
Environment Modeling with UML/MARTE to Support
Black-Box System Testing for Real-Time Embedded
Systems: Methodology and Industrial Case Studies

Muhammad Zohaib Iqbal, Andrea Arcuri, Lionel Briand

Simula Research Laboratory, P.O. Box 134, Lysaker, Norway

{zohaib, arcuri, briand}@simula.no

Abstract. The behavior of real-time embedded systems (RTES) is driven by
their environment. Independent system test teams normally focus on black-box
testing as they have typically no easy access to precise design information.
Black-box testing in this context is mostly about selecting test scenarios that are
more likely to lead to unsafe situations in the environment. Our Model-Based
Testing (MBT) methodology explicitly models key properties of the
environment, its interactions with the RTES, and potentially unsafe situations
triggered by failures of the RTES under test. Though environment modeling is
not new, we propose a precise methodology fitting our specific purpose, based
on a language that is familiar to software testers, that is the UML and its
extensions, as opposed to technologies geared towards simulating natural
phenomena. Furthermore, in our context, simulation should only be concerned
with what is visible to the RTES under test. Our methodology, focused on
black-box MBT, was assessed on two industrial case studies. We show how the
models are used to fully automate black-box testing using search-based test
case generation techniques and the generation of code simulating the
environment.

1. Introduction

Real-Time Embedded Systems (RTES) are largely used in critical domains where
high system dependability is required and expected. The basic characteristic of RTES
is that they react to external events within certain time constraints. Extensive testing
of such systems is important in order to verify their correct behavior under different
timing constraints and adverse situations of the environment (or context). It is also
important to verify that the system under test (SUT) does not lead the environment to
a hazardous state. Testing RTES is particularly challenging since they operate in a
physical environment composed of possibly large numbers of sensors and actuators.
There is usually a great number and variety of stimuli with differing patterns of
arrival times. Therefore, the number of possible test cases is usually very large if not
infinite. Testing all possible sequences of stimuli/events is not feasible. Hence,
systematic testing strategies that have high fault revealing power must be devised.
Manually writing appropriate test cases for such complex systems would be a far too
challenging and time consuming task. If any part of the specification of the RTES

changes during its development, a very common occurrence in practice, then the
expected output of many test cases would potentially need to be recalculated
manually. Automated test-generation and the use of an automated oracle are essential
requirements when dealing with complex industrial RTES.

Moreover, testing the RTES in the real environment usually entail a very high cost
and in some cases the consequences of failures would not be acceptable, for example
when leading to serious equipment damages or safety concerns. In many cases the
hardware, e.g., sensors and actuators, is not yet available at the time of testing as
software and hardware are typically developed concurrently in RTES development.
Since testing RTES on the real environment is not a viable solution, the use of a
simulator is a common alternative.

In our work, we address the above issues by devising a comprehensive, practical
methodology for black-box, model-based testing (MBT). The main contributions of
this paper are as follows: It provides an environment modeling methodology based on
industrial standards and targeted at MBT, and evaluates it on two industrial case
studies. The models describe both the structural and behavioral properties of the
environment. Given an appropriate level of detail, defined by our methodology, they
enable the automatic generation of the environment simulator. The models can also be
used to generate automated test oracles. These could, for example, be invariants and
error states that should never be reached by the environment during the execution of a
test case. Moreover, the models can further be used to automatically choose test cases.
Sophisticated heuristics to choose appropriate test cases are automatically derived
from the models without any intervention of the tester. To summarize, the only
required artifacts to be developed by testers is the environment model and the rest of
the process is expected to be fully automated. This paper focuses on how to make
environment modeling as easy as possible for the purpose of supporting black-box,
MBT, and shows its use for test automation. Due to space constraints, we only briefly
discuss the details for code generation.

To support environment modeling in a practical fashion, we have selected standard
and widely accepted notation for modeling software systems, the UML and its
standard extensions. We use the MARTE [1] extensions for modeling real-time
features and OCL for specifying constraints. We have also provided lightweight
extension to UML to make it more useful in our context. As we will discuss later,
environment modeling is not a new concept. But, most of the approaches use non-
standardized notations or grammars for modeling, which makes them difficult to
apply from a practical standpoint. To the best of our knowledge, modeling the
environment of industrial RTES systems using a combination of UML, MARTE, and
OCL has not been addressed in the literature. By using the proposed methodology,
the software testers (who are primarily software engineers) can model the
environment with a notation that they are familiar with and at a level of precision
required to support automated MBT.

The importance of selecting standards for modeling was highlighted by the
application of methodology on the two industrial case studies that belonged to
completely different domains. An alternative to using standard notations for modeling
could have been to create a domain specific language (DSL) for environment
modeling. Since the methodology needed to be generic for RTES irrespective of their
application domain, making a DSL was not feasible. Making a DSL would have also

reduced the benefits that we obtained from using standards and could have only been
justified if existing standards did not fit our needs. Our case studies were developed
using Enterprise Architect and IBM Rational Software Architect, though any of the
widely available UML tools could have been used for this purpose.

The rest of the paper is organized as follow. Section 2 discusses the related work
on environment modeling and testing based on environment models. The environment
modeling methodology and simulation is discussed in Section 3. Section 4 describes
the use of the environment modeling methodology for automated testing. Section 5
discusses the case studies on which the methodology was applied on and finally
Section 6 concludes the paper.

2. Related Work

In an early work on environment modeling, Zave and Yeh [2] discuss the
environment modeling of embedded systems for requirements engineering purposes.
More recently, Ubayashi et al. [3], Burmeister [4], and Petit and Street [5] discuss the
importance of modeling the environment of an RTES to completely understand its
functionality. Kishi and Noda [6] present an approach for modeling the environment
of an embedded system using an aspect-oriented modeling technique. Karsai et al. [7]
propose a language, Embedded System Modeling Language for modeling the
environment of an embedded system. Choi et al. [8] use annotated UML class and
sequence diagrams for modeling and simulation of environment. Kreiner et al. [9]
present a process to develop environment models for simulation of automatic logistic
systems and its environment. Axelsson [10] evaluates how UML can be used to
model real-time features and provides extension to UML for modeling of real-time
systems and their environments. Gomaa [11] discusses the use of a context diagram
for modeling the environment of real-time systems. The context diagram only shows
the relationship between the system and its external entities. Friedentahl et al. use the
concept of SysML block diagram and activity diagrams to represent the system and its
interfaces with environment components [12].

There are a few works reported in literature that discuss testing based on the
environment of a system. Auguston et al. [13] discuss the development of
environment behavioral models using Attributed Event Grammar for testing of RTES.
Bousquet et al. [14] present an approach for testing of synchronous reactive software
by representing the environmental constraints using temporal logic. Larsen et al. [15]
propose an approach for online testing of RTES based on time automata and
environmental constraints. Heisel et al. [16] propose the use of a requirement model
and an environment models using UML state machines along with the model of the
SUT for testing. These models are used to send stimuli to the SUT for testing. Adjir et
al. [17] discuss a technique for testing RTES based on the model of the system and
model of intended assumptions in the environment in Labeled Prioritized Timed Petri
Nets.

As discussed above, there are approaches in literature that deal with modeling the
environment of a system for various purposes. Most of these approaches are only
limited to modeling the static structure of the environment, as they do not focus on

test automation. The approaches that deal with modeling of behavioral aspects either
use notations with which the software engineers are not familiar, or provide
extensions for environment modeling that do not have well-defined semantics.
Moreover, the properties of the environment, like its timeliness and non-determinism
are not modeled in a standard way. Well-defined semantics (or at least abstract
syntax) are essential if the environment model is to be compatible with other standard
techniques available for model manipulation, e.g., model transformations, consistency
checking. All environment modeling approaches aimed at supporting testing, except
by Heisel et al. [16], use non-standard languages for modeling. Heisel et al. models
both the SUT and the environment, which does not fit our purpose: black-box, system
testing. Moreover, they model the concepts of probabilities and time using non-
standard notations, without using the UML extension mechanisms. Last but not least,
none of the relevant work assesses their environmental methodology on an actual
RTES system, which we believe is a requirement to assess the credibility and
applicability of any MBT approach.

3. Environment Modeling - Methodology

If environment models are to be used for RTES, they should not only be sufficiently
detailed, but should also be easy to understand and modify as the environment and
RTES evolve. To handle the complexity of realistic RTES environments, the
modeling language should have provision for modeling at various levels of
abstraction. The modeling language should also have well-defined syntax and
semantics for the tools to analyze the models and for the humans to accurately
understand them. The language should also provide features (or allow possible
extensions) for modeling real world concepts, real-time features, and other concepts,
such as non-determinism, required by the environment components. The UML,
MARTE profile, and the OCL together fulfill the important requirements of an
environment modeling language.

Even though we are using the same notations to model the environment that are
used for modeling software systems, it is important to note that the methodology for
environment modeling is significantly different from system modeling. While
modeling for the industrial cases, we abstracted the functional details of the
environment components to an extent that only the details visible to the SUT were
included. For environment behavior modeling, non-determinism is widely used,
which is not nearly as common when modeling the internal behavior of a system.

For testing the system based on its environment, the behavior details of the
environment are as important as its structural details. Structural details of the RTES
environment are important to understand the overall composition of the environment
(e.g., number and configuration of sensors/actuators), the characteristics of various
components, and their relationships. We choose to model these details in the form of a
Domain Model developed using UML class diagrams. The behavioral details of
environment components are required to specify the dynamic aspects of the
environment, for example, to determine the possible environment states, before and
after its interactions with the SUT, and to specify the possible interactions between

the SUT and its environment. For behavioral details, we used the UML State
Machines augmented with the MARTE profile.

In the following subsections, we discuss the methodology for modeling the
environment of an RTES. We also discuss various guidelines based on our experience
of applying the methodology on two industrial case studies.

3.1. Modeling Structural Details as Environment Domain Model

The environment domain model provides information of the components of the
environment, their characteristics, their relationships with one another and the SUT,
and information regarding signal sending and reception. The various components
modeled in the domain model together form the overall environment of the SUT. This
means that all these components (their instances) will run in parallel with each other.
Each component in the domain model can have a number of instances in the RTES
environment. The information about the number of possible instances of a component
in the environment is modeled as cardinalities on the associations between different
components in the domain model. Therefore, the domain model can be used to obtain
a number of potential configurations of the environment. Fig. 1 shows the partial
domain model for the environment of a sorting machine (named as SortingBoard in
the figure) in automated bottle recycling systems. The model shows various motors,
sensors, mechanical devices taking part in sorting, and other systems the
SortingBoard communicates with.

Note that the domain model that we develop is different from the ones commonly
discussed in literature (e.g., [18]). The components represented as classes in the
environment domain model will not necessarily relate to software classes. They may
correspond to systems, users and concepts related to various natural phenomena.
Domain modeling here is not a starting point for software analysis. The identification
of components in the domain model, their properties, and their relationships is also
different from what is commonly done for software analysis. Following, we further
discuss various guidelines for modeling the structural details of a RTES environment.
Environment Components to be Included. Initially, all the environment
components that are directly interacting with the SUT are included in the domain
model. Then, each of these components is further refined to a level where we are
certain to cover the important details for simulating the environment needed to test the
SUT. If at any time the behavior of an environment component was getting too
complex, when possible, we decomposed the component and divided its behavior into
multiple concurrent state machines. This is especially useful if a component can be
divided into components that are similar to existing components, so that we can
specialize existing state machines. We used the stereotype <<context>> to represent
components of the environment in the domain model. The components of the
environment are made to communicate with each other and the SUT through signals,
and are modeled as active objects.
Relationships to be Included. All those associations representing the physical or
logical relationships among various environment components, or that were needed for
components to communicate, should be included. A number of components in the
environment might be similar to each other (e.g., various types of sensors). It is useful

to relate these components (and their behavior) using the generalization/specialization
relationship for simplifying the model, as our experience shows that such domain
models get highly complex. For example, in the sorting machine case study, we
modeled the association of the SortingBoard with the SortingArm, which is controlled
by the board, and the ItemSensor that reports arrival of an Item (e.g., bottle). We used
generalization in multiple places, including motors and sensors as shown in Fig. 1.

Fig. 1. Partial environment domain model showing properties and relationships of the sorting
machine case study

Properties to be Included. From all properties that may characterize environment
components, it is important to include only those properties that are visible to the SUT
(or have an impact on a component that is visible to the SUT). These may include
attributes that have a relationship to the inputs of the SUT, that constrain the behavior
of a component with respect to the SUT, or that contribute to the state invariant of a
component that is relevant to the SUT. In Fig. 1, all those modeled properties of Item
are either visible to the SortingBoard or are used by other components. For example,
the serialNum and materialType of Item is assigned by VendingMachine and is used
by the SortingBoard.
Modeling the SUT. It is important to include the SUT in the environment domain
model, so that its relationship with the other environment components can be
specified. It is also useful to include the details of signal receptions by the SUT from
other environment components. The SUT is stereotyped as <<system>>. The
stereotype was used initially by Gomaa [11] to refer the system in a context diagram.
The SUT modeled in the domain model should represent the SUT and its execution
platform, as a single component.

3.2. Modeling Behavioral Details with UML State Machines & MARTE

For modeling the behavior details of the environment that have an impact on the SUT,
we developed the UML State Machines with MARTE real-time extensions for various
components in the environment. As discussed earlier, the environment components
run in parallel to form the environment of the RTES. The components can send
signals to each other and to the SUT. We can also view the environment as having

one state machine with orthogonal regions, one for each component. Fig. 2 shows the
state machine of a component for one of the industrial case studies. We have
abstracted out the concepts for confidentiality reasons. Following, we discuss the
details of the methodological guidelines we followed.
Identifying Stateful Components. Components whose states either affect the SUT or
are affected by the SUT should be modeled with state machines. Apart from these
components, it is also useful to model the behavior of other components on which we
would like control during the simulation.
Overall, the environment should be modeled in a way that enables, after the initial
configuration and provision of input data (parameters and guards), the full simulation
of the interactions with the SUT. All the context components shown in Fig. 1 are
stateful components of the sorting machine case study. For example, the SortingArm
component was modeled as stateful since it receives signals from the SortingBoard
and reacts differently based on its current state.
States to be Included. It is important to determine the right level of abstraction for a
component state machine. If we want to precisely model the behavior of an
environment component, this might lead to a large number of states. We are, however,
only interested in state changes that have an impact on the SUT. A single state in an
environment model state machine may correspond to a large number of concrete or
physical states. For example, in the sorting machine, the Item states that were
modeled were all related to its movement through the sorting machine whereas its
other possible states were not of interest as an environment component of the
SortingBoard.
Modeling Users in the Environment. Generally, for software system modeling users
are only modeled as sources of inputs and data. The behaviors of users with respect to
the system are not considered. In the environment modeling methodology, it is useful
to model the behavior of users in the environment to have a control over the
inputs/outputs of the various components or the SUT. If a user participates in multiple
roles, it is useful to model each role a user plays as a separate component. In the
sorting machine case study, we modeled two different users (the operator and the
persons who enters the items for sorting), each of them had considerable non-
deterministic behavior.
Modeling Abstract Phenomena. Sometimes it is necessary to model abstract
physical concepts, such as temperature, heat, voltage, and current. Mostly,
information regarding these phenomena can be obtained and controlled through
sensors and controllers, such as a temperature controller or sensor. Modeling of such
concepts explicitly as environment components can be useful if a change in the state
of these concepts impacts multiple components simultaneously, or if it is not possible
to identify a related component in the environment that can act as a controller or
sensor of this concept for simulation. As an example, consider a RTES on a vehicle
that indicates its driver the time for a pit stop. The tires of a vehicle can burst when
the temperature of the road gets too high. If there is no sensing mechanism available
in the environment, then it is useful to make a state machine of temperature, with
possibly two states representing below and above danger temperatures.
Modeling Transitions & Action Durations. Most of the transitions in the state
machines of the components will either be based on signal events or time events.
Timeout transitions are an important concept in RTES environment models. The

MARTE TimedEvent concept is used to model timeout transitions, so that it is
possible for them to explicitly specify a clock. Each environment component may
have its own clock or multiple components may share the same clock for absolute
timing. The clocks are modeled using the MARTE’s concept of clocks. Specifying a
threshold time for an action execution or for a component to remain in a state is
possible using the MARTE TimedProcessing concept. This is also a useful concept
and can be used, for example, to model the behavior of an environment component
when the RTES expects a response from it within a time threshold. When a
SortingArm is signaled to move, after staying some time in the Moving state, it
transitions to the Not Moving state Fig. 2.

Fig. 2. State Machine of the SortingArm component in the sorting machine case study

Modeling Non-Determinism. Non-determinism is a particularly important concept
for environment modeling and is one of the fundamental differences between models
for system modeling and models for environment modeling. Following we discuss
different types of non-determinism that we have modeled for our case studies.

Specifying exact value for timeout transitions might not always be possible for
RTES environment components. To model their behavior in a realistic way, it is often
more appropriate to specify a range of values for a possible timeout, rather than an
exact value. Moreover, the behavior of humans interacting with the RTES is by
definition non-deterministic. For modeling this behavior, we can add an attribute in
the environment component and use OCL to constrain the possible set of values of the
attribute and then use this attribute as a parameter of a timeout transition. In the
sorting machine case study, the SortingArm may reach a sorting location from its
center between 5 sec and 6 sec, depending on various physical conditions. This is
modeled through the attribute movingTime, which is passed as a parameter to the
change event on the transition from Moving to Not Moving. Legal values for the
attributes are constrained using OCL.

Another important form of non-determinism is to assign probabilities to the
transitions of state machines. In an RTES environment, we sometimes only know the
probability of a component to go into a particular state over time and we are not sure
about the exact occurrence of such conditions. For example, we can say that the

probability of a car engine to overheat after running continuously for 10 hours is 0.05,
but we cannot be certain about the exact instance in time when this situation will
happen. We can model this in the engine state machine with a transition going from
Normal Temperature state to Overheated state, during an interval of 10 hours, with
probability of 0.05. For modeling these scenarios, we assigned a probability on the
transitions using the property prob of the MARTE GaStep concept. Whenever a
timeout transition has the gaStep stereotype applied with a non-zero value of prob, the
combination will be comprehended as the probability of taking the transition over
time of timeout transition. In the sorting machine case study, a SortingArm can get
stuck in a position (e.g., because of a bottle blocking it or the arm jamming) with a
probability 0.02 in a minute if it is not moving and a higher probability when it is
moving. This can be modeled as shown in Fig. 2 by the transitions from Not Moving
and Moving to Sorter Stuck. The sending of non-deterministic signals can also be
modeled using this type of transitions, by placing them in the actions of such
transitions.

Another type of probability that we modeled in our case studies is for the situations
where one event can lead to multiple possible scenarios, but all of them are mutually
exclusive. For example, if we want to represent the fact that during the
communication with the SUT (e.g., UDP), there is a chance that a signal from it is
received without distortion or with distortion. To make the models more realistic, we
assigned probabilities to each of such scenarios in the environment component. In
terms of UML state machines, this means that multiple transitions are outgoing from
one state based on the same event (maybe with identical guard). For modeling these
scenarios, we assigned the MARTE gaStep stereotype to each of the multiple possible
outgoing transitions. The example of communication with the SUT can be modeled
by having two transitions going out of the environment component state on receiving
of a signal, one labeled with a probability that the signal was corrupted and the other
with the probability that the signal was fine. Modeling the distribution of event
arrivals and timeout transitions can be useful for validation purposes, but is out of the
scope of this paper, since our goal is verification of the SUT. Nevertheless, this type
of information can be easily expressed in the model using the MARTE profile.
Modeling Error & Failure States. In the environment models, two types of states
play a particularly important role: the error states and the failure states.

Environment error states are those states that the environment goes into because of
unwanted response(s) (or lack of) from the SUT. Every component in the
environment may have error states. If any component of the environment reaches one
of these error states, then it means that the SUT is faulty. We use the stereotype
<<error>> for such states in the environment model. For a SortingArm, an Item
should not arrive while the arm is moving. This is an error state of the environment
and can be caused if arm is not made to move on time by the SortingBoard. In Fig. 2,
this has been modeled with the Item Arrival Error state.

Failure states model possible failures of environment components. A component
may fail in several different ways with different consequences for the SUT. The SUT
should appropriately behave under known, failing conditions. A failure can happen at
any time during the execution of a component, e.g., a sensor may break at any time,
and is modeled as non-deterministic behavior (as discussed). We use the stereotype
<<failure>> for these failure states. The Sorter Stuck state discussed earlier, in which

the SortingArm is stuck and cannot change its position, is a failure state of the
environment.

3.3. Modeling the Constraints

To apply constraints on the relationships and restrictions on various value
combinations (or state combinations) of objects, we have used the Object Constraint
Language (OCL). We have also used OCL for representing the guards on the state
machines, various state invariants and general constraints on the relationships of
environment components.

An RTES environment consists of a number of components including some real-
world concepts (e.g., temperature, air pressure). If we consider all the various
components of environment together, it is important to restrict the possible state
combinations of these components to avoid infeasible situations (e.g., reverse and
forward movement of motors is not possible at the same time). In our methodology,
we have used OCL to specify constraints for such scenarios. For example, for the
sorting machine, if a SortingArm is moving then only one DiskMotor and
PositionMotor should be running at a given time. If the arm is not moving, both the
motors should not be running. There can be a number of such constraints and it is
important to model them to have a realistic simulation and testing based on the
models. Otherwise, the models would end up in states that are not practically possible.

State invariants in the environment also play a significant role. Based on the values
of the attributes of the component, the state invariants are used to evaluate the current
state of the environment and derive state oracles (i.e., is the environment in the
expected state?). We have used OCL to specify the state invariants. We also used
OCL to specify the overall set of values that an attribute of an environment
component can take. Last, the OCL constraints were also used for modeling non-
determinism as discussed earlier.

3.4. Environment Modeling Profile

Our goal was to model the environment based on the standard UML and its existing
extensions as much as possible. We applied the standard notations and based on our
needs for those case studies, where required, we provided light weight extensions to
UML. In this section we will discuss the subsets of UML and MARTE that we used
and the lightweight extensions that we have provided for environment modeling.
From a practical standpoint, it was important to identify these subsets for the
methodology, since the UML and MARTE standards are very large and most
organizations would be reluctant to adopt such large notations.

We used the concept of Context, System, Error, and Failure under the form of
UML stereotypes. Context is used to represent an environment component and is
applied on the classes of the domain model. Similarly, System is also applied on the
classes of the domain model and represents the SUT. Error represents the states of
environment component that are only taken if there is an error in the SUT. Failure is
also applied on the states and represents a failure in the environment. Within UML,

we used the concept of Class diagram, State Machines. From MARTE, we only used
the Time package and the GaStep concept from the GQAM package as shown in Fig.
3. This small subset of UML and MARTE was sufficient for modeling our two
industrial case studies for the purpose of automating black-box testing.

Fig. 3. Profile diagram showing various stereotypes and references

3.5. Simulation of Environment Models

Due to size constraints, we cannot go into the details of the simulation and only
briefly discuss it. An environment simulator can be used to simulate the RTES
environment. Such a simulator is generally used to test a RTES in conditions similar
to its real environment. The environment models developed using our methodology
with UML and the MARTE profile are transformed into a simulator in Java using a
model to text transformation. Since, the standard for a concrete syntax of the UML
Action Language is still not finalized, we made use of Java. Once there is a standard
UML Action Language, the actions can be written in that language and then translated
into the target language of the RTES. For our case studies, the actions are written in
Java and are converted into Java method calls.

4. Model-based Testing based on Environment Models

In this section we briefly discuss how our modeling methodology is used to achieve
automated system testing. Further details can be found in [19].

The UML/MARTE models of the environment are used to automatically generate a
simulator for it. The simulator is used to test the RTES. In our methodology, a test
case is the setting used for the simulator. The information of what to configure in the
simulator is automatically derived from the models and it is given as input to the test
engine. Two types of setting are necessary:

‐ Number and relations of the environmental components. For example, given
a state machine representing a sensor, the Domain Model is used to

determine how many sensors can be connected to the RTES (and so, we
would know how many running instances we need for that state machine).
Several different combinations are possible.

‐ Each state machine can have non-deterministic events. The models are used
to specify them and to provide details of their type. When the simulator is
running, every time it requires a value to calculate a non-deterministic event,
it then queries the test engine to obtain such values.

At the current moment, we have not investigated different configurations based on
the Domain Models. We have focused on testing the behavior of the RTES given a
single configuration. The goal of the testing is to provide a valid setting for the non-
deterministic events such that an environmental error state (Section 3.2) is reached
during the simulation, if any fault is present.

The simplest testing technique would be to provide (valid) random values each
time the simulator queries the test engine for values to use in non-deterministic
events. But more sophisticated techniques that exploit the information in the models
can be used. For example, reaching the error state during simulation can be
represented as a search/optimization problem, so Search Based Testing (SBT)[20] can
be used. From the models we can automatically generate a fitness function to guide
the search. Common heuristics such as approximation level and branch distance of
the OCL constraints would be used for the fitness function. Due to size constraints,
the investigated testing strategies are reported in [19], where we also proposed a novel
fitness function that exploits the time properties of the UML/MARTE models.

The use of models for SBT in the case of RTES system testing is essential. In fact,
to have effective heuristics (i.e., the fitness function) we need to have precise
knowledge of the error states. This information is easily added in the models using
stereotypes (Section 3.4). All the relevant states/transitions that lead to those error
states can be exploited for the automatic derivation of the fitness function. On the
other hand, if we have a simulator but no model, it is unlikely that it would be
possible to automatically reverse-engineer all this useful information from the code
alone. Therefore, the fitness function would be necessarily written by hand, with all
the related downsides that this choice brings.

In some relevant cases [19], it is possible to automatically derive very precise
fitness functions. This happens when time constraints need to be satisfied (a typical
case in RTES), e.g., a signal should be received within 10 milliseconds. A test case
for which that signal is received after 9 milliseconds gives more information than a
test case in which the same signal is immediately received after 1 millisecond (notice
that in both cases the constraint is satisfied). SBT can automatically exploit this
information by focusing the search on simulator configurations that are more likely to
yield a deadline miss. A tester does not need to write these heuristics, they are in fact
automatically derived from the environment models. This is essential, because in
general software testers do not have the expertise to write proper fitness functions for
search algorithms.

In the state machine depicted in Fig. 2, the transition to the error state is not based
on a time deadline. The error arises if an Item arrives while the sorter is in the Moving
state. Still, heuristics can be automatically derived. For example, we can reward in the
fitness function the test cases that lead that sorter to stay in the state Moving for as
long as possible, such as to increase the possibilities that this erroneous transition will

be taken. In general, in a fitness function we would reward test cases that lead the
machine to stay longer in these states from which a transition to error states can take
place. This information can be automatically derived from the environment models. In
our particular example, the search algorithms would be guided by the fitness function
towards test cases in which consecutive arriving items have different destinations (so
that each time an Item is arriving, the SortingArm has to move).

The results in [19] show that our modeling methodology can be used for a fully
automated system testing that is effective in revealing faults in industrial RTES.
Although different testing strategies can be design (e.g., Random Testing and SBT),
the environment modeling methodology described here would still remain the same.

5. Case Studies

To evaluate the proposed methodology for environment modeling, we applied it on
two industrial RTES. The application domains of the systems were entirely different.
Though we cannot provide full details of the systems because of confidentiality
restrictions, we are providing a brief description of the systems. One of the systems
was a marine seismic acquisition system. One of the responsibilities of the system
was to control the movement of seismic cables, where each cable had a large number
of sensors and seismic vibrators, among other equipments. The system regularly
communicated with these components and was responsible for managing the life
cycle and connections for these components (among other things). The second RTES
was a sorting system, which was part of a recycling machine. The system
communicated with a number of sensors and actuators to guide a recycled item
through the recycling machine to its appropriate destination. We provide a summary
of the environment models developed for both the case studies in Table 1.

For Case A, the RTES was configurable as three different types of systems;
therefore the number of environment components was large. But most of the
components’ behavior could be modeled with a couple of states. The highest number
of states was 18. Many components inherited a parent component behavior, i.e., its
state machine. That was the case for example for DiskMotor and Motor in Fig. 1.

Though the number of components for Case B was more limited than for Case A,
the number of instances for some of the components in the environment was very
large (e.g., thousands of sensors of the same type communicating with the SUT), thus
leading to many instances of executing state machines during simulation. The
complexity of component state machines was also on average much higher than for
Case A.

Application of the proposed methodology to these case studies for simulator
generation and effective automated testing shows the scalability and effectiveness of
our approach.

One important conclusion is that, in both cases, we were able to model the RTES
environments with the subset of UML and MARTE that we identified and the
lightweight extensions that we proposed.

For both case studies, the number of components identified at the time of domain
modeling was larger than what was finally required. During successive revisions and

Table 1. Summary of the environment models of the two industrial RTES.

Industry Case # of env
components

Stateful
components

Average
of states

Max states in
a component

Max transitions
in a component

Case A 55 43 ~3 18 40
Case B 5 4 ~12 19 29

based on insight obtained through behavioral modeling, some components turned out
to be unnecessary and were removed from the domain model. One practical challenge
is that it was not easy in practice to identify the right level of abstraction to model the
behavior of environment components. Sub-machines were widely used to
incrementally refine the behavioral models until the right level of detail was achieved
to simulate the behavior of component from the viewpoint of the SUT.

6. Conclusion

In this paper, we have discussed a methodology for modeling the environment of a
Real-Time Embedded System (RTES) in order to enable black-box, system test
automation, which is usually performed by test engineers who are not informed of the
design specifics of the RTES. For practical reasons and to facilitate its adoption, the
methodology is based on standards: UML, MARTE profile, and OCL for modeling
the structure, behavior, and constraints of the environment. We, and this is part of our
methodology, made a conscious effort to minimize the notation subset used from
these standards. We briefly discussed how the environment models are used to
generate automated system test cases and a simulator of the environment to enable
testing on the development platform. One advantage is that the methodology also
allows more focus on the testing for critical and hazardous conditions in the RTES
environment as environment failures and possible error states due to faults in the
RTES implementation are explicitly modeled.

We modeled the environment of two industrial RTES in order to ensure that our
methodology and the notation subsets selected were sufficient to fully address the
need for automated system testing. Our experience showed that was the case.

7. Acknowledgements

The work presented in this paper was supported by Norwegian Research Council and
was produced as part of the ITEA 2 VERDE project.

References

1. OMG: UML Profile for MARTE Beta 2. Object Management Group Inc (2008)

2. Zave, P., Yeh, R.T.: Executable requirements for embedded systems. In: Proceedings of the
5th international conference on Software engineering pp. 295 - 304. IEEE Press (1981)

3. Ubayashi, N., Seto, T., Kanagawa, H., Taniguchi, S., Yoshida, J., Sumi, T., Hirayama, M.:
A context analysis method for constructing reliable embedded systems. In: Proceedings of
the 2008 International Workshop on Models in Software Engineering pp. 57-62. ACM
(2008)

4. Burmeister, C.: Real-Time Environment Modeling. In: IEEE Workshop on Real-Time
Applications pp. 142-146. (1993)

5. Pettit IV, R.G., Street, J.A.: Lessons Learned Applying UML in the Design of Mission
Critical Software. UML 2004 Satellite Activities, Vol. 3297. Lecture Notes in Computer
Science, Springer Berlin / Heidelber (2004) 129 - 137

6. Kishi, T., Noda, N.: Aspect-oriented Context Modeling for Embedded Systems. In:
Workshop on Early Aspects: Aspect-Oriented Requirements Engineering and Architecture
Design pp. 68-74. (2004)

7. Karsai, G., Neema, S., Sharp, D.: Model-driven architecture for embedded software: A
synopsis and an example. Science of Computer Programming 73, 26-38 (2008)

8. Choi, K.S., Jung, S.C., Kim, H.J., Bae, D.H., Lee, D.H.: UML-based Modeling and
Simulation Method for Mission-Critical Real-Time Embedded System Development. In:
IASTED International Conference Proceedings pp. 160-165. (2006)

9. Kreiner, C., Steger, C., Weiss, R.: Improvement of Control Software for Automatic Logistic
Systems Using Executable Environment Models. In: EUROMICRO '98: Proceedings of the
24th Conference on EUROMICRO pp. 20919. IEEE Computer Society (1998)

10. Axelsson, J.: Unified Modeling of Real-Time Control Systems and Their Physical
Environments Using UML. In: Eighth Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (ECBS '01) pp. 18. (2001)

11. Gomaa, H.: Designing Concurrent, Distributed And Real-Time Applications With UML.
Addison-Wesley Educational Publishers Inc (2000)

12. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Modeling
Language. Elsevier (2008)

13. Auguston, M., B, M.J., Shing, M.: Environment behavior models for automation of testing
and assessment of system safety. Information and Software Technology 48, 971-980 (2006)

14. Du Bousquet, L., Ouabdesselam, F., Richier, J.L., Zuanon, N.: Lutess: a specification-driven
testing environment for synchronous software. In: ICSE '99: Proceedings of the 21st
International Conference on Software Engineering pp. 267-276. ACM New York, NY, USA
(1999)

15. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online Testing of Real-time Systems Using
Uppaal. Formal Approaches to Software Testing, Vol. 3395. Lecture Notes in Computer
Science, Springer Berlin / Heidelberg (2005) 79-94

16. Heisel, M., Hatebur, D., Santen, T., Seifert, D.: Testing Against Requirements Using UML
Environment Models. In: Fachgruppentreffen Requirements Engineering und Test, Analyse
& Verifikation pp. 28-31. GI (2008)

17. Adjir, N., Saqui-Sannes, P., Rahmouni, K.M.: Testing Real-Time Systems Using TINA.
Testing of Software and Communication Systems, Vol. 5826. Lecture Notes in Computer
Science, Springer Berlin / Heidelberg (2009) 1-15

18. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process. Prentice Hall PTR Upper Saddle River, NJ, USA (2001)

19. Arcuri, A., Iqbal, M.Z., Briand, L.: Black-box System Testing of Real-Time Embedded
Systems Using Random and Search-based Testing. Technical Report, Simula Research
Laboratory (2010)

20. McMinn, P.: Search-based Software Test Data Generation: A Survey. Software Testing
Verification and Reliability 14, 105-156 (2004)

