 
process of M2T transformation is illustrated in Figure 3. 
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FIGURE 3. THE PROCESS OF MODEL-TO-TEXT (M2T) TRANSFORMATION 

 

M2T transformation languages such as MOFScript can be used to define transformation rules on a 
metamodel (Metamodel A in Figure 3). These rules map elements of a metamodel to textual elements 
such as constructs of an implementation language. The transformation engine of a M2T transformation 
language uses rules to transform an input model (Model A), which is an instance of Metamodel A (see 
Figure 3), into text according to a specific grammar. We provide below a brief description of 
MOFScript, a M2T transformation language that we used in TRUST to generate executable test scripts 
from a test model. 

MOFScript: MOFScript is a language for generating text (such as implementation code, 
documentation, reports, etc) from models using M2T transformation rules. Rules (also referred to as 
operations) are called explicitly and are written in an imperative way similar to programming and 
scripting languages. There exists an eclipse plug-in built on EMF, which supports the MOFScript 
language [47]. This means that any EMF-based model can be transformed into text by MOFScript. It 
also has the ability to call external Java functions.  

2.2.2 Classification of transformations 
Huber [48] describes two categories of transformations based on the abstraction level and metamodel. 
Vertical transformations change the abstraction level of a model from a higher to a lower level of 
abstraction. In contrast, in horizontal transformations, the abstraction level remains the same. PIM to 
PSM, or PSM to code transformations are examples of vertical transformation. For instance, 
generating Java code from the Java metamodel is a vertical transformation. Refactoring is an example 
of horizontal transformation because a refactored model remains at the same level of abstraction as the 
original model.  

A second way to classify transformations depends on the metamodels on which the transformation is 
defined. If the transformation is defined on source and target models instantiated from the same 
metamodel, it is labeled as endogenous; otherwise it is exogenous. The transformation from PIM to 
PSM is an example of exogenous transformation because metamodels for PIM and PSM will 
necessarily be different.  

3. Related Work 
Several well-known, model-based testing tools have been developed in recent years, such as 
TDE/UML (Siemens) [10], SpecExplorer (Microsoft) [11], and IBM Rational Functional Tester [9]. 
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Based on just three sources, we were able to find references to more than 50 model-based testing tools. 
In this technical report we focus on configurations of TRUST with state machines and thus we are 
interested in comparing this SBT version of TRUST with other SBT tools. Consequently, we focus our 
discussion of related work to tools that (i) are (partly) based on UML state machines, (ii) automatically 
generate executable test cases including test oracles, and (iii) have at least some support for 
extensibility and configurability. 

After applying these criteria on more than 50 model-based testing tools [1, 8, 49], we were left with 
five tools [12-15, 50]. We then collected information regarding the extensibility and configurability of 
their different features (input model, test strategy, and output language of the tools). Since TRUST 
generates test cases from UML state machines, we collected the following information related to UML 
state machines from the tools to determine the degree to which their input model can be extended and 
configured:  

• UML metamodel: As the UML metamodel undergoes changes on a regular basis, a test tool 
must have the ability to accommodate these changes with reasonable effort.  

• Constraint evaluation: A UML state machine may contain various types of constraints such as 
state invariants and guards. These constraints can be defined in different languages such as 
OCL, Java, or any other tool-specific language. Therefore, the tool architecture should easily 
accommodate changes in constraint language or evaluation technology. 

• Support for UML profiles: UML profiles provide an extension mechanism  to support 
modelling for particular domains and platforms, for instance the MARTE profile for 
modelling real-time and embedded systems [51]. An extensible tool should be able to 
accommodate models based on different UML profiles. 

The last part of the analysis considered the tools’ extensibility and configurability regarding test 
models and coverage criteria, test data generation techniques, and test script languages since these are 
the components of a test strategy (Section 2). We will now provide a summary of our analysis 
regarding the extensibility and configurability of these five tools.  

Qtronic [12] is an eclipse-based tool used to generate test scripts from system models specified in 
QML (Qtronic Modelling Language). This language is based on UML and Java/C# compatible syntax 
and is supported by a tool called Qtronic Modeler [12]. Qtronic can be configured for the following 
state machine coverage criteria: state coverage, transition coverage, 2-transition coverage, all paths 
coverage, and implicit consumption (criterion to check that system ignores transitions that are not 
explicitly defined on a state), branch coverage, atomic condition coverage, and boundary value pattern 
(to cover boundaries of decisions in guards) [12]. Qtronic supports extensibility by means of plug-ins, 
which can be coded in C++ or Java. These plug-ins can be written for changing the test scripting 
language, logging formats, and test execution type (online vs. offline test execution). This means that 
Qtronic can only be configured for predefined coverage criteria and cannot be extended to additional 
test models, coverage criteria, and test data generation other than what is already provided. However, 
Qtronic can be extended for different test scripting languages by implementing specific plug-ins. 

The tool Automatic Test Generator/Rhapsody (ATG) [15] is a module of I-Logix STATEMATE and 
Rhapsody products. ATG can be configured to generate test cases from models based on a set of 
coverage criteria such as state and transition coverage, and modified condition/decision coverage on 
guards in state machines ATG doesn’t provide any extension mechanisms. 
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AGEDIS is a tool for automated model-driven test generation and execution for distributed systems. It 
has been made usable and interoperable with external tools by defining clear external interfaces in the 
tool. In addition, well-defined internal interfaces make AGEDIS more reusable. For instance, the user 
can define or select a coverage criterion through a test generation directives interface which includes 
coverage criteria, constraints (which are additional criteria) on the test suite, and test purposes [52]. 
There is also a defined interface for abstract test cases that makes the tool open for later extensions to 
other test script languages than TTCN-3. However, most of these interfaces are not defined by 
standard well-known languages. For example, standard OCL constraints on an input UML model 
should be transformed into their interface language (IF) format [14]. 

ParTeg (Partition Test Generator) [50] is a test generation tool dealing with the reuse of state machines 
for automatic test case generation in the context of product lines. Regarding configurability, ParTeg 
allows the user to choose from a set of coverage criteria: state coverage, decision coverage, and 
modified condition/decision coverage as well as boundary value coverage criteria for input data to 
cover boundaries of decisions in guards. No attempt was made for making it extensible and 
configurable with respect to input models, test data generation, and output languages. 

MOTES [13] is a model-based testing tool for generating TTCN-3 tests. MOTES accepts Extended 
Finite State Machines (EFSM) as input and requires test data to be prepared manually before the test 
case generation phase. However, it provides some extensibility opportunities for output models by 
having a standard input interface. For example, UML state machines created using third party CASE 
tools (for example Poseidon [53]) can be imported to MOTES, although state machines must be flat 
without concurrent and hierarchical states. MOTES provides a configurable set of coverage criteria 
such as selected states, selected transitions, and all transitions.  

Table 1 gives a summary of the abovementioned tools regarding their extensibility and configurability 
for respectively the input model, test strategy, and test scripting output language. A clear conclusion 
from the summary is that current tools usually support configurable coverage criteria (within a limited 
set) and three of them are extensible regarding new output languages. However, hardly any SBT tool 
provides support for extending it to new input models or test data generation strategies. Therefore, we 
were encouraged to develop an extensible and configurable tool with well-defined interfaces and 
simple extensibility mechanisms. The next section describes the requirements for such a tool and 
explains our solution in details.  

 

 

 

TABLE 1 EXTENSIBILITY AND CONFIGURABILITY OF THE CURRENT SBT TOOLS 

Tool 
name 

Input model Test strategy Test scripting 
output language UML 

metamodel 
Constraint 
evaluator 

UML 
profiles 

Test Model and 
coverage criteria 

Test data 
generation 

Qtronics - - - Configurable Configurable Extensible and 
Configurable 

ATG - - - Configurable - - 

AGEDIS  - Extensible - Extensible and 
Configurable 

- Extensible 
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MOTES - - - Configurable - Extensible 

ParTeg - - - Configurable - - 

4. Requirements, Design, and Implementation of TRUST 
In this section, we discuss the main requirements of TRUST, define and justify our architectural 
decisions, and choices of technologies. In addition, details regarding the test case generation and test 
case execution procedure will be provided.  

4.1 Requirements and Approach 
To be optimal from a practical standpoint, we want a tool that supports all features of UML. However, 
as we discussed in Section 3, this may not be enough – extensibility to various UML extension 
profiles, such as MARTE [13] and UML QoS profile [54], may also become a requirement in future 
applications. What we need is a tool that shows versatility in various contexts. Adding different output 
scripting languages (such as C++, Python, and Java), test models (such as transition trees and testing 
flow graph [55]), coverage criteria on test models (such as all transition and all round-trip path 
coverage), and test data generation techniques (such as random and adaptive random search [56]) for 
different application domains and systems are examples of useful extensions for TRUST.  

In addition, the tool should be easily configurable to satisfy varying requirements, which means that 
the user should be able to easily configure features such as input model, coverage criteria and test data 
generation strategies. High configurability enables testers to experiment with various techniques 
without significant effort and changes in the tool implementation. This is of practical importance as 
different test models, coverage criteria, and test data generation techniques helps in targeting different 
types of faults. Figure 4 shows the summary of the tool requirements.  

The approach that we have taken for implementing TRUST (Figure 5) is based on model 
transformations. The idea (inspired by MDA concepts, introduced in Section 2.2.1) is to generate a test 
model using a series of horizontal (endogenous and exogenous) model–to- model transformations on 
an input design model, modeling the PIM of a system. Then, a vertical, exogenous model–to-text 
transformation is used to generate test scripts.  

We found this approach very well-suited for developing TRUST, firstly due to the fact that it 
addresses our extensibility and configurability requirements. Each component of TRUST implements 
one set of transformation rules (e.g., transformation from test tree to test cases). Each component has 
well-defined interfaces with other components. More specifically, each interface provides output to, or 
requires inputs from, other components by means of intermediate models conforming to metamodels. 
Secondly, separation of concerns among components has made each transformation responsible for 
providing one feature such as test model, test data, and test scripts. Therefore, adding a new feature 
(for example, outputting test scripts in a new language) can be achieved by writing a new set of 
transformation rules in one of the components, without affecting the other components. Thirdly, in the 
model transformation-based approach, the transformation language provides the developer with direct 
support for navigating, creating, and manipulating a model, based on its metamodel. Generally, the 
transformation rules are relatively compact and easy to read, write, and change.  

 

 

 

REQ1. The tool should handle UML diagrams such as state machines, sequence diagrams, activity 

diagrams, and OCL as the constraint language for UML diagrams 

REQ2. The tool should have a configurable and extensible input model 

  REQ2.1. The tool should be extensible for new UML profiles and configurable for existing  

              UML profiles 

 REQ2.2. The tool should be extensible for changes in the UML metamodel and configurable  
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FIGURE 4 REQUIREMENTS OF TRUST 

 

 
FIGURE 5. MODEL TRANSFORMATION-BASED APPROACH FOR TEST CASE GENERATION 

 

In this technical report, we configured TRUST with UML 2.0 state machines as the input model. 
REQ1 in Figure 4 is refined accordingly as follows: The tool should accept UML 2.0 state machines 
with support for concurrency and hierarchy. Constraints on state machines may be written in OCL 
because it is an OMG standard for writing constraints on UML diagrams. Furthermore, the general 
model transformation-based approach, given in Figure 5, is instantiated on UML 2.0 state machines, as 
shown in  Figure 6. Required activities, technologies, and the procedure for this approach will be 
explained in the remainder of this section. 
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FIGURE 6. MODEL TRANSFORMATION-BASED APPROACH FOR TRUST WHEN CONFIGURED FOR 

STATE MACHINES 

 

4.2 Developing TRUST using a model transformation approach 
In this section, we describe the activities involved in developing TRUST when configured for SBT. 
Firstly, transformations must be specified and implemented for various activities (activities A1, A3, 
and A6 in Figure 7). Since these transformations are applied on metamodels, we may need to define 
input metamodels (activity A2 in Figure 7). However, since some metamodels already exist (e.g., the 
UML 2.0 metamodel), we do not need to define all metamodels from scratch. Secondly, to make the 
test cases executable, test data is required (activity A5 in Figure 7). Finally, we need to develop a 
method for evaluating the OCL constraints that are defined on UML state machines (activity A4 in 
Figure 7). In Figure 7,  the notes associated with the activities show the technologies selected to 
implement each activity. These choices will be justified below.  

4.2.1 From UML state machines to test models 
The first SBT activity is flattening the input state machine. As explained, our input behavioral model 
is a UML 2.0 state machine that allows complex structures like simple-composite states, orthogonal 
states, and submachine states. Testing can be performed directly on such state machines, but this 
requires rather complex strategies, because such structures complicate the traversal and analysis of the 
state machine. An alternate approach is to flatten the state machines first, by removing concurrency 
and hierarchy, and then apply a test strategy. We implemented the latter for obtaining a better 
separation of concerns and lesser analysis complexity.  
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FIGURE 7. ACTIVITIES AND TECHNOLOGIES FOR DEVELOPING TRUST USING MODEL 

TRANSFORMATIONS 

 

Several algorithms are reported in the literature to flatten concurrent and hierarchical state machines 
[17, 57]. However, to the authors’ knowledge, these algorithms are partial and do not provide 
flattening of both hierarchy and concurrency. Thus we decided to implement our own flattening 
algorithm for UML 2.0 state machines. The implemented algorithm is a stepwise process that allows 
the user to modify the UML model at several points during the transformation towards the flattened 
version. The first step in the flattening process is to search for all nested levels for submachine states 
and transform these into a set of simple-composite states. Next, all simple-composite states with one 
region are transformed to a set of simple states or orthogonal states. If there are orthogonal states 
present in the model, these may now be transformed to simple-composite states. Finally, the simple-
composite state(s) created in the previous step are transformed to a set of simple states. 

The result is a state machine consisting of an initial state, simple state(s) and possibly a final state. The 
flattening follows a set of transformation rules implemented in Kermeta [42]. The key aspects in these 
rules address 1) how to combine concurrent states, and 2) how to redirect transitions. Redirecting 
transitions may require duplicating transitions, changing source or target states, combining transition 
information (triggers, guards, transition activities, and state entry/exit activities). Interested readers 
may consult the report by Holt et al. [58] for more detailed information about the flattening algorithm 
and its corresponding transformations.  

Figure 8 below shows a Kermeta rule used for flattening of simple composite states. Incoming 
transitions to an entry point in a simple composite state are redirected to each of the outgoing 
transitions of the same entry point. The small example below provides the Kermeta rule that identifies 
the incoming transitions that will be redirected by calling another Kermeta rule. 

Once the flattened state machine is generated, it is transformed into a test model. This transformation 
requires three inputs: the source metamodel, the source model (which is an instance of the source 
metamodel), and the target metamodel. The source metamodel is a metamodel for the flattened state 
machine, which is the same as the target metamodel for the flattening transformation step in Kermeta. 
The output of the Kermeta transformation, a flattened state machine, provides the second input, which 
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is the source model. The last input, the target metamodel, is a metamodel for a test model. The 
expected structure and content of a test model is strongly dependent on the selected test strategy. In the 
current version of TRUST, test model conforms to a test tree metamodel. Figure 9 shows the 
metamodel developed as an Ecore file, based on EMF (Eclipse Modeling Framework). The metamodel 
represents a tree with a starting node, called alpha, and its outgoing edges. Each edge in the tree has a 
target node and may have several children that are the target node’s outgoing edges. Similar to 
transitions in a UML state machine, each edge in the test tree metamodel is associated with at least one 
trigger and may have an associated guard and effect. In addition, each node may have an associated 
state invariant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 8. EXAMPLE OF KERMETA FLATTENING RULE. 

 

/** 

* Rule getTransitionsTargetedInEntryPoint identifies the incoming transitions to this 

* vertex which is an entry point.  

*/ 

operation getTransitionsTargetedInEntryPoint (r: Region) : Set<Transition> is do 

  

//create a set of all incoming transitions to this entry point 

 var IN : Set<Transition> init Set<Transition>.new 

     

 //add each incoming transition to the set 
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FIGURE 9. TEST TREE METAMODEL FOR THE EMF 

 

The flattened state machine is transformed into a test tree (e.g., a transition tree for all round-trip paths 
coverage criterion) by a set of ATL transformation rules that take the three abovementioned inputs as 
parameters. We chose the ATL transformation language because most mappings in this step are simple 
(mainly one-to-one), which makes a declarative approach the best choice. In declarative approaches, 
as opposed to imperative ones, control flow and the application order of rules are not explicit. 
Therefore, usually the transformations in declarative languages have less transformation code and are 
more comprehensible than imperative languages [48]. This transformation could also have been 
implemented with any other declarative, hybrid, or even imperative language. We decided, however, 
to stick with an Eclipse-based technology so as to develop the entire tool on a consistent platform. For 
example, the transformation rules, instantiating a transition tree from the test tree metamodel, start 
from the initial state of the state machine which is mapped to the Alpha node in the test tree. All 
outgoing transitions of the initial state are also mapped to the outgoing edges from the Alpha node. 
This process of mapping transitions to edges is applied recursively on the target state of all transitions 
in the state machine. Finally, the recursive rule stops when it reaches a leaf or a state that has already 
been visited in the same path starting from the Alpha node (all round-trip paths coverage [26]). An 
example of ATL transformation rules is shown in Figure 10 that maps the Constraint metaclass 
(SM!Constraint) including its name and value properties from UML metamodel (SM) to the 
Constraint class (transitiontree!Constraint) in test tree metamodel (transitiontree) and its name and 
value properties.  

 

 
rule Constraint2Constraint{ 

 from 

   a:SM!Constraint 

 to 
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FIGURE 10. EXAMPLE OF TRANSFORMATION RULE IMPLEMENTED IN ATL 

4.2.2 From the test model to executable test cases 
The generated test tree is the input for the next transformation, which generates the executable test 
cases. We chose the MOFScript [47] transformation language for several reasons. Firstly, it supports 
the MOF standard [44], which means that it can transform any MOF-based model-to-text. Secondly, it 
is an imperative language for writing transformation rules similar to many programming and scripting 
languages. This makes the MOFScript language easy to use and understand. Thirdly, MOFScript 
provides access to external Java libraries. This makes the language very suitable for our context 
because we need to access a test data generator (implemented in Java) during the transformation to 
obtain test data. MOFScript transformations require the source model and its metamodel, which are 
readily available from the previous step. There is no need to provide the grammar of the output 
language as an input to TRUST, but of course defining transformations requires its definition. 

Each path in the test tree represents an abstract test case. Thus, an abstract test case consists of a 
sequence of nodes and edges. Nodes are mapped from states in the state machine and states are 
defined by state invariants, which are OCL constraints serving as test oracles. An edge contains all the 
information related to the trigger including event (e.g., an operation call or a signal reception), a guard, 
and an effect from the state machine’s transitions.  

The MOFScript transformation traverses the test tree (e.g., the transition tree) to obtain the abstract 
test cases and transforms them to concrete (executable) test cases, which are written in a test scripting 
language.  However, it is possible to generate several concrete test cases from an abstract test case by 
using different test data values. There are many possible test data generation [59, 60] approaches 
which are applicable in different situations. What we implemented in the first version of TRUST is the 
simplest method, which is random data generation for operation calls. This test data generator is 
written in Java and provides random values for the parameters of triggers. However, such a test data 
generation technique is not suitable when transitions are guarded and parameters of the triggers are 
used in the guards.  The MOFScript rule shown in Figure 11 illustrates how a trigger is mapped from 
the test tree for all transition to C++ test cases. The rule maps the name of the trigger event operation 
and then uses another mapping rule, ‘mapParameter’, to map the parameters for the trigger event 
operation.  
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FIGURE 11. EXAMPLE OF TRANSFORMATION RULE IMPLEMENTED USING MOF SCRIPT 

 

When executing test cases, OCL expressions in guarded transitions should be evaluated at runtime to 
detect failures. For the same reason, the state invariants associated with states must also be evaluated 
at runtime. One way to evaluate such OCL constraints is to translate them into a test-scripting 
language. The constraints will then be evaluated during the execution of the test scripts. Compiler-
compilers technologies  [61, 62] may be used to translate constraints in one language to constraints in 
another language. This approach however is not reusable across contexts with different test-scripting 

/** 

 * rule 'mapTrigger' generates the C++ code to invoke the operation implementing  

 * the trigger event. Rule 'mapParameter()' is called to map parameters in the  

 * trigger event operation call. Each trigger is either a MethodCall, 

 * SignalReception, or Timer.  

 * @param triggerWithParam List, the total generated output for a trigger as String.  

  * @param noOfParam Integer, temporary helper variable used for counting parameters.  

  */ 

 transitiontree.Trigger::mapTrigger(){  

   

         var triggerWithParam : List; 

         var noOfParam : Integer = 0; 

    

         if(self.oclGetType().equals("MethodCall") or  self.oclGetType().equals("SignalReception") or   

         self.oclGetType().equals("Timer")) 
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languages. For example, if we have transformation rules that transform OCL constraints to C++ and 
the test script language changes to Java, we then need to define new transformation rules from OCL 
constraints to Java expressions. An alternate approach is to use an existing OCL evaluator [30-33] that 
is called during the execution of a test case to evaluate the OCL constraints. This approach requires an 
object model of the SUT at runtime, representing the current state of the system. This model along 
with the constraint to be evaluated is passed to the OCL evaluator, which in turn returns the result of 
the evaluation. This approach is reusable across contexts because the only required change for each 
output language is to use its appropriate invocation method for calling an external library (the OCL 
evaluator). On the other hand, this approach may slow down the test execution as the OCL evaluators 
are being called at runtime. In both approaches, we need a mechanism to query the current state of the 
SUT and evaluate constraints on the current state of the SUT. Querying the current state of the system 
depends on the implementation of the SUT and the test script language’s facility to access the state of 
the SUT. For instance, if the SUT is implemented in C++ and test script language is C++, the state of 
the SUT may be queried using getter methods of the SUT. In one of our case studies, we did not have 
direct access to the code of the SUT. Instead, special macros provided by the test script language were 
used to access the state of the system.  Since we wanted our tool to be reusable in different contexts, 
we decided to use an OCL evaluator that can be invoked from test scripts. Therefore, we had to choose 
an evaluator that was efficient in terms of evaluating expressions, for example that does not require to 
be called several times for evaluating a single expression. After investigating several OCL evaluators 
such as OCLE 2.0 [30], OSLO [31], IBM OCL parser [32], and EyeOCL Software (EOS) evaluator 
[33], we chose EOS as we found this to be the most fitted evaluator for our requirements. Since EOS 
is a Java package, to invoke methods from its classes we need to have access to Java from a test script. 
For example, in one of our case studies, test scripts were in a python-based scripting language. In 
order to access EOS from Python, we used Jpype [63] which is an extension to Python giving access 
to Java libraries through interfacing at the native level in both virtual machines (Java and Python). In 
the other case study, we used the Java Native Interface [64] to access the EOS in test scripts in C++.  

To evaluate OCL expressions, EOS requires class and object diagrams to be loaded into its memory. 
In order to accomplish this, we wrote another MOFScript transformation that takes the UML class 
diagram (modeling state variables, method calls, and signal receptions of the SUT) as input and 
generates a Java wrapper class that includes a set of EOS method calls for making class and object 
diagrams. This wrapper class is generated before executing the test tree to test scripts transformation. 
During test executions, we create the required object model based on the current values of system state 
variables.   

4.3 Test case generation process 
In this section, we will discuss how we designed and implemented the activities discussed in Section 
4.2. Figure 12 depicts the architecture of TRUST, which consists of five components. Table 2 shows 
the mapping between each activity and a component. Each component has provided and required 
interfaces with other components to ease extensibility and configurability, as discussed in Section 4.1. 
Each interface provides or requires models that are instances of well-defined metamodels. For 
example, the TestModelGenerator component in Figure 12 requires an interface from the 
TestreadyModelMaker component to access the flattened state machine, which is an instance of the 
UML metamodel. In addition, the TestModelGenerator component provides an interface to the 
TestScriptGenerator component to access the test tree (e.g., the transition tree), which is an instance of 
the test tree metamodel. The architecture shown in Figure 12 was developed with the aim to support 
extensibility and configurability. For instance, if TRUST needs to be extended to handle C++ as an 
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output test scripting language, the only component to modify is the TestScriptGenerator component 
where new transformation rules in MOFScript must be defined. The other components do not require 
any change. Each component also has clearly defined configuration parameters that can easily be 
adjusted. For instance, if the coverage criterion is required to be changed from All round-trip paths to 
All Transitions, we only need to change the input coverage criterion in the TestScriptGenerator 
component.  

 
FIGURE 12. ARCHITECTURE DIAGRAM OF TRUST CONFIGURED FOR UML STATE MACHINES 

 

 

TABLE 2 ACTIVITIES IMPLEMENTED BY EACH COMPONENT 

Component Activity 

TestreadyModelMaker A1 

TestModelGenerator A5 

TestScriptGenerator A6 

OCLEvaluator A3 

TestDataGenerator A4 

 

Figure 13 shows interactions between different components that take place at runtime when TRUST is 
executed with an input state machine. The state machine is passed to the TestreadyModelMaker  
component, which flattens the state machine and passes the flattened state machine to the 
TestModelGenerator component. This component generates the test model from the flattened state 
machine and passes it to the TestScriptGenerator component. The TestScriptGenerator component 
determines if a trigger (a method call or a signal reception) in a test script needs static test data. Test 
data can be generated statically if values can be determined prior to execution of the test script, or 
dynamically in the other case. The parameters whose values can be determined only at runtime are 
obtained at this point. Section 4.4 provides more specific examples of static and dynamic test data 
generation. 

In the current version of TRUST, static data for a parameter is generated randomly from the possible 
set of values. Generating random test data may not be appropriate when the parameter of a trigger is 
used in the associated guard. In this case, a parameter value that satisfies the guard must be chosen, so 
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that the trigger can be fired. However, if the value of a parameter is selected randomly from a large set 
of possible parameter values, then the possibility of selecting the parameter value that satisfies the 
guard may be very low. Hence a more efficient test data generation technique based on search or 
optimization techniques [60] should be considered. This will be supported in future versions of 
TRUST.        

 
FIGURE 13. INTERACTIONS BETWEEN DIFFERENT COMPONENTS OF TRUST 

4.4  Test case execution  
Figure 14 shows how a test driver interacts with the SUT and other external tools when it executes a 
test case. Each test case consists of a series of triggers (methods or signals) with optional guards. The 
state of the system is checked before and after executing each trigger based on state invariants written 
as OCL constraints. When a test case is executed, the test driver initializes EyeOCLWrapper and 
TestDataGenerator (messages 1.1 and 1.2, respectively). Afterwards, the test driver obtains the state 
of the SUT by interacting with the SUT (message 1 in the loop fragment). The state of the SUT can be 
obtained in many ways. If the implementation of the SUT is in an object-oriented language such as in 
Java or C++, the state variables can be accessed using getter methods of classes if they are available. 
Alternatively, if the source code is available, but there are no getter methods, the source code needs to 
be instrumented before and after each method call to obtain the current state of the SUT. In the other 
case, if the source code is not available, then there are two possible options. The first option is that the 
system state might be obtained using some facilities of the implementation language. For example, if 
the Java byte code of the SUT is available, then Java’s reflection facility [65] can be used to access the 
system state. The second option is to use a test script language that provides some mechanisms to 
access the state of the SUT. For instance, in one of our case studies, the test scripting language has the 
ability to query the state of the SUT using some predefined macros.  

In our implementation, the test driver retrieves the minimum system state information by querying the 
values of only those state variables that are used in the OCL constraint which is to be evaluated. After 
obtaining the current state of the system, the test driver creates an object diagram using OCLEvaluator 
via the EyeOCLWrapper class (message 2 in the loop fragment). This class automatically generates an 
implementation of the class diagram and instantiates the object diagram corresponding to the 
implementation at runtime, based on the current state of the system (message 2.1 and 2.2 in the loop 
fragment). The test driver then evaluates the expected system state using OCLEvaluator via the 
EyeOCLWrapper class (message 3 and 3.1 in the loop fragment). Once the system state is evaluated 
against the expected state, the trigger, which may be guarded, should be executed. If dynamic test data 
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is required for the trigger, the test driver communicates with the TestDataGenerator class (message 1 
in the opt fragment) to obtain required values. Whether the value for a parameter must be generated at 
runtime is indicated in the data model of the SUT. During the test case generation, TRUST checks if a 
parameter requires dynamic data generation or if static data is readily available.  

In the case of guarded triggers, the associated guard must be evaluated before executing the trigger and 
after obtaining the dynamic test data. The guard may contain system variables and input parameters of 
the trigger. This means that in order to evaluate the guard, we need to obtain the system state and the 
values of the parameters (possibly dynamically generated) involved in the guards at runtime; The 
static and dynamic parameters that are used in the guard are replaced with their current values 
obtained from TestDataGenerator dynamically or statically. The guard is then evaluated in the same 
way as the state of the system was evaluated (messages 4, 5, 5.1, 5.2, 6, 6.1). Once the guard is 
evaluated, the appropriate method (i.e., the method that implements the trigger event) is invoked on 
(or signal is sent to) the SUT (message 7). After the execution of the method (or reception of the 
signal), the state of the system is evaluated (message 8, 9, 9.1, 9.2, 10, 10.1) in the same way as the 
previous state and guard evaluations. This process is repeated for all triggers in the test case. Finally, 
cleanup operations are performed on the SUT (message 1.3) once all the triggers have been executed 
on the system. These operations release the resources used by a test case such as memory and CPU.       

 
FIGURE 14. INTERACTIONS BETWEEN DIFFERENT COMPONENTS WHILE EXECUTING A TEST 

CASE 

5. Applying TRUST on industrial cases 



23 

 

This section discusses the advantages and challenges of using model transformation technologies to 
support MBT automation by presenting two industrial usages of TRUST that cover two different 
contexts and application domains. Section 5.1 describes the two case studies. Section 5.2 addresses the 
technological issues in the two case studies. Finally, Section 5.3 provides the lessons learned from 
applying TRUST on realistic models. Information about the case studies is sanitized due to 
confidentiality restrictions.   

5.1 Description of case studies 
The companies where the case studies took place are international leaders in their respective fields. In 
both case studies, the models represent the state behavior of real world systems and the generated test 
cases are executable on the companies’ testing platforms. Both state machines are complemented by 
constraints specifying state invariants which, as discussed earlier, will be useful to derive automated 
test oracles. The first case study (Case A) is the core subsystem of a multi-media conferencing system, 
whereas the second case study (Case B) is a safety monitoring component in a safety-critical control 
system. Both cases are suitable choices since these systems exhibit a complex state-based behavior 
that can be modeled as UML state machines.  

The modeling process in Case A started with two presentations by the company representatives, 
followed by reading some specification documents. Then we had two workshops with experts from the 
company to better understand the system and domain. Afterwards, we built the system model in three 
increments. For each increment, we validated the models, with the help of company experts, both 
syntactically and semantically. Finally, during the development of TRUST, the model was augmented 
with many modeling details that were missed initially such as missing parameter type of an attribute of 
a class and missing connection point references on submachines. The resulting hierarchical state 
machine consists of four submachine states. The first submachine state hides two simple states, 
whereas the second contains two additional submachine states, each having two simple states. This 
gives in total eight simple states and 41 transitions in three levels (Table 3). The flattened state 
machine consists of 54 transitions and eight states. A total of 100 person-hours were approximately 
spent on understanding the system (60 person-hours) and modeling the SUT (40 person-hours).  

In Case B, four initial meetings took place where the company representatives introduced the authors 
to the domain and the functionality of the SUT to be developed. In addition to the company 
representatives, the initial requirements specification and design documents served as sources for 
identifying the system behavior. Throughout the meetings, the authors made initial versions of the 
state-based model of the SUT. One of the company representatives took an active part in the 
subsequent modeling iterations. As part of the modeling process, the requirements were discussed with 
several of the company representatives whenever questions were raised and decisions had to be made. 
On many occasions, disagreements about the system specifications arose among stakeholders. In total, 
we spent approximately 320 person-hours on understanding (200 person-hours) and modeling the SUT 
(120 person-hours). It is important to note that, as opposed to Case A, where the system pre-existed 
the study, the modeling effort here could have been significantly smaller if the specifications had been 
stable to start with. At the top most level, the resulting hierarchical state machine consists of one 
simple state and one orthogonal state with two regions. Enclosed in Region1 are two simple states and 
two simple-composite states. Each of the simple-composite states contains two simple states. Region2 
encloses three simple-composite states that again consist of, respectively, two, two, and three simple 
states. This adds up to 14 simple states and a maximum hierarchy level of two. The complete state 
machine contains 53 transitions (Table 3). The flattened state machine for Case B consists of 56 states 
and 391 transitions.  
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5.2 Use of the technology 
In this section, we explore the feasibility of applying TRUST to two industrial case studies. One 
important aim is to demonstrate how the architecture of TRUST helps with configurability and 
extensibility. We will show how components in TRUST can be changed to fit different contexts.  

TABLE 3 FEATURES SUMMARY OF THE HIERARCHICAL STATE MACHINES 

State machine feature Case A Case B 

Unflattened Flattened Unflattened Flattened 

Maximum level of hierarchy 2 - 2 - 

Number of submachines 4 - 0 - 

Number of simple-composite states 0 - 5 - 

Number of simple states 8 8 14 56 

Number of orthogonal states 0 - 1 - 

Number of transitions 41 54 53 391 

 

5.2.1 Using TRUST for test case generation in Case A 

Communication from the test driver with this subsystem is done via APIs that are also used by other 
subsystems for requesting services. To enable test verdicts, the subsystem continuously reports its 
state through an XML document that can be accessed from the test scripts. Applying TRUST on Case 
A requires configuration values presented in Table 4. 

TABLE 4 CONFIGURATION PARAMETERS OF TRUST FOR CASE A 

Parameter Value 

Input model UML 2.0 state machine 

Test model Transition tree 

Coverage criterion All round-trip paths 

Test scripting language A Python-based language 

Test data generation technique Random data generation 

OCL Evaluator EOS 

A transition tree consisting of 4634 round-trip paths is generated from the flattened state machine. The 
test cases are generated in a Python-based test scripting language used in the company of Case A. The 
number of test cases in the test suite is the same as the number of paths in the transition tree (4634). 
However, out of 4634 test cases, only 463 test cases were found to be feasible. The infeasible test 
cases exist in the generated test cases because of guards on certain paths that cannot be satisfied. All 
feasible test cases are executable using the company’s testing platform. 

In order to access EOS for evaluating the state invariants and guards from the Python-based test 
scripting language, we used Jpype [63]. Jpype is an extension to Python, giving access to Java libraries 
through interfacing at the native level in both virtual machines (Java and Python). 
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Test case generation took place on a system with Intel Duo CPU 2.40 GHZ processor, with 4GB of 
RAM. The system was running Microsoft Windows Vista operating system and IBM Rational 
Software Architect Standard Edition 7.5.1. TRUST took 19 seconds to flatten the state machine, six 
seconds to generate the transition tree, and one minute and 30 seconds to generate test cases. Such 
execution times were deemed perfectly acceptable in the Case A context.  

5.2.2 Using TRUST for test case generation in Case B 

We applied TRUST with the configuration values presented in Table 5 and the flattened state machine 
described in Table 3 as input.  

TABLE 5 CONFIGURATION PARAMETERS OF TRUST FOR CASE B 

Parameter Value 

Input model  UML2.0 state machine 

Test model Test tree for all transitions 

Coverage criterion All transitions 

Test scripting language C++ 

Test data generation technique Random data generation 

OCL Evaluator EOS 

 

After applying the flattening transformation and removing unreachable state combinations due to 
conflicting state invariants, the flattened state machine consists of 56 states and 391 transitions, mostly 
guarded. In this case, TRUST was configured for another coverage criterion, the all transitions 
criterion, applied on a test tree which conforms to the same test tree metamodel presented in Figure 9. 
The tree is built differently from Case A in such a way that traversing all paths in the test tree achieves 
all transitions coverage. The instantiation of the metamodel for this case was implemented using 
Kermeta.  

We chose all transitions coverage for Case B due to the much larger size of the model in order to 
obtain a manageable set of test cases. TRUST generated 335 test paths for Case B, where C++ was the 
test scripting language. Since the first version of TRUST was implemented for Case A, TRUST 
needed to be extended to support SBT for Case B. Therefore, a C++ test script generator was added to 
TRUST. Extending TRUST for C++ involved adding a new set of transformation rules according to 
C++ syntax to the TestscriptGenerator component of TRUST. This required changes in the 
MOFScript rules. There was some reuse of the MOFScript rules used in the tool instantiation for Case 
A. Only the logic for traversing the tree could be reused, however, because the mapping rules for C++ 
were quite different from a Python-based script language for Case A due to different language 
constructs.  

The number of generated test cases is the same as the number of paths in the test tree: 335. However, 
out of 335, only 205 test cases were found to be feasible. All the feasible test cases are ready to be 
executed on the testing platform and do not require modifications. Once again, the infeasible test cases 
exist in the generated test cases because of guards on certain paths that cannot be satisfied. Test data 
was generated in the same manner as in Case A by randomly selecting the value for the parameters 
based on the data type. However, in Case B, TRUST was extended to interact with a new 
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TestdataGenerator component implemented in C++. We chose to do this in C++ because test scripts 
in Case B were in C++ and interacting with a TestdataGenerator component implemented in C++ was 
more efficient. Java Native Interface (JNI) [64]  was used to access EOS from the C++ test scripts. For 
this case study, the platform specifications were the same as for Case A except for the 3GB of RAM. 
TRUST took 281 minutes to flatten the state machine, 64 minutes to generate the test tree, and 24 
seconds to generate test cases. We observe that the time spent on flattening the state machine is 
considerably more in Case B than for Case A. The main reason for this is that the current 
implementation of the flattening algorithm for removing concurrency requires numerous traversals of 
the transition set. The traversals are necessary in order to identify possible transitions between the 
Cartesian product states. For each transition in each region of the unflattened state machine, it must be 
checked whether or not the transition triggers are also defined for transitions in the other parts of the 
Cartesian product state. This implies that an event could trigger transitions in several regions [58]. 
Improving the efficiency of the algorithm is part of our future work. 

5.3 Lessons learned 
Developing TRUST and then applying it to real world case studies taught us some important lessons 
about both modelling and model transformations. In this section, we will discuss the lessons learned 
for these aspects. 

5.3.1 Modelling of the SUT 
For our case studies, precise behavioural modelling of complex industrial systems using standard 
UML 2.0 state machines was a prerequisite for using TRUST. The flattening component requires that 
it is provided with a correctly specified state machine and currently does not provide any feedback in 
case of errors in the model. Modeling correctly, however, is not a trivial task and requires that the 
UML specification be carefully studied. Even though constructs like concurrency and hierarchy are 
supposed to ease the understandability of large state machines, such constructs may actually confuse 
the developer. In particular, we experienced that concurrency, if not carefully applied, could introduce 
modeling errors in practice. For example, concurrent regions sometimes make it difficult to see the set 
of transitions between state combinations. A typical fault is that a guard is missing on a transition, 
which allows for transitions to state combinations that are illegal targets from particular source states. 
However, we found that it helped to inspect the flattened state machine to detect such mistakes. In 
Case B, for instance, we detected that a missing guard on a transition from an initialization state to a 
system running state in Region 1 would allow transitions to be incorrectly fired in Region 2.   

5.3.2 Model-to-model transformation technologies 
The model-to-model transformations in TRUST used two different transformation languages: Kermeta 
and ATL. Kermeta appeared to be highly appropriate for flattening UML state machines. In addition to 
being an object-oriented language, it allows you to add behavior to the metamodel through aspect 
weaving. However, we experienced that navigating in the metamodel was rather time consuming. 
Alphabetically organized in a super-sub class structure, the UML 2.0 metamodel is a complex model 
that is difficult to navigate. Having tool support integrated in the Kermeta plug-in that could remove 
abstract classes and instead present the concrete classes relevant for a particular purpose would have 
been very useful. 

Since the metamodel for test trees is relatively simple, the transformation from the flattened state 
machine to the test model was expected to be straightforward and easy to implement by depth first 
traversal of the state machine using a declarative language (ATL). However, we found that the 
declarative programming style was not intuitive to handle, perhaps because most developers are used 
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to imperative programming languages. Even though the final ATL code for test model generation is 
very short, debugging it was quite difficult especially when the input model was big. For our second 
case study, the input state machine was quite large and caused Eclipse to run out of memory while 
generating a transition tree for all round-trip paths coverage criteria. This was due to the many 
recursive rule calls required to generate the transition tree from the flattened state machine. 
Implementing transition tree generation using recursion was the only possible option when writing 
rules in the ATL language in a declarative fashion. Technology-wise, we also faced many problems 
while debugging the ATL rules, especially when the input models are large causing the debugging 
interface to hang. 

5.3.3 Model-to-text transformation technology 
Developing the final set of transformations in MOFScript was the easiest part of developing TRUST, 
because the rules are defined in an imperative form. MOFScript is quite similar to programming 
languages like Java, and provides powerful features that are easy to use for querying models, 
outputting text, and accessing external Java libraries. We did not face any special challenges while 
using MOFScript for generating test scripts.  

6. Discussion 
In order to achieve our requirements for an MBT tool (Section 4.1), we identified five important 
aspects that must be extensible and configurable. These five aspects are related to: test ready model 
generation, test model generation, test script generation, test data generation, and constraint evaluation. 
All important aspects of an MBT tool are addressed by specific components in the TRUST 
architecture in Figure 12. We defined clear interfaces between the components and the external tools 
so that communication among the components and with the external tools can take place on input 
models that are instances of standard metamodels. We addressed the first three aspects of TRUST 
using model transformation languages because using such technologies was an effective way to 
specify the transformations at a more abstract level, through the mapping of metamodels.  

The first aspect is related to making an input model of the SUT test ready, so that the test model can be 
generated from the test ready model. In the case studies provided in this technical report we configured 
TRUST for UML 2.0 state machines, which offer features for concurrency and hierarchy. As discussed 
previously, such features ease modeling but complicate test automation. Consequently, many SBT 
tools [5, 13] assume that state machines do not have concurrency and hierarchy. Our first objective 
was to flatten state machines so as to simplify the implementation of different test models and 
coverage criteria on them. Coverage criteria can be implemented on unflattened state machines, but 
require a complex algorithm and thus make it difficult to implement different test models. For this 
reason we chose to separate flattening and test model generation so that it would be easier to 
implement new test models based on flattened state machines. We implemented state machine 
flattening by model transformations using the Kermeta language as described in Section 4. The current 
implementation for flattening is based on the UML 2.0 metamodel. It can, however, be extended to 
UML profiles and any future changes in the UML metamodel by changing the Kermeta rules for 
flattening state machines, without affecting the rest of the tool. In the current TRUST implementation, 
state hierarchies can be efficiently processed whereas concurrent states lead to scalability problems 
and should be further investigated, as discussed in Section 5.2.2.  

The second aspect was related to the test model generator component, which transforms the test ready 
model (flattened state machines in our case studies) into the test model (test trees in the current version 
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of TRUST). This component is extensible to various test models. A test model can be defined based 
on the type of faults targeted or the coverage to be achieved. In order to implement other test models 
based on state machines, metamodels for the test models must be developed along with new mapping 
rules from flattened state machines to the test models in the ATL, Kermeta or any other M2M 
transformation language.  

The third aspect, related to test script generation, is another important aspect of TRUST, which 
requires a test model’s metamodel, a defined coverage criterion, and knowledge about the test script 
language’s grammar. TRUST can be extended for producing test scripts in various test script 
languages by implementing new transformation rules in MOFScript. For example, in Case B, we 
extended TRUST to output test scripts in C++ in contrast to Case A, where test scripts were generated 
in a Python-based script language. We achieved this by changing the MOFScript transformation rules 
to generate the C++ syntax. We experienced that the rules addressing the logic for traversing the tree 
could be reused. The rest of the mapping rules that were specific to the test script language were not 
helpful – at least not when the developer was unfamiliar with the test script language used in the 
existing tool instantiation.  

Even though the MOFScript rules had to be modified from Case A, the rest of the implementation of 
TRUST remains unchanged. It is important to note that even for a simple but real system and standard 
coverage criterion, the number of test cases can be very large (Case A: 4634). Furthermore, small 
changes in the specification of a SUT can result in dramatic changes in its test suite. For example 653 
test cases are deleted by removing just two transitions from the unflattened state machine of Case A. 
This shows how much effect a single transition on the model can have on the test cases. Furthermore, 
considering the fact that specifications of such systems may change quite frequently, it is not feasible 
to generate and maintain such large numbers of test cases manually. Thus, to support systematic 
testing in a scalable way, an MBT tool that can generate test cases automatically every time the 
specification changes, is required.      

The test data generator in the current implementation of TRUST provides only random test data 
generation, because in both of our case studies, guards on transitions are not constrained by the input 
parameters of associated triggers on the transitions. It can, however, be changed to a more 
sophisticated test data generation technique, such as techniques based on search-based data generation 
algorithms [60]; any test data generator can be easily integrated with the rest of the tool as long as the 
defined interfaces are used. Furthermore, some of the guards in our case studies are based on state 
variables, which may not be satisfied while executing some paths and thus leading to many infeasible 
test cases. Effectively removing such infeasible test cases is future work.  

Finally, we used EOS [33] as the OCL evaluator with the current implementation of TRUST. Again, 
the OCL evaluator can be changed to any OCL evaluator depending on the requirements of a tool. For 
instance, if the tool needs to evaluate constraints written in both OCL and the Value Specification 
Language (VSL) of the MARTE profile [51], another suitable evaluator can be integrated with the tool 
without making changes to other components.     

The modeling in the two case studies took approximately 100 and 320 hours for Case A and Case B, 
respectively. If excluding the time required to understand the system, which may not be fully 
necessary if the modeling is done by developers themselves, this effort comes down to 40 and 120 
hours. Given the large numbers of feasible test cases required (463, 205) for systematic testing on 
these case studies, MBT can be considered beneficial if the manual identification and writing of test 
cases costs, on average, less than 6 minutes and 36 minutes per test case, respectively for the two case 
studies. The latter number, though being much larger than for Case A, must be interpreted with care as 
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the modeling effort for Case B was inflated due to frequently changing specifications leading to 
iterative modeling, as discussed in Section 5.1. This effort cannot therefore be solely attributed to 
modeling but also includes the specification effort that would have been necessary regardless of 
whether modeling was applied. Based on the above effort numbers per test case, under realistic 
assumptions, MBT is clearly likely to be beneficial in many contexts as devising test cases and writing 
test scripts is likely to take much more time than 6 and 36 minutes (this being probably an 
overestimate) in practice. Furthermore, this analysis does not account for the fact that MBT yields test 
cases that are more systematic, less error-prone, and that changes to the SUT behavior can simply be 
addressed by re-generating the test cases, thus facilitating the evolution of test suites. Ideally, a 
controlled experiment involving the manual writing of test cases would be warranted to demonstrate 
tangible benefits, but writing so many test cases manually is by all practical means out of reach, 
especially in the context of an experiment.  

The current implementation of TRUST still has limitations that will be improved in the future: 

• The flattening algorithm does not handle the following pseudo states: shallow and deep 
history, join, fork, junction, and terminate. Another issue is the missing evaluation of OCL 
expressions during the generation of the state combinations in states with more than one 
region. This means that impossible state combinations may be included in the flattened set of 
states due to conflicting state invariants. In addition, the algorithm may introduce impossible 
transitions due to guards that will never become true when transitions are triggered from 
certain states. These situations occur when state invariants hinder state variables from being 
initialized with the specific values required to fulfill the guard condition.  

• Testing of TRUST has not been done systematically. In order to check if transformations are 
correct, we created models by hand and checked the transformed models manually. However, 
we could attempt to use tools such as [66] to generate inputs for transformations, but one 
important issue is that there is no tool support to generate and check expected outputs.  

• We do not have any support for debugging. However, we output messages whenever a state 
invariant or a guard fails during test execution.  

• We do not have support for model validation, and we assume that UML input models are 
correctly designed and are not missing any information required by TRUST.  

7. Conclusions and future work 
Tool support for model-based testing (MBT) has dramatically improved in recent years, but most of 
the tools specifically target an application context and cannot easily be adapted to others. In this 
technical report we report on the design and application of TRUST, a TRansformation-based tool for 
Uml-baSed Testing, which can be extended and configured for various application contexts. TRUST is 
based on model-transformation technologies and features an architecture with clear separation of 
concerns and interfaces, thus making it easily extensible and configurable for different context factors 
such as input models, test models, coverage criteria, test data generation strategies, and test scripting 
languages. We have illustrated this by adapting TRUST to the needs of two industrial case studies 
from two different companies: a multi-media conferencing system and a safety-critical control system. 
We also report on the costs, challenges, and likely benefits of MBT using TRUST in these two 
industrial contexts.  

Our case studies have led to a number of results and lessons learned both related to our 
transformation-based approach to automating MBT and the benefits and challenges of MBT on 
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industrial case studies. In terms of benefits, the comparison of the cost of modelling with the number 
of test cases generated, in both our case studies, has shown that using TRUST should yield significant 
cost savings when applying standard state machine coverage criteria. In other words, the cost of 
writing manually the same test cases is likely to be larger than the cost of modelling the system under 
test (SUT) and generating the test cases. Using TRUST offers many other potential advantages which 
are, however, difficult to quantify. For example it should make the generation of test scripts less error-
prone, enable the easy re-generation of test cases when the SUT specifications change, and ensure that 
testing is systematic and not redundant, an objective hard to achieve for a human tester. In terms of 
scalability, the only issue seems to be with the flattening of concurrent states, which may take a few 
hours on complex, highly concurrent state machines. Otherwise, the processing steps involved in 
TRUST have shown to be in the worst case a matter of minutes.  

Modeling SUTs correctly, which is required by TRUST or any other MBT tool, is however not a 
trivial task on real systems. Future versions of TRUST should provide feedback on the likely 
correctness, consistency, and completeness of input models. This would save substantial modeling 
time and make MBT even more beneficial. For example, we experienced that inspections of flattened 
versions of complex state machines led to the detection of modeling errors due to error-prone 
constructs like concurrency.  

Different Model-to-model transformation technologies, such as ATL and Kermeta, have shown 
different advantages. ATL tends to yield small transformation rules. However, to the use of declarative 
programming may not always be appropriate and, in some cases, makes it difficult to define and 
validate rules. Kermeta, on the other hand, follows the imperative paradigm and, as a result, complex 
mappings between metamodels could more easily be defined. ATL has also been shown not to scale 
up well to large input models. On the other hand, MOFScript, a model-to-text transformation 
technology, was easy and convenient to use to generate test scripts. Like Kermeta, this follows the 
imperative programming paradigm, which provides powerful features that are easy to use for querying 
models, outputting text, and accessing external Java libraries.  

In the future, we are planning to implement more transformations for various state-based test models 
and coverage criteria. After implementing these transformations, we will conduct empirical studies to 
evaluate the cost effectiveness of different test strategies for our case studies. We are also devising 
algorithms to make SBT more scalable, for example by minimizing infeasible test paths and 
implementing more sophisticated test data generation techniques based on search-based algorithms. 
Another important area of future work would be to provide model validation support in TRUST. 
Finally, we are planning to extend TRUST for testing non-functional properties of a system modeled 
with UML and different profiles for modeling non-functional properties, such as MARTE profile for 
modeling real time and embedded systems. 
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