
Reducing the Cost of Model-Based Testing through Test
Case Diversity

Hadi Hemmatia,b, Andrea Arcuria, and Lionel Brianda,b

a Simula Research Laboratory
b Department of Informatics, University of Oslo

{hemmati, arcuri, briand} @simula.no

Abstract. Model-based testing (MBT) suffers from two main problems which
in many real world systems make MBT impractical: scalability and automatic
oracle generation. When no automated oracle is available, or when testing must
be performed on actual hardware or a restricted-access network, for example,
only a small set of test cases can be executed and evaluated. However, MBT
techniques usually generate large sets of test cases when applied to real
systems, regardless of the coverage criteria. Therefore, one needs to select a
small enough subset of these test cases that have the highest possible fault
revealing power. In this paper, we investigate and compare various techniques
for rewarding diversity in the selected test cases as a way to increase the
likelihood of fault detection. We use a similarity measure defined on the
representation of the test cases and use it in several algorithms that aim at
maximizing the diversity of test cases. Using an industrial system with actual
faults, we found that rewarding diversity leads to higher fault detection
compared to the techniques commonly reported in the literature: coverage-
based and random selection. Among the investigated algorithms, diversification
using Genetic Algorithms is the most cost-effective technique.

Keywords: Test case selection; Model-based testing; Search-based testing;
Clustering algorithms; Similarity measure; Genetic Algorithms; Adaptive
Random Testing; Jaccard Index; UML state machines.

1 Introduction

The idea of model-based testing (MBT) [1] is to generate executable test cases by
systematically analyzing specification models (e.g. represented as UML state
machines) following a test strategy such as a coverage criterion, that aims to cover
certain features of the model (e.g., all transitions). MBT brings many advantages but
also entails the additional cost of modeling the software under test (SUT). In addition,
there are two factors that significantly increase the cost of MBT: (1) the lack of
automated oracle (e.g., when assessing the subjective perception of a media quality in
a videoconference system), and (2) the high cost of test case execution (e.g., when
testing must be performed on actual hardware or a restricted-access network). In both
situations, the test suite must be as small as possible while, to the extent possible,

preserving its fault revealing power. However, for real world size models, MBT
techniques usually generate large sets of test cases regardless of the applied coverage
criteria. Therefore, a model-based technique is required to select an optimal subset of
test cases to be executed, which is, in general, a NP-hard problem.

In similarity-based test case selection, the idea is to diversify the selected test cases
with respect to a similarity measure. In [2, 3], we proposed a similarity-based
selection technique for testing based on UML state machines (SMBT). We compared
different similarity measures in terms of what information from the test cases they
have to evaluate (test case encodings) and how this evaluation should be done
(similarity functions). The results showed that, in the context of SMBT, the similarity
measure that represents a test case as a set of trigger-guards [2] and uses Jaccard
Index [4] as the similarity function [3] is the most effective measure in terms of fault
detection rate (FDR).

In this paper, we take a deeper look into the idea of diversifying test cases and
investigate why similarity-based selected test cases are effective in finding faults. We
also study different strategies that, given a similarity measure and a test suite, we can
use to select a subset of the test suite. We applied our experiments on an industrial
software system and a set of actual faults, and the results clearly showed that
rewarding diversity is effective. The main explanation is that the test cases that find
different faults belong to distinct clusters based on the similarity measure. In addition
we found that, among different selection strategies, Genetic Algorithms (GAs) [5] are
the most cost-effective technique for similarity-based test case selection. We also
have shown that, in our case study, we could save up to 80% of test case executions,
and get more than 99% FDR, by using a GA compared to a coverage-based selection
technique.

The rest of the paper is organized as follows. Section 2 introduces the similarity-
based test case selection technique. Section 3 discusses the different strategies which
are used in this paper to diversify test cases. Section 4 provides a brief overview of
related works covering similarity-based selection techniques. Section 5 reports the
experimentation results of applying the selection techniques on an industrial case
study. Section 6 concludes the paper and outlines our future work plan.

2 Similarity-based Test Case Selection

Unlike coverage-based selection, where the goal is maximizing the coverage of the
test model by the selected test cases (e.g. transition coverage in SMBT) to maximize
chances of fault detection, similarity-based selection techniques maximize diversity
among the selected subset. Diversity is calculated using a (dis)similarity measure
between pairs of test cases. A similarity measure is the value that a similarity function
assigns to two inputs which are being compared. In a testing context, inputs are
usually encoded as a set or sequence of elements. In the context of MBT, the inputs
are abstract test cases defined on the test model rather than concrete test cases. We do
not use the execution information of the test case as, in our context, the goal is to
select them before execution. Abstract test cases are naturally generated as a first step
by MBT and can hide the unnecessary information for similarity comparisons. For
example, in SMBT an abstract test case representation can be a path in the state

machine specifying the SUT. In general, different faults can be detected by the same
test path instantiated with different test data (e.g., event parameter values). Therefore,
to compare different techniques, it is necessary to run the selected test paths with
different input data and analyze their FDR distribution.

Representation (encoding) of the test cases has an important effect on the similarity
measure. Though in SMBT a test path represents an encoded abstract test case, the
test path can be described at different levels of details. In [2], we studied three
encodings for a test path in UML state machine: state-based, transition-based, and
trigger-guard-based, and reported that trigger-guard-based encoding is the most
effective one in terms of fault detection, where a test path(tp) is represented as:

൏tp൐ ::ൌ ൏TrGu൐ | ൏TrGu൐ “,” ൏tp൐
൏ TrGu ൐ ::ൌ trig |guard | id | guard “൅” trig

where trig is the identification of a trigger, and guard is the identification of a
guard in the state machine. In this representation, a transition is identified by its
trigger and guard. It can be only a trigger, or a guard or both together. If there is a
transition with no guard and trigger, we use the transition id (id) as its identifier.

Given an encoding, one may use different similarity functions to calculate the
similarity value. In [3] we studied different set-based and sequence-based similarity
functions and proposed Jaccard Index as the most cost-effective. Given a set of n
encoded test cases (sn) and a similarity function (SimFunc), the test case selection
problem is reformulated as minimizing SimMsr(sn):

௡ሻݏሺݎݏܯ݉݅ܵ ൌ ෍ , ௜݌ݐ൫ܿ݊ݑܨ݉݅ܵ ௝൯݌ݐ

௧௣೔ , ௧௣ೕ∈௦೙ ∧ ௜வ௝

where SimFunc(tpi , tpj) returns the similarity of two test paths (or other encoded
abstract test cases in MBT) in sn represented by tpi and tpj. The last step in similarity-
based selection is using a strategy to select a subset of test cases with minimum
average pair-wise similarity (SimMsr). In the rest of this paper, we focus on finding
the best strategy for this selection.

3 Strategies for Maximizing Diversity

Given a similarity measure we have two strategies to select the most diverse test
cases. One is based on clustering test cases and taking samples from each cluster and
the second is searching for the most diverse subsets. In this section, we introduce one
clustering and two search techniques that will be investigated.

3.1 Clustering-based Techniques

Clustering algorithms divide data instances into natural groups by maximizing their
internal homogeneity and external separation [6]. Regardless of the specific algorithm
which is used for clustering, most clustering techniques use a proximity measure as a
mean to determine the closeness (similarity), or dissimilarity (distance) between pairs
of instances and pairs of clusters.

In this study, we are using one of the simplest clustering algorithms, which has
been frequently used in software engineering, including software testing [7]:
Agglomerative Hierarchical Clustering (AHC) [6]. AHC starts with forming clusters
containing each exactly one object (a test case in this study). A sequence of merge
operations is then performed until the desired number of clusters is achieved. At each
step, the two most similar clusters will be joined together. The measure that we used
for assessing similarity between two clusters, inter-cluster similarity, is Average
Linkage and it is defined as the average of all pair-wise similarities between all
instances of those two clusters [6]. After applying clustering, we need a sampling
technique for selecting one or more test case per cluster. We use one-per-cluster
sampling where the number of clusters is the same as the selected sample size and
then randomly select one member from each cluster. The pseudo-code of the
employed AHC follows:

ሺ1ሻ Make one cluster ሺCkሻ per test path ሺtpiሻ.

ሺ2ሻ While the number of clusters is more than sampleSize

ሺ3ሻ Find the two most similar clusters Cx and Cy ሺwith the maximum
InterClusterSimሺCx, Cyሻሻ. Where:

,௫ܥ൫݉݅ܵݎ݁ݐݏݑ݈ܥݎ݁ݐ݊ܫ ௬൯ܥ ൌ
∑ , ௜݌ݐ൫ܿ݊ݑܨ݉݅ܵ ௝൯௧௣೔∈஼ೣ⋀௧௣ೕ∈஼೤݌ݐ

|௫ܥ| ∗ หܥ௬ห

ሺ4ሻ Merge the two clusters.

3.2 Test Case Selection Using Adaptive Random Testing

Another technique that we investigate is Adaptive Random Testing (ART), which has
been proposed as an extension to Random Testing [8]. Its main idea is that diversity
among test cases should be rewarded, because failing test cases tend to be clustered in
contiguous regions of the input domain. This has been shown to be true in empirical
analyses regarding applications whose input data are of numerical type [8]. Recently,
Object-Oriented software has been also shown to manifest such a property [9].
Therefore, ART is a candidate selection strategy in our context as well. In this paper,
we use the basic ART algorithm described in [8], but we ensure that no replicated test
case is given in output. The pseudo-code for ART is:

ሺ1ሻ Zൌሼሽ

ሺ2ሻ Add a random test case to Z

ሺ3ሻ Repeat until |Z|ൌ sampleSize

ሺ4ሻ Sample K random test cases that are different from Z

ሺ5ሻ For each of these test cases k

ሺ6ሻ k.maxSim ൌ maxሺSimFuncሺk , z ∊ Zሻሻ

ሺ7ሻ Add the k with minimum maxSim to Z

3.3 GA-based Test Case Selection

A GA [5] is used in this paper since the nature of our problem, which is a form of
optimization, resembles typical problems addressed in search-based software
engineering [10]. GAs are the most used and successful reported technique in this
domain [10] and rely on four basic features: population, selection, crossover and
mutation. More than one solution is considered at the same time (population). At each
generation (i.e., at each step of the algorithm), some good solutions in the current
population, selected by the selection mechanism, generate offspring using the
crossover operator. This operator combines parts of the chromosomes (i.e., the
solution representation) of the offspring with a certain probability; otherwise it just
produces copies of the parents. These new offspring solutions will fill the population
of the next generation. The mutation operator is applied to make small changes in the
chromosomes of the offspring. Eventually, after a number of generations, an
individual that solves the addressed problem will be evolved.

In this paper, we use a steady state GA as a selection technique, in which only the
offspring that are not worse than their parents are added to the next generations. An
individual in our context is a subset of size n from the original test suite (denoted sn).
Given a similarity function SimFunc(tpi , tpj), the fitness function f to minimize is the
sum, for all pairs (tpi , tpj) in sn, of SimFunc(tpi , tpj), denoted SimMsr. We use a
single point crossover with probability of Pxover to combine two different parents ݏ௡

௫
and ݏ௡

௬. A mutated test path is replaced by a test path that is selected at random from
the set of all possible test paths. A valid solution is a set of test cases in which there is
no duplicate. We have applied two types of stopping criteria for the GA in this study:
(1) stopping after specific number of fitness evaluations, and (2) stopping after a fixed
period of time (e.g., 350ms). The pseudo-code of the employed GA follows:

ሺ1ሻ Sample a population G of m sets of test cases uniformly from the search space
ሺi.e., the set of all possible valid sets with a given size nሻ

ሺ2ሻ Repeat until the stopping criterion is met
ሺ3ሻ Choose s୬

୶ and s୬
୷
 from G

ሺ4ሻ ൫ś୬
୶ , ś୬

୷
൯ ∶ൌ crossover ሺs୬

୶ , s୬
୷
, P୶୭୴ୣ୰ሻ

ሺ5ሻ Mutateሺś୬
୶, ś୬

୷
ሻ

ሺ6ሻ If valid ሺś୬
୶ , ś୬

୷
ሻ ∧ min ሺfሺś୬

୶ሻ, fሺś୬
୷
ሻሻ ൑ min ሺ fሺs୬

୶ሻ, fሺs୬
୷
ሻሻ

ሺ7ሻ Then s୬
୶ ∶ൌ ś୬

୶ and s୬
୷
∶ൌ ś୬

୷

4 Related Work

There are three approaches reported in the literature to select a subset of test cases
from a test suite that can be applied in our context: (1) Random or semi-random
selection [11], where there is no guidance to select test cases; (2) Coverage-based
selections, where we hypothesize that “the test cases which have more coverage are
more likely to detect faults” (e.g., in [12] a Greedy search selects, at every step, the
test case that covers the most uncovered statements whereas in [13, 14] a GA is used
to find the maximum coverage.); (3) Similarity-based selections try to diversify test

cases, given a similarity measure, assuming that maximizing diversity among the
selected test cases maximizes the number of detected faults.

Diversifying test cases has been studied on code-based test case selection and
mostly in the context of regression testing. The similarity measure in such cases is
usually based on code coverage [7, 15-18]. In [19] a sequence of memory operations
is used to calculate the similarity and in [20] the authors use the whole test script in
string format as the input for similarity function. The work in [21] is the only one
where the similarity function is based on model-level information. Test cases are
represented as sequence of transitions in a LTS model of the system and the number
of identical transitions in the sequence is the similarity function. Our similarity
measure is different from theirs, both in terms of encoding and similarity function—
we use trigger-guard sets on UML state machines and apply the Jaccard Index. In [2,
3] we have compared the effectiveness of our similarity measure with the measure in
[21] and the results showed a great improvement using our technique, which therefore
is applied in this study as well. Given a similarity measure, different strategies have
been used to diversify the selected subsets: Greedy search in [17, 19-21], Neural
network based classification in [18], ART in [17], AHC in [7, 15, 16]. In this paper,
using our similarity measure, we compare ART, AHC, and a GA.

5 Empirical Evaluation

5.1 Case Study Description

The SUT under study is a typical safety monitoring component in a safety-critical
control system implemented in C++ and modeled as UML state machines
complemented by constraints specifying state invariants and guards. This SUT is
typical of a broad category of reactive systems interacting with sensors and actuators.
The first and the subsequent maintained versions of the system (including models and
code) were developed and verified by company experts and our research team. The
correct and the most up-to-date UML state machine, representing the latest version of
the SUT’s behavior, consists of one orthogonal state, 17 simple states, six simple-
composite states, and a maximum hierarchy level of two. The unflattened state
machine contains 61 transitions and the flattened state machine consists of 70 simple
states and 349 transitions.

The correct latest UML state machine was given to our test case generation tool
(TRUST) [22] as an input model. Using All-Transitions coverage, 281 test paths and
corresponding executable test cases were automatically generated. In our case study,
if a test path has the ability to detect a fault, it can be detected by any valid test data
for that test path. Therefore, in our experiment, we have one test case per test path and
the FDR of a test path is equal to the FDR of the corresponding test case. As it is
typical in many embedded systems, the average execution time for these test cases is
in the order of minutes, which makes running all the 281 test cases very time
consuming.

We use 15 faulty versions of the code that are made by introducing one real fault
per program. The 15 faults used in the study were introduced during maintenance

activities by developers and re-introduced for the purpose of the experiment in the
latest version of the SUT. Each of these faults belongs to one of the following
categories: wrong guards on transitions, wrong state invariant, missing transition, and
wrong OnEntry action in states. Among 281 test cases, 207 cannot detect any faults
and 74 catch at least one fault. The average number of detected faults per test case for
the 15 faulty versions is 0.72 and the maximum is five. Each fault is also detected on
average by 13 test cases. There are nine faults which are only detected by three test
cases and two faults are detectable by 65 test cases.

5.2 Experiment Design

In our industrial case study, we investigate the following research questions:

─ RQ1. Why does diversifying test cases improve fault detection?
o RQ1.1. Do test cases that find the same faults tend to be more similar

to each other than with other test cases?
o RQ1.2. Do test cases that find different faults tend to be more different

from each other than test cases that find the same faults?
─ RQ2. What is the most cost-effective way to diversify (given our similarity

measure) a set of test cases?
o RQ2.1. Does clustering-based test case selection improve the average

FDR compared to coverage-based and random selection?
o RQ2.2. Are search-based techniques more cost-effective than

clustering-based selection in terms of fault detection?
─ RQ3. How cost-effective is diversifying test cases compared to state of practice

techniques for test case selection?

In RQ1 we are analyzing why diversifying test cases improves FDR. In other
words, are test cases distinctly clustered with respect to different faults? We have
carried out an exhaustive analysis based on our industrial case study. Given N=281
test cases, we ran all of them on the actual SUT and all its faulty version to check
which of the M faults they are able to detect (in our case study M=15). We then
calculated the similarity of each pair of test cases, for a total of N*(N-1)/2 pairs. Note
that the exhaustive analysis of the search space landscape is based on the similarity
values of all test case pairs. However, test case selection is performed for any
arbitrary sampleSize where using an exhaustive search is not an option, since the
search space size for selecting a subset of size sampleSize is equal to the number of
possible sampleSize combinations within a test suite of a given size. In our case, as an
example, the search space size for sampleSize =28 (~10% of the test suite) is
2.9*10^38.

To address RQ1, we investigate two hypotheses: (1) For each fault cluster, the
similarity between pairs of test cases that find the same faults is, on average,
significantly higher than the similarity of other test case pairs in the test suite, and (2)
For each pair of fault clusters, the similarity between test cases that find different
faults is significantly lower than the similarity of test case pairs that find the same
fault in the test suite. If hypothesis (1) holds, then test cases finding the same faults
will cluster in close areas of the test case space. As a result, rewarding diversity in test

case selection would be beneficial. But hypothesis (2) should also hold, otherwise
diversity might be harmful since we would need more than one test case from the
same area to detect all faults.

In RQ2, we are interested in how to diversify the test cases, given the similarity
measure used in RQ1. Our baselines of comparison are random selection (Rnd) and a
coverage-based selection technique (CovGr) which is based on one of the most used
selection techniques in the literature: it applies a Greedy search to maximize the
coverage of the selected test cases [12]. In this paper, in each step of the Greedy
search in CovGr, we look for the test cases which cover the most yet uncovered
transitions on the UML state machine representing the SUT. Finally, in RQ3 we look
at the practical benefits of our proposed approach based on our industrial SUT. In this
study, as mentioned in Section 3, AHC is used as our clustering algorithm and a GA
and ART as search-based techniques. Our measure of effectiveness is the FDR of the
selected subset from the original test suite. Ideally, given the same amount of
computational cost, we would say that a technique is better than the other if it obtains
higher average FDR. For practitioners, such cost would typically be measured as the
time that an algorithm takes before completing its task. Comparing algorithms using
time is not a robust option from a practical standpoint though. Low-level
implementation details may have a strong effect on computational time. If we use
time as stopping criterion, then we may not truly compare algorithms but instead their
implementations [23]. To cope with this problem, a measure that is independent from
implementation details would be useful. For example, when comparing search
algorithms, it is a common practice to allow each algorithm to run until a maximum
number of fitness evaluations is executed (e.g., 100,000 [24]). However, the
assumption here is that the total search cost is proportional to the number of fitness
evaluations and the cost of other operations than fitness evaluation is either equal or
negligible in both algorithms.

To compare GAs with ART, following the same general reasoning, we use the
number of similarity comparisons (C) as stopping criterion, where n is the size of the
output test case set. We hence can run both the GA and ART with the same preset
number of similarity comparisons. For a GA that runs for W fitness evaluations (each
consisting of Q similarity comparisons), we have that C(GA) = W * Q = W * n * (n-
1)/2 whereas for ART we have [8]: C(ART) = K * n * (n-1)/2.

We would like to run both ART and the GA such that C(ART)=C(GA), but that
might not be possible because K (the size of the candidate set in ART) is a constant
that is upper bounded by N (281 in our case). In other words, the basic ART cannot be
run for an arbitrary amount of computational resources as it is the case for GAs (for
which we can choose arbitrarily high values for W). To cope with this problem, we
can just run ART several independent times (e.g., J times), and then take the best
result out of these J runs. Therefore, to obtain fair comparisons using similarity
measures, we can simply enforce W=J*K.

Whenever we could not use a fair metric (as the number of fitness evaluations) for
comparing different algorithms for test selection, we used the time expressed in
milliseconds as stopping criterion, which is the time spent by our implementation of
the algorithms on a PC with Intel Core(TM)2 Duo CPU 2.40 Hz and 4 GB memory
running Windows 7. As we previously discussed, though this is not particularly robust

in general, it is a reasonable option in our context as a significant effort was made to
optimize implementations and the execution environment was stable.

To account for the randomness of the results, which exists for all selection
algorithms, we ran each experiment 100 times and analyzed distributions. We report
the results for different techniques for sample sizes less than 140 (~50% of the test
suite) with intervals of 10, since our focus is, for practical reasons, on smaller size
subsets. (In practice, test case selection is mostly used for selecting a relatively small
sample of large test suites.) Furthermore, for large sample sizes, all selection
techniques will usually be as good as random selection and typically detect most
faults. We have performed non-parametric (Mann-Whitney U-test) statistical tests,
using a significance level of 0.05, to compare the FDR distribution of the proposed
and alternative selection techniques. Non-parametric tests are more robust than a
parametric test (e.g., the t-test) when there are strong departures from normality and
for large enough samples, as this is the case in this study (100 observations).

5.3 Experiment Results

5.3.1 Why Does Diversifying Test Cases Improve Fault Detection?

For each of the M=15 faults, we calculated the similarity of the test case pairs that
both found each of these faults (groups of test case pairs, from F1 to F15). Mann-
Whitney U-tests were performed (α =0.05) to see whether there was a difference in
similarity value between the pairs in F1 to F15 and the set of all remaining pairs of
test cases (T - Fi). Table 1 summarizes the results where bold median values represent
statistically significant differences between the distributions of these Fi with T - Fi.
Note that F1 and F2, F3 and F4, and F7 to F15 are on the same table row, as they have
the same descriptive statistics. This is due to the fact that most test case pairs are the
same and those that are not the same have high similarity values (according to our
similarity measure).

The results show that the difference is significant for the first six groups. The other
groups also show a high difference in terms of mean and median but, since there are
only three observations for each of those groups, we cannot get statistically significant
differences. Therefore, the first hypothesis of RQ1.1: “Test cases that find the same
faults tend to be more similar to each other than with other test cases” is confirmed.

To investigate RQ1.2, for each pair of fault clusters Fi and Fj, let us consider the
similarity distribution (Dd) of test case pairs which belong to two different clusters,
i.e., test cases that find different faults. We compare Dd with the similarity
distribution (Ds) of test case pairs which both are in one of those two clusters, i.e., test
cases that find the same fault. The median of Dd and Ds per cluster pair is reported
above the diagonal in Table 2.

There are cases where fault clusters Fi are exactly the same, i.e., their respective
faults are found by exactly the same set of test cases. Distinguishing them does not
have any effect on the FDR results (either all or none of the faults will be revealed by
a selected set of test cases) and therefore such clusters are not distinguished. As a
result, there are seven distinct fault clusters (labeled as A to G) matching the columns

and rows of Table 2. Their mapping to the 15 fault clusters is as follows: A(F1 and
F2), B(F3 and F4), C(F5), D(F6), E(F7 to F9), F(F10 to F12), G(F13 to F15).

The bold values show the cases where there is a statistically significant difference
between Dd and Ds, based on a Mann-Whitney U-test. The presence of significant
differences support the claim that fault clusters are far away from each other and
therefore that rewarding diversity is useful. In cases where two clusters are
overlapping, the size of the overlap compared to the size of their union will determine
whether rewarding diversity is harmful. If the ratio of the overlapping part
(intersection) over the union is high, a test case that finds one of the two faults would
have a high probability of finding the other. In this case, rewarding diversity is still a
reasonable option. We measure this ratio by dividing the size of two clusters’
intersection |I| by the size of their union |U|: IU=|I|/|U|. The cells below the diagonal of
Table 2 report this measure per cluster pair.

Among 21 cluster pairs, 15 contain distinct clusters with significant differences
between Dd and Ds. There are three clusters (E, F, and G) that only contain a few test
cases (three per cluster), which are not amenable to statistical analysis and show no
statistically significant differences. Clusters B and D which are not significantly
different from each other show a high overlapping value (0.57), implying that
although these clusters are not distinct, there is a 57% probability that a test case that
is selected from their union can find both faults. Two cluster pairs, <A,D> and
<C,D>, show unexpected results—Dd median lower than the Ds median—and they

Table 1. Min, max, median, mean, and standard deviation of similarity values of the test cases
that find the same faults

Groups Pairs Min Median Mean Max SD

T 39340 0.076 0.250 0.291 1.000 0.166
F1,F2 2080 0.181 0.4 0.432 1.000 0.173
F3,F4 91 0.375 0.571 0.561 0.833 0.143
F5 28 0.200 0.464 0.475 0.800 0.168
F6 28 0.714 0.714 0.714 0.714 0.000
F7 to 15 3 0.375 0.428 0.434 0.500 0.062

Table 2. Each cell above the diagonal shows the median of Dd and Ds (Dd/Ds) and each cell
below the diagonal shows the overlapping measure (IU), per cluster pairs. Bold median values

highlight significant differences (Mann-Whitney U-test) between the Dd and Ds.

 A B C D E F G

A - 0.33/0.42 0.33/0.40 0.71/0.40 0.18/0.40 0.18/0.40 0.18/0.40
B 0.21 - 0.37/0.57 0.71/0.66 0.37/0.57 0.37/0.57 0.37/0.57
C 0.12 0 - 0.71/0.71 0.37/0.42 0.37/0.42 0.37/0.42
D 0.12 0.57 0 - 0.11/0.71 0.11/0.71 0.11/0.71
E 0 0 0 0 - 0.37/0.42 0.37/0.42
F 0 0 0 0 0 - 0.37/0.42
G 0 0 0 0 0 0 -

are not highly overlapping. Therefore, since among 21 pairs, 15 pairs fit the situation
where similarity-based selection is effective, two do not, and four are neutral, we can
conclude that, overall, in most cases “test cases that find different faults tend to be
more different from each other than test cases that find the same faults”.

Overall, the results of our analysis confirm that diversity in test case selection
should be encouraged and that our similarity measure is adequate. It also seems that
since test cases finding the same faults are clustered together and these clusters are
mostly distinct, clustering algorithms are a reasonable candidate approach to achieve
diversity, though we will investigate what is the best strategy in the next research
question.

5.3.2 What Is the Most Cost-effective Way to Diversify a Set of Test Cases?

To answer RQ2 we first compare the AHC clustering algorithm with CovGr and Rnd
introduced in Section 5.2. Fig. 1 shows the FDR results of the algorithms.

Overall, the results show that for all sample sizes AHC is more effective than its
two alternatives except that for sample sizes less than 30 (~10% of the test suite) the
difference between the average FDRs of CovGr and AHC is not statistically
significant (based on Mann-Whitney tests). Considering the fact that in practice the
results for smaller sample sizes are more important, AHC may not be preferred to
CovGr given the high cost of a clustering technique compared to simple Greedy
search. On average (for all sample sizes over 100 runs) each selection requires 350ms,
10ms, and less than 1ms when using AHC, CovGr, and Rnd, respectively. Though
those time differences may not seem relevant, they may become so on much larger
test suites of thousands of test cases. However, for sample sizes higher than 40, there
is a huge (up to 40%) improvement using AHC compared to CovGr. In addition,
AHC ensures 100% FDR with 80 test cases whereas CovGr and Rnd find less than
95% of the faults even with 140 test cases.

Note that, in theory, since Rnd does not use any heuristic to increase FDR, we
cannot improve it. However, we can improve CovGr by running it several time with
different random selections, wherever the coverage among alternative test cases is
equal, and reporting the best result out of all runs. To compare the FDR results of
CovGr when it costs exactly the same as AHC, we let CovGr improve its results by
random reselection and stopped the algorithm after 350ms. The results showed that in
our case, there is no practically significant difference in CovGr FDR for 10 and 350
ms of running time.

Addressing RQ2.1, given that the FDR of AHC is always equal or superior to that
of CovGr or Rnd, and the fact that we cannot predict for a given test suite the sample
size threshold above which AHC will be certain to fare significantly better, we favor
the systematic use of AHC over CovGr and Rnd. Moreover, in practice, this strategy
makes even more sense when considering that test case execution time (which in our
case is in the range of minutes) is usually much higher than selection time for any of
the techniques (which in our case is in the range of milliseconds).

Comparing search-based techniques with AHC, first we need to find out which
search technique is more cost-effective. In this study, we compare the FDR of ART
and a GA. The GA is stopped after 10,000 fitness evaluations, and ART is run 1000
times with K=10 (so both algorithms use the same number of similarity comparisons).

Fig. 2 shows the average FDR of the techniques for each sample size over 100 runs.
In general, the GA fares better and more particularly so from sample size 20 (~7% of
the test suite) to 70 (~25% of the test suite). For sample sizes larger than 70, the FDR
of both techniques converges to 1.0. The differences for smaller sample sizes are
statistically significant but, because these differences may not practically significant
(at most 10% improvement for the GA), we need to look closely at the relative cost of
ART and the GA.

As we mentioned earlier, the number of fitness evaluations is usually a good
platform-independent measure for the cost of search techniques. However, in our
implementation, a matrix made of all pair-wise similarities is created before any
search. Therefore, this overhead is the same for all search algorithms and the fitness
evaluation is not an expensive part of the search. Therefore, we cannot be sure that
total cost is proportional to the number of fitness evaluation. In Fig. 3, we have
plotted the actual time spent by the two algorithms (ART and the GA with 10,000
fitness evaluations). The required time for 10,000 fitness evaluations using both
techniques is exponentially increasing and they both spend almost the same time for
very small sample sizes (less than 20). For sample sizes higher than 20 (~7% of the
test suite), ART quickly gets more expensive than the GA. Given that it always has
equal or worse FDR results, there is no reason for choosing ART over the GA.

In the next step, we compare AHC with the GA but using the same execution time
that AHC requires for its selection (350ms). Fig. 4 shows that the GA is clearly
preferable over AHC considering that spending the same time as AHC, the GA fares
in general much better and can almost double the average FDR results of AHC for
small sample sizes. It is also more effective in finding all faults: AHC requires 80 test
cases whereas the GA only needs 40 test cases to achieve 100% FDR. To draw more
conservative conclusions regarding the superiority of the GA, we even conducted
another experiment and ran AHC a relatively long time (20,000ms) to compare its
FDR result with the GA using 350ms (Fig. 4). However, even when letting AHC
work for almost 60 times longer than the GA it still yields much lower FDR.
Therefore, our suggested answer to RQ2 is using the GA over the other alternatives.

5.3.3 How Cost-effective Is Diversifying Test Cases Compared to State of
Practice Techniques for Test Case Selection?

To answer RQ3, we compare our best candidate based on RQ2, which is similarity-
based selection using a GA, with a coverage-based Greedy search (CovGr). Looking
at Fig. 1, the first observation is that the GA can save more than 80% of the test case
execution cost, given the fact that the GA, on average, finds more than 99% of the
faults by 40 test cases whereas CovGr requires more than 220 test cases to achieve the
same (not plotted in the figure). To have a more detailed cost-effectiveness
assessment, we look at the improvement that the GA may provide over time. Since
this improvement varies over sample sizes as well, we plotted in Fig. 5 the percentage
of FDR improvement provided by the GA over CovGr for five sample sizes: 10, 15,
20, 25, and 50 (ranging from 4 to 18 % of the test suite), over a time period of 10ms
(the average time required by CovGr to select test cases) to 350ms (the average time
required by AHC to select test cases). Note that as we mentioned earlier, as opposed
to the GA, CovGr does not improve over time.

 Fig. 1. The average FDR of AHC, Rnd,
and CovGr for different sample sizes

 Fig. 2. The average FDR of ART and the
GA with 10,000 fitness evaluations for

different sample sizes

 Fig. 3. The time in milliseconds required
by the GA and ART to run 10,000 fitness

evaluations for different sample sizes

 Fig. 4. The average FDR of the GA with
350ms and AHC with 350 and 20,000ms

for different sample sizes

A first observation from Fig. 5 is that the smaller the sample size, the larger the

improvement provided by the GA. Also, it is interesting to see that the GA, even with
10ms execution time, always detects more faults than CovGr. For example, the
average FDR of the GA is 80% larger than the CovGr FDR for 10ms. Finally, a cost
analysis shows that in cases where we can afford spending more time for selection,
the GA can be greatly improved. For all five sample sizes shown in Fig. 5, the GA’s
improvement over CovGr almost doubles if we give it 350ms instead of 10ms. This
improvement over time gets very large when the sample size gets smaller. For
example, for sample size 10 the GA can yield a 160% higher FDR than CovGr, which
in practice is a great benefit given that the cost for this improvement is only 350ms
for a test suite of 281 test cases where the cost of running one extra test case is in the
order of minutes.

6 Discussion on Validity Threats

The main threats to the validity of this study are firstly the fairness of comparisons in
terms of cost and secondly the generalizability of the results.

Similarity comparisons of test cases and clusters are the most influential part of
selection techniques. In our implementations of the algorithms, all pair-wise
similarities are pre-calculated in a similarity matrix which is given to the selection
algorithm as an input parameter. Obviously, this implementation is not scalable and
the similarity matrix will face memory limitations for large test suites. However, if we
can afford pre-calculation, then the most expensive part of the search algorithms may
not be the fitness evaluation anymore. We can see its effect on comparing ART and
the GA where having the same number of similarity evaluations ART requires much
more time. We have not studied on-demand similarity calculations, which might give
different FDR results using the same stopping time. In addition, inter-cluster
similarity calculation in AHC is very expensive and in our implementation it is
repeated for each iteration of the algorithm. The code can be optimized by caching the
similarities between clusters in each iteration and in the next iteration only calculate
the similarities if it is not already available. However, implementing this improvement
is not trivial since saving similarities of all combinations of clusters in all iterations
may be not possible due to memory limitations. There is a tradeoff to be made
between memory cost and execution speed.

The second issue is due to the fact that all our results and conclusions rely on a
single industrial case study using a given set of real faults. Though running such
studies is time consuming, it must obviously be replicated. However, as discussed
earlier, the system used here is typical of a broad category of industrial systems:
control systems with state-dependent behavior, controlling sensors and actuators.

Fig. 5. The percentage of improvement of similarity-based selection using GA over CovGr
for different sample sizes (SS) in time range of 10 to 350ms

7 Conclusion and Future Work

In practice, executing test cases generated by model-based testing (MBT) techniques
is costly. This cost is due to the large test suites which are typically generated by
MBT tools on industrial-scale systems to systematically achieve a coverage/adequacy
criterion. However, for system level testing, in many situations testing should take
place on the deployment platform where the cost (time and resource) of each test
execution may be high. This may be due to the cost of using actual hardware,
potential damages in case of failure, or access to restricted infrastructure (e.g., test
network). In addition, for many systems, automatically generating oracles from
models is very difficult or impossible. In such cases, test cases should be evaluated
manually, greatly increasing the cost of test execution and analysis. In cases such as
the ones mentioned above, one must execute a subset of the generated test suite whose
size is dependent on context. In this paper, we propose a new approach for test case
selection from UML state machines, by maximizing the diversity of the selected test
cases. To measure diversity we used a specific test case representation for UML state
machines (triggers-guards sets), which should be adapted in case of using other
models, and a model-independent similarity function (Jaccard Index). We investigated
why diversifying test cases with respect to our similarity measure increases fault
detection rates and compared different strategies to diversify the test cases:
Clustering, Adaptive Random Testing, and Genetic Algorithms (GAs). The results of
our study on an industrial software system and actual faults showed that: (1)
rewarding diversity leads to finding more faults, (2) our proposed similarity-based
selection (using Jaccard Index on the set of trigger-guards with a GA selection) is the
most cost-effective approach compared to the other alternatives. In addition, we
showed that in practice this approach can reduce the cost of test case execution in
MBT by selecting a small set of test cases which can find all (or most) faults in short
amount of time. In the future, we plan to replicate the study on another industrial
system. In addition, we will evaluate alternative optimization and search techniques.

8 References

1. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Morgan-
Kaufmann (2006)

2. Hemmati, H., Briand, L., Arcuri, A., Ali, S.: An Enhanced Test Case Selection Approach
for Model-Based Testing: An Industrial Case Study. 18th ACM International Symposium
on Foundations of Software Engineering (FSE) (2010)

3. Hemmati, H., Briand, L., Arcuri, A.: Investigation of Similarity Measures for Model-
Based Test Case Selection. Simula Research Laboratory, Technical Report(2010-05)
(2010)

4. Teknomo, K.: Similarity Measurement. http:\\people.revoledu.com\kardi\tutorial\
Similarity.

5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Professional (2001)

6. Xu, R., Wunsch II, D.C.: Survey of Clustering Algorithms. IEEE Transactions on Neural
Netwoks 16 (2005) 645-678

7. Yoo, S., Harman, M., Tonella, P., Susi, A.: Clustering test cases to achieve effective and
scalable prioritisation incorporating expert knowledge. 18th ACM International
Symposium on Software Testing and Analysis (ISSTA) (2009)

8. Chen, T.Y., Kuoa, F.-C., Merkela, R.G., Tseb, T.H.: Adaptive Random Testing: The ART
of test case diversity. Journal of Systems and Software 83 (2010) 60-66

9. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: ARTOO: Adaptive Random Testing for
Object-Oriented Software. 30th IEEE International Conference on Software Engineering
(ICSE) (2008)

10. Harman, M.: The Current State and Future of Search Based Software Engineering. Future
of Software Engineering. IEEE Computer Society (2007) 342-357

11. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley Professional (1999)

12. Elbaum, S.G., Malishevsky, A.G., Rothermel, G.: Test Case Prioritization: A Family of
Empirical Studies. IEEE Transactions on Software Engineering 28 (2002) 159-182

13. Li, Z., Harman, M., Hierons, R.M.: Search Algorithms for Regression Test Case
Prioritization. IEEE Transactions on Software Engineering 33 (2007) 225-237

14. Ma, X.Y., Sheng, B.K., Ye, C.Q.: Test-Suite Reduction Using Genetic Algorithm.
Advanced Parallel Processing Technologies, Vol. 3756. Springer Berlin / Heidelberg
(2005)

15. Leon, D., Podgurski, A.: A Comparison of Coverage-Based and Distribution-Based
Techniques for Filtering and Prioritizing Test Cases. 14th IEEE International Symposium
on Software Reliability Engineering (ISSRE) (2003)

16. Masri, W., Podgurski, A., Leon, D.: An Empirical Study of Test Case Filtering
Techniques Based on Exercising Information Flows. IEEE Transactions on Software
Engineering 33 (2007)

17. Jiang, B., Zhang, Z., Chan, W.K., Tse, T.H.: Adaptive random test case prioritization.
25th IEEE/ACM International Conference on Automated Software Engineering (ASE)
(2009)

18. Simão, A.d.S., Mello, R.F.d., Senger, L.J.: A Technique to Reduce the Test Case Suites
for Regression Testing Based on a Self-Organizing Neural Network Architecture. 30th
Annual International Computer Software and Applications Conference (COMPSAC)
(2006)

19. Ramanathan, M.K., Koyutürk, M., Grama, A., Jagannathan, S.: PHALANX: a graph-
theoretic framework for test case prioritization. 23rd Annual ACM Symposium on
Applied Computing (2008)

20. Ledru, Y., Petrenko, A., Boroday, S.: Using String Distances for Test Case Prioritisation.
24th IEEE/ACM International Conference on Automated Software Engineering (ASE)
(2009)

21. Cartaxo, E.G., Machado, P.D.L., Neto, F.G.O.: On the use of a similarity function for test
case selection in the context of model-based testing. Software Testing, Verification and
Reliability (2009)

22. Ali, S., Hemmati, H., Holt, N.E., Arisholm, E., Briand, L.: Model Transformations as a
Strategy to Automate Model-Based Testing - A Tool and Industrial Case Studies. Simula
Research Laboratory, Technical Report(2010-01) (2010)

23. Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A Systematic Review of the
Application and Empirical Investigation of Search-based Test-Case Generation. IEEE
Transactions on Software Engineering, Special issue on Search-Based Software
Engineering (SBSE), in press (2010)

24. Harman, M., McMinn, P.: A Theoretical and Empirical Study of Search Based Testing:
Local, Global and Hybrid Search. IEEE Transactions on Software Engineering 36 (2010)
226-247

