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Abstract—Applying model-based testing (MBT) in practice 
requires practical solutions for scaling up to large industrial 
systems. One challenge that we have faced while applying MBT 
was the generation of test suites that were too large to be 
practical, even for simple coverage criteria. The goal of test 
case selection techniques is to select a subset of the generated 
test suite that satisfies resource constraints while yielding a 
maximum fault detection rate. One interesting heuristic is to 
choose the most diverse test cases based on a pre-defined 
similarity measure. In this paper, we investigate and compare 
possible similarity functions to support similarity-based test 
selection in the context of state machine testing, which is the 
most common form of MBT. We apply the proposed similarity 
measures and a selection strategy based on genetic algorithms 
to an industrial software system. We compare their fault 
detection rate based on actual faults. The results show that 
applying Jaccard Index on test cases represented as a set of 
trigger-guards is the most cost-effective similarity measure. We 
also discuss the overall benefits of our test selection approach 
in terms of test execution savings. 

Keywords—Test case selection; model-based testing; UML 
state machine; similarity measure; and genetic algorithms 

I.  INTRODUCTION 

In recent years the software industry has shown 
increasing interest in automating the process of test case 
generation using models of the system under test. The main 
idea behind model-based testing (MBT) is to generate 
executable test cases (including oracles) by systematically 
traversing system models (e.g., represented as UML state 
machines) based on test strategies usually involving some 
form of coverage criterion that aims to cover certain features 
of the model (e.g., all transitions in state machine-based 
testing (SMBT)) [1]. MBT tools are becoming increasingly 
sophisticated and robust and MBT is becoming the best test 
automation solution for many practitioners. However, there 
are still many unsolved issues regarding how to scale up 
MBT to large industrial software systems. Our experience 
has shown that in many practical contexts even simple 
coverage criteria yield far too many test cases to be usable.  

In general, system test case execution can be very costly 
in most embedded and distributed systems when there is 
hardware in the loop or test execution requires access to 
dedicated test infrastructures or no automated oracle is 
available. Testing such systems requires, for example, 
assigning enough resources (e.g., actual physical devices) to 
the test case, properly handling acceptable delays in the 

system execution and the network communication, and 
manually analyzing the results when there is no automated 
oracles. This can be a major hindrance for making MBT 
practical, especially in the context of system testing when 
release deadlines are close and the project is already often 
behind schedule. 

Test case selection is used to reduce test suite sizes to 
what can be handled in a specific context while retaining the 
largest possible fault revealing power. In general, regardless 
of the heuristic used, this test case selection problem is NP 
hard (traditional set cover) [2]. Other than random selection, 
where there is no guidance to select test cases, there have 
been two main types of test case selection heuristics 
proposed in the literature. In coverage-based selection [3], 
the underlying hypothesis is that “the test suites which 
achieve more coverage (of model or code) are more likely to 
detect faults”. In similarity-based test case selections (STCS) 
[4], the underlying hypothesis is that “the more diverse the 
test suites the higher their fault revealing power”. To use this 
latter approach one needs a (dis)similarity measure to 
calculate the diversity of a subset by averaging all pair-wise 
similarity values. After defining a similarity measure, a 
selection algorithm is required to choose a set of test cases 
with the minimum pair-wise similarity among its members. 
In [5], we introduced a new STCS technique for SMBT, 
which includes a new similarity measure using triggers and 
guards on transitions of state machines and a genetic 
algorithm (GA)-based selection algorithm. Applying this 
technique on an industrial case study, we showed that STCS 
in general and more specifically our proposed approach is by 
far more effective at detecting real faults than coverage-
based and random selection.  

In this paper, we take a deeper look into the effect of 
similarity measures in test case selection by distinguishing 
the test case representation (encoding) from the similarity 
function as two distinct parameters of a similarity measure. 
A comprehensive investigation of different similarity 
functions is performed through an industrial empirical study 
where the software under test (SUT) is a safety controller 
system which is modeled using UML state machines and test 
cases are generated using our MBT tool (TRUST) [1]. The 
case study, although modest compared to other industrial 
systems, is much larger both in terms of models and number 
of generated test cases, than what is reported in related 
works. Moreover, the faults we use are real (no seeded 
faults) thus significantly increasing the level of realism. The 
results show that choosing a proper similarity measure has a 



very significant effect on fault detection. The best similarity 
measure results in increasing the fault detection rate (FDR) 
by 50% when compared to the best alternative, coverage-
based selection in this case, for small sample sizes (~10% of 
the test suite). In addition, our approach for test case 
selection reduces significantly the cost of MBT by reducing 
the number of test executions. For example, to achieve a 
FDR higher than 90%, we only need to execute 20 test cases 
selected with our approach, whereas other alternatives select 
at least 85 test cases to achieve the same FDR. Our approach 
therefore entails a 77% saving in execution cost.  

The rest of the paper is organized as follows. Section  II 
reports on background information about test case selection. 
Section  III discusses on different similarity functions which 
are used in this study. Section  IV provides a brief overview 
of related works covering STCS techniques. Section  V 
reports the experimentation results of applying different 
STCS techniques on an industrial case study. Section  VI 
concludes the paper and outlines our future work plan. 

II. TEST CASE SELECTION  

In general, there are two options for decreasing the 
number of test case executions. The first is generating fewer 
test cases which in the context of MBT means using a less 
demanding coverage criterion. For instance, if using all 
transition-pairs [6] generates a too large test suite, the all-
transitions [6] criterion can be adopted instead to decrease 
the number of test cases. This still results in systematic 
testing but may reduce the FDR. The second approach is to 
select a subset of test cases from the test suite for execution. 
This can be done either by test suite reduction where the goal 
is to minimize the test suite by removing redundant test cases 
with respect to a criterion (e.g., code coverage) or by test 
case selection where the goal is to select a subset of the 
entire test suite that maximizes fault detection based on a 
heuristic, given a maximum number of test cases. Using a 
less demanding coverage criterion or test suite reduction is 
often impractical as one cannot precisely select a maximum 
number of test cases. Furthermore, we have shown in [5] that 
even when the scale of reduction achieved by using less 
demanding criteria is acceptable, it is still much less cost-
effective than a STCS. Test case prioritization, which does 
not remove any test case but order their execution [7], could 
also be considered but does not directly address our problem, 
though some of the underlying ideas could be adapted. For 
example, as we will see in the related work section, most 
similarity measures that are used in similarity-based test case 
prioritization can be used in test case selection as well. In 
this study, the focus is on test case selection.  

The problem of test case selection in our context can be 
formalized as: “Given a test suite TS that detects a set of 
faults (F) in the system, our goal is to maximize FD(sn), 
where sn is a subset of TS of size n and FD(sn) is the 
percentage of F which is detected by sn”. We can classify test 
case selection techniques as follows: (1) those which make 
use of test execution information as it is usually the case in 
regression testing and (2) those which select test cases solely 
based upon the characteristics of the (abstract) test cases. The 
latter category is the one of interest in our context where the 

test suite cannot be executed before selection. Therefore, 
execution-based heuristics such as execution traces (e.g. call 
stack [8]) are not applicable here. 

A. Coverage-based Test Case Selection  

Maximizing coverage has been a common practice in 
selection and prioritization for years. Most studies in test 
case selection (even those which are general purpose and not 
specific to regression testing) are based on code-level 
information (e.g., additional statement coverage[7]) and 
cannot directly be applied to MBT. However, it is possible to 
extract additional information from test cases to help the 
selection even without executing it. For example, transition 
coverage in a state machine can be determined if traceability 
has been preserved between a test case and its source state 
machine. Most coverage-based selection techniques are re-
expressed into optimization problems where the goal is to 
select the best subset of test cases to achieve full coverage. 
For example, a technique in [7] uses a Greedy search to 
select, at every step, the test case that covers the most 
uncovered statements (additional coverage-based technique) 
whereas in [9] a GA is used to achieve maximum coverage.  

B. Similarity-based Test Case Selection  

In STCS techniques, a (dis)similarity measure is used for 
comparing similarity (diversity) between a pair of test cases. 
A similarity measure is the value that a similarity function 
assigns to two inputs which are being compared. Inputs are 
usually encoded as a set or sequence of elements. In the 
context of MBT, the inputs are abstract test cases instead of 
concrete test cases. We do not need the execution 
information of the test case and abstract test cases are 
naturally generated as a first step by MBT. Therefore, we 
reduce the cost of test case generation by only generating 
executable test cases for the selected abstract test cases and 
also by hiding the unnecessary information for similarity 
comparisons. For example, in SMBT an abstract test case 
representation can be a path in the state machine specifying 
the SUT. In general, different faults can be detected by the 
same test path instantiated with different test data. Therefore, 
to compare different techniques, it is necessary to run the 
selected test paths with different input data and use their 
FDR distribution. 

Representation (encoding) of the test cases has an 
important effect on the similarity measure. Though in state-
based testing a test path represents an encoded abstract test 
case, the test path can be described at different levels of 
details. We consider three possible encodings for a test path 
in UML state machine: state-based, transition-based, and 
trigger-guard-based:  

1. state-based:           <tp> ::= state | state “,” <tp> 
2. transition-based:        <tp> ::= trans | trans “,” <tp> 
3. trigger-guard-based:  <tp> ::= <TrGu> | <TrGu> “,” <tp> 
                                                 < TrGu > ::= trig |guard | id |  
                   guard “+” trig  

where state is the id of a state, trans the id of a transition, 
trig the id of a trigger, and guard the id of a guard in the state 
machine. In the case of trigger-guard-based encoding, a 



transition is identified by its trigger and guard. It can be only 
a trigger, or a guard or both together. If there is a transition 
with no guard and trigger, we use the transition id as its 
identifier. Note that the difference between trigger-guard-
based and transition-based encoding is that in trigger-guard-
based encoding transitions with the same trigger-guard but 
different source or target state are identical. 

Given an encoding, one may use different similarity 
functions to calculate the similarity value. Similarity is 
usually defined on either two sets or two sequences of 
elements. The main difference is that set-based similarity 
measures as opposed to sequence-based ones do not take the 
order of elements into account. For example, if test case 1 
includes method calls A and B and test case 2 includes 
method calls B and A, respectively, and method calls are the 
only encoded elements in the test path, set-based similarity 
functions assume these two test cases as identical. In the next 
section, the functions which are used in our study are 
introduced. In this paper, we take the best encoding from our 
previous study [5] and investigate the effect of different 
similarity functions on the FDR of the selected test cases. 

Given a set of encoded test cases (ݏ௡) and a similarity 
function ( ܿ݊ݑܨ݉݅ܵ ), the test case selection problem is 
reformulated as minimizing ܵ݅݉ݎݏܯሺݏ௡ሻ: 

௡ሻݏሺݎݏܯ݉݅ܵ ൌ ෍ , ௜݌ݐሺܿ݊ݑܨ݉݅ܵ ௝ሻ݌ݐ

௧௣೔ , ௧௣ೕ∈௦೙ ∧ ௜வ௝



Where ܵ݅݉ܿ݊ݑܨ (݌ݐ௜ , ݌ݐ௝) returns the similarity of two 
test paths (or other encoded abstract test cases in MBT) in ݏ௡ 
represented by ݌ݐ௜  and ݌ݐ௝. The last step in STCS is applying 
a selection algorithm which selects a subset of test cases with 
minimum average pair-wise similarity ( ݎݏܯ݉݅ܵ ). Our 
experience in [5] showed that using a GA is more cost-
effective than a Greedy search which is common in the 
STCS literature [4]. Therefore, in this study we use a GA as 
our selection mechanism. GAs rely on four basic features: 
population, selection, crossover and mutation. More than one 
solution is considered at the same time (population). At each 
generation (i.e., at each step of the algorithm), some good 
solutions in the current population are chosen by the 
selection mechanism to generate offspring using the 
crossover operator. This operator combines parts of the 
chromosomes (i.e., the solution representation) of the 
offspring with a certain probability; otherwise it just 
produces copies of the parents. These new offspring 
solutions will be part of the population of the next 
generation. The mutation operator is applied to make small 
changes in the chromosomes of the offspring. Eventually, 
after a number of generations, an individual that solves the 
addressed problem will be evolved. We use a steady state 
GA where an individual (i.e., a solution to the problem) is ݏ௡ 
(subset of TS with size n). SimFunc(݌ݐ௜ , ݌ݐ௝) is the fitness 
function to be minimized. A mutated test path is replaced by 
a test path that is selected at random from the set of all 
possible test paths. We do not tune our GA parameters and 
use what is suggested in the literature (e.g. [10])—a high 
crossover probability (0.75) and low mutation probability 

(inversely proportional to the population size) and a 
reasonable sample size (50). The stopping criterion used in 
this study is stopping after a fixed period of time (175ms), 
which is 10 times more than the amount of time that a basic 
Greedy search would take on average in our case study. 
Though the GA is more costly than the Greedy, the GA is 
still a better option since 175ms is negligible compared to the 
execution time of a test case and no improvement can be 
obtained with Greedy even if we let the algorithm search for 
longer periods of time (e.g., 175ms). 

III. SIMILARITY FUNCTION 

As we mentioned in Section  B, common similarity 
functions are either set-based or sequence-based. In this 
study, we compare measures which have been used in the 
similarity-based selection or prioritization literature 
(Counting, Hamming, Jaccard, and Levenshtein functions) 
and  measures (Global and Local alignments) which have not 
been used in software testing but are commonly used in other 
disciplines (such as bioinformatics) for similarity 
comparisons. 

A. Set-based Similarity Functions 

The main two measures in this category are the Jaccard 
Index [11] and the Hamming Distance function [12]. 
However, we also compare another measure (we call it 
Counting function) which is used in the only other reported 
study about STCS in MBT [4].  

1) Counting Function 
The Counting function (Cnt) is the simplest way of 

comparing two sets which we have reused from the measure 
used in [4] for comparing two sets of transitions. Given two 
sets S1 and S2, Cnt(S1, S2) = number of identical members 
in S1 and S2 divided by the average number of members in 
S1 and S2. 

2) Hamming Distance 
Hamming Distance is one of the most used distance 

functions in the literature which is a basic edit-distance. The 
edit-distance between two sequences is defined as the 
minimum number of edit operations –insertions, deletions, 
and substitutions– needed to transform the first sequence into 
the second [12-14]. Hamming is only applicable on identical 
length inputs and is equal to the number of substitutions 
required in one input to become the second one [12]. If all 
inputs are originally of identical length, the function can be 
used as a sequence-based measure. However, in most 
applications, inputs have different lengths. Therefore, to 
force them to have an identical length, a binary vector is 
made per input that indicates which elements from the set of 
all possible elements of the encoding exist in the input. As a 
result, the function does not preserve the original order of 
elements in the input anymore and it becomes a set-based 
similarity function. In our case, to use Hamming Distance, 
each encoded test case is represented as a binary vector of 
length n, where n is the number of all possible elements for 
that encoding (e.g., n is the number of all states, if state-
based encoding is used). A bit in the vector is true only if the 
encoded test case contains the corresponding element (e.g., 
the state in the above example). We also need to change 



distance into similarity in our study. Therefore, our version 
of the Hamming function (denoted Ham) counts identical 
bits in the two input vectors, as opposed to the standard 
Hamming Distance where differences are counted.  

3) Jaccard Index 
Jaccard Index or Jaccard similarity coefficient (denoted 

Jac) is defined to compare similarity of sample sets [11]. It is 
defined as the size of the intersection divided by the size of 
the union of the sample sets: 

,ܣሺܿܽܬ ሻܤ ൌ
ܣ| ∩ |ܤ

ܣ| ∪ |ܤ
 

B. Sequence-based Similarity Functions 

Sequence similarity is usually applied on string matching 
in text mining [14] and homologous pattern recognition in 
bioinformatics [13]. Here we are using basic edit distance 
(Levenshtein) from text mining and global and local 
alignment from bioinformatics. 

1) Levenshtein 
One of the the most well-known algorithms 

implementing edit-distance which is not limited to identical 
length sequences is Levenshtein [14] where each mismatch 
(substitutions) or gap (insertion/deletion) increases the 
distance by one unit. To change distances into similarities, 
we need to reward each match and penalize each mismatch 
and gap. The dynamic programming [15] implementation of 
the algorithms in addition to examples can be found in [14]. 
The relative scores assigned to matches, mismatches, and 
gaps can be different (operation weight). Moreover, in some 
versions of the algorithm there are different match scores 
based on the type of matches (alphabet weight). Here we use 
a basic setting for the function (denoted Lev) where matches 
are rewarded by one point and mismatch and gap are treated 
the same by giving no reward.  

2) Global and local sequence alignments 
An alignment of two sequences is a mapping between 

positions in them [13]. In local alignment the goal is finding 
the best alignment for sub-sequences of given sequences 
while in global alignment the entire sequences must be 
aligned. The most basic global and local alignment 
algorithms are respectively Needleman-Wunsch (NW) [13] 
and Smith-Waterman (SW) [13]. The dynamic programming 
implementation of the algorithms, along with examples, can 
be found in [13]. The scoring matrix F for Needleman–
Wunsch alignment is defined as: 

Fሾ0ሿሾ ݆ሿ ൌ ‐ ݆ * ݀, Fሾ݅ሿሾ0ሿ ൌ ‐ ݅ * ݀ 

Fሾ݅ሿሾ ݆ሿൌmaxቐ

Fሾ݅ െ 1ሿሾ݆ െ 1ሿ ൅ sim൫ݔ௜, ,௝൯ݕ

Fሾ݅ െ 1ሿሾ݆ሿ െ ݀,

Fሾ݅ሿሾ݆ െ 1ሿ െ ݀.

 

Where the sim൫ݔ௜,  ௝൯ returns the match/mismatch scoresݕ
between the ith member of x and the jth member of y, and ݀ 
is the gap penalty. The similarity between the two sequences 
is F[n][m] where n and m are the lengths of the input 
sequences. The scoring matrix F for SW alignment is defined 
in a similar way as in the NW scoring matrix but with a 
small change: 

Fሾ0ሿሾ ݆ሿ ൌ ‐ ݆ * ݀, Fሾ݅ሿሾ0ሿ ൌ ‐ ݅ * ݀ 

Fሾ݅ሿሾ ݆ሿൌmax

ە
۔

ۓ
Fሾ݅ െ 1ሿሾ݆ െ 1ሿ ൅ sim൫ݔ௜, ,௝൯ݕ

Fሾ݅ െ 1ሿሾ݆ሿ െ ݀,

Fሾ݅ሿሾ݆ െ 1ሿ െ ݀,
0

 

Having zero as one option in the max function results in 
having only positive values. In this approach, the similarity 
value is the highest F[i][j] which identifies the longest most 
similar subsequence between input sequences as well. Note 
that each alignment technique uses a similarity function to 
align the input sequences. The NW alignment algorithm 
actually uses the Levenshtein similarity function but with 
different weightings for match, mismatch and gap. In this 
study, we use Levenshtein with match score +3, mismatch -
2, and a gap penalty of 1 as the similarity function for global 
alignment (denoted Glb). The same settings are used for 
local alignment as well (denoted Loc). These parameters 
were selected based on the result of a small tuning 
experiment that we have applied for different parameter 
settings of Glb and Loc but not reported here due to space 
restrictions. The fact that we only tune the parameters of Glb 
and Loc does not introduce any bias in the results since Cnt, 
Ham, Jac, and Lev do not have parameters to be set. 
However, the need for tuning is an impediment since it might 
be time consuming and not easy in practice. Note that in the 
case of Lev, we assume the basic Levenshtein definition 
(with fix parameters as +1 for match and zero for mismatch 
and gap). Levenshtein algorithms with other weights than 
what is used in Lev are actually called Global alignment 
similarity functions in this paper and Glb is one of them, 
which is tuned for our case.  

IV. RELATED WORK 

As we discussed in Section  II, there have been many 
studies on code-based test case selection and selection for 
regression testing which are not applicable in our context. 
There exist studies regarding similarity-based selection, 
minimization, and prioritization for code-based testing. 
However, model-based test case selection using a similarity 
function has not been a focus of many studies in the 
literature though many ideas from code-based selection can 
be adapted to MBT. For example the authors in [16] use a bit 
vector encoding for some code features (e.g. statement 
coverage) and  Hamming Distance to measure diversity. In 
[17] test cases are encoded again as bit vectors for some 
basic block coverage in source code (e.g., statement 
coverage) but this time the Euclidian distance is used to 
measure diversity. In [18] the authors use Jaccard Index on a 
set of covered statement and the work in [19] applies 
Levenshtein on a sequence of memory operations. In [20] 
authors use the whole test script as their encoded test case 
and apply Hamming, Euclidian, Manhattan, and Levenshtein 
distance on it. However, this encoding is not very effective 
when the test script contains a great deal of irrelevant 
platform dependant information, which is usually the case in 
industrial systems.  

STCS techniques for MBT are proposed in [4] and our 
initial work [5]. Both studies use Cnt as their similarity 
function but the work in [4] uses transition-based encoding 



whereas we employ the trigger-guard-based encoding. In [5] 
we implemented the three encodings explained in 
Section  II.B (state, transition, and trigger-guard-based) and 
compared their effectiveness in terms of average FDR. The 
results showed that trigger-guard is the best encoding among 
them. Using it with the Cnt similarity function and a GA as a 
selection algorithm, we significantly increased the 
effectiveness of the current selection techniques such as 
random, coverage-based, and the transition-based approach 
(the only reported STCS in MBT [4]). In this paper, we 
further improve our approach in [5] by using the same 
encoding (trigger-guard-based) and selection algorithm (the 
GA) but a better similarity function than Cnt. We compare 
different similarity functions introduced in Section  III in 
terms of their FDR on an industrial case study and also 
discuss the cost of each function. The practical benefits of 
our proposed approach compared to other alternatives are 
also reported.  

V. EMPIRICAL STUDY 

In this section, we investigate the effect of similarity 
functions on the fault detection ability of STCS techniques 
by applying them on an industrial case study. We also 
compare the results of the best STCS approach with random 
and coverage-based selection techniques.  

A. Case study description 

The SUT is a safety monitoring component in a safety-
critical control system implemented in C++. We chose this 
system because it exhibits a complex state-based behavior 
that is modeled as UML state machines complemented by 
constraints specifying state invariants and guards, which are 
useful to derive automated test oracles. This SUT is typical 
of a broad category of reactive systems interacting with 
sensors and actuators. The first version of the system 
(including models and code) was developed and verified by 
company experts and our research team. The 26 faults used 
in the study were introduced during maintenance activities of 
subsequent versions of the SUT by developers and re-
introduced for the purpose of the experiment in the latest 
version of the SUT. 

The correct and most up-to-date UML state machine, 
representing the latest version of the SUT’s behavior, 
consists of one orthogonal state with two regions. Enclosed 
in the first region are two simple states and two simple-
composite states. The simple-composite states contain two 
and three simple states. The second region encloses one 
simple state and four simple-composite states that again 
consist of, respectively, two, two, two, and three simple 
states. This adds up to one orthogonal state, 17 simple states, 
six simple-composite states, and a maximum hierarchy level 
of two. The unflattened state machine contains 61 transitions 
and the flattened state machine consists of 70 simple states 
and 349 transitions. 

Among the 26 faults, 11 of them were sneak paths 
(illegal transitions in the modified model) [6]. To detect such 
faults the model should account for the behavior of the SUT 
when receiving unexpected triggers. Such robustness 
behavior is not currently modeled and therefore, these 11 

faults could not be caught by any test case generated from 
the model. Since the focus of this paper is on improving test 
cases selection rather than generation, faults which cannot be 
caught by the original test suite is not of interest. The 
remaining 15 faults (detectable by the test cases generated 
from the model) are collected and 15 faulty versions of the 
code (mutant programs) are made by introducing one fault 
per program. Each of these faults belongs to one of the 
following categories: wrong guards on transitions, wrong 
state invariant, missing transition, and wrong OnEntry action 
of states. The purpose was to study each real fault in 
isolation in order to avoid masking effects and compute fault 
detection scores. Since a test case stops executing after 
detecting the first failure, in a program with multiple faults 
we should either rerun test cases on the SUT after each bug 
fix, or isolate faults by seeding one fault per mutant program. 
We chose the latter case to avoid manual bug fixing after 
each run. Our approach should not be confused with 
mutation testing which makes use of mutation operators to 
create faults and then seed them in the SUT one by one. In 
our approach, all faults were real faults, as described above. 

In the next step, the correct UML state machine is given 
to TRUST [1] as an input model and executable test cases 
were automatically generated. Note that in our case study if a 
test path has the ability to detect a fault, it can be detected by 
any valid test data for that test path. Therefore, in our 
experiment, we do not need to run the test path several times 
with the different input data and we have only one test case 
per test path and the FDR of a test path is equal to the FDR 
of the corresponding test case.  

The original test suites which selections are applied on is 
generated by TRUST using All-Transitions coverage. The 
test suite is made of 281 test cases and can detect all 15 
detectable faults. Among 281 test cases 207 cannot detect 
any faults and 74 catch at least one fault. The average 
number of detected faults per test case is 0.72 and the 
maximum is five. Each fault is also detected on average by 
13 test cases. There are nine faults which are only detected 
by three test cases and two faults are detectable by 65 test 
cases. 

B. Experiment design  

In [5] we showed that trigger-guard-based encoding is by 
far more effective than the other alternatives for SMBT 
(transition-based and state-based). Also, we showed that the 
improvement yielded by GA compared to Greedy search was 
significant. Therefore, to evaluate different similarity 
functions we use the best encoding and selection technique 
based on our previous study. Our research questions in the 
current paper can be summarized as follows: 
RQ1. What is the most cost-effective similarity function for 
similarity-based test case selection in SMBT? 

RQ1.1 Which similarity function (among set and 
sequence based functions) is more effective in terms of 
FDR? 
RQ1.2 Which similarity functions (set or sequence based 
functions) are less expensive in terms of execution cost? 



RQ2. In practice, how much test case execution resources 
do we save by using the best STCS compared to random 
selection and coverage-based selections? 

To account for the randomness of FDR results, which 
exists for all selection algorithms, we run each experiment 
100 times and report distribution statistics. We report the 
results of different techniques for sample sizes less than 140 
(~50% of the test suite) with intervals of 10, since our focus 
is on smaller size subsets. This is due to the fact that in 
practice test case selection is mostly used for selecting a 
relatively small sample of large test suites. Furthermore, for 
large sample sizes, all selection techniques will usually be as 
good as random selection which typically detects most faults. 
We have performed non-parametric (Mann-Whitney) 
statistical tests, using a significance level ߙ ൌ 0.05,  to 
compare the FDR medians of the proposed and alternative 
selection techniques. Non-parametric tests are more robust 
than a parametric test (e.g., the t-test) when there are strong 
departures from normality and they do have enough 
statistical power for the sample size we deal with in this 
study (100 observations). In addition, we provide FDR 
means, standard deviations, and distributions as Boxplots 
over different runs for the six smaller sample sizes (10 to 
60), where differences among techniques are more visible. 

The measures that we use for comparing the 
effectiveness of different techniques are defined in [5] as 
follows:  
 ௜ (a subset ofݏ ሺ݅ሻΓ is the number of faults detected byߩ .1

size i selected by technique Γ from the test suite TS with 
size n) divided by the total number of detectable faults in 
TS (15 in our case). This measure is used in the paper 
wherever we want to simply report the FDR for a given 
technique and sample size. Since we run each test suite 
100 times on faulty programs we report the FDR means 
and variances.  

௠ܴܦܨܣ .2
ఊ
ሺΓሻ . Enables the overall comparison of two 

selection techniques for a range of sample sizes. 
௠ܴܦܨܣ 

ఊ
ሺΓሻ, which is inspired by the APFD measure [7] 

for test case prioritization, is adapted to test case 
selection in our context. It is a measure for comparing 
curves and measures the sum of all ߩሺ݅ሻΓ for all sample 
sizes in the given intervals and range (0 to m). More 
precisely, it is equal to the area under the curve 
representing ߩሺ݅ሻΓ  (y-axis) over different sample sizes 
(x-axis). Since sample size has discrete values, the area 
under the curve is calculated as:   

௠ܴܦܨܣ
ఊ ሺΓሻ ൌ

ሺ0ሻߩ ൅ ሺ݉ሻߩ
2 ൅ ∑ ሺ݅ߩ ∗ ሻΓߛ

ቀ
௠
ఊ ቁ

ିଵ

௜ୀଵ

݉
ߛ

 

where 0 ൑ ௠ܴܦܨܣ
ఊ ሺΓሻ ൑ 1 . As we discussed, in this 

paper we report the result of sample sizes less than 140 
(~50% of the test suite) with intervals of 10, and 
therefore always report ܴܦܨܣଵସ଴

ଵ଴ ሺΓሻ.    
3. min୩ሺΓሻ is the minimum number of test cases from the 

given test suite TS that are selected by technique  Γ to 

detect at least ݇% of the detectable faults. This measure 
is more useful when selection techniques are compared 
with respect to their reduction in cost while ensuring a 
given fault detection rate. 
The three measures above are complementary and help 

interpreting the FDR from different angles. The experiments 
have been conducted on a PC with Intel Core(TM)2 Duo 
CPU 2.40 Hz and 4 GB memory running Windows 7.  

C. Experiment results 

In this section we answer research questions RQ1 and 
RQ2 based on our case study. 

1) Experiment Results for RQ1 
We start with RQ1.1 and first compare the effectiveness 

of set-based and sequence-based techniques separately and 
identify the best function in each class. We then compare the 
best set-based similarity versus the best sequence-based 
function. Figure 1.a shows the average FDR of the three set-
based functions introduced in Section  III.A ( ሺ݅ሻ஼௡௧ߩ  , 
 ሺ݅ሻு௔௠). The results show that Jac has the largestߩ , ሺ݅ሻ௃௔௖ߩ
average FDR and Ham the smallest one for almost every 
sample size and especially so for smaller sample sizes. An 
overall comparison of the curves also suggests that Jac fares 
better than Cnt and Ham. ( ଵସ଴ܴܦܨܣ

ଵ଴ ሺܿܽܬሻ ≅ 0.95  , 
ଵସ଴ܴܦܨܣ

ଵ଴ ሺݐ݊ܥሻ ≅ 0.93 ଵସ଴ܴܦܨܣ , 
ଵ଴ ሺ݉ܽܪሻ ≅ 0.89 ). Using 

Jac is also better in finding faults with fewer test cases as for 
example minଽ଴ሺJacሻ ≅ 20 (~7% of the test suite) whereas 
minଽ଴ሺCntሻ ≅ 30  (~11% of the test suite) and 
minଽ଴ሺHamሻ ≅ 40 (~14% of the test suite). Table 1 contains 
the FDR means and standard deviations of the three 
functions over 100 runs for various sample sizes. Mann-
whitney U-tests shows that Jac median FDR is significantly 
higher than those of Cnt and Ham, for sample sizes less than 
50. For sample sizes between 50 and 140, Jac and Cnt show 
similar FDR results, which are significantly higher than the 
FDR results for Ham.  Looking at Boxplots in Figure 2 and 
the standard deviations in Table 1 however suggests that Jac 
is a better option since it shows less variance for sample 
sizes above or equal to 30. For sample sizes higher than 140 
(50%), all techniques’ FDR quickly converges to 1.0. 

The most plausible reason explaining the above results is 
that although all three algorithms consider the number of 
identical elements in the inputs, Ham only reports this value 
without any normalization. Jac and Cnt, however, normalize 
the number of identical elements with respect to the total 
elements in both inputs, which makes the similarity value 
more precise. For example, let A, B, and C be three input 
sets. A and B are identical both containing one member x. 
On the other hand C contains three members x, y, and z. 
Therefore, a good similarity function should assign higher 
similarity value to (A,B) than (A,C). Since the number of 
identical elements in both pairs (A,B) and (A,C) is one, 
Ham(A,B)=Ham(A,C)=1 whereas Cnt(A,B)=Jac(A,B)=1 but 
Cnt(A,C)=0.5 and Jac(A,C)=0.34.  Therefore, Jac and Cnt 
are more precise than Ham. Comparing Jac and Cnt, we 
notice that both use the same information (number of 
identical and different elements in the input sets). Assume  
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Figure 1 The average FDR of different selection techniques for sample sizes 10 to 140 

 
the number of identical elements in two inputs A and B is S 
and the number of different elements is D. Then 
Cnt(A,B)=S/(S+D/2) and Jac(A,B)=S/(S+D). Theoretically, 
none is preferable to the other but our case study is showing 
that Jac, which normalizes the similarity value by treating S 
and D the same, is more effective in finding faults than Cnt 
which gives more weight to identical elements (S) than 
different ones (D). 

Figure 1.b shows the average FDR of three sequence-
based selection techniques, introduced in Section  III.B 
ሺ݅ሻீ௟௕ߩ , ሺ݅ሻ௅௘௩ߩ)  ሺ݅ሻ௅௢௖). Not surprisingly Glb performsߩ , 
better than Lev. With sample sizes less than 130, Glb is 
always significantly more effective in terms of FDR (based 
on Mann- Whitney U-test) since it is basically a tuned 
version of Lev. However, Loc with the same settings as Glb 
is much less effective. A plausible reason is that this 
algorithm is designed for long sequences in bioinformatics, 
where aligning the whole sequence results in very bad 
scores. Therefore, they align the sequences locally, which is 
not as precise as globally aligning them. However, in our 
case where the average and maximum length of test paths is 
5 and 7, respectively, Glb performs better. Comparing the 
overall curves shows clear differences (ܴܦܨܣଵସ଴

ଵ଴ ሺݒ݁ܮሻ ≅
ଵସ଴ܴܦܨܣ , 0.88

ଵ଴ ሺܾ݈ܩሻ ≅ 0.92 ଵସ଴ܴܦܨܣ , 
ଵ଴ ሺܿ݋ܮሻ ≅ 0.85). In 

terms of finding more faults with fewer test cases, Glb is 
significantly better than other sequence-based similarity 
functions. For example, minଽ଴ሺLevሻ ≅ 50 , minଽ଴ሺGlbሻ ≅
25, minଽ଴ሺLocሻ ≅ 60. Furthermore, Lev and Loc show high 

variance (Table 1 and Figure 2), which makes them very 
risky to use. For example, even with a large sample size like 
110, 10% of the 100 selections using Loc result in an FDR 
below 0.6 whereas Glb, even with sample size 20, ensures 
that FDR > 0.6 with a confidence over 90%.  

In Figure 1.c the best sequence-based (Glb) is compared 
with the best set-based (Jac) similarity function. From 
average FDR’s point of view, for sample sizes less than 50, 
Jac performs better than Glb. In addition, an overall 
comparison of the curves shows a similar performance 
ଵସ଴ܴܦܨܣ)

ଵ଴ ሺܾ݈ܩሻ ≅ 0.92  vs. AFDRଵସ଴
ଵ଴ ሺJacሻ ≅ 0.95 ) and a 

similar results for variance comparisons (Table 1 and Figure 
2). However, the differences are not practically significant in 
most cases. On the other hand, Jac is from a practical 
standpoint easier to use since it does not require any 
parameter settings, whereas weights and penalties in Glb 
require tuning. Therefore, based on these results, we suggest 
using Jaccard Index as similarity function in STCS. 

Answering RQ1.2 we compare the cost of different 
similarity functions both in terms of computational 
complexity and the actual time required for the similarity 
calculation. We notice that set-based measures are less 
expensive (O(n+m)) than sequence-based measures 
(O(n*m)), where n and m are the size of two test cases being 
compared represented as sets of trigger-guards. In terms of 
the actual time spent for the calculation, set-based measures 
required around 0.5 seconds in average for building the 
similarity matrix (filled with 39340 similarity values 



between all pairs of test cases in the test suite), whereas 
sequence-based measures require more than 3 seconds to 
build such matrix. These results also suggest that set-based 
measures are less expensive. Therefore, we suggest Jaccard 
Index, given its low cost, high effectiveness, low variation, 
and ease of use.  

2) Experiment Results for RQ2 
We compare our suggested selection technique (Jac) with 

random selection (Rnd), coverage-based Greedy selection 
(CovGr), coverage-based GA selection (CovGA), and the 
state of the art in STCS [4] (TransGr). TransGr uses a 
transition-based encoding, a Counting similarity function, 
and a Greedy search for selection. Note that Jac refers to a 
STCS which uses trigger-guard-based encoding, Jaccard 
Index as similarity function, and a GA for selection. Figure 
1.d shows all average FDRs for different sample sizes for all 
the techniques. The improvement we get using our technique 
is clearly visible from the graph and is confirmed by Mann-
Whitney U-tests, for sample sizes less than 90. For example, 
for sample size 30 (~10% of the test suite), we get a 50% 
improvement from the best alternative technique (CovGrd). 
The results get even more interesting when we see that the 
best improvements are on the smaller sample sizes (less than 
30% of the test suite), which are more likely to be used in 
practice. The overall comparison of curves also show large 
differences (ܴܦܨܣଵସ଴

ଵ଴ ሺܿܽܬሻ ≅ ଵସ଴ܴܦܨܣ ,0.95
ଵ଴ ሺܶݎܩݏ݊ܽݎሻ ≅

ଵସ଴ܴܦܨܣ ,0.80
ଵ଴ ሺݎܩݒ݋ܥሻ ≅ 0.76 ଵସ଴ܴܦܨܣ ,

ଵ଴ ሺܣܩݒ݋ܥሻ ≅ 0.7 , 
and ܴܦܨܣଵସ଴

ଵ଴ ሺܴ݊݀ሻ ≅ 0.69). As we have mentioned, the 
minimum number of test cases required for Jac to yield an 
average FDR above 0.9 is 20 (minଽ଴ሺJacሻ ≅ 20 (or ~7% of 
TS) whereas the best alternatives require at least 85 test cases 
(minଽ଴ሺTransGrሻ ≅ 85  or ~30% of TS), thus implying a 
near 77% reduction in cost. Note that, for sample sizes larger 
than 100, the mean FDR of TransGr is 1.0 whereas the mean 
FDR of Jac is below 1.0. The most plausible reason is that 
Jac uses the GA with a 175ms stopping criterion, which is a 
very short time for exploring the solution space for large 
sample sizes. Therefore, among these techniques, the best for 
yielding 100% FDR with minimum number of test cases is a 
GA with longer stopping time (e.g., using 1 sec instead of 
175ms, Jac can find all faults for sample sizes less than 30).  
Given the small execution times involved, this has no 
practical consequences on the applicability of the GA. 

The other interesting observation from Figure 2 and 
Table 1 is the confidence that we gain by using our approach 
rather than coverage-based selection, random selection, or 
even the best existing STCS approaches. For example, 
looking at results for sample size 40 in Figure 2, we see that 
90% of the 100 runs of our approach resulted in a median 
FDR equal to 1.0, while 75% of all runs, for all the 
alternative approaches (Rnd, CovGrd, CovGA, and 
TransGrd), yield a median FDR below 0.80. These results 
strengthen further our confidence in recommending Jac to 
support SMBT (and in general MBT) in practice. 

Analyzing the cost of STCS compared to alternatives, we 
consider the actual selection time spent by each technique, 
since no better measure is applicable in our context. For 
example, the number of fitness evaluations in GAs, a better 
alternative in some cases, is not applicable to CovGr and 

Rnd. We use 175ms as stopping criterion for the GA, which 
seems unfair given that CovGr only requires on average one 
tenth of this time and Rnd less than 1 ms. However, CovGr 
and Rnd could not be improved even with increased 
execution time. Moreover, stopping the GA exactly at the 
execution time used by CovGr, still improves the FDR 
though the improvement is not practically significant. From a 
practical standpoint, all these differences are anyway 
negligible as 175ms, even when considering the overhead of 
the similarity matrix creation (in average 500ms for Jac), is 
very small compared to the actual test case execution time 
(which is in the range of minutes). In cases where the 
number of test cases is much larger than in our case study, 
our conclusions would still hold as both the time of 
executing test cases and computing similarities would 
increase, the latter still being negligible. Overall, in order to 
minimize the overall testing effort, we recommend the use of 
Jac over existing alternatives.  

D. Discussion on validity threats 

This study was conducted according to recently proposed 
guidelines for conducting empirical studies in search-based 
testing [21]. In terms of the construct validity of our 
measures, effectiveness (FDR) is based on a set of real faults, 
as explained earlier, that we used to create mutant programs. 
Comparing the cost of different similarity functions we 
considered the computational complexity of their 
implementations along with their actual time consumptions 
to gain a more precise understanding of their relative cost. 
The cost discussion on different selection techniques was not 
practically interesting in our case because the difference 
between the execution time of different techniques is 
negligible compared to even one test case execution time 
(less than a second compared to minutes). However, for very 
large test suites with faster test case executions, the 
differences among selection techniques may no longer be 
negligible compared to test execution time. However, in 
most cases, we expect the selection time to be negligible 
compared to the total reduction in test execution time (time 
required for executing all excluded test case). The exact 
threshold above which a selection technique will no longer 
be cost-effective depends on the test suite size, the 
percentage of selection, and the average test case execution 
time. Note that, in our implementation of STCS algorithms, 
the similarity matrix is created beforehand and kept in 
memory. This creates an initial overhead and will generate a 
memory problem for large test suites. The other option 
which may be even quicker (depending on the number of 
distinct similarity evaluations that GA requires during its 
execution and the matrix size) is the on-demand calculation 
of similarities. In addition, the most used similarities may be 
cached. Except for sequence-based similarity functions 
(which implementation is taken from [13]) we implemented 
the other similarity functions and search techniques and 
strived to achieve the same level of optimization. Our 
proposed similarity function (Jac) does not require any 
tuning but the parameter tuning for Glb and Loc, which is 
done with a small experiment on a small sample set might 
not be optimal This means that it is in theory possible to 



TABLE 1 THE MEAN FDRS ( HIGHEST VALUES PER SAMPLE SIZE ARE IN BOLD) AND THEIR STANDARD DEVIATIONS PER SAMPLE SIZE OVER 100 RUNS. 

Selection technique 
FDRs per sample  size 

10 20 30 40 50 60 
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

Set-based 
Jac 0.72 0.14 0.90 0.11 0.96 0.07 0.98 0.05 0.97 0.06 0.97 0.07 

Cnt 0.57 0.18 0.84 0.14 0.90 0.12 0.95 0.08 0.96 0.07 0.97 0.06 

Ham 0.52 0.14 0.71 0.14 0.85 0.14 0.91 0.12 0.92 0.11 0.93 0.10 

Sequence-
based 

Glb 0.67 0.14 0.88 0.12 0.93 0.08 0.97 0.05 0.98 0.05 0.98 0.05 

Lev 0.48 0.16 0.67 0.14 0.80 0.14 0.86 0.12 0.92 0.10 0.93 0.09 

Loc 0.44 0.13 0.61 0.14 0.76 0.13 0.82 0.13 0.85 0.12 0.90 0.12 

Baselines 

TranGr 0.35 0.13 0.54 0.13 0.65 0.14 0.62 0.15 0.67 0.14 0.74 0.13 

CovGr 0.35 0.14 0.53 0.13 0.62 0.13 0.67 0.13 0.73 0.14 0.75 0.15 

CovGA 0.35 0.14 0.50 0.15 0.545 0.17 0.63 0.16 0.66 0.19 0.72 0.15 

Rnd 0.28 0.16 0.42 0.18 0.50 0.16 0.56 0.16 0.63 0.19 0.66 0.18 

 

Figure 2 FDR (y-axis) Boxplots for different selection techniques (x-axis) for sample sizes ranging from 10 to 60 by intervals of 10 over 100 runs. The 
Boxplots show the 10th, 25th, 50th, 75th, and 90th percentiles and means. 



obtain a better FDR than Jac using an optimal Glb or Loc. 
However, this tuning, in general, is not easy to apply in 
practice and entails extra cost.  

One hundred independent runs were performed for 
each selection technique to account for random variation 
and obtain a sufficient number of observations to report 
means, medians, and standard deviations. We used the 
non-parametric Mann-Whitney U-test for independent 
samples to check the statistical differences in FDR across 
selection techniques and we are thus not relying on any 
assumption. We also discussed about practical significance 
by looking at the magnitude of the differences between 
FDR (percentage of improvement) and cost (actual time) 
of different techniques. Our results rely on one industrial 
case study using a set of real faults. Though such realistic 
studies are rare in the research literature and very time 
consuming, it must be replicated on other systems and sets 
of faults. However, as discussed earlier, the system used 
here is typical of a broad category of industrial systems: 
control systems with state-dependent behavior. 

VI. CONCLUSION AND FUTURE WORK 

In the context of embedded and telecom software, among 
many other examples, system testing must often occur on 
realistic infrastructure and test networks involving limited 
access time and entailing significant costs. Though 
Model-Based Testing (MBT) has been found to be an 
interesting solution in practice, on typical industrial 
models, the number of test cases generated is still very 
large. In addition, for many systems, automatically 
generating oracles from models is very difficult or 
impossible. In such cases, test cases should be evaluated 
manually, greatly increasing the cost of test execution and 
analysis. In this paper, we investigate ways to select an 
affordable subset with maximum fault detection rate by 
maximizing diversity among test cases with respect to a 
similarity measure. In the context of state machine-based 
testing, a common but specific type of MBT, we used a 
trigger-guard-based encoding for test case representation 
and proposed six different similarity measures. A Genetic 
algorithm was used for optimizing the selected subsets for 
each measure and their fault detection rates were 
compared. Applying the techniques on an industrial case 
study, we showed that using Jaccard Index to measure the 
trigger-guards similarity of the respective test paths yields 
a subset of the test suite with the best fault detection rate. 
Comparing the results of our best proposal with currently 
existing approaches such as coverage-based and random 
selection, and other similarity-based selection techniques, 
we also showed that we are far more effective than other 
alternatives for smaller sample sizes (which are more 
interesting in practice) and can save up to 77% of the test 
execution cost of state machine-based testing. In the 
future, we plan to look at the effect of other search 
techniques and other combination of encodings and 
similarity functions on similarity-based selections. In 

addition we will replicate the study on another industrial 
system to analyze the generalizability of the approach. 
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