
An Industrial Investigation of Similarity Measures
for Model-Based Test Case Selection

Hadi Hemmati and Lionel Briand

Simula Research Laboratory and
Department of Informatics, University of Oslo

 {hemmati, briand}@simula.no

Abstract—Applying model-based testing (MBT) in practice
requires practical solutions for scaling up to large industrial
systems. One challenge that we have faced while applying MBT
was the generation of test suites that were too large to be
practical, even for simple coverage criteria. The goal of test
case selection techniques is to select a subset of the generated
test suite that satisfies resource constraints while yielding a
maximum fault detection rate. One interesting heuristic is to
choose the most diverse test cases based on a pre-defined
similarity measure. In this paper, we investigate and compare
possible similarity functions to support similarity-based test
selection in the context of state machine testing, which is the
most common form of MBT. We apply the proposed similarity
measures and a selection strategy based on genetic algorithms
to an industrial software system. We compare their fault
detection rate based on actual faults. The results show that
applying Jaccard Index on test cases represented as a set of
trigger-guards is the most cost-effective similarity measure. We
also discuss the overall benefits of our test selection approach
in terms of test execution savings.

Keywords—Test case selection; model-based testing; UML
state machine; similarity measure; and genetic algorithms

I. INTRODUCTION

In recent years the software industry has shown
increasing interest in automating the process of test case
generation using models of the system under test. The main
idea behind model-based testing (MBT) is to generate
executable test cases (including oracles) by systematically
traversing system models (e.g., represented as UML state
machines) based on test strategies usually involving some
form of coverage criterion that aims to cover certain features
of the model (e.g., all transitions in state machine-based
testing (SMBT)) [1]. MBT tools are becoming increasingly
sophisticated and robust and MBT is becoming the best test
automation solution for many practitioners. However, there
are still many unsolved issues regarding how to scale up
MBT to large industrial software systems. Our experience
has shown that in many practical contexts even simple
coverage criteria yield far too many test cases to be usable.

In general, system test case execution can be very costly
in most embedded and distributed systems when there is
hardware in the loop or test execution requires access to
dedicated test infrastructures or no automated oracle is
available. Testing such systems requires, for example,
assigning enough resources (e.g., actual physical devices) to
the test case, properly handling acceptable delays in the

system execution and the network communication, and
manually analyzing the results when there is no automated
oracles. This can be a major hindrance for making MBT
practical, especially in the context of system testing when
release deadlines are close and the project is already often
behind schedule.

Test case selection is used to reduce test suite sizes to
what can be handled in a specific context while retaining the
largest possible fault revealing power. In general, regardless
of the heuristic used, this test case selection problem is NP
hard (traditional set cover) [2]. Other than random selection,
where there is no guidance to select test cases, there have
been two main types of test case selection heuristics
proposed in the literature. In coverage-based selection [3],
the underlying hypothesis is that “the test suites which
achieve more coverage (of model or code) are more likely to
detect faults”. In similarity-based test case selections (STCS)
[4], the underlying hypothesis is that “the more diverse the
test suites the higher their fault revealing power”. To use this
latter approach one needs a (dis)similarity measure to
calculate the diversity of a subset by averaging all pair-wise
similarity values. After defining a similarity measure, a
selection algorithm is required to choose a set of test cases
with the minimum pair-wise similarity among its members.
In [5], we introduced a new STCS technique for SMBT,
which includes a new similarity measure using triggers and
guards on transitions of state machines and a genetic
algorithm (GA)-based selection algorithm. Applying this
technique on an industrial case study, we showed that STCS
in general and more specifically our proposed approach is by
far more effective at detecting real faults than coverage-
based and random selection.

In this paper, we take a deeper look into the effect of
similarity measures in test case selection by distinguishing
the test case representation (encoding) from the similarity
function as two distinct parameters of a similarity measure.
A comprehensive investigation of different similarity
functions is performed through an industrial empirical study
where the software under test (SUT) is a safety controller
system which is modeled using UML state machines and test
cases are generated using our MBT tool (TRUST) [1]. The
case study, although modest compared to other industrial
systems, is much larger both in terms of models and number
of generated test cases, than what is reported in related
works. Moreover, the faults we use are real (no seeded
faults) thus significantly increasing the level of realism. The
results show that choosing a proper similarity measure has a

very significant effect on fault detection. The best similarity
measure results in increasing the fault detection rate (FDR)
by 50% when compared to the best alternative, coverage-
based selection in this case, for small sample sizes (~10% of
the test suite). In addition, our approach for test case
selection reduces significantly the cost of MBT by reducing
the number of test executions. For example, to achieve a
FDR higher than 90%, we only need to execute 20 test cases
selected with our approach, whereas other alternatives select
at least 85 test cases to achieve the same FDR. Our approach
therefore entails a 77% saving in execution cost.

The rest of the paper is organized as follows. Section II
reports on background information about test case selection.
Section III discusses on different similarity functions which
are used in this study. Section IV provides a brief overview
of related works covering STCS techniques. Section V
reports the experimentation results of applying different
STCS techniques on an industrial case study. Section VI
concludes the paper and outlines our future work plan.

II. TEST CASE SELECTION

In general, there are two options for decreasing the
number of test case executions. The first is generating fewer
test cases which in the context of MBT means using a less
demanding coverage criterion. For instance, if using all
transition-pairs [6] generates a too large test suite, the all-
transitions [6] criterion can be adopted instead to decrease
the number of test cases. This still results in systematic
testing but may reduce the FDR. The second approach is to
select a subset of test cases from the test suite for execution.
This can be done either by test suite reduction where the goal
is to minimize the test suite by removing redundant test cases
with respect to a criterion (e.g., code coverage) or by test
case selection where the goal is to select a subset of the
entire test suite that maximizes fault detection based on a
heuristic, given a maximum number of test cases. Using a
less demanding coverage criterion or test suite reduction is
often impractical as one cannot precisely select a maximum
number of test cases. Furthermore, we have shown in [5] that
even when the scale of reduction achieved by using less
demanding criteria is acceptable, it is still much less cost-
effective than a STCS. Test case prioritization, which does
not remove any test case but order their execution [7], could
also be considered but does not directly address our problem,
though some of the underlying ideas could be adapted. For
example, as we will see in the related work section, most
similarity measures that are used in similarity-based test case
prioritization can be used in test case selection as well. In
this study, the focus is on test case selection.

The problem of test case selection in our context can be
formalized as: “Given a test suite TS that detects a set of
faults (F) in the system, our goal is to maximize FD(sn),
where sn is a subset of TS of size n and FD(sn) is the
percentage of F which is detected by sn”. We can classify test
case selection techniques as follows: (1) those which make
use of test execution information as it is usually the case in
regression testing and (2) those which select test cases solely
based upon the characteristics of the (abstract) test cases. The
latter category is the one of interest in our context where the

test suite cannot be executed before selection. Therefore,
execution-based heuristics such as execution traces (e.g. call
stack [8]) are not applicable here.

A. Coverage-based Test Case Selection

Maximizing coverage has been a common practice in
selection and prioritization for years. Most studies in test
case selection (even those which are general purpose and not
specific to regression testing) are based on code-level
information (e.g., additional statement coverage[7]) and
cannot directly be applied to MBT. However, it is possible to
extract additional information from test cases to help the
selection even without executing it. For example, transition
coverage in a state machine can be determined if traceability
has been preserved between a test case and its source state
machine. Most coverage-based selection techniques are re-
expressed into optimization problems where the goal is to
select the best subset of test cases to achieve full coverage.
For example, a technique in [7] uses a Greedy search to
select, at every step, the test case that covers the most
uncovered statements (additional coverage-based technique)
whereas in [9] a GA is used to achieve maximum coverage.

B. Similarity-based Test Case Selection

In STCS techniques, a (dis)similarity measure is used for
comparing similarity (diversity) between a pair of test cases.
A similarity measure is the value that a similarity function
assigns to two inputs which are being compared. Inputs are
usually encoded as a set or sequence of elements. In the
context of MBT, the inputs are abstract test cases instead of
concrete test cases. We do not need the execution
information of the test case and abstract test cases are
naturally generated as a first step by MBT. Therefore, we
reduce the cost of test case generation by only generating
executable test cases for the selected abstract test cases and
also by hiding the unnecessary information for similarity
comparisons. For example, in SMBT an abstract test case
representation can be a path in the state machine specifying
the SUT. In general, different faults can be detected by the
same test path instantiated with different test data. Therefore,
to compare different techniques, it is necessary to run the
selected test paths with different input data and use their
FDR distribution.

Representation (encoding) of the test cases has an
important effect on the similarity measure. Though in state-
based testing a test path represents an encoded abstract test
case, the test path can be described at different levels of
details. We consider three possible encodings for a test path
in UML state machine: state-based, transition-based, and
trigger-guard-based:

1. state-based: <tp> ::= state | state “,” <tp>
2. transition-based: <tp> ::= trans | trans “,” <tp>
3. trigger-guard-based: <tp> ::= <TrGu> | <TrGu> “,” <tp>
 < TrGu > ::= trig |guard | id |
 guard “+” trig

where state is the id of a state, trans the id of a transition,
trig the id of a trigger, and guard the id of a guard in the state
machine. In the case of trigger-guard-based encoding, a

transition is identified by its trigger and guard. It can be only
a trigger, or a guard or both together. If there is a transition
with no guard and trigger, we use the transition id as its
identifier. Note that the difference between trigger-guard-
based and transition-based encoding is that in trigger-guard-
based encoding transitions with the same trigger-guard but
different source or target state are identical.

Given an encoding, one may use different similarity
functions to calculate the similarity value. Similarity is
usually defined on either two sets or two sequences of
elements. The main difference is that set-based similarity
measures as opposed to sequence-based ones do not take the
order of elements into account. For example, if test case 1
includes method calls A and B and test case 2 includes
method calls B and A, respectively, and method calls are the
only encoded elements in the test path, set-based similarity
functions assume these two test cases as identical. In the next
section, the functions which are used in our study are
introduced. In this paper, we take the best encoding from our
previous study [5] and investigate the effect of different
similarity functions on the FDR of the selected test cases.

Given a set of encoded test cases (ݏ௡) and a similarity
function (ܿ݊ݑܨ݉݅ܵ), the test case selection problem is
reformulated as minimizing ܵ݅݉ݎݏܯሺݏ௡ሻ:

௡ሻݏሺݎݏܯ݉݅ܵ ൌ ෍ , ௜݌ݐሺܿ݊ݑܨ݉݅ܵ ௝ሻ݌ݐ

௧௣೔ , ௧௣ೕ∈௦೙ ∧ ௜வ௝



Where ܵ݅݉ܿ݊ݑܨ (݌ݐ௜ , ݌ݐ௝) returns the similarity of two
test paths (or other encoded abstract test cases in MBT) in ݏ௡
represented by ݌ݐ௜ and ݌ݐ௝. The last step in STCS is applying
a selection algorithm which selects a subset of test cases with
minimum average pair-wise similarity (ݎݏܯ݉݅ܵ). Our
experience in [5] showed that using a GA is more cost-
effective than a Greedy search which is common in the
STCS literature [4]. Therefore, in this study we use a GA as
our selection mechanism. GAs rely on four basic features:
population, selection, crossover and mutation. More than one
solution is considered at the same time (population). At each
generation (i.e., at each step of the algorithm), some good
solutions in the current population are chosen by the
selection mechanism to generate offspring using the
crossover operator. This operator combines parts of the
chromosomes (i.e., the solution representation) of the
offspring with a certain probability; otherwise it just
produces copies of the parents. These new offspring
solutions will be part of the population of the next
generation. The mutation operator is applied to make small
changes in the chromosomes of the offspring. Eventually,
after a number of generations, an individual that solves the
addressed problem will be evolved. We use a steady state
GA where an individual (i.e., a solution to the problem) is ݏ௡
(subset of TS with size n). SimFunc(݌ݐ௜ , ݌ݐ௝) is the fitness
function to be minimized. A mutated test path is replaced by
a test path that is selected at random from the set of all
possible test paths. We do not tune our GA parameters and
use what is suggested in the literature (e.g. [10])—a high
crossover probability (0.75) and low mutation probability

(inversely proportional to the population size) and a
reasonable sample size (50). The stopping criterion used in
this study is stopping after a fixed period of time (175ms),
which is 10 times more than the amount of time that a basic
Greedy search would take on average in our case study.
Though the GA is more costly than the Greedy, the GA is
still a better option since 175ms is negligible compared to the
execution time of a test case and no improvement can be
obtained with Greedy even if we let the algorithm search for
longer periods of time (e.g., 175ms).

III. SIMILARITY FUNCTION

As we mentioned in Section B, common similarity
functions are either set-based or sequence-based. In this
study, we compare measures which have been used in the
similarity-based selection or prioritization literature
(Counting, Hamming, Jaccard, and Levenshtein functions)
and measures (Global and Local alignments) which have not
been used in software testing but are commonly used in other
disciplines (such as bioinformatics) for similarity
comparisons.

A. Set-based Similarity Functions

The main two measures in this category are the Jaccard
Index [11] and the Hamming Distance function [12].
However, we also compare another measure (we call it
Counting function) which is used in the only other reported
study about STCS in MBT [4].

1) Counting Function
The Counting function (Cnt) is the simplest way of

comparing two sets which we have reused from the measure
used in [4] for comparing two sets of transitions. Given two
sets S1 and S2, Cnt(S1, S2) = number of identical members
in S1 and S2 divided by the average number of members in
S1 and S2.

2) Hamming Distance
Hamming Distance is one of the most used distance

functions in the literature which is a basic edit-distance. The
edit-distance between two sequences is defined as the
minimum number of edit operations –insertions, deletions,
and substitutions– needed to transform the first sequence into
the second [12-14]. Hamming is only applicable on identical
length inputs and is equal to the number of substitutions
required in one input to become the second one [12]. If all
inputs are originally of identical length, the function can be
used as a sequence-based measure. However, in most
applications, inputs have different lengths. Therefore, to
force them to have an identical length, a binary vector is
made per input that indicates which elements from the set of
all possible elements of the encoding exist in the input. As a
result, the function does not preserve the original order of
elements in the input anymore and it becomes a set-based
similarity function. In our case, to use Hamming Distance,
each encoded test case is represented as a binary vector of
length n, where n is the number of all possible elements for
that encoding (e.g., n is the number of all states, if state-
based encoding is used). A bit in the vector is true only if the
encoded test case contains the corresponding element (e.g.,
the state in the above example). We also need to change

distance into similarity in our study. Therefore, our version
of the Hamming function (denoted Ham) counts identical
bits in the two input vectors, as opposed to the standard
Hamming Distance where differences are counted.

3) Jaccard Index
Jaccard Index or Jaccard similarity coefficient (denoted

Jac) is defined to compare similarity of sample sets [11]. It is
defined as the size of the intersection divided by the size of
the union of the sample sets:

,ܣሺܿܽܬ ሻܤ ൌ
ܣ| ∩ |ܤ

ܣ| ∪ |ܤ

B. Sequence-based Similarity Functions

Sequence similarity is usually applied on string matching
in text mining [14] and homologous pattern recognition in
bioinformatics [13]. Here we are using basic edit distance
(Levenshtein) from text mining and global and local
alignment from bioinformatics.

1) Levenshtein
One of the the most well-known algorithms

implementing edit-distance which is not limited to identical
length sequences is Levenshtein [14] where each mismatch
(substitutions) or gap (insertion/deletion) increases the
distance by one unit. To change distances into similarities,
we need to reward each match and penalize each mismatch
and gap. The dynamic programming [15] implementation of
the algorithms in addition to examples can be found in [14].
The relative scores assigned to matches, mismatches, and
gaps can be different (operation weight). Moreover, in some
versions of the algorithm there are different match scores
based on the type of matches (alphabet weight). Here we use
a basic setting for the function (denoted Lev) where matches
are rewarded by one point and mismatch and gap are treated
the same by giving no reward.

2) Global and local sequence alignments
An alignment of two sequences is a mapping between

positions in them [13]. In local alignment the goal is finding
the best alignment for sub-sequences of given sequences
while in global alignment the entire sequences must be
aligned. The most basic global and local alignment
algorithms are respectively Needleman-Wunsch (NW) [13]
and Smith-Waterman (SW) [13]. The dynamic programming
implementation of the algorithms, along with examples, can
be found in [13]. The scoring matrix F for Needleman–
Wunsch alignment is defined as:

Fሾ0ሿሾ ݆ሿ ൌ ‐ ݆ * ݀, Fሾ݅ሿሾ0ሿ ൌ ‐ ݅ * ݀

Fሾ݅ሿሾ ݆ሿൌmaxቐ

Fሾ݅ െ 1ሿሾ݆ െ 1ሿ ൅ sim൫ݔ௜, ,௝൯ݕ

Fሾ݅ െ 1ሿሾ݆ሿ െ ݀,

Fሾ݅ሿሾ݆ െ 1ሿ െ ݀.

Where the sim൫ݔ௜, ௝൯ returns the match/mismatch scoresݕ
between the ith member of x and the jth member of y, and ݀
is the gap penalty. The similarity between the two sequences
is F[n][m] where n and m are the lengths of the input
sequences. The scoring matrix F for SW alignment is defined
in a similar way as in the NW scoring matrix but with a
small change:

Fሾ0ሿሾ ݆ሿ ൌ ‐ ݆ * ݀, Fሾ݅ሿሾ0ሿ ൌ ‐ ݅ * ݀

Fሾ݅ሿሾ ݆ሿൌmax

ە
۔

ۓ
Fሾ݅ െ 1ሿሾ݆ െ 1ሿ ൅ sim൫ݔ௜, ,௝൯ݕ

Fሾ݅ െ 1ሿሾ݆ሿ െ ݀,

Fሾ݅ሿሾ݆ െ 1ሿ െ ݀,
0

Having zero as one option in the max function results in
having only positive values. In this approach, the similarity
value is the highest F[i][j] which identifies the longest most
similar subsequence between input sequences as well. Note
that each alignment technique uses a similarity function to
align the input sequences. The NW alignment algorithm
actually uses the Levenshtein similarity function but with
different weightings for match, mismatch and gap. In this
study, we use Levenshtein with match score +3, mismatch -
2, and a gap penalty of 1 as the similarity function for global
alignment (denoted Glb). The same settings are used for
local alignment as well (denoted Loc). These parameters
were selected based on the result of a small tuning
experiment that we have applied for different parameter
settings of Glb and Loc but not reported here due to space
restrictions. The fact that we only tune the parameters of Glb
and Loc does not introduce any bias in the results since Cnt,
Ham, Jac, and Lev do not have parameters to be set.
However, the need for tuning is an impediment since it might
be time consuming and not easy in practice. Note that in the
case of Lev, we assume the basic Levenshtein definition
(with fix parameters as +1 for match and zero for mismatch
and gap). Levenshtein algorithms with other weights than
what is used in Lev are actually called Global alignment
similarity functions in this paper and Glb is one of them,
which is tuned for our case.

IV. RELATED WORK

As we discussed in Section II, there have been many
studies on code-based test case selection and selection for
regression testing which are not applicable in our context.
There exist studies regarding similarity-based selection,
minimization, and prioritization for code-based testing.
However, model-based test case selection using a similarity
function has not been a focus of many studies in the
literature though many ideas from code-based selection can
be adapted to MBT. For example the authors in [16] use a bit
vector encoding for some code features (e.g. statement
coverage) and Hamming Distance to measure diversity. In
[17] test cases are encoded again as bit vectors for some
basic block coverage in source code (e.g., statement
coverage) but this time the Euclidian distance is used to
measure diversity. In [18] the authors use Jaccard Index on a
set of covered statement and the work in [19] applies
Levenshtein on a sequence of memory operations. In [20]
authors use the whole test script as their encoded test case
and apply Hamming, Euclidian, Manhattan, and Levenshtein
distance on it. However, this encoding is not very effective
when the test script contains a great deal of irrelevant
platform dependant information, which is usually the case in
industrial systems.

STCS techniques for MBT are proposed in [4] and our
initial work [5]. Both studies use Cnt as their similarity
function but the work in [4] uses transition-based encoding

whereas we employ the trigger-guard-based encoding. In [5]
we implemented the three encodings explained in
Section II.B (state, transition, and trigger-guard-based) and
compared their effectiveness in terms of average FDR. The
results showed that trigger-guard is the best encoding among
them. Using it with the Cnt similarity function and a GA as a
selection algorithm, we significantly increased the
effectiveness of the current selection techniques such as
random, coverage-based, and the transition-based approach
(the only reported STCS in MBT [4]). In this paper, we
further improve our approach in [5] by using the same
encoding (trigger-guard-based) and selection algorithm (the
GA) but a better similarity function than Cnt. We compare
different similarity functions introduced in Section III in
terms of their FDR on an industrial case study and also
discuss the cost of each function. The practical benefits of
our proposed approach compared to other alternatives are
also reported.

V. EMPIRICAL STUDY

In this section, we investigate the effect of similarity
functions on the fault detection ability of STCS techniques
by applying them on an industrial case study. We also
compare the results of the best STCS approach with random
and coverage-based selection techniques.

A. Case study description

The SUT is a safety monitoring component in a safety-
critical control system implemented in C++. We chose this
system because it exhibits a complex state-based behavior
that is modeled as UML state machines complemented by
constraints specifying state invariants and guards, which are
useful to derive automated test oracles. This SUT is typical
of a broad category of reactive systems interacting with
sensors and actuators. The first version of the system
(including models and code) was developed and verified by
company experts and our research team. The 26 faults used
in the study were introduced during maintenance activities of
subsequent versions of the SUT by developers and re-
introduced for the purpose of the experiment in the latest
version of the SUT.

The correct and most up-to-date UML state machine,
representing the latest version of the SUT’s behavior,
consists of one orthogonal state with two regions. Enclosed
in the first region are two simple states and two simple-
composite states. The simple-composite states contain two
and three simple states. The second region encloses one
simple state and four simple-composite states that again
consist of, respectively, two, two, two, and three simple
states. This adds up to one orthogonal state, 17 simple states,
six simple-composite states, and a maximum hierarchy level
of two. The unflattened state machine contains 61 transitions
and the flattened state machine consists of 70 simple states
and 349 transitions.

Among the 26 faults, 11 of them were sneak paths
(illegal transitions in the modified model) [6]. To detect such
faults the model should account for the behavior of the SUT
when receiving unexpected triggers. Such robustness
behavior is not currently modeled and therefore, these 11

faults could not be caught by any test case generated from
the model. Since the focus of this paper is on improving test
cases selection rather than generation, faults which cannot be
caught by the original test suite is not of interest. The
remaining 15 faults (detectable by the test cases generated
from the model) are collected and 15 faulty versions of the
code (mutant programs) are made by introducing one fault
per program. Each of these faults belongs to one of the
following categories: wrong guards on transitions, wrong
state invariant, missing transition, and wrong OnEntry action
of states. The purpose was to study each real fault in
isolation in order to avoid masking effects and compute fault
detection scores. Since a test case stops executing after
detecting the first failure, in a program with multiple faults
we should either rerun test cases on the SUT after each bug
fix, or isolate faults by seeding one fault per mutant program.
We chose the latter case to avoid manual bug fixing after
each run. Our approach should not be confused with
mutation testing which makes use of mutation operators to
create faults and then seed them in the SUT one by one. In
our approach, all faults were real faults, as described above.

In the next step, the correct UML state machine is given
to TRUST [1] as an input model and executable test cases
were automatically generated. Note that in our case study if a
test path has the ability to detect a fault, it can be detected by
any valid test data for that test path. Therefore, in our
experiment, we do not need to run the test path several times
with the different input data and we have only one test case
per test path and the FDR of a test path is equal to the FDR
of the corresponding test case.

The original test suites which selections are applied on is
generated by TRUST using All-Transitions coverage. The
test suite is made of 281 test cases and can detect all 15
detectable faults. Among 281 test cases 207 cannot detect
any faults and 74 catch at least one fault. The average
number of detected faults per test case is 0.72 and the
maximum is five. Each fault is also detected on average by
13 test cases. There are nine faults which are only detected
by three test cases and two faults are detectable by 65 test
cases.

B. Experiment design

In [5] we showed that trigger-guard-based encoding is by
far more effective than the other alternatives for SMBT
(transition-based and state-based). Also, we showed that the
improvement yielded by GA compared to Greedy search was
significant. Therefore, to evaluate different similarity
functions we use the best encoding and selection technique
based on our previous study. Our research questions in the
current paper can be summarized as follows:
RQ1. What is the most cost-effective similarity function for
similarity-based test case selection in SMBT?

RQ1.1 Which similarity function (among set and
sequence based functions) is more effective in terms of
FDR?
RQ1.2 Which similarity functions (set or sequence based
functions) are less expensive in terms of execution cost?

RQ2. In practice, how much test case execution resources
do we save by using the best STCS compared to random
selection and coverage-based selections?

To account for the randomness of FDR results, which
exists for all selection algorithms, we run each experiment
100 times and report distribution statistics. We report the
results of different techniques for sample sizes less than 140
(~50% of the test suite) with intervals of 10, since our focus
is on smaller size subsets. This is due to the fact that in
practice test case selection is mostly used for selecting a
relatively small sample of large test suites. Furthermore, for
large sample sizes, all selection techniques will usually be as
good as random selection which typically detects most faults.
We have performed non-parametric (Mann-Whitney)
statistical tests, using a significance level ߙ ൌ 0.05, to
compare the FDR medians of the proposed and alternative
selection techniques. Non-parametric tests are more robust
than a parametric test (e.g., the t-test) when there are strong
departures from normality and they do have enough
statistical power for the sample size we deal with in this
study (100 observations). In addition, we provide FDR
means, standard deviations, and distributions as Boxplots
over different runs for the six smaller sample sizes (10 to
60), where differences among techniques are more visible.

The measures that we use for comparing the
effectiveness of different techniques are defined in [5] as
follows:
 ௜ (a subset ofݏ ሺ݅ሻΓ is the number of faults detected byߩ .1

size i selected by technique Γ from the test suite TS with
size n) divided by the total number of detectable faults in
TS (15 in our case). This measure is used in the paper
wherever we want to simply report the FDR for a given
technique and sample size. Since we run each test suite
100 times on faulty programs we report the FDR means
and variances.

௠ܴܦܨܣ .2
ఊ
ሺΓሻ . Enables the overall comparison of two

selection techniques for a range of sample sizes.
௠ܴܦܨܣ

ఊ
ሺΓሻ, which is inspired by the APFD measure [7]

for test case prioritization, is adapted to test case
selection in our context. It is a measure for comparing
curves and measures the sum of all ߩሺ݅ሻΓ for all sample
sizes in the given intervals and range (0 to m). More
precisely, it is equal to the area under the curve
representing ߩሺ݅ሻΓ (y-axis) over different sample sizes
(x-axis). Since sample size has discrete values, the area
under the curve is calculated as:

௠ܴܦܨܣ
ఊ ሺΓሻ ൌ

ሺ0ሻߩ ൅ ሺ݉ሻߩ
2 ൅ ∑ ሺ݅ߩ ∗ ሻΓߛ

ቀ
௠
ఊ ቁ

ିଵ

௜ୀଵ

݉
ߛ

where 0 ൑ ௠ܴܦܨܣ
ఊ ሺΓሻ ൑ 1 . As we discussed, in this

paper we report the result of sample sizes less than 140
(~50% of the test suite) with intervals of 10, and
therefore always report ܴܦܨܣଵସ଴

ଵ଴ ሺΓሻ.
3. min୩ሺΓሻ is the minimum number of test cases from the

given test suite TS that are selected by technique Γ to

detect at least ݇% of the detectable faults. This measure
is more useful when selection techniques are compared
with respect to their reduction in cost while ensuring a
given fault detection rate.
The three measures above are complementary and help

interpreting the FDR from different angles. The experiments
have been conducted on a PC with Intel Core(TM)2 Duo
CPU 2.40 Hz and 4 GB memory running Windows 7.

C. Experiment results

In this section we answer research questions RQ1 and
RQ2 based on our case study.

1) Experiment Results for RQ1
We start with RQ1.1 and first compare the effectiveness

of set-based and sequence-based techniques separately and
identify the best function in each class. We then compare the
best set-based similarity versus the best sequence-based
function. Figure 1.a shows the average FDR of the three set-
based functions introduced in Section III.A (ሺ݅ሻ஼௡௧ߩ ,
 ሺ݅ሻு௔௠). The results show that Jac has the largestߩ , ሺ݅ሻ௃௔௖ߩ
average FDR and Ham the smallest one for almost every
sample size and especially so for smaller sample sizes. An
overall comparison of the curves also suggests that Jac fares
better than Cnt and Ham. (ଵସ଴ܴܦܨܣ

ଵ଴ ሺܿܽܬሻ ≅ 0.95 ,
ଵସ଴ܴܦܨܣ

ଵ଴ ሺݐ݊ܥሻ ≅ 0.93 ଵସ଴ܴܦܨܣ ,
ଵ଴ ሺ݉ܽܪሻ ≅ 0.89). Using

Jac is also better in finding faults with fewer test cases as for
example minଽ଴ሺJacሻ ≅ 20 (~7% of the test suite) whereas
minଽ଴ሺCntሻ ≅ 30 (~11% of the test suite) and
minଽ଴ሺHamሻ ≅ 40 (~14% of the test suite). Table 1 contains
the FDR means and standard deviations of the three
functions over 100 runs for various sample sizes. Mann-
whitney U-tests shows that Jac median FDR is significantly
higher than those of Cnt and Ham, for sample sizes less than
50. For sample sizes between 50 and 140, Jac and Cnt show
similar FDR results, which are significantly higher than the
FDR results for Ham. Looking at Boxplots in Figure 2 and
the standard deviations in Table 1 however suggests that Jac
is a better option since it shows less variance for sample
sizes above or equal to 30. For sample sizes higher than 140
(50%), all techniques’ FDR quickly converges to 1.0.

The most plausible reason explaining the above results is
that although all three algorithms consider the number of
identical elements in the inputs, Ham only reports this value
without any normalization. Jac and Cnt, however, normalize
the number of identical elements with respect to the total
elements in both inputs, which makes the similarity value
more precise. For example, let A, B, and C be three input
sets. A and B are identical both containing one member x.
On the other hand C contains three members x, y, and z.
Therefore, a good similarity function should assign higher
similarity value to (A,B) than (A,C). Since the number of
identical elements in both pairs (A,B) and (A,C) is one,
Ham(A,B)=Ham(A,C)=1 whereas Cnt(A,B)=Jac(A,B)=1 but
Cnt(A,C)=0.5 and Jac(A,C)=0.34. Therefore, Jac and Cnt
are more precise than Ham. Comparing Jac and Cnt, we
notice that both use the same information (number of
identical and different elements in the input sets). Assume

(a) Set-based similarity functions

(b) Sequence-based similarity functions

(c) The best set and sequence-based functions

(d) The best similarity-based selection vs. baselines

Figure 1 The average FDR of different selection techniques for sample sizes 10 to 140

the number of identical elements in two inputs A and B is S
and the number of different elements is D. Then
Cnt(A,B)=S/(S+D/2) and Jac(A,B)=S/(S+D). Theoretically,
none is preferable to the other but our case study is showing
that Jac, which normalizes the similarity value by treating S
and D the same, is more effective in finding faults than Cnt
which gives more weight to identical elements (S) than
different ones (D).

Figure 1.b shows the average FDR of three sequence-
based selection techniques, introduced in Section III.B
ሺ݅ሻீ௟௕ߩ , ሺ݅ሻ௅௘௩ߩ) ሺ݅ሻ௅௢௖). Not surprisingly Glb performsߩ ,
better than Lev. With sample sizes less than 130, Glb is
always significantly more effective in terms of FDR (based
on Mann- Whitney U-test) since it is basically a tuned
version of Lev. However, Loc with the same settings as Glb
is much less effective. A plausible reason is that this
algorithm is designed for long sequences in bioinformatics,
where aligning the whole sequence results in very bad
scores. Therefore, they align the sequences locally, which is
not as precise as globally aligning them. However, in our
case where the average and maximum length of test paths is
5 and 7, respectively, Glb performs better. Comparing the
overall curves shows clear differences (ܴܦܨܣଵସ଴

ଵ଴ ሺݒ݁ܮሻ ≅
ଵସ଴ܴܦܨܣ , 0.88

ଵ଴ ሺܾ݈ܩሻ ≅ 0.92 ଵସ଴ܴܦܨܣ ,
ଵ଴ ሺܿ݋ܮሻ ≅ 0.85). In

terms of finding more faults with fewer test cases, Glb is
significantly better than other sequence-based similarity
functions. For example, minଽ଴ሺLevሻ ≅ 50 , minଽ଴ሺGlbሻ ≅
25, minଽ଴ሺLocሻ ≅ 60. Furthermore, Lev and Loc show high

variance (Table 1 and Figure 2), which makes them very
risky to use. For example, even with a large sample size like
110, 10% of the 100 selections using Loc result in an FDR
below 0.6 whereas Glb, even with sample size 20, ensures
that FDR > 0.6 with a confidence over 90%.

In Figure 1.c the best sequence-based (Glb) is compared
with the best set-based (Jac) similarity function. From
average FDR’s point of view, for sample sizes less than 50,
Jac performs better than Glb. In addition, an overall
comparison of the curves shows a similar performance
ଵସ଴ܴܦܨܣ)

ଵ଴ ሺܾ݈ܩሻ ≅ 0.92 vs. AFDRଵସ଴
ଵ଴ ሺJacሻ ≅ 0.95) and a

similar results for variance comparisons (Table 1 and Figure
2). However, the differences are not practically significant in
most cases. On the other hand, Jac is from a practical
standpoint easier to use since it does not require any
parameter settings, whereas weights and penalties in Glb
require tuning. Therefore, based on these results, we suggest
using Jaccard Index as similarity function in STCS.

Answering RQ1.2 we compare the cost of different
similarity functions both in terms of computational
complexity and the actual time required for the similarity
calculation. We notice that set-based measures are less
expensive (O(n+m)) than sequence-based measures
(O(n*m)), where n and m are the size of two test cases being
compared represented as sets of trigger-guards. In terms of
the actual time spent for the calculation, set-based measures
required around 0.5 seconds in average for building the
similarity matrix (filled with 39340 similarity values

between all pairs of test cases in the test suite), whereas
sequence-based measures require more than 3 seconds to
build such matrix. These results also suggest that set-based
measures are less expensive. Therefore, we suggest Jaccard
Index, given its low cost, high effectiveness, low variation,
and ease of use.

2) Experiment Results for RQ2
We compare our suggested selection technique (Jac) with

random selection (Rnd), coverage-based Greedy selection
(CovGr), coverage-based GA selection (CovGA), and the
state of the art in STCS [4] (TransGr). TransGr uses a
transition-based encoding, a Counting similarity function,
and a Greedy search for selection. Note that Jac refers to a
STCS which uses trigger-guard-based encoding, Jaccard
Index as similarity function, and a GA for selection. Figure
1.d shows all average FDRs for different sample sizes for all
the techniques. The improvement we get using our technique
is clearly visible from the graph and is confirmed by Mann-
Whitney U-tests, for sample sizes less than 90. For example,
for sample size 30 (~10% of the test suite), we get a 50%
improvement from the best alternative technique (CovGrd).
The results get even more interesting when we see that the
best improvements are on the smaller sample sizes (less than
30% of the test suite), which are more likely to be used in
practice. The overall comparison of curves also show large
differences (ܴܦܨܣଵସ଴

ଵ଴ ሺܿܽܬሻ ≅ ଵସ଴ܴܦܨܣ ,0.95
ଵ଴ ሺܶݎܩݏ݊ܽݎሻ ≅

ଵସ଴ܴܦܨܣ ,0.80
ଵ଴ ሺݎܩݒ݋ܥሻ ≅ 0.76 ଵସ଴ܴܦܨܣ ,

ଵ଴ ሺܣܩݒ݋ܥሻ ≅ 0.7 ,
and ܴܦܨܣଵସ଴

ଵ଴ ሺܴ݊݀ሻ ≅ 0.69). As we have mentioned, the
minimum number of test cases required for Jac to yield an
average FDR above 0.9 is 20 (minଽ଴ሺJacሻ ≅ 20 (or ~7% of
TS) whereas the best alternatives require at least 85 test cases
(minଽ଴ሺTransGrሻ ≅ 85 or ~30% of TS), thus implying a
near 77% reduction in cost. Note that, for sample sizes larger
than 100, the mean FDR of TransGr is 1.0 whereas the mean
FDR of Jac is below 1.0. The most plausible reason is that
Jac uses the GA with a 175ms stopping criterion, which is a
very short time for exploring the solution space for large
sample sizes. Therefore, among these techniques, the best for
yielding 100% FDR with minimum number of test cases is a
GA with longer stopping time (e.g., using 1 sec instead of
175ms, Jac can find all faults for sample sizes less than 30).
Given the small execution times involved, this has no
practical consequences on the applicability of the GA.

The other interesting observation from Figure 2 and
Table 1 is the confidence that we gain by using our approach
rather than coverage-based selection, random selection, or
even the best existing STCS approaches. For example,
looking at results for sample size 40 in Figure 2, we see that
90% of the 100 runs of our approach resulted in a median
FDR equal to 1.0, while 75% of all runs, for all the
alternative approaches (Rnd, CovGrd, CovGA, and
TransGrd), yield a median FDR below 0.80. These results
strengthen further our confidence in recommending Jac to
support SMBT (and in general MBT) in practice.

Analyzing the cost of STCS compared to alternatives, we
consider the actual selection time spent by each technique,
since no better measure is applicable in our context. For
example, the number of fitness evaluations in GAs, a better
alternative in some cases, is not applicable to CovGr and

Rnd. We use 175ms as stopping criterion for the GA, which
seems unfair given that CovGr only requires on average one
tenth of this time and Rnd less than 1 ms. However, CovGr
and Rnd could not be improved even with increased
execution time. Moreover, stopping the GA exactly at the
execution time used by CovGr, still improves the FDR
though the improvement is not practically significant. From a
practical standpoint, all these differences are anyway
negligible as 175ms, even when considering the overhead of
the similarity matrix creation (in average 500ms for Jac), is
very small compared to the actual test case execution time
(which is in the range of minutes). In cases where the
number of test cases is much larger than in our case study,
our conclusions would still hold as both the time of
executing test cases and computing similarities would
increase, the latter still being negligible. Overall, in order to
minimize the overall testing effort, we recommend the use of
Jac over existing alternatives.

D. Discussion on validity threats

This study was conducted according to recently proposed
guidelines for conducting empirical studies in search-based
testing [21]. In terms of the construct validity of our
measures, effectiveness (FDR) is based on a set of real faults,
as explained earlier, that we used to create mutant programs.
Comparing the cost of different similarity functions we
considered the computational complexity of their
implementations along with their actual time consumptions
to gain a more precise understanding of their relative cost.
The cost discussion on different selection techniques was not
practically interesting in our case because the difference
between the execution time of different techniques is
negligible compared to even one test case execution time
(less than a second compared to minutes). However, for very
large test suites with faster test case executions, the
differences among selection techniques may no longer be
negligible compared to test execution time. However, in
most cases, we expect the selection time to be negligible
compared to the total reduction in test execution time (time
required for executing all excluded test case). The exact
threshold above which a selection technique will no longer
be cost-effective depends on the test suite size, the
percentage of selection, and the average test case execution
time. Note that, in our implementation of STCS algorithms,
the similarity matrix is created beforehand and kept in
memory. This creates an initial overhead and will generate a
memory problem for large test suites. The other option
which may be even quicker (depending on the number of
distinct similarity evaluations that GA requires during its
execution and the matrix size) is the on-demand calculation
of similarities. In addition, the most used similarities may be
cached. Except for sequence-based similarity functions
(which implementation is taken from [13]) we implemented
the other similarity functions and search techniques and
strived to achieve the same level of optimization. Our
proposed similarity function (Jac) does not require any
tuning but the parameter tuning for Glb and Loc, which is
done with a small experiment on a small sample set might
not be optimal This means that it is in theory possible to

TABLE 1 THE MEAN FDRS (HIGHEST VALUES PER SAMPLE SIZE ARE IN BOLD) AND THEIR STANDARD DEVIATIONS PER SAMPLE SIZE OVER 100 RUNS.

Selection technique
FDRs per sample size

10 20 30 40 50 60
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Set-based
Jac 0.72 0.14 0.90 0.11 0.96 0.07 0.98 0.05 0.97 0.06 0.97 0.07

Cnt 0.57 0.18 0.84 0.14 0.90 0.12 0.95 0.08 0.96 0.07 0.97 0.06

Ham 0.52 0.14 0.71 0.14 0.85 0.14 0.91 0.12 0.92 0.11 0.93 0.10

Sequence-
based

Glb 0.67 0.14 0.88 0.12 0.93 0.08 0.97 0.05 0.98 0.05 0.98 0.05

Lev 0.48 0.16 0.67 0.14 0.80 0.14 0.86 0.12 0.92 0.10 0.93 0.09

Loc 0.44 0.13 0.61 0.14 0.76 0.13 0.82 0.13 0.85 0.12 0.90 0.12

Baselines

TranGr 0.35 0.13 0.54 0.13 0.65 0.14 0.62 0.15 0.67 0.14 0.74 0.13

CovGr 0.35 0.14 0.53 0.13 0.62 0.13 0.67 0.13 0.73 0.14 0.75 0.15

CovGA 0.35 0.14 0.50 0.15 0.545 0.17 0.63 0.16 0.66 0.19 0.72 0.15

Rnd 0.28 0.16 0.42 0.18 0.50 0.16 0.56 0.16 0.63 0.19 0.66 0.18

Figure 2 FDR (y-axis) Boxplots for different selection techniques (x-axis) for sample sizes ranging from 10 to 60 by intervals of 10 over 100 runs. The
Boxplots show the 10th, 25th, 50th, 75th, and 90th percentiles and means.

obtain a better FDR than Jac using an optimal Glb or Loc.
However, this tuning, in general, is not easy to apply in
practice and entails extra cost.

One hundred independent runs were performed for
each selection technique to account for random variation
and obtain a sufficient number of observations to report
means, medians, and standard deviations. We used the
non-parametric Mann-Whitney U-test for independent
samples to check the statistical differences in FDR across
selection techniques and we are thus not relying on any
assumption. We also discussed about practical significance
by looking at the magnitude of the differences between
FDR (percentage of improvement) and cost (actual time)
of different techniques. Our results rely on one industrial
case study using a set of real faults. Though such realistic
studies are rare in the research literature and very time
consuming, it must be replicated on other systems and sets
of faults. However, as discussed earlier, the system used
here is typical of a broad category of industrial systems:
control systems with state-dependent behavior.

VI. CONCLUSION AND FUTURE WORK

In the context of embedded and telecom software, among
many other examples, system testing must often occur on
realistic infrastructure and test networks involving limited
access time and entailing significant costs. Though
Model-Based Testing (MBT) has been found to be an
interesting solution in practice, on typical industrial
models, the number of test cases generated is still very
large. In addition, for many systems, automatically
generating oracles from models is very difficult or
impossible. In such cases, test cases should be evaluated
manually, greatly increasing the cost of test execution and
analysis. In this paper, we investigate ways to select an
affordable subset with maximum fault detection rate by
maximizing diversity among test cases with respect to a
similarity measure. In the context of state machine-based
testing, a common but specific type of MBT, we used a
trigger-guard-based encoding for test case representation
and proposed six different similarity measures. A Genetic
algorithm was used for optimizing the selected subsets for
each measure and their fault detection rates were
compared. Applying the techniques on an industrial case
study, we showed that using Jaccard Index to measure the
trigger-guards similarity of the respective test paths yields
a subset of the test suite with the best fault detection rate.
Comparing the results of our best proposal with currently
existing approaches such as coverage-based and random
selection, and other similarity-based selection techniques,
we also showed that we are far more effective than other
alternatives for smaller sample sizes (which are more
interesting in practice) and can save up to 77% of the test
execution cost of state machine-based testing. In the
future, we plan to look at the effect of other search
techniques and other combination of encodings and
similarity functions on similarity-based selections. In

addition we will replicate the study on another industrial
system to analyze the generalizability of the approach.

VII. REFERENCES
[1] S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. Briand,

"Model Transformations as a Strategy to Automate Model-Based
Testing - A Tool and Industrial Case Studies," Simula Research
Laboratory, Technical Report(2010-01)2010.

[2] A. P. Mathur, Foundations of Software Testing, 1 ed.: Addison-
Wesley Professional, 2008.

[3] J. A. Jones and M. J. Harrold, "Test-Suite Reduction and
Prioritization for Modified Condition/Decision Coverage," IEEE
Transactions on Software Engineering, vol. 29, pp. 195-209, 2003.

[4] E. G. Cartaxo, P. D. L. Machado, and F. G. O. Neto, "On the use
of a similarity function for test case selection in the context of
model-based testing," Software Testing, Verification and
Reliability, 2009.

[5] H. Hemmati, L. Briand, A. Arcuri, and S. Ali, "An Enhanced Test
Case Selection Approach for Model-Based Testing: An Industrial
Case Study," in 18th ACM International Symposium on
Foundations of Software Engineering (FSE), 2010.

[6] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns,
and Tools: Addison-Wesley Professional, 1999.

[7] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel, "Test Case
Prioritization: A Family of Empirical Studies," IEEE Transactions
on Software Engineering, vol. 28, pp. 159-182, 2002.

[8] S. McMaster and A. Memon, "Call-Stack Coverage for GUI Test
Suite Reduction," IEEE Transactions on Software Engineering,
vol. 34, pp. 99-115, 2008.

[9] Z. Li, M. Harman, and R. M. Hierons, "Search Algorithms for
Regression Test Case Prioritization," IEEE Transactions on
Software Engineering, vol. 33, pp. 225-237, 2007.

[10] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning: Addison-Wesley Professional, 2001.

[11] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data
Mining: Addison Wesley, 2006.

[12] G. Dong and J. Pei, Sequence Data Mining: springer, 2007.
[13] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological

Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids: Cambridge University Press, 1999.

[14] D. Gusfield, Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology: Cambridge
University Press, 1997.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2 ed.: The MIT Press, 2001.

[16] S. Yoo, M. Harman, P. Tonella, and A. Susi, "Clustering test cases
to achieve effective and scalable prioritisation incorporating expert
knowledge," in 18th ACM International Symposium on Software
Testing and Analysis (ISSTA), 2009.

[17] W. Masri, A. Podgurski, and D. Leon, "An Empirical Study of Test
Case Filtering Techniques Based on Exercising Information
Flows," IEEE Transactions on Software Engineering, vol. 33,
2007.

[18] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, "Adaptive random
test case prioritization," in 25th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2009.

[19] M. K. Ramanathan, M. Koyutürk, A. Grama, and S. Jagannathan,
"PHALANX: a graph-theoretic framework for test case
prioritization," in 23rd Annual ACM Symposium on Applied
Computing, 2008.

[20] Y. Ledru, A. Petrenko, and S. Boroday, "Using String Distances
for Test Case Prioritisation," in 24th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2009.

[21] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege,
"A Systematic Review of the Application and Empirical
Investigation of Search-based Test-Case Generation," IEEE
Transactions on Software Engineering, Special issue on Search-
Based Software Engineering (SBSE), in press, 2010.

