
1

Technical Report 2010-01:

Model Transformations as a Strategy to Automate
Model-Based Testing – A Tool and Industrial Case

Studies, Version 1.0
S. Ali, H. Hemmati, N.E. Holt, E. Arisholm, L.C. Briand

{shaukat,hemmati,ninaeho,erika,briand}@simula.no

Simula Research Laboratory and University of Oslo, Norway

Abstract

In recent years, Model-Based Testing (MBT) has attracted an increasingly wide interest from industry and
academia. The beneficial use of MBT, however, requires tools that not only automate the testing process, but that
also rely in an extensible and configurable architecture that make them adaptable to various contexts of
application. Though a number of tools have been developed to support MBT, this technical report introduces a
new approach for designing and developing MBT tools that is based on model transformation technology. We
report on the experimental development of a novel MBT tool, TRansformation-based tool for Uml-baSed
Testing (TRUST), which software architecture and implementation strategy supports configurable and extensible
features such as input models, test models, coverage criteria, test data generation strategies, and test script
languages. Based on two industrial case studies, we demonstrate the configurability and extensibility of TRUST.
We also investigate the challenges and likely cost savings when compared to manual test generation.

Keywords: model-based testing tool, model transformation, automatic test-case generation, model-driven
development, state-based system, UML state machine, extensibility, configurability

2

Contents

1. INTRODUCTION 4

2. BACKGROUND 5

2.1 Model‐based and state‐based testing 5

2.2 Model‐Driven Architecture 6

2.2.1 The MDA Process 6

2.2.2 Classification of transformations 8

3. RELATED WORK 8

4. REQUIREMENTS, DESIGN, AND IMPLEMENTATION OF TRUST 11

4.1 Requirements and Approach 11

4.2 Developing TRUST using a model transformation approach 13

4.2.1 From UML state machines to test models 13

4.2.2 From the test model to executable test cases 17

4.3 Test case generation process 19

4.4 Test case execution 21

5. APPLYING TRUST ON INDUSTRIAL CASES 22

5.1 Description of case studies 23

5.2 Use of the technology 24

5.2.1 Using TRUST for test case generation in Case A 24

5.2.2 Using TRUST for test case generation in Case B 25

5.3 Lessons learned 26

5.3.1 Modelling of the SUT 26

5.3.2 Model‐to‐model transformation technologies 26

5.3.3 Model‐to‐text transformation technology 27

3

6. DISCUSSION 27

7. CONCLUSIONS AND FUTURE WORK 29

8. REFERENCES 30

4

1. Introduction
Deriving test cases from a behavior model of a system, known as Model-Based Testing (MBT) [1], is
not a new domain of research in software engineering [2]. However, in recent years, the level of
interest in industry and academia has been rapidly increasing. This interest can be seen from the many
academic studies [1, 3-7] and industrial projects [8-11] on model-based testing being reported. This
suggests that there is an increasing awareness of the benefits offered by MBT[1] . But these benefits
cannot be realized without having proper tool support, matching the needs of each specific context, for
automating MBT [3].

Many tools have been developed to support MBT [10-16]. However, all of them have at least one of
the following drawbacks:

• They do not support well-established standards for modeling the System Under Test (SUT). This
makes it difficult to integrate MBT with the rest of the development process, which in turn makes
the adaptation and use of MBT more costly.

• They cannot be easily customized to different needs and contexts. For example, a tester may want
to experiment with different test strategies to help target specific kinds of faults. Furthermore,
constraints can evolve, e.g., the test script language in a company can change.

Thus, we propose an MBT tool, TRansformation-based tool for Uml-baSed Testing (TRUST), whose
software architecture and implementation strategy facilitate its customization to different contexts by
supporting configurable and extensible features such as input models, test models, coverage criteria,
test data generation strategies, and test script languages. We define configurability as the ability of
selecting among different options provided by the tool for a feature. For example, the tool is
configurable with respect to coverage criteria if it lets the user select among several coverage criteria
such as all transitions and all round trip path coverage criteria [17]. We define extensibility as the
ability of providing more options for a feature without any modification in the components that are not
responsible for the feature. For example, providing support for generating test scripts in more
languages is considered as extending the tool.

Our approach, which is inspired from the Model-Driven Architecture (MDA) standard [18], relies on a
series of model transformations to generate test cases. The main idea is to design a tool in such a way
that its different components provide and require standard interfaces with input and output models
based on standard metamodels. Each component in this tool is responsible for one feature (e.g., test
model, test data, etc.) involved in the process of generating test cases. This separation of concerns and
provision of standard interfaces make TRUST configurable and extensible. In addition, model
transformation technology helps the developer upgrade the components with a new set of
transformations from standard inputs into well-defined outputs.

The approach allows instantiating new, context specific MBT tools by extending or configuring
TRUST with customized features, such as input models, test models, coverage criteria, test data
generation strategies, and test script languages. To demonstrate the configurability and extensibility of
TRUST, we instantiated two tools for two case studies, by extending and configuring TRUST with
different test models, coverage criteria, and test scripting languages. On the basis of the case studies,
we also evaluate the costs, challenges, and likely benefits of TRUST in particular and MBT in general.
Since the case studies concern systems whose behavior is mostly state driven, they are largely based

5

on input models represented as Unified Modeling Language (UML) state machines [19]. However, the
description of our approach, many of our results, and lessons learned are not specific to state-based
testing (SBT).

The remainder of this technical report is organized as follows. Section 2 provides the relevant
background on model-based testing and model-driven development, with a focus on SBT. Section 3
introduces existing model-based testing tools and provides an analysis of their extensibility and
configurability. Section 4 presents key requirements, architecture and implementation details of
TRUST. In Section 5, we present experiences from two industrial case studies, in which we applied
TRUST. Benefits and limitations of applying TRUST are discussed in Section 6. Finally, Section 7
outlines future work and concludes the technical report.

2. Background
In this section, we define basic concepts relevant to model-based testing, with an emphasis on
automated testing based on UML state machines. In addition, model transformation concepts from the
model-driven development domain will be introduced since these are the basis for our test case
generation approach.

2.1 Model-based and state-based testing
The general process of MBT that we use in this technical report starts with modeling the SUT and
making it ready for test generation. The next step is deriving abstract test cases from the test ready
model according to a test strategy, which is typically defined based on a test model and coverage
criteria to guide its traversal [20]. Finally, executable test cases are generated using abstract test cases
and input test data.

In our case studies, we will apply this general MBT approach to state-based testing (SBT). Many
systems, such as embedded real-time systems [21], telecommunication systems [2, 22], and
multimedia systems [23], exhibit state-driven behavior. UML state machines, which are extensions of
traditional Finite State Machines (FSM), can be used to model such behavior. Traditional FSMs
cannot model software systems with concurrent behavior. Concurrency in UML state machines is
modeled using composite states with two or more regions [19]. When modeling complex software
systems with FSMs, the number of states and transitions can grow exponentially with system size.
This can be handled by UML state machine features for modeling submachines. Many tools (e.g., [24,
25]) support the modeling of UML state machines.

To apply MBT on UML state machine as the input model, several test strategies are presented in the
literature, such as piecewise, all transitions, all transitions k-tuples, all round-trip paths, M-length
signature, and exhaustive coverage [17]. For example, the all round-trip strategy requires that all paths
in a state machine that begins and ends with the same state must be covered. To cover all such paths, a
test tree (consisting of nodes and edges corresponding to states and transitions in a state machine) is
constructed by depth-first traversal of the state machine. The test tree corresponding to the all round-
trip strategy is called a transition tree. A node in the transition tree is a terminal node if the node
already exists anywhere in the tree that has been constructed so far or is a final state in the state
machine. Now, by traversing all paths in the transition tree, we cover all round trip paths and all
simple paths (the paths in the state machine that begins with the initial state and ends with the final
state) [17]. Another stopping criterion for the transition tree construction is proposed in [26], where a
node is terminal if (i) it is a final state of the state machine or (ii) it is a node that already exists on the
path that leads to the node. This stopping criterion makes the all round-trip strategy more rigorous, and

6

thus gives more coverage. This strategy has been experimentally evaluated to be more cost-effective
than the all transitions and all transition pairs criteria [26]. Henceforth, the transition tree or all round-
trip paths coverage criterion refer to the modified versions proposed in [26].

To automate testing based on UML state machines, test data must be generated to fire triggers
associated with transitions, and the triggers typically require parameter values. Test data can be
generated randomly from the possible set of values, or using more sophisticated techniques such as
constraint solvers [27], or search-based techniques (for example using genetic algorithms for test data
generation [28]) .

Constraints defined on UML state machines, such as state invariants, guards, and pre/post conditions
of triggers, should be evaluated during the execution of the generated test cases. As shown by many
studies, this is a very effective way to detect failures [3, 29]. These constraints are usually written as
OCL expressions in the context of UML. Examples of available OCL evaluators are OCLE 2.0 [30],
OSLO [31], IBM OCL parser [32], and EyeOCL Software (EOS) evaluator [33].

2.2 Model-Driven Architecture
Model-Driven Architecture (MDA) is a software development approach initiated by Object
Management Group (OMG) [34]. The MDA approach focuses on developing software based on the
incremental development of models at various levels of abstraction. MDA aims at providing a set of
guidelines with tool support to create, process, and transform models. This entails the reliance on a
standardized modeling framework, such as the Eclipse Modeling Framework (EMF) [35]. Being an
Eclipse-based modeling and code generation framework, EMF enables the construction of tools and
applications based on models [35].

2.2.1 The MDA Process
A high level process illustrating the main phases of MDA development is shown in Figure 1. MDA
defines three types of models at three levels of abstractions. A Computation Independent Model (CIM)
focuses on the requirements of the system and its environment [18]. This model is independent from
implementation and platform specific details such as information about the programming language to
be used for the system implementation and the operating system on which the system will be
deployed. Some well-known languages for CIM modeling are the Business Process Modeling
Notation [36] and Business Process Definition Metamodel (BPDM) [37].

A Platform Independent Model (PIM) is a system model that focuses on the operation of the system
[18]. A PIM, however, is independent from how the system is going to be implemented (i.e.,
independent from the technical details of the development platform). PIMs can be modeled in generic
languages such as UML or domain specific languages (DSL) such as WSDL [38] and PIM4Agents
[39]. The transformation from CIM to PIM is manual. However, efforts are being made to automate
the process [40, 41].

FIGURE 1. MDA PROCESS

Model‐to‐Text
(M2T)

Transformation

Model‐to‐Model
(M2M)

Transformation

Manual
CIM PIM Code PSM

7

The third type of model defined in MDA is the Platform Specific Model (PSM). This model describes
a system in terms of implementation constructs. For instance, if the implementation language of the
system is Java, then the PSM will be defined in terms of Java constructs. The transformation from
PIM to PSM models is mostly automated and performed using Model-to-Model (M2M)
transformation languages. Well known M2M transformation languages include Kermeta [42] and ATL
[43]. A typical process for M2M transformation is illustrated in Figure 2.

FIGURE 2. THE PROCESS OF MODEL-TO-MODEL (M2M) TRANSFORMATION

Using M2M transformation languages, we can define mapping rules that map elements of one
metamodel to the elements of another metamodel. Once the rules are defined, a transformation engine
uses these rules and transforms an instance of Metamodel A (Model A in Figure 2) into an instance of
Metamodel B (Model B in Figure 2). We provide below a brief description of the languages that we
used in the current implementation of TRUST.

Atlas Transformation Language (ATL): ATL is a hybrid (declarative and imperative) language and a
toolkit used to produce a set of target models from a set of source models [43]. It is recommended to
use a declarative style to write rules, although complex rules may require using imperative features of
the language. An advantage, though, is that the declarative style results in less transformation code as
compared to writing transformations using imperative languages. This language therefore supports
both styles of writing transformation rules. ATL is available as an open-source plug-in for Eclipse and
uses EMF to handle the models.

Kermeta: Kermeta is an environment for metamodeling based on an object-oriented DSL (Domain
Specific Language). It is built as an extension to the Essential Meta Object Facility (EMOF) [44] and
is available as an open-source Eclipse plug-in [42]. EMOF is used to specify the structure of a model
but not its behaviour. Kermeta, on the other hand, allows operation semantics to be added to such
object-oriented metamodels. Kermeta is aspect-oriented and strongly typed [42]. It can be used for
many purposes, including the simulation of metamodel behaviour, the verification and validation of
models against metamodels, the development of model-driven tools, and the transformation and
weaving of models [45].

The final step is the transformation of PSM into code [18]. There exist languages for Model-to-Text
(M2T) transformations such as JET [46], Acceleo [46], Xpand [46], and MOFScript [47]. A typical
process of M2T transformation is illustrated in Figure 3.

Metamodel A Metamodel B

Model A Model B

instance of instance of

Rules in M2M
transformation languages
such as ATL, Kermeta

Transformation engine of
ATL, Kermeta, etc

input to

8

FIGURE 3. THE PROCESS OF MODEL-TO-TEXT (M2T) TRANSFORMATION

M2T transformation languages such as MOFScript can be used to define transformation rules on a
metamodel (Metamodel A in Figure 3). These rules map elements of a metamodel to textual elements
such as constructs of an implementation language. The transformation engine of a M2T transformation
language uses rules to transform an input model (Model A), which is an instance of Metamodel A (see
Figure 3), into text according to a specific grammar. We provide below a brief description of
MOFScript, a M2T transformation language that we used in TRUST to generate executable test scripts
from a test model.

MOFScript: MOFScript is a language for generating text (such as implementation code,
documentation, reports, etc) from models using M2T transformation rules. Rules (also referred to as
operations) are called explicitly and are written in an imperative way similar to programming and
scripting languages. There exists an eclipse plug-in built on EMF, which supports the MOFScript
language [47]. This means that any EMF-based model can be transformed into text by MOFScript. It
also has the ability to call external Java functions.

2.2.2 Classification of transformations
Huber [48] describes two categories of transformations based on the abstraction level and metamodel.
Vertical transformations change the abstraction level of a model from a higher to a lower level of
abstraction. In contrast, in horizontal transformations, the abstraction level remains the same. PIM to
PSM, or PSM to code transformations are examples of vertical transformation. For instance,
generating Java code from the Java metamodel is a vertical transformation. Refactoring is an example
of horizontal transformation because a refactored model remains at the same level of abstraction as the
original model.

A second way to classify transformations depends on the metamodels on which the transformation is
defined. If the transformation is defined on source and target models instantiated from the same
metamodel, it is labeled as endogenous; otherwise it is exogenous. The transformation from PIM to
PSM is an example of exogenous transformation because metamodels for PIM and PSM will
necessarily be different.

3. Related Work
Several well-known, model-based testing tools have been developed in recent years, such as
TDE/UML (Siemens) [10], SpecExplorer (Microsoft) [11], and IBM Rational Functional Tester [9].

Metamodel A

Model A Text

instance of

Rules in M2T
transformation languages

such as MOFScript

Transformation engine of
MOFScript, etc

input to

9

Based on just three sources, we were able to find references to more than 50 model-based testing tools.
In this technical report we focus on configurations of TRUST with state machines and thus we are
interested in comparing this SBT version of TRUST with other SBT tools. Consequently, we focus our
discussion of related work to tools that (i) are (partly) based on UML state machines, (ii) automatically
generate executable test cases including test oracles, and (iii) have at least some support for
extensibility and configurability.

After applying these criteria on more than 50 model-based testing tools [1, 8, 49], we were left with
five tools [12-15, 50]. We then collected information regarding the extensibility and configurability of
their different features (input model, test strategy, and output language of the tools). Since TRUST
generates test cases from UML state machines, we collected the following information related to UML
state machines from the tools to determine the degree to which their input model can be extended and
configured:

• UML metamodel: As the UML metamodel undergoes changes on a regular basis, a test tool
must have the ability to accommodate these changes with reasonable effort.

• Constraint evaluation: A UML state machine may contain various types of constraints such as
state invariants and guards. These constraints can be defined in different languages such as
OCL, Java, or any other tool-specific language. Therefore, the tool architecture should easily
accommodate changes in constraint language or evaluation technology.

• Support for UML profiles: UML profiles provide an extension mechanism to support
modelling for particular domains and platforms, for instance the MARTE profile for
modelling real-time and embedded systems [51]. An extensible tool should be able to
accommodate models based on different UML profiles.

The last part of the analysis considered the tools’ extensibility and configurability regarding test
models and coverage criteria, test data generation techniques, and test script languages since these are
the components of a test strategy (Section 2). We will now provide a summary of our analysis
regarding the extensibility and configurability of these five tools.

Qtronic [12] is an eclipse-based tool used to generate test scripts from system models specified in
QML (Qtronic Modelling Language). This language is based on UML and Java/C# compatible syntax
and is supported by a tool called Qtronic Modeler [12]. Qtronic can be configured for the following
state machine coverage criteria: state coverage, transition coverage, 2-transition coverage, all paths
coverage, and implicit consumption (criterion to check that system ignores transitions that are not
explicitly defined on a state), branch coverage, atomic condition coverage, and boundary value pattern
(to cover boundaries of decisions in guards) [12]. Qtronic supports extensibility by means of plug-ins,
which can be coded in C++ or Java. These plug-ins can be written for changing the test scripting
language, logging formats, and test execution type (online vs. offline test execution). This means that
Qtronic can only be configured for predefined coverage criteria and cannot be extended to additional
test models, coverage criteria, and test data generation other than what is already provided. However,
Qtronic can be extended for different test scripting languages by implementing specific plug-ins.

The tool Automatic Test Generator/Rhapsody (ATG) [15] is a module of I-Logix STATEMATE and
Rhapsody products. ATG can be configured to generate test cases from models based on a set of
coverage criteria such as state and transition coverage, and modified condition/decision coverage on
guards in state machines ATG doesn’t provide any extension mechanisms.

10

AGEDIS is a tool for automated model-driven test generation and execution for distributed systems. It
has been made usable and interoperable with external tools by defining clear external interfaces in the
tool. In addition, well-defined internal interfaces make AGEDIS more reusable. For instance, the user
can define or select a coverage criterion through a test generation directives interface which includes
coverage criteria, constraints (which are additional criteria) on the test suite, and test purposes [52].
There is also a defined interface for abstract test cases that makes the tool open for later extensions to
other test script languages than TTCN-3. However, most of these interfaces are not defined by
standard well-known languages. For example, standard OCL constraints on an input UML model
should be transformed into their interface language (IF) format [14].

ParTeg (Partition Test Generator) [50] is a test generation tool dealing with the reuse of state machines
for automatic test case generation in the context of product lines. Regarding configurability, ParTeg
allows the user to choose from a set of coverage criteria: state coverage, decision coverage, and
modified condition/decision coverage as well as boundary value coverage criteria for input data to
cover boundaries of decisions in guards. No attempt was made for making it extensible and
configurable with respect to input models, test data generation, and output languages.

MOTES [13] is a model-based testing tool for generating TTCN-3 tests. MOTES accepts Extended
Finite State Machines (EFSM) as input and requires test data to be prepared manually before the test
case generation phase. However, it provides some extensibility opportunities for output models by
having a standard input interface. For example, UML state machines created using third party CASE
tools (for example Poseidon [53]) can be imported to MOTES, although state machines must be flat
without concurrent and hierarchical states. MOTES provides a configurable set of coverage criteria
such as selected states, selected transitions, and all transitions.

Table 1 gives a summary of the abovementioned tools regarding their extensibility and configurability
for respectively the input model, test strategy, and test scripting output language. A clear conclusion
from the summary is that current tools usually support configurable coverage criteria (within a limited
set) and three of them are extensible regarding new output languages. However, hardly any SBT tool
provides support for extending it to new input models or test data generation strategies. Therefore, we
were encouraged to develop an extensible and configurable tool with well-defined interfaces and
simple extensibility mechanisms. The next section describes the requirements for such a tool and
explains our solution in details.

TABLE 1 EXTENSIBILITY AND CONFIGURABILITY OF THE CURRENT SBT TOOLS

Tool
name

Input model Test strategy Test scripting
output language UML

metamodel
Constraint
evaluator

UML
profiles

Test Model and
coverage criteria

Test data
generation

Qtronics - - - Configurable Configurable Extensible and
Configurable

ATG - - - Configurable - -

AGEDIS - Extensible - Extensible and
Configurable

- Extensible

11

MOTES - - - Configurable - Extensible

ParTeg - - - Configurable - -

4. Requirements, Design, and Implementation of TRUST
In this section, we discuss the main requirements of TRUST, define and justify our architectural
decisions, and choices of technologies. In addition, details regarding the test case generation and test
case execution procedure will be provided.

4.1 Requirements and Approach
To be optimal from a practical standpoint, we want a tool that supports all features of UML. However,
as we discussed in Section 3, this may not be enough – extensibility to various UML extension
profiles, such as MARTE [13] and UML QoS profile [54], may also become a requirement in future
applications. What we need is a tool that shows versatility in various contexts. Adding different output
scripting languages (such as C++, Python, and Java), test models (such as transition trees and testing
flow graph [55]), coverage criteria on test models (such as all transition and all round-trip path
coverage), and test data generation techniques (such as random and adaptive random search [56]) for
different application domains and systems are examples of useful extensions for TRUST.

In addition, the tool should be easily configurable to satisfy varying requirements, which means that
the user should be able to easily configure features such as input model, coverage criteria and test data
generation strategies. High configurability enables testers to experiment with various techniques
without significant effort and changes in the tool implementation. This is of practical importance as
different test models, coverage criteria, and test data generation techniques helps in targeting different
types of faults. Figure 4 shows the summary of the tool requirements.

The approach that we have taken for implementing TRUST (Figure 5) is based on model
transformations. The idea (inspired by MDA concepts, introduced in Section 2.2.1) is to generate a test
model using a series of horizontal (endogenous and exogenous) model–to- model transformations on
an input design model, modeling the PIM of a system. Then, a vertical, exogenous model–to-text
transformation is used to generate test scripts.

We found this approach very well-suited for developing TRUST, firstly due to the fact that it
addresses our extensibility and configurability requirements. Each component of TRUST implements
one set of transformation rules (e.g., transformation from test tree to test cases). Each component has
well-defined interfaces with other components. More specifically, each interface provides output to, or
requires inputs from, other components by means of intermediate models conforming to metamodels.
Secondly, separation of concerns among components has made each transformation responsible for
providing one feature such as test model, test data, and test scripts. Therefore, adding a new feature
(for example, outputting test scripts in a new language) can be achieved by writing a new set of
transformation rules in one of the components, without affecting the other components. Thirdly, in the
model transformation-based approach, the transformation language provides the developer with direct
support for navigating, creating, and manipulating a model, based on its metamodel. Generally, the
transformation rules are relatively compact and easy to read, write, and change.

REQ1. The tool should handle UML diagrams such as state machines, sequence diagrams, activity

diagrams, and OCL as the constraint language for UML diagrams

REQ2. The tool should have a configurable and extensible input model

 REQ2.1. The tool should be extensible for new UML profiles and configurable for existing

 UML profiles

 REQ2.2. The tool should be extensible for changes in the UML metamodel and configurable

12

FIGURE 4 REQUIREMENTS OF TRUST

FIGURE 5. MODEL TRANSFORMATION-BASED APPROACH FOR TEST CASE GENERATION

In this technical report, we configured TRUST with UML 2.0 state machines as the input model.
REQ1 in Figure 4 is refined accordingly as follows: The tool should accept UML 2.0 state machines
with support for concurrency and hierarchy. Constraints on state machines may be written in OCL
because it is an OMG standard for writing constraints on UML diagrams. Furthermore, the general
model transformation-based approach, given in Figure 5, is instantiated on UML 2.0 state machines, as
shown in Figure 6. Required activities, technologies, and the procedure for this approach will be
explained in the remainder of this section.

13

FIGURE 6. MODEL TRANSFORMATION-BASED APPROACH FOR TRUST WHEN CONFIGURED FOR

STATE MACHINES

4.2 Developing TRUST using a model transformation approach
In this section, we describe the activities involved in developing TRUST when configured for SBT.
Firstly, transformations must be specified and implemented for various activities (activities A1, A3,
and A6 in Figure 7). Since these transformations are applied on metamodels, we may need to define
input metamodels (activity A2 in Figure 7). However, since some metamodels already exist (e.g., the
UML 2.0 metamodel), we do not need to define all metamodels from scratch. Secondly, to make the
test cases executable, test data is required (activity A5 in Figure 7). Finally, we need to develop a
method for evaluating the OCL constraints that are defined on UML state machines (activity A4 in
Figure 7). In Figure 7, the notes associated with the activities show the technologies selected to
implement each activity. These choices will be justified below.

4.2.1 From UML state machines to test models
The first SBT activity is flattening the input state machine. As explained, our input behavioral model
is a UML 2.0 state machine that allows complex structures like simple-composite states, orthogonal
states, and submachine states. Testing can be performed directly on such state machines, but this
requires rather complex strategies, because such structures complicate the traversal and analysis of the
state machine. An alternate approach is to flatten the state machines first, by removing concurrency
and hierarchy, and then apply a test strategy. We implemented the latter for obtaining a better
separation of concerns and lesser analysis complexity.

14

FIGURE 7. ACTIVITIES AND TECHNOLOGIES FOR DEVELOPING TRUST USING MODEL

TRANSFORMATIONS

Several algorithms are reported in the literature to flatten concurrent and hierarchical state machines
[17, 57]. However, to the authors’ knowledge, these algorithms are partial and do not provide
flattening of both hierarchy and concurrency. Thus we decided to implement our own flattening
algorithm for UML 2.0 state machines. The implemented algorithm is a stepwise process that allows
the user to modify the UML model at several points during the transformation towards the flattened
version. The first step in the flattening process is to search for all nested levels for submachine states
and transform these into a set of simple-composite states. Next, all simple-composite states with one
region are transformed to a set of simple states or orthogonal states. If there are orthogonal states
present in the model, these may now be transformed to simple-composite states. Finally, the simple-
composite state(s) created in the previous step are transformed to a set of simple states.

The result is a state machine consisting of an initial state, simple state(s) and possibly a final state. The
flattening follows a set of transformation rules implemented in Kermeta [42]. The key aspects in these
rules address 1) how to combine concurrent states, and 2) how to redirect transitions. Redirecting
transitions may require duplicating transitions, changing source or target states, combining transition
information (triggers, guards, transition activities, and state entry/exit activities). Interested readers
may consult the report by Holt et al. [58] for more detailed information about the flattening algorithm
and its corresponding transformations.

Figure 8 below shows a Kermeta rule used for flattening of simple composite states. Incoming
transitions to an entry point in a simple composite state are redirected to each of the outgoing
transitions of the same entry point. The small example below provides the Kermeta rule that identifies
the incoming transitions that will be redirected by calling another Kermeta rule.

Once the flattened state machine is generated, it is transformed into a test model. This transformation
requires three inputs: the source metamodel, the source model (which is an instance of the source
metamodel), and the target metamodel. The source metamodel is a metamodel for the flattened state
machine, which is the same as the target metamodel for the flattening transformation step in Kermeta.
The output of the Kermeta transformation, a flattened state machine, provides the second input, which

15

is the source model. The last input, the target metamodel, is a metamodel for a test model. The
expected structure and content of a test model is strongly dependent on the selected test strategy. In the
current version of TRUST, test model conforms to a test tree metamodel. Figure 9 shows the
metamodel developed as an Ecore file, based on EMF (Eclipse Modeling Framework). The metamodel
represents a tree with a starting node, called alpha, and its outgoing edges. Each edge in the tree has a
target node and may have several children that are the target node’s outgoing edges. Similar to
transitions in a UML state machine, each edge in the test tree metamodel is associated with at least one
trigger and may have an associated guard and effect. In addition, each node may have an associated
state invariant.

FIGURE 8. EXAMPLE OF KERMETA FLATTENING RULE.

/**

* Rule getTransitionsTargetedInEntryPoint identifies the incoming transitions to this

* vertex which is an entry point.

*/

operation getTransitionsTargetedInEntryPoint (r: Region) : Set<Transition> is do

//create a set of all incoming transitions to this entry point

 var IN : Set<Transition> init Set<Transition>.new

 //add each incoming transition to the set

16

FIGURE 9. TEST TREE METAMODEL FOR THE EMF

The flattened state machine is transformed into a test tree (e.g., a transition tree for all round-trip paths
coverage criterion) by a set of ATL transformation rules that take the three abovementioned inputs as
parameters. We chose the ATL transformation language because most mappings in this step are simple
(mainly one-to-one), which makes a declarative approach the best choice. In declarative approaches,
as opposed to imperative ones, control flow and the application order of rules are not explicit.
Therefore, usually the transformations in declarative languages have less transformation code and are
more comprehensible than imperative languages [48]. This transformation could also have been
implemented with any other declarative, hybrid, or even imperative language. We decided, however,
to stick with an Eclipse-based technology so as to develop the entire tool on a consistent platform. For
example, the transformation rules, instantiating a transition tree from the test tree metamodel, start
from the initial state of the state machine which is mapped to the Alpha node in the test tree. All
outgoing transitions of the initial state are also mapped to the outgoing edges from the Alpha node.
This process of mapping transitions to edges is applied recursively on the target state of all transitions
in the state machine. Finally, the recursive rule stops when it reaches a leaf or a state that has already
been visited in the same path starting from the Alpha node (all round-trip paths coverage [26]). An
example of ATL transformation rules is shown in Figure 10 that maps the Constraint metaclass
(SM!Constraint) including its name and value properties from UML metamodel (SM) to the
Constraint class (transitiontree!Constraint) in test tree metamodel (transitiontree) and its name and
value properties.

rule Constraint2Constraint{

 from

 a:SM!Constraint

 to

17

FIGURE 10. EXAMPLE OF TRANSFORMATION RULE IMPLEMENTED IN ATL

4.2.2 From the test model to executable test cases
The generated test tree is the input for the next transformation, which generates the executable test
cases. We chose the MOFScript [47] transformation language for several reasons. Firstly, it supports
the MOF standard [44], which means that it can transform any MOF-based model-to-text. Secondly, it
is an imperative language for writing transformation rules similar to many programming and scripting
languages. This makes the MOFScript language easy to use and understand. Thirdly, MOFScript
provides access to external Java libraries. This makes the language very suitable for our context
because we need to access a test data generator (implemented in Java) during the transformation to
obtain test data. MOFScript transformations require the source model and its metamodel, which are
readily available from the previous step. There is no need to provide the grammar of the output
language as an input to TRUST, but of course defining transformations requires its definition.

Each path in the test tree represents an abstract test case. Thus, an abstract test case consists of a
sequence of nodes and edges. Nodes are mapped from states in the state machine and states are
defined by state invariants, which are OCL constraints serving as test oracles. An edge contains all the
information related to the trigger including event (e.g., an operation call or a signal reception), a guard,
and an effect from the state machine’s transitions.

The MOFScript transformation traverses the test tree (e.g., the transition tree) to obtain the abstract
test cases and transforms them to concrete (executable) test cases, which are written in a test scripting
language. However, it is possible to generate several concrete test cases from an abstract test case by
using different test data values. There are many possible test data generation [59, 60] approaches
which are applicable in different situations. What we implemented in the first version of TRUST is the
simplest method, which is random data generation for operation calls. This test data generator is
written in Java and provides random values for the parameters of triggers. However, such a test data
generation technique is not suitable when transitions are guarded and parameters of the triggers are
used in the guards. The MOFScript rule shown in Figure 11 illustrates how a trigger is mapped from
the test tree for all transition to C++ test cases. The rule maps the name of the trigger event operation
and then uses another mapping rule, ‘mapParameter’, to map the parameters for the trigger event
operation.

18

FIGURE 11. EXAMPLE OF TRANSFORMATION RULE IMPLEMENTED USING MOF SCRIPT

When executing test cases, OCL expressions in guarded transitions should be evaluated at runtime to
detect failures. For the same reason, the state invariants associated with states must also be evaluated
at runtime. One way to evaluate such OCL constraints is to translate them into a test-scripting
language. The constraints will then be evaluated during the execution of the test scripts. Compiler-
compilers technologies [61, 62] may be used to translate constraints in one language to constraints in
another language. This approach however is not reusable across contexts with different test-scripting

/**

 * rule 'mapTrigger' generates the C++ code to invoke the operation implementing

 * the trigger event. Rule 'mapParameter()' is called to map parameters in the

 * trigger event operation call. Each trigger is either a MethodCall,

 * SignalReception, or Timer.

 * @param triggerWithParam List, the total generated output for a trigger as String.

 * @param noOfParam Integer, temporary helper variable used for counting parameters.

 */

 transitiontree.Trigger::mapTrigger(){

 var triggerWithParam : List;

 var noOfParam : Integer = 0;

 if(self.oclGetType().equals("MethodCall") or self.oclGetType().equals("SignalReception") or

 self.oclGetType().equals("Timer"))

19

languages. For example, if we have transformation rules that transform OCL constraints to C++ and
the test script language changes to Java, we then need to define new transformation rules from OCL
constraints to Java expressions. An alternate approach is to use an existing OCL evaluator [30-33] that
is called during the execution of a test case to evaluate the OCL constraints. This approach requires an
object model of the SUT at runtime, representing the current state of the system. This model along
with the constraint to be evaluated is passed to the OCL evaluator, which in turn returns the result of
the evaluation. This approach is reusable across contexts because the only required change for each
output language is to use its appropriate invocation method for calling an external library (the OCL
evaluator). On the other hand, this approach may slow down the test execution as the OCL evaluators
are being called at runtime. In both approaches, we need a mechanism to query the current state of the
SUT and evaluate constraints on the current state of the SUT. Querying the current state of the system
depends on the implementation of the SUT and the test script language’s facility to access the state of
the SUT. For instance, if the SUT is implemented in C++ and test script language is C++, the state of
the SUT may be queried using getter methods of the SUT. In one of our case studies, we did not have
direct access to the code of the SUT. Instead, special macros provided by the test script language were
used to access the state of the system. Since we wanted our tool to be reusable in different contexts,
we decided to use an OCL evaluator that can be invoked from test scripts. Therefore, we had to choose
an evaluator that was efficient in terms of evaluating expressions, for example that does not require to
be called several times for evaluating a single expression. After investigating several OCL evaluators
such as OCLE 2.0 [30], OSLO [31], IBM OCL parser [32], and EyeOCL Software (EOS) evaluator
[33], we chose EOS as we found this to be the most fitted evaluator for our requirements. Since EOS
is a Java package, to invoke methods from its classes we need to have access to Java from a test script.
For example, in one of our case studies, test scripts were in a python-based scripting language. In
order to access EOS from Python, we used Jpype [63] which is an extension to Python giving access
to Java libraries through interfacing at the native level in both virtual machines (Java and Python). In
the other case study, we used the Java Native Interface [64] to access the EOS in test scripts in C++.

To evaluate OCL expressions, EOS requires class and object diagrams to be loaded into its memory.
In order to accomplish this, we wrote another MOFScript transformation that takes the UML class
diagram (modeling state variables, method calls, and signal receptions of the SUT) as input and
generates a Java wrapper class that includes a set of EOS method calls for making class and object
diagrams. This wrapper class is generated before executing the test tree to test scripts transformation.
During test executions, we create the required object model based on the current values of system state
variables.

4.3 Test case generation process
In this section, we will discuss how we designed and implemented the activities discussed in Section
4.2. Figure 12 depicts the architecture of TRUST, which consists of five components. Table 2 shows
the mapping between each activity and a component. Each component has provided and required
interfaces with other components to ease extensibility and configurability, as discussed in Section 4.1.
Each interface provides or requires models that are instances of well-defined metamodels. For
example, the TestModelGenerator component in Figure 12 requires an interface from the
TestreadyModelMaker component to access the flattened state machine, which is an instance of the
UML metamodel. In addition, the TestModelGenerator component provides an interface to the
TestScriptGenerator component to access the test tree (e.g., the transition tree), which is an instance of
the test tree metamodel. The architecture shown in Figure 12 was developed with the aim to support
extensibility and configurability. For instance, if TRUST needs to be extended to handle C++ as an

20

output test scripting language, the only component to modify is the TestScriptGenerator component
where new transformation rules in MOFScript must be defined. The other components do not require
any change. Each component also has clearly defined configuration parameters that can easily be
adjusted. For instance, if the coverage criterion is required to be changed from All round-trip paths to
All Transitions, we only need to change the input coverage criterion in the TestScriptGenerator
component.

FIGURE 12. ARCHITECTURE DIAGRAM OF TRUST CONFIGURED FOR UML STATE MACHINES

TABLE 2 ACTIVITIES IMPLEMENTED BY EACH COMPONENT

Component Activity

TestreadyModelMaker A1

TestModelGenerator A5

TestScriptGenerator A6

OCLEvaluator A3

TestDataGenerator A4

Figure 13 shows interactions between different components that take place at runtime when TRUST is
executed with an input state machine. The state machine is passed to the TestreadyModelMaker
component, which flattens the state machine and passes the flattened state machine to the
TestModelGenerator component. This component generates the test model from the flattened state
machine and passes it to the TestScriptGenerator component. The TestScriptGenerator component
determines if a trigger (a method call or a signal reception) in a test script needs static test data. Test
data can be generated statically if values can be determined prior to execution of the test script, or
dynamically in the other case. The parameters whose values can be determined only at runtime are
obtained at this point. Section 4.4 provides more specific examples of static and dynamic test data
generation.

In the current version of TRUST, static data for a parameter is generated randomly from the possible
set of values. Generating random test data may not be appropriate when the parameter of a trigger is
used in the associated guard. In this case, a parameter value that satisfies the guard must be chosen, so

21

that the trigger can be fired. However, if the value of a parameter is selected randomly from a large set
of possible parameter values, then the possibility of selecting the parameter value that satisfies the
guard may be very low. Hence a more efficient test data generation technique based on search or
optimization techniques [60] should be considered. This will be supported in future versions of
TRUST.

FIGURE 13. INTERACTIONS BETWEEN DIFFERENT COMPONENTS OF TRUST

4.4 Test case execution
Figure 14 shows how a test driver interacts with the SUT and other external tools when it executes a
test case. Each test case consists of a series of triggers (methods or signals) with optional guards. The
state of the system is checked before and after executing each trigger based on state invariants written
as OCL constraints. When a test case is executed, the test driver initializes EyeOCLWrapper and
TestDataGenerator (messages 1.1 and 1.2, respectively). Afterwards, the test driver obtains the state
of the SUT by interacting with the SUT (message 1 in the loop fragment). The state of the SUT can be
obtained in many ways. If the implementation of the SUT is in an object-oriented language such as in
Java or C++, the state variables can be accessed using getter methods of classes if they are available.
Alternatively, if the source code is available, but there are no getter methods, the source code needs to
be instrumented before and after each method call to obtain the current state of the SUT. In the other
case, if the source code is not available, then there are two possible options. The first option is that the
system state might be obtained using some facilities of the implementation language. For example, if
the Java byte code of the SUT is available, then Java’s reflection facility [65] can be used to access the
system state. The second option is to use a test script language that provides some mechanisms to
access the state of the SUT. For instance, in one of our case studies, the test scripting language has the
ability to query the state of the SUT using some predefined macros.

In our implementation, the test driver retrieves the minimum system state information by querying the
values of only those state variables that are used in the OCL constraint which is to be evaluated. After
obtaining the current state of the system, the test driver creates an object diagram using OCLEvaluator
via the EyeOCLWrapper class (message 2 in the loop fragment). This class automatically generates an
implementation of the class diagram and instantiates the object diagram corresponding to the
implementation at runtime, based on the current state of the system (message 2.1 and 2.2 in the loop
fragment). The test driver then evaluates the expected system state using OCLEvaluator via the
EyeOCLWrapper class (message 3 and 3.1 in the loop fragment). Once the system state is evaluated
against the expected state, the trigger, which may be guarded, should be executed. If dynamic test data

22

is required for the trigger, the test driver communicates with the TestDataGenerator class (message 1
in the opt fragment) to obtain required values. Whether the value for a parameter must be generated at
runtime is indicated in the data model of the SUT. During the test case generation, TRUST checks if a
parameter requires dynamic data generation or if static data is readily available.

In the case of guarded triggers, the associated guard must be evaluated before executing the trigger and
after obtaining the dynamic test data. The guard may contain system variables and input parameters of
the trigger. This means that in order to evaluate the guard, we need to obtain the system state and the
values of the parameters (possibly dynamically generated) involved in the guards at runtime; The
static and dynamic parameters that are used in the guard are replaced with their current values
obtained from TestDataGenerator dynamically or statically. The guard is then evaluated in the same
way as the state of the system was evaluated (messages 4, 5, 5.1, 5.2, 6, 6.1). Once the guard is
evaluated, the appropriate method (i.e., the method that implements the trigger event) is invoked on
(or signal is sent to) the SUT (message 7). After the execution of the method (or reception of the
signal), the state of the system is evaluated (message 8, 9, 9.1, 9.2, 10, 10.1) in the same way as the
previous state and guard evaluations. This process is repeated for all triggers in the test case. Finally,
cleanup operations are performed on the SUT (message 1.3) once all the triggers have been executed
on the system. These operations release the resources used by a test case such as memory and CPU.

FIGURE 14. INTERACTIONS BETWEEN DIFFERENT COMPONENTS WHILE EXECUTING A TEST

CASE

5. Applying TRUST on industrial cases

23

This section discusses the advantages and challenges of using model transformation technologies to
support MBT automation by presenting two industrial usages of TRUST that cover two different
contexts and application domains. Section 5.1 describes the two case studies. Section 5.2 addresses the
technological issues in the two case studies. Finally, Section 5.3 provides the lessons learned from
applying TRUST on realistic models. Information about the case studies is sanitized due to
confidentiality restrictions.

5.1 Description of case studies
The companies where the case studies took place are international leaders in their respective fields. In
both case studies, the models represent the state behavior of real world systems and the generated test
cases are executable on the companies’ testing platforms. Both state machines are complemented by
constraints specifying state invariants which, as discussed earlier, will be useful to derive automated
test oracles. The first case study (Case A) is the core subsystem of a multi-media conferencing system,
whereas the second case study (Case B) is a safety monitoring component in a safety-critical control
system. Both cases are suitable choices since these systems exhibit a complex state-based behavior
that can be modeled as UML state machines.

The modeling process in Case A started with two presentations by the company representatives,
followed by reading some specification documents. Then we had two workshops with experts from the
company to better understand the system and domain. Afterwards, we built the system model in three
increments. For each increment, we validated the models, with the help of company experts, both
syntactically and semantically. Finally, during the development of TRUST, the model was augmented
with many modeling details that were missed initially such as missing parameter type of an attribute of
a class and missing connection point references on submachines. The resulting hierarchical state
machine consists of four submachine states. The first submachine state hides two simple states,
whereas the second contains two additional submachine states, each having two simple states. This
gives in total eight simple states and 41 transitions in three levels (Table 3). The flattened state
machine consists of 54 transitions and eight states. A total of 100 person-hours were approximately
spent on understanding the system (60 person-hours) and modeling the SUT (40 person-hours).

In Case B, four initial meetings took place where the company representatives introduced the authors
to the domain and the functionality of the SUT to be developed. In addition to the company
representatives, the initial requirements specification and design documents served as sources for
identifying the system behavior. Throughout the meetings, the authors made initial versions of the
state-based model of the SUT. One of the company representatives took an active part in the
subsequent modeling iterations. As part of the modeling process, the requirements were discussed with
several of the company representatives whenever questions were raised and decisions had to be made.
On many occasions, disagreements about the system specifications arose among stakeholders. In total,
we spent approximately 320 person-hours on understanding (200 person-hours) and modeling the SUT
(120 person-hours). It is important to note that, as opposed to Case A, where the system pre-existed
the study, the modeling effort here could have been significantly smaller if the specifications had been
stable to start with. At the top most level, the resulting hierarchical state machine consists of one
simple state and one orthogonal state with two regions. Enclosed in Region1 are two simple states and
two simple-composite states. Each of the simple-composite states contains two simple states. Region2
encloses three simple-composite states that again consist of, respectively, two, two, and three simple
states. This adds up to 14 simple states and a maximum hierarchy level of two. The complete state
machine contains 53 transitions (Table 3). The flattened state machine for Case B consists of 56 states
and 391 transitions.

24

5.2 Use of the technology
In this section, we explore the feasibility of applying TRUST to two industrial case studies. One
important aim is to demonstrate how the architecture of TRUST helps with configurability and
extensibility. We will show how components in TRUST can be changed to fit different contexts.

TABLE 3 FEATURES SUMMARY OF THE HIERARCHICAL STATE MACHINES

State machine feature Case A Case B

Unflattened Flattened Unflattened Flattened

Maximum level of hierarchy 2 - 2 -

Number of submachines 4 - 0 -

Number of simple-composite states 0 - 5 -

Number of simple states 8 8 14 56

Number of orthogonal states 0 - 1 -

Number of transitions 41 54 53 391

5.2.1 Using TRUST for test case generation in Case A

Communication from the test driver with this subsystem is done via APIs that are also used by other
subsystems for requesting services. To enable test verdicts, the subsystem continuously reports its
state through an XML document that can be accessed from the test scripts. Applying TRUST on Case
A requires configuration values presented in Table 4.

TABLE 4 CONFIGURATION PARAMETERS OF TRUST FOR CASE A

Parameter Value

Input model UML 2.0 state machine

Test model Transition tree

Coverage criterion All round-trip paths

Test scripting language A Python-based language

Test data generation technique Random data generation

OCL Evaluator EOS

A transition tree consisting of 4634 round-trip paths is generated from the flattened state machine. The
test cases are generated in a Python-based test scripting language used in the company of Case A. The
number of test cases in the test suite is the same as the number of paths in the transition tree (4634).
However, out of 4634 test cases, only 463 test cases were found to be feasible. The infeasible test
cases exist in the generated test cases because of guards on certain paths that cannot be satisfied. All
feasible test cases are executable using the company’s testing platform.

In order to access EOS for evaluating the state invariants and guards from the Python-based test
scripting language, we used Jpype [63]. Jpype is an extension to Python, giving access to Java libraries
through interfacing at the native level in both virtual machines (Java and Python).

25

Test case generation took place on a system with Intel Duo CPU 2.40 GHZ processor, with 4GB of
RAM. The system was running Microsoft Windows Vista operating system and IBM Rational
Software Architect Standard Edition 7.5.1. TRUST took 19 seconds to flatten the state machine, six
seconds to generate the transition tree, and one minute and 30 seconds to generate test cases. Such
execution times were deemed perfectly acceptable in the Case A context.

5.2.2 Using TRUST for test case generation in Case B

We applied TRUST with the configuration values presented in Table 5 and the flattened state machine
described in Table 3 as input.

TABLE 5 CONFIGURATION PARAMETERS OF TRUST FOR CASE B

Parameter Value

Input model UML2.0 state machine

Test model Test tree for all transitions

Coverage criterion All transitions

Test scripting language C++

Test data generation technique Random data generation

OCL Evaluator EOS

After applying the flattening transformation and removing unreachable state combinations due to
conflicting state invariants, the flattened state machine consists of 56 states and 391 transitions, mostly
guarded. In this case, TRUST was configured for another coverage criterion, the all transitions
criterion, applied on a test tree which conforms to the same test tree metamodel presented in Figure 9.
The tree is built differently from Case A in such a way that traversing all paths in the test tree achieves
all transitions coverage. The instantiation of the metamodel for this case was implemented using
Kermeta.

We chose all transitions coverage for Case B due to the much larger size of the model in order to
obtain a manageable set of test cases. TRUST generated 335 test paths for Case B, where C++ was the
test scripting language. Since the first version of TRUST was implemented for Case A, TRUST
needed to be extended to support SBT for Case B. Therefore, a C++ test script generator was added to
TRUST. Extending TRUST for C++ involved adding a new set of transformation rules according to
C++ syntax to the TestscriptGenerator component of TRUST. This required changes in the
MOFScript rules. There was some reuse of the MOFScript rules used in the tool instantiation for Case
A. Only the logic for traversing the tree could be reused, however, because the mapping rules for C++
were quite different from a Python-based script language for Case A due to different language
constructs.

The number of generated test cases is the same as the number of paths in the test tree: 335. However,
out of 335, only 205 test cases were found to be feasible. All the feasible test cases are ready to be
executed on the testing platform and do not require modifications. Once again, the infeasible test cases
exist in the generated test cases because of guards on certain paths that cannot be satisfied. Test data
was generated in the same manner as in Case A by randomly selecting the value for the parameters
based on the data type. However, in Case B, TRUST was extended to interact with a new

26

TestdataGenerator component implemented in C++. We chose to do this in C++ because test scripts
in Case B were in C++ and interacting with a TestdataGenerator component implemented in C++ was
more efficient. Java Native Interface (JNI) [64] was used to access EOS from the C++ test scripts. For
this case study, the platform specifications were the same as for Case A except for the 3GB of RAM.
TRUST took 281 minutes to flatten the state machine, 64 minutes to generate the test tree, and 24
seconds to generate test cases. We observe that the time spent on flattening the state machine is
considerably more in Case B than for Case A. The main reason for this is that the current
implementation of the flattening algorithm for removing concurrency requires numerous traversals of
the transition set. The traversals are necessary in order to identify possible transitions between the
Cartesian product states. For each transition in each region of the unflattened state machine, it must be
checked whether or not the transition triggers are also defined for transitions in the other parts of the
Cartesian product state. This implies that an event could trigger transitions in several regions [58].
Improving the efficiency of the algorithm is part of our future work.

5.3 Lessons learned
Developing TRUST and then applying it to real world case studies taught us some important lessons
about both modelling and model transformations. In this section, we will discuss the lessons learned
for these aspects.

5.3.1 Modelling of the SUT
For our case studies, precise behavioural modelling of complex industrial systems using standard
UML 2.0 state machines was a prerequisite for using TRUST. The flattening component requires that
it is provided with a correctly specified state machine and currently does not provide any feedback in
case of errors in the model. Modeling correctly, however, is not a trivial task and requires that the
UML specification be carefully studied. Even though constructs like concurrency and hierarchy are
supposed to ease the understandability of large state machines, such constructs may actually confuse
the developer. In particular, we experienced that concurrency, if not carefully applied, could introduce
modeling errors in practice. For example, concurrent regions sometimes make it difficult to see the set
of transitions between state combinations. A typical fault is that a guard is missing on a transition,
which allows for transitions to state combinations that are illegal targets from particular source states.
However, we found that it helped to inspect the flattened state machine to detect such mistakes. In
Case B, for instance, we detected that a missing guard on a transition from an initialization state to a
system running state in Region 1 would allow transitions to be incorrectly fired in Region 2.

5.3.2 Model-to-model transformation technologies
The model-to-model transformations in TRUST used two different transformation languages: Kermeta
and ATL. Kermeta appeared to be highly appropriate for flattening UML state machines. In addition to
being an object-oriented language, it allows you to add behavior to the metamodel through aspect
weaving. However, we experienced that navigating in the metamodel was rather time consuming.
Alphabetically organized in a super-sub class structure, the UML 2.0 metamodel is a complex model
that is difficult to navigate. Having tool support integrated in the Kermeta plug-in that could remove
abstract classes and instead present the concrete classes relevant for a particular purpose would have
been very useful.

Since the metamodel for test trees is relatively simple, the transformation from the flattened state
machine to the test model was expected to be straightforward and easy to implement by depth first
traversal of the state machine using a declarative language (ATL). However, we found that the
declarative programming style was not intuitive to handle, perhaps because most developers are used

27

to imperative programming languages. Even though the final ATL code for test model generation is
very short, debugging it was quite difficult especially when the input model was big. For our second
case study, the input state machine was quite large and caused Eclipse to run out of memory while
generating a transition tree for all round-trip paths coverage criteria. This was due to the many
recursive rule calls required to generate the transition tree from the flattened state machine.
Implementing transition tree generation using recursion was the only possible option when writing
rules in the ATL language in a declarative fashion. Technology-wise, we also faced many problems
while debugging the ATL rules, especially when the input models are large causing the debugging
interface to hang.

5.3.3 Model-to-text transformation technology
Developing the final set of transformations in MOFScript was the easiest part of developing TRUST,
because the rules are defined in an imperative form. MOFScript is quite similar to programming
languages like Java, and provides powerful features that are easy to use for querying models,
outputting text, and accessing external Java libraries. We did not face any special challenges while
using MOFScript for generating test scripts.

6. Discussion
In order to achieve our requirements for an MBT tool (Section 4.1), we identified five important
aspects that must be extensible and configurable. These five aspects are related to: test ready model
generation, test model generation, test script generation, test data generation, and constraint evaluation.
All important aspects of an MBT tool are addressed by specific components in the TRUST
architecture in Figure 12. We defined clear interfaces between the components and the external tools
so that communication among the components and with the external tools can take place on input
models that are instances of standard metamodels. We addressed the first three aspects of TRUST
using model transformation languages because using such technologies was an effective way to
specify the transformations at a more abstract level, through the mapping of metamodels.

The first aspect is related to making an input model of the SUT test ready, so that the test model can be
generated from the test ready model. In the case studies provided in this technical report we configured
TRUST for UML 2.0 state machines, which offer features for concurrency and hierarchy. As discussed
previously, such features ease modeling but complicate test automation. Consequently, many SBT
tools [5, 13] assume that state machines do not have concurrency and hierarchy. Our first objective
was to flatten state machines so as to simplify the implementation of different test models and
coverage criteria on them. Coverage criteria can be implemented on unflattened state machines, but
require a complex algorithm and thus make it difficult to implement different test models. For this
reason we chose to separate flattening and test model generation so that it would be easier to
implement new test models based on flattened state machines. We implemented state machine
flattening by model transformations using the Kermeta language as described in Section 4. The current
implementation for flattening is based on the UML 2.0 metamodel. It can, however, be extended to
UML profiles and any future changes in the UML metamodel by changing the Kermeta rules for
flattening state machines, without affecting the rest of the tool. In the current TRUST implementation,
state hierarchies can be efficiently processed whereas concurrent states lead to scalability problems
and should be further investigated, as discussed in Section 5.2.2.

The second aspect was related to the test model generator component, which transforms the test ready
model (flattened state machines in our case studies) into the test model (test trees in the current version

28

of TRUST). This component is extensible to various test models. A test model can be defined based
on the type of faults targeted or the coverage to be achieved. In order to implement other test models
based on state machines, metamodels for the test models must be developed along with new mapping
rules from flattened state machines to the test models in the ATL, Kermeta or any other M2M
transformation language.

The third aspect, related to test script generation, is another important aspect of TRUST, which
requires a test model’s metamodel, a defined coverage criterion, and knowledge about the test script
language’s grammar. TRUST can be extended for producing test scripts in various test script
languages by implementing new transformation rules in MOFScript. For example, in Case B, we
extended TRUST to output test scripts in C++ in contrast to Case A, where test scripts were generated
in a Python-based script language. We achieved this by changing the MOFScript transformation rules
to generate the C++ syntax. We experienced that the rules addressing the logic for traversing the tree
could be reused. The rest of the mapping rules that were specific to the test script language were not
helpful – at least not when the developer was unfamiliar with the test script language used in the
existing tool instantiation.

Even though the MOFScript rules had to be modified from Case A, the rest of the implementation of
TRUST remains unchanged. It is important to note that even for a simple but real system and standard
coverage criterion, the number of test cases can be very large (Case A: 4634). Furthermore, small
changes in the specification of a SUT can result in dramatic changes in its test suite. For example 653
test cases are deleted by removing just two transitions from the unflattened state machine of Case A.
This shows how much effect a single transition on the model can have on the test cases. Furthermore,
considering the fact that specifications of such systems may change quite frequently, it is not feasible
to generate and maintain such large numbers of test cases manually. Thus, to support systematic
testing in a scalable way, an MBT tool that can generate test cases automatically every time the
specification changes, is required.

The test data generator in the current implementation of TRUST provides only random test data
generation, because in both of our case studies, guards on transitions are not constrained by the input
parameters of associated triggers on the transitions. It can, however, be changed to a more
sophisticated test data generation technique, such as techniques based on search-based data generation
algorithms [60]; any test data generator can be easily integrated with the rest of the tool as long as the
defined interfaces are used. Furthermore, some of the guards in our case studies are based on state
variables, which may not be satisfied while executing some paths and thus leading to many infeasible
test cases. Effectively removing such infeasible test cases is future work.

Finally, we used EOS [33] as the OCL evaluator with the current implementation of TRUST. Again,
the OCL evaluator can be changed to any OCL evaluator depending on the requirements of a tool. For
instance, if the tool needs to evaluate constraints written in both OCL and the Value Specification
Language (VSL) of the MARTE profile [51], another suitable evaluator can be integrated with the tool
without making changes to other components.

The modeling in the two case studies took approximately 100 and 320 hours for Case A and Case B,
respectively. If excluding the time required to understand the system, which may not be fully
necessary if the modeling is done by developers themselves, this effort comes down to 40 and 120
hours. Given the large numbers of feasible test cases required (463, 205) for systematic testing on
these case studies, MBT can be considered beneficial if the manual identification and writing of test
cases costs, on average, less than 6 minutes and 36 minutes per test case, respectively for the two case
studies. The latter number, though being much larger than for Case A, must be interpreted with care as

29

the modeling effort for Case B was inflated due to frequently changing specifications leading to
iterative modeling, as discussed in Section 5.1. This effort cannot therefore be solely attributed to
modeling but also includes the specification effort that would have been necessary regardless of
whether modeling was applied. Based on the above effort numbers per test case, under realistic
assumptions, MBT is clearly likely to be beneficial in many contexts as devising test cases and writing
test scripts is likely to take much more time than 6 and 36 minutes (this being probably an
overestimate) in practice. Furthermore, this analysis does not account for the fact that MBT yields test
cases that are more systematic, less error-prone, and that changes to the SUT behavior can simply be
addressed by re-generating the test cases, thus facilitating the evolution of test suites. Ideally, a
controlled experiment involving the manual writing of test cases would be warranted to demonstrate
tangible benefits, but writing so many test cases manually is by all practical means out of reach,
especially in the context of an experiment.

The current implementation of TRUST still has limitations that will be improved in the future:

• The flattening algorithm does not handle the following pseudo states: shallow and deep
history, join, fork, junction, and terminate. Another issue is the missing evaluation of OCL
expressions during the generation of the state combinations in states with more than one
region. This means that impossible state combinations may be included in the flattened set of
states due to conflicting state invariants. In addition, the algorithm may introduce impossible
transitions due to guards that will never become true when transitions are triggered from
certain states. These situations occur when state invariants hinder state variables from being
initialized with the specific values required to fulfill the guard condition.

• Testing of TRUST has not been done systematically. In order to check if transformations are
correct, we created models by hand and checked the transformed models manually. However,
we could attempt to use tools such as [66] to generate inputs for transformations, but one
important issue is that there is no tool support to generate and check expected outputs.

• We do not have any support for debugging. However, we output messages whenever a state
invariant or a guard fails during test execution.

• We do not have support for model validation, and we assume that UML input models are
correctly designed and are not missing any information required by TRUST.

7. Conclusions and future work
Tool support for model-based testing (MBT) has dramatically improved in recent years, but most of
the tools specifically target an application context and cannot easily be adapted to others. In this
technical report we report on the design and application of TRUST, a TRansformation-based tool for
Uml-baSed Testing, which can be extended and configured for various application contexts. TRUST is
based on model-transformation technologies and features an architecture with clear separation of
concerns and interfaces, thus making it easily extensible and configurable for different context factors
such as input models, test models, coverage criteria, test data generation strategies, and test scripting
languages. We have illustrated this by adapting TRUST to the needs of two industrial case studies
from two different companies: a multi-media conferencing system and a safety-critical control system.
We also report on the costs, challenges, and likely benefits of MBT using TRUST in these two
industrial contexts.

Our case studies have led to a number of results and lessons learned both related to our
transformation-based approach to automating MBT and the benefits and challenges of MBT on

30

industrial case studies. In terms of benefits, the comparison of the cost of modelling with the number
of test cases generated, in both our case studies, has shown that using TRUST should yield significant
cost savings when applying standard state machine coverage criteria. In other words, the cost of
writing manually the same test cases is likely to be larger than the cost of modelling the system under
test (SUT) and generating the test cases. Using TRUST offers many other potential advantages which
are, however, difficult to quantify. For example it should make the generation of test scripts less error-
prone, enable the easy re-generation of test cases when the SUT specifications change, and ensure that
testing is systematic and not redundant, an objective hard to achieve for a human tester. In terms of
scalability, the only issue seems to be with the flattening of concurrent states, which may take a few
hours on complex, highly concurrent state machines. Otherwise, the processing steps involved in
TRUST have shown to be in the worst case a matter of minutes.

Modeling SUTs correctly, which is required by TRUST or any other MBT tool, is however not a
trivial task on real systems. Future versions of TRUST should provide feedback on the likely
correctness, consistency, and completeness of input models. This would save substantial modeling
time and make MBT even more beneficial. For example, we experienced that inspections of flattened
versions of complex state machines led to the detection of modeling errors due to error-prone
constructs like concurrency.

Different Model-to-model transformation technologies, such as ATL and Kermeta, have shown
different advantages. ATL tends to yield small transformation rules. However, to the use of declarative
programming may not always be appropriate and, in some cases, makes it difficult to define and
validate rules. Kermeta, on the other hand, follows the imperative paradigm and, as a result, complex
mappings between metamodels could more easily be defined. ATL has also been shown not to scale
up well to large input models. On the other hand, MOFScript, a model-to-text transformation
technology, was easy and convenient to use to generate test scripts. Like Kermeta, this follows the
imperative programming paradigm, which provides powerful features that are easy to use for querying
models, outputting text, and accessing external Java libraries.

In the future, we are planning to implement more transformations for various state-based test models
and coverage criteria. After implementing these transformations, we will conduct empirical studies to
evaluate the cost effectiveness of different test strategies for our case studies. We are also devising
algorithms to make SBT more scalable, for example by minimizing infeasible test paths and
implementing more sophisticated test data generation techniques based on search-based algorithms.
Another important area of future work would be to provide model validation support in TRUST.
Finally, we are planning to extend TRUST for testing non-functional properties of a system modeled
with UML and different profiles for modeling non-functional properties, such as MARTE profile for
modeling real time and embedded systems.

Acknowledgement

The authors wish to thank Miran Damjanović for helping us in writing transformation rules for Case A
and Simula School of Research and Innovation (SSRI) for funding this work.

8. References
[1] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach: Morgan-Kaufmann,

2006.

31

[2] T. S. Chow, "Testing Software Design Modeled by Finite-State Machines," IEEE Transactions on
Software Engineering, vol. 4, pp. 178-187, 1978.

[3] L. C. Briand and Y. Labiche, "A UML-Based Approach to System Testing," in Proceedings of the 4th
International Conference on The Unified Modeling Language, Modeling Languages, Concepts, and
Tools, 2001.

[4] I. K. El-Far and J. A. Whittaker, "Model-Based Software Testing," Encyclopedia of Software
Engineering (edited by J. J. Marciniak), Wiley, 2001.

[5] S. Ali, L. C. Briand, M. J. Rehman, H. Asghar, M. Z. Z. Iqbal, and A. Nadeem, "A State-Based
Approach to Integration Testing Based on UML Models," Information and Software Technology, vol.
49, pp. 1087-1106, 2007.

[6] A. C. D. Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, "A Survey on Model-based Testing
Approaches: A Systematic Review," in Proceedings of the 1st ACM International Workshop on
Empirical Assessment of Software Engineering Languages and Technologies, Atlanta, Georgia, 2007.

[7] D. Drusinsky, Modeling and Verification using UML Statecharts: A Working Guide to Reactive System
Design, Runtime Monitoring and Execution-based Model Checking, 1st ed.: Newnes, 2006.

[8] "D-MINT, Deployment of Model-Based Technologies to Industrial Testing," http://www.d-mint.org/
(September 2009)

[9] J. Feldstein, "Model-based Testing using IBM Rational Functional Tester," developerWorks, IBM,
2005.

[10] M. Vieira, X. Song, G. Matos, S. Storck, R. Tanikella, and B. Hasling, "Applying Model-Based Testing
to Healthcare Products: Preliminary Experiences," in Proceedings of the 30th International Conference
on Software Engineering, Leipzig, Germany, 2008.

[11] Y. Gurevich, W. Schulte, N. Tillmann, and M. Veanes, "Model-based Testing with SpecExplorer,"
Microsoft research2009.

[12] "QTRONIC," http://www.conformiq.com/qtronic.php (September 2009)

[13] "MOTES," http://www.elvior.ee/motes (September 2009)

[14] A. Hartman and K. Nagin, "The AGEDIS Tools for Model Based Testing," in International Symposium
on Software Testing and Analysis (ISSTA '04), 2004.

[15] "Automatic Test Generation," http://www.telelogic.com/products/rhapsody/test/automated-test-
generation.cfm (September 2009)

[16] D. Seifert, "The TEAGER Tool Suite: Test Execution and Generation Framework for Reactive
Systems," http://user.cs.tu-berlin.de/~seifert/teager.html (September 2009)

[17] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools: Addison-Wesley
Longman Publishing Co., Inc., 1999.

[18] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven Architecture: Practice and
Promise Addison Wesley, 2003.

[19] T. Pender, UML Bible: Wiley, 2003.

32

[20] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic Review of the
Application and Empirical Investigation of Search-based Test-Case Generation," Accepted for
publication in IEEE Transactions on Software Engineering, Special issue on Search-Based Software
Engineering (SBSE), 2009.

[21] L. Lavagno, G. Martin, and B. V. Selic, UML for Real: Design of Embedded Real-Time Systems:
Springer, 2003.

[22] T. Weigert and R. Reed, "Specifying Telecommunications Systems with UML," in UML for Real:
Design of Embedded Real-time Systems: Kluwer Academic Publishers, 2003, pp. 301-322.

[23] S. Sauer and G. Engels, "UML-based Behavior Specification of Interactive Multimedia Applications,"
in Proceedings of the IEEE 2001 Symposia on Human Centric Computing Languages and
Environments (HCC'01), 2001.

[24] "Papyrus," www.papyrusuml.org (September 2009)

[25] "IBM Rational Software Architect," http://www-01.ibm.com/software/awdtools/architect/swarchitect/
(September 2009)

[26] L. C. Briand, Y. Labiche, and Y. Wang, "Using Simulation to Empirically Investigate Test Coverage
Criteria on Statecharts," Carleton University Technical Report SCE-02-09, 2002.

[27] J. Zhang, C. Xu, and X. Wang, "Path-Oriented Test Data Generation Using Symbolic Execution and
Constraint Solving Techniques," in Second International Conference on Software Engineering and
Formal Methods (SEFM'04), 2004, pp. 242-250.

[28] R. Lefticaru and F. Ipate, "Automatic State-Based Test Generation Using Genetic Algorithms," in Ninth
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2008.

[29] L. C. Briand, M. D. Penta, and Y. Labiche, "Assessing and Improving State-Based Class Testing: A
Series of Experiments," IEEE Transactions on Software Engineering, vol. 30, pp. 770-793, 2004.

[30] D. Chiorean, M. Bortes, D. Corutiu, C. Botiza, and A. Cârcu, "OCLE," http://lci.cs.ubbcluj.ro/ocle/
(September 2009)

[31] C. Hein, T. Ritter, and M. Wagner, "Open Source Library for OCL," 2009.

[32] "IBM OCL Parser," http://www-01.ibm.com/software/awdtools/library/standards/ocl-download.html
(September 2009)

[33] M. Egea, "EyeOCL Software," http://maude.sip.ucm.es/eos/ (September 2009)

[34] "Object Management Group," www.omg.org (September 2009)

[35] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling Framework, 2nd ed.:
Addison-Wesley Professional, 2008.

[36] S. A. White, D. Miers, and L. Fischer, BPMN Modeling and Reference Guide: Future Strategies Inc.,
Lighthouse Pt, FL, 2008.

[37] "Business Process Definition Metamodel (BPDM)," Object Management Group, OMG Adopted
Specification dtc/07-07-01, 2007.

[38] E. Christense, F. Curbera, G. Meredit, and S. Weerawarana, "Web Services Description Language
(WSDL) 1.1, 2001," http://www.w3.org/TR/wsdl

33

[39] C. Hahn, C. Madrigal-Mora, and K. Fischer, "Interoperability through a Platform-Independent Model
for Agents," in Enterprise Interoperability II, 2007, pp. 195-206.

[40] W. Zhang, H. Mei, H. Zhao, and J. Yang, "Transformation from CIM to PIM: A Feature-Oriented
Component-Based Approach," in Model Driven Engineering Languages and Systems: Springer Berlin /
Heidelberg, 2005, pp. 248-263.

[41] S. Kherraf, É. Lefebvre, and W. Suryn, "Transformation from CIM to PIM Using Patterns and
Archetypes," in Proceedings of the 19th Australian Conference on Software Engineering, 2008.

[42] "Kermeta - Breathe Life into Your Metamodels," http://www.kermeta.org/ (September 2009)

[43] "ATLAS Transformation Language (ATL)," http://www.eclipse.org/m2m/atl/ (September 2009)

[44] "OMG's MetaObject Facility," http://www.omg.org/mof/ (September 2009)

[45] P. A. Muller, F. Fleurey, and J. M. Jézéquel, "Weaving Executability into Object-Oriented Meta-
Languages," in Proceedings of MODELS/UML'2005, 2005, pp. 264-278.

[46] "Model to Text (M2T)," http://www.eclipse.org/modeling/m2t/ (September 2009)

[47] "MOFScript Home page," http://www.eclipse.org/gmt/mofscript/ (September 2009)

[48] P. Huber, "The Model Transformation Language Jungle - An Evaluation and Extension of Existing
Approaches," in Business Informatics Group: Institut für Softwaretechnik und Interaktive Systeme,
2008.

[49] "Model-based Testing Tools," http://en.wikipedia.org/wiki/Model-based_testing_tools (September
2009)

[50] S. Weißleder, "Partition Test Generato (ParTeG)," http://parteg.sourceforge.net/ (September 2009)

[51] "MARTE: Modeling and Analysis of Real-time and Embedded systems,"
http://www.omgmarte.org/Specification.htm (September 2009)

[52] R. Cavarra, C. Crichton, J. Davies, A. Hartman, and L. Mounier, "Using UML for automatic test
generation " in In International Symposium on Software Testing and Analysis (ISSTA '02), 2002.

[53] "Poseidon for UML," www.gentleware.com (September 2009)

[54] "UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms,"
http://www.omg.org/technology/documents/formal/QoS_FT.htm (September 2009)

[55] S. Kansomkeat and W. Rivepiboon, "Automated-generating test case using UML statechart diagrams,"
in SAICSIT03, 2003.

[56] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, "Adaptive Random Testing: The ART of Test
Case Diversity," Journal of Systems and Software, vol. In Press, Corrected Proof.

[57] T. Jussila, J. Dubrovin, T. Junttila, T. L. Latvala, and I. Porres, "Model Checking Dynamic and
Hierarchical UML State Machines," in Proceedings of the 3rd Workshop on Model Design and
Validation (MoDeVa06), 2006.

[58] N. E. Holt, E. Arisholm, and L. C. Briand, "An Eclipse Plug-in for the Flattening of Concurrency and
Hierarchy in UML State Machines," Simula Research Laboratory, Technical Report 2009-06, 2009.

34

[59] R. A. DeMillo and A. J. Offutt, "Constraint-Based Automatic Test Data Generation," IEEE
Transactions on Software Engineering, vol. 17, pp. 900-910, 1991.

[60] P. McMinn, "Search-Based Software Test Data Generation: A Survey," Software Testing, Verification,
and Reliability, vol. 14, pp. 105-156, 2004.

[61] H. Mössenböck, M. Löberbauer, and A. Wöß, "The Compiler Generator Coco/R,"
http://ssw.jku.at/coco/ (Spetember 2009)

[62] T. Parr, "ANTLR v3," http://www.antlr.org/ (September 2009)

[63] "JPype," http://jpype.sourceforge.net/ (September 2009)

[64] S. Liang, Java Native Interface: Programmer's Guide and Specification: Addison-Wesley Publishing
Company, 1999.

[65] G. McCluskey, "Using Java Reflection,"
http://java.sun.com/developer/technicalArticles/ALT/Reflection/ (September 2009)

[66] S. Sen, B. Baudry, and J. M. Mottu, "On Combining Multi-formalism Knowledge to Select Models for
Model Transformation Testing," in Proceedings of the 2008 International Conference on Software
Testing, Verification, and Validation, 2008.

