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Abstract. Model-based testing (MBT) suffers from two main problems which 
in many real world systems make MBT impractical: scalability and automatic 
oracle generation. When no automated oracle is available, or when testing must 
be performed on actual hardware or a restricted-access network, for example, 
only a small set of test cases can be executed and evaluated. However, MBT 
techniques usually generate large sets of test cases when applied to real 
systems, regardless of the coverage criteria. Therefore, one needs to select a 
small enough subset of these test cases that have the highest possible fault 
revealing power. In this paper, we investigate and compare various techniques 
for rewarding diversity in the selected test cases as a way to increase the 
likelihood of fault detection. We use a similarity measure defined on the 
representation of the test cases and use it in several algorithms that aim at 
maximizing the diversity of test cases. Using an industrial system with actual 
faults, we found that rewarding diversity leads to higher fault detection 
compared to the techniques commonly reported in the literature: coverage-
based and random selection. Among the investigated algorithms, diversification 
using Genetic Algorithms is the most cost-effective technique.      

Keywords: Test case selection; Model-based testing; Search-based testing; 
Clustering algorithms; Similarity measure; Genetic Algorithms; Adaptive 
Random Testing; Jaccard Index; UML state machines.  

1 Introduction 

The idea of model-based testing (MBT) [1] is to generate executable test cases by 
systematically analyzing specification models (e.g. represented as UML state 
machines) following a test strategy such as a coverage criterion, that aims to cover 
certain features of the model (e.g., all transitions). MBT brings many advantages but 
also entails the additional cost of modeling the software under test (SUT). In addition, 
there are two factors that significantly increase the cost of MBT: (1) the lack of 
automated oracle (e.g., when assessing the subjective perception of a media quality in 
a videoconference system), and (2) the high cost of test case execution (e.g., when 
testing must be performed on actual hardware or a restricted-access network). In both 
situations, the test suite must be as small as possible while, to the extent possible, 



preserving its fault revealing power. However, for real world size models, MBT 
techniques usually generate large sets of test cases regardless of the applied coverage 
criteria. Therefore, a model-based technique is required to select an optimal subset of 
test cases to be executed, which is, in general, a NP-hard problem.  

In similarity-based test case selection, the idea is to diversify the selected test cases 
with respect to a similarity measure. In [2, 3], we proposed a similarity-based 
selection technique for testing based on UML state machines (SMBT). We compared 
different similarity measures in terms of what information from the test cases they 
have to evaluate (test case encodings) and how this evaluation should be done 
(similarity functions). The results showed that, in the context of SMBT, the similarity 
measure that represents a test case as a set of trigger-guards [2] and uses Jaccard 
Index [4] as the similarity function [3] is the most effective measure in terms of fault 
detection rate (FDR).  

In this paper, we take a deeper look into the idea of diversifying test cases and 
investigate why similarity-based selected test cases are effective in finding faults. We 
also study different strategies that, given a similarity measure and a test suite, we can 
use to select a subset of the test suite. We applied our experiments on an industrial 
software system and a set of actual faults, and the results clearly showed that 
rewarding diversity is effective. The main explanation is that the test cases that find 
different faults belong to distinct clusters based on the similarity measure. In addition 
we found that, among different selection strategies, Genetic Algorithms (GAs) [5] are 
the most cost-effective technique for similarity-based test case selection. We also 
have shown that, in our case study, we could save up to 80% of test case executions, 
and get more than 99% FDR, by using a GA compared to a coverage-based selection 
technique.  

The rest of the paper is organized as follows. Section  2 introduces the similarity-
based test case selection technique. Section 3 discusses the different strategies which 
are used in this paper to diversify test cases. Section 4 provides a brief overview of 
related works covering similarity-based selection techniques. Section 5 reports the 
experimentation results of applying the selection techniques on an industrial case 
study. Section 6 concludes the paper and outlines our future work plan. 

2 Similarity-based Test Case Selection 

Unlike coverage-based selection, where the goal is maximizing the coverage of the 
test model by the selected test cases (e.g. transition coverage in SMBT) to maximize 
chances of fault detection, similarity-based selection techniques maximize diversity 
among the selected subset. Diversity is calculated using a (dis)similarity measure 
between pairs of test cases. A similarity measure is the value that a similarity function 
assigns to two inputs which are being compared. In a testing context, inputs are 
usually encoded as a set or sequence of elements. In the context of MBT, the inputs 
are abstract test cases defined on the test model rather than concrete test cases. We do 
not use the execution information of the test case as, in our context, the goal is to 
select them before execution. Abstract test cases are naturally generated as a first step 
by MBT and can hide the unnecessary information for similarity comparisons. For 
example, in SMBT an abstract test case representation can be a path in the state 



machine specifying the SUT. In general, different faults can be detected by the same 
test path instantiated with different test data (e.g., event parameter values). Therefore, 
to compare different techniques, it is necessary to run the selected test paths with 
different input data and analyze their FDR distribution. 

Representation (encoding) of the test cases has an important effect on the similarity 
measure. Though in SMBT a test path represents an encoded abstract test case, the 
test path can be described at different levels of details. In [2], we studied three 
encodings for a test path in UML state machine: state-based, transition-based, and 
trigger-guard-based, and reported that trigger-guard-based encoding is the most 
effective one in terms of fault detection, where a test path(tp) is represented as: 

൏tp൐      ::ൌ ൏TrGu൐ | ൏TrGu൐ “,” ൏tp൐ 
൏ TrGu ൐ ::ൌ trig |guard | id | guard “൅” trig 

where trig is the identification of a trigger, and guard is the identification of a 
guard in the state machine. In this representation, a transition is identified by its 
trigger and guard. It can be only a trigger, or a guard or both together. If there is a 
transition with no guard and trigger, we use the transition id (id) as its identifier.  

Given an encoding, one may use different similarity functions to calculate the 
similarity value. In [3] we studied different set-based and sequence-based similarity 
functions and proposed Jaccard Index as the most cost-effective. Given a set of n 
encoded test cases (sn) and a similarity function (SimFunc), the test case selection 
problem is reformulated as minimizing SimMsr(sn): 

௡ሻݏሺݎݏܯ݉݅ܵ ൌ ෍ , ௜݌ݐ൫ܿ݊ݑܨ݉݅ܵ ௝൯݌ݐ

௧௣೔ , ௧௣ೕ∈௦೙ ∧ ௜வ௝

 

where SimFunc(tpi , tpj) returns the similarity of two test paths (or other encoded 
abstract test cases in MBT) in sn represented by tpi and tpj. The last step in similarity-
based selection is using a strategy to select a subset of test cases with minimum 
average pair-wise similarity (SimMsr). In the rest of this paper, we focus on finding 
the best strategy for this selection.  

3 Strategies for Maximizing Diversity 

Given a similarity measure we have two strategies to select the most diverse test 
cases. One is based on clustering test cases and taking samples from each cluster and 
the second is searching for the most diverse subsets. In this section, we introduce one 
clustering and two search techniques that will be investigated.  

3.1 Clustering-based Techniques  

Clustering algorithms divide data instances into natural groups by maximizing their 
internal homogeneity and external separation [6]. Regardless of the specific algorithm 
which is used for clustering, most clustering techniques use a proximity measure as a 
mean to determine the closeness (similarity), or dissimilarity (distance) between pairs 
of instances and pairs of clusters. 



In this study, we are using one of the simplest clustering algorithms, which has 
been frequently used in software engineering, including software testing [7]: 
Agglomerative Hierarchical Clustering (AHC) [6]. AHC starts with forming clusters 
containing each exactly one object (a test case in this study). A sequence of merge 
operations is then performed until the desired number of clusters is achieved. At each 
step, the two most similar clusters will be joined together. The measure that we used 
for assessing similarity between two clusters, inter-cluster similarity, is Average 
Linkage and it is defined as the average of all pair-wise similarities between all 
instances of those two clusters [6]. After applying clustering, we need a sampling 
technique for selecting one or more test case per cluster. We use one-per-cluster 
sampling where the number of clusters is the same as the selected sample size and 
then randomly select one member from each cluster. The pseudo-code of the 
employed AHC follows: 

ሺ1ሻ  Make one cluster ሺCkሻ per test path ሺtpiሻ. 

ሺ2ሻ  While the number of clusters is more than sampleSize 

ሺ3ሻ  Find  the  two  most  similar  clusters  Cx  and  Cy  ሺwith  the  maximum 
InterClusterSimሺCx, Cyሻሻ. Where: 

,௫ܥ൫݉݅ܵݎ݁ݐݏݑ݈ܥݎ݁ݐ݊ܫ ௬൯ܥ ൌ
∑ , ௜݌ݐ൫ܿ݊ݑܨ݉݅ܵ ௝൯௧௣೔∈஼ೣ⋀௧௣ೕ∈஼೤݌ݐ

|௫ܥ| ∗ หܥ௬ห
 

ሺ4ሻ  Merge the two clusters.  

3.2 Test Case Selection Using Adaptive Random Testing 

Another technique that we investigate is Adaptive Random Testing (ART), which has 
been proposed as an extension to Random Testing [8]. Its main idea is that diversity 
among test cases should be rewarded, because failing test cases tend to be clustered in 
contiguous regions of the input domain. This has been shown to be true in empirical 
analyses regarding applications whose input data are of numerical type [8]. Recently, 
Object-Oriented software has been also shown to manifest such a property [9]. 
Therefore, ART is a candidate selection strategy in our context as well. In this paper, 
we use the basic ART algorithm described in [8], but we ensure that no replicated test 
case is given in output. The pseudo-code for ART is: 

ሺ1ሻ  Zൌሼሽ 

ሺ2ሻ  Add a random test case to Z  

ሺ3ሻ  Repeat until |Z|ൌ sampleSize 

ሺ4ሻ    Sample K random test cases that are different from Z 

ሺ5ሻ    For each of these test cases k  

ሺ6ሻ      k.maxSim ൌ maxሺSimFuncሺk , z ∊ Zሻሻ 

ሺ7ሻ      Add the k with minimum maxSim to Z 



3.3 GA-based Test Case Selection 

A GA [5] is used in this paper since the nature of our problem, which is a form of 
optimization, resembles typical problems addressed in search-based software 
engineering [10]. GAs are the most used and successful reported technique in this 
domain [10] and rely on four basic features: population, selection, crossover and 
mutation. More than one solution is considered at the same time (population). At each 
generation (i.e., at each step of the algorithm), some good solutions in the current 
population, selected by the selection mechanism, generate offspring using the 
crossover operator. This operator combines parts of the chromosomes (i.e., the 
solution representation) of the offspring with a certain probability; otherwise it just 
produces copies of the parents. These new offspring solutions will fill the population 
of the next generation. The mutation operator is applied to make small changes in the 
chromosomes of the offspring. Eventually, after a number of generations, an 
individual that solves the addressed problem will be evolved.  

In this paper, we use a steady state GA as a selection technique, in which only the 
offspring that are not worse than their parents are added to the next generations. An 
individual in our context is a subset of size n from the original test suite (denoted sn). 
Given a similarity function SimFunc(tpi , tpj), the fitness function f to minimize is the 
sum, for all pairs (tpi , tpj) in sn, of SimFunc(tpi , tpj), denoted SimMsr. We use a 
single point crossover with probability of Pxover to combine two different parents ݏ௡

௫ 
and  ݏ௡

௬. A mutated test path is replaced by a test path that is selected at random from 
the set of all possible test paths. A valid solution is a set of test cases in which there is 
no duplicate. We have applied two types of stopping criteria for the GA in this study: 
(1) stopping after specific number of fitness evaluations, and (2) stopping after a fixed 
period of time (e.g., 350ms). The pseudo-code of the employed GA follows: 

ሺ1ሻ Sample a population G of m sets of test cases uniformly from the search space 
ሺi.e., the set of all possible valid sets with a given size nሻ 

ሺ2ሻ Repeat until the stopping criterion is met 
ሺ3ሻ   Choose s୬

୶ and s୬
୷
 from G   

ሺ4ሻ  ൫ś୬
୶ , ś୬

୷
൯ ∶ൌ crossover ሺs୬

୶ , s୬
୷
, P୶୭୴ୣ୰ሻ 

ሺ5ሻ  Mutateሺś୬
୶, ś୬

୷
ሻ 

ሺ6ሻ    If valid ሺś୬
୶ , ś୬

୷
ሻ ∧ min ሺfሺś୬

୶ሻ, fሺś୬
୷
ሻሻ ൑ min ሺ fሺs୬

୶ሻ, fሺs୬
୷
ሻሻ 

ሺ7ሻ   Then s୬
୶ ∶ൌ ś୬

୶ and s୬
୷
∶ൌ ś୬

୷
 

4 Related Work 

There are three approaches reported in the literature to select a subset of test cases 
from a test suite that can be applied in our context: (1) Random or semi-random 
selection [11], where there is no guidance to select test cases; (2) Coverage-based 
selections, where we hypothesize that “the test cases which have more coverage are 
more likely to detect faults” (e.g., in [12] a Greedy search selects, at every step, the 
test case that covers the most uncovered statements whereas in [13, 14] a GA is used 
to find the maximum coverage.); (3) Similarity-based selections try to diversify test 



cases, given a similarity measure, assuming that maximizing diversity among the 
selected test cases maximizes the number of detected faults. 

Diversifying test cases has been studied on code-based test case selection and 
mostly in the context of regression testing. The similarity measure in such cases is 
usually based on code coverage [7, 15-18]. In [19] a sequence of memory operations 
is used to calculate the similarity and in [20] the authors use the whole test script in 
string format as the input for similarity function. The work in [21] is the only one 
where the similarity function is based on model-level information. Test cases are 
represented as sequence of transitions in a LTS model of the system and the number 
of identical transitions in the sequence is the similarity function. Our similarity 
measure is different from theirs, both in terms of encoding and similarity function—
we use trigger-guard sets on UML state machines and apply the Jaccard Index. In [2, 
3] we have compared the effectiveness of our similarity measure with the measure in 
[21] and the results showed a great improvement using our technique, which therefore 
is applied in this study as well. Given a similarity measure, different strategies have 
been used to diversify the selected subsets: Greedy search in [17, 19-21], Neural 
network based classification in [18], ART in [17], AHC in [7, 15, 16]. In this paper, 
using our similarity measure, we compare ART, AHC, and a GA. 

5 Empirical Evaluation 

5.1 Case Study Description 

The SUT under study is a typical safety monitoring component in a safety-critical 
control system implemented in C++ and modeled as UML state machines 
complemented by constraints specifying state invariants and guards. This SUT is 
typical of a broad category of reactive systems interacting with sensors and actuators. 
The first and the subsequent maintained versions of the system (including models and 
code) were developed and verified by company experts and our research team. The 
correct and the most up-to-date UML state machine, representing the latest version of 
the SUT’s behavior, consists of one orthogonal state, 17 simple states, six simple-
composite states, and a maximum hierarchy level of two. The unflattened state 
machine contains 61 transitions and the flattened state machine consists of 70 simple 
states and 349 transitions. 

The correct latest UML state machine was given to our test case generation tool 
(TRUST) [22] as an input model. Using All-Transitions coverage, 281 test paths and 
corresponding executable test cases were automatically generated. In our case study, 
if a test path has the ability to detect a fault, it can be detected by any valid test data 
for that test path. Therefore, in our experiment, we have one test case per test path and 
the FDR of a test path is equal to the FDR of the corresponding test case. As it is 
typical in many embedded systems, the average execution time for these test cases is 
in the order of minutes, which makes running all the 281 test cases very time 
consuming. 

We use 15 faulty versions of the code that are made by introducing one real fault 
per program. The 15 faults used in the study were introduced during maintenance 



activities by developers and re-introduced for the purpose of the experiment in the 
latest version of the SUT. Each of these faults belongs to one of the following 
categories: wrong guards on transitions, wrong state invariant, missing transition, and 
wrong OnEntry action in states. Among 281 test cases, 207 cannot detect any faults 
and 74 catch at least one fault. The average number of detected faults per test case for 
the 15 faulty versions is 0.72 and the maximum is five. Each fault is also detected on 
average by 13 test cases. There are nine faults which are only detected by three test 
cases and two faults are detectable by 65 test cases. 

5.2 Experiment Design 

In our industrial case study, we investigate the following research questions: 

─ RQ1. Why does diversifying test cases improve fault detection? 
o RQ1.1. Do test cases that find the same faults tend to be more similar 

to each other than with other test cases?  
o RQ1.2. Do test cases that find different faults tend to be more different 

from each other than test cases that find the same faults? 
─ RQ2. What is the most cost-effective way to diversify (given our similarity 

measure) a set of test cases? 
o RQ2.1. Does clustering-based test case selection improve the average 

FDR compared to coverage-based and random selection?  
o RQ2.2. Are search-based techniques more cost-effective than 

clustering-based selection in terms of fault detection? 
─ RQ3. How cost-effective is diversifying test cases compared to state of practice 

techniques for test case selection? 

In RQ1 we are analyzing why diversifying test cases improves FDR. In other 
words, are test cases distinctly clustered with respect to different faults? We have 
carried out an exhaustive analysis based on our industrial case study. Given N=281 
test cases, we ran all of them on the actual SUT and all its faulty version to check 
which of the M faults they are able to detect (in our case study M=15). We then 
calculated the similarity of each pair of test cases, for a total of N*(N-1)/2 pairs. Note 
that the exhaustive analysis of the search space landscape is based on the similarity 
values of all test case pairs. However, test case selection is performed for any 
arbitrary sampleSize where using an exhaustive search is not an option, since the 
search space size for selecting a subset of size sampleSize is equal to the number of 
possible sampleSize combinations within a test suite of a given size. In our case, as an 
example, the search space size for sampleSize =28 (~10% of the test suite) is 
2.9*10^38.  

To address RQ1, we investigate two hypotheses: (1) For each fault cluster, the 
similarity between pairs of test cases that find the same faults is, on average, 
significantly higher than the similarity of other test case pairs in the test suite, and (2) 
For each pair of fault clusters, the similarity between test cases that find different 
faults is significantly lower than the similarity of test case pairs that find the same 
fault in the test suite. If hypothesis (1) holds, then test cases finding the same faults 
will cluster in close areas of the test case space. As a result, rewarding diversity in test 



case selection would be beneficial. But hypothesis (2) should also hold, otherwise 
diversity might be harmful since we would need more than one test case from the 
same area to detect all faults.     

In RQ2, we are interested in how to diversify the test cases, given the similarity 
measure used in RQ1. Our baselines of comparison are random selection (Rnd) and a 
coverage-based selection technique (CovGr) which is based on one of the most used 
selection techniques in the literature: it applies a Greedy search to maximize the 
coverage of the selected test cases [12]. In this paper, in each step of the Greedy 
search in CovGr, we look for the test cases which cover the most yet uncovered 
transitions on the UML state machine representing the SUT. Finally, in RQ3 we look 
at the practical benefits of our proposed approach based on our industrial SUT. In this 
study, as mentioned in Section 3, AHC is used as our clustering algorithm and a GA 
and ART as search-based techniques. Our measure of effectiveness is the FDR of the 
selected subset from the original test suite. Ideally, given the same amount of 
computational cost, we would say that a technique is better than the other if it obtains 
higher average FDR. For practitioners, such cost would typically be measured as the 
time that an algorithm takes before completing its task. Comparing algorithms using 
time is not a robust option from a practical standpoint though. Low-level 
implementation details may have a strong effect on computational time. If we use 
time as stopping criterion, then we may not truly compare algorithms but instead their 
implementations [23]. To cope with this problem, a measure that is independent from 
implementation details would be useful. For example, when comparing search 
algorithms, it is a common practice to allow each algorithm to run until a maximum 
number of fitness evaluations is executed (e.g., 100,000 [24]). However, the 
assumption here is that the total search cost is proportional to the number of fitness 
evaluations and the cost of other operations than fitness evaluation is either equal or 
negligible in both algorithms.  

To compare GAs with ART, following the same general reasoning, we use the 
number of similarity comparisons (C) as stopping criterion, where n is the size of the 
output test case set. We hence can run both the GA and ART with the same preset 
number of similarity comparisons. For a GA that runs for W fitness evaluations (each 
consisting of Q similarity comparisons), we have that C(GA) = W * Q = W * n * (n-
1)/2 whereas for ART we have [8]: C(ART) = K * n * (n-1)/2.  

We would like to run both ART and the GA such that C(ART)=C(GA), but that 
might not be possible because K (the size of the candidate set in ART) is a constant 
that is upper bounded by N (281 in our case). In other words, the basic ART cannot be 
run for an arbitrary amount of computational resources as it is the case for GAs (for 
which we can choose arbitrarily high values for W). To cope with this problem, we 
can just run ART several independent times (e.g., J times), and then take the best 
result out of these J runs. Therefore, to obtain fair comparisons using similarity 
measures, we can simply enforce W=J*K. 

Whenever we could not use a fair metric (as the number of fitness evaluations) for 
comparing different algorithms for test selection, we used the time expressed in 
milliseconds as stopping criterion, which is the time spent by our implementation of 
the algorithms on a PC with Intel Core(TM)2 Duo CPU 2.40 Hz and 4 GB memory 
running Windows 7. As we previously discussed, though this is not particularly robust 



in general, it is a reasonable option in our context as a significant effort was made to 
optimize implementations and the execution environment was stable.        

To account for the randomness of the results, which exists for all selection 
algorithms, we ran each experiment 100 times and analyzed distributions. We report 
the results for different techniques for sample sizes less than 140 (~50% of the test 
suite) with intervals of 10, since our focus is, for practical reasons, on smaller size 
subsets. (In practice, test case selection is mostly used for selecting a relatively small 
sample of large test suites.) Furthermore, for large sample sizes, all selection 
techniques will usually be as good as random selection and typically detect most 
faults. We have performed non-parametric (Mann-Whitney U-test) statistical tests, 
using a significance level of 0.05, to compare the FDR distribution of the proposed 
and alternative selection techniques. Non-parametric tests are more robust than a 
parametric test (e.g., the t-test) when there are strong departures from normality and 
for large enough samples, as this is the case in this study (100 observations). 

5.3 Experiment Results 

5.3.1 Why Does Diversifying Test Cases Improve Fault Detection? 

For each of the M=15 faults, we calculated the similarity of the test case pairs that 
both found each of these faults (groups of test case pairs, from F1 to F15). Mann-
Whitney U-tests were performed (α =0.05) to see whether there was a difference in 
similarity value between the pairs in F1 to F15 and the set of all remaining pairs of 
test cases (T - Fi). Table 1 summarizes the results where bold median values represent 
statistically significant differences between the distributions of these Fi with T - Fi. 
Note that F1 and F2, F3 and F4, and F7 to F15 are on the same table row, as they have 
the same descriptive statistics. This is due to the fact that most test case pairs are the 
same and those that are not the same have high similarity values (according to our 
similarity measure).   

The results show that the difference is significant for the first six groups. The other 
groups also show a high difference in terms of mean and median but, since there are 
only three observations for each of those groups, we cannot get statistically significant 
differences. Therefore, the first hypothesis of RQ1.1: “Test cases that find the same 
faults tend to be more similar to each other than with other test cases” is confirmed. 

To investigate RQ1.2, for each pair of fault clusters Fi and Fj, let us consider the 
similarity distribution (Dd) of test case pairs which belong to two different clusters, 
i.e., test cases that find different faults. We compare Dd with the similarity 
distribution (Ds) of test case pairs which both are in one of those two clusters, i.e., test 
cases that find the same fault. The median of Dd and Ds per cluster pair is reported 
above the diagonal in Table 2.   

There are cases where fault clusters Fi are exactly the same, i.e., their respective 
faults are found by exactly the same set of test cases. Distinguishing them does not 
have any effect on the FDR results (either all or none of the faults will be revealed by 
a selected set of test cases) and therefore such clusters are not distinguished. As a 
result, there are seven distinct fault clusters (labeled as A to G) matching the columns 



and rows of Table 2. Their mapping to the 15 fault clusters is as follows: A(F1 and 
F2), B(F3 and F4), C(F5), D(F6), E(F7 to F9), F(F10 to F12), G(F13 to F15). 

The bold values show the cases where there is a statistically significant difference 
between Dd and Ds, based on a Mann-Whitney U-test. The presence of significant 
differences support the claim that fault clusters are far away from each other and 
therefore that rewarding diversity is useful. In cases where two clusters are 
overlapping, the size of the overlap compared to the size of their union will determine 
whether rewarding diversity is harmful. If the ratio of the overlapping part 
(intersection) over the union is high, a test case that finds one of the two faults would 
have a high probability of finding the other. In this case, rewarding diversity is still a 
reasonable option. We measure this ratio by dividing the size of two clusters’ 
intersection |I| by the size of their union |U|: IU=|I|/|U|. The cells below the diagonal of 
Table 2 report this measure per cluster pair. 

Among 21 cluster pairs, 15 contain distinct clusters with significant differences 
between Dd and Ds. There are three clusters (E, F, and G) that only contain a few test 
cases (three per cluster), which are not amenable to statistical analysis and show no 
statistically significant differences. Clusters B and D which are not significantly 
different from each other show a high overlapping value (0.57), implying that 
although these clusters are not distinct, there is a 57% probability that a test case that 
is selected from their union can find both faults. Two cluster pairs, <A,D> and 
<C,D>, show unexpected results—Dd median lower than the Ds median—and they  

Table 1. Min, max, median, mean, and standard deviation of similarity values of the test cases 
that find the same faults 

Groups Pairs Min Median Mean Max SD 

T 39340 0.076 0.250 0.291 1.000 0.166 
F1,F2 2080 0.181 0.4 0.432 1.000 0.173 
F3,F4 91 0.375 0.571 0.561 0.833 0.143 
F5 28 0.200 0.464 0.475 0.800 0.168 
F6 28 0.714 0.714 0.714 0.714 0.000 
F7 to 15 3 0.375 0.428 0.434 0.500 0.062 

Table 2. Each cell above the diagonal shows the median of Dd and Ds (Dd/Ds) and each cell 
below the diagonal shows the overlapping measure (IU), per cluster pairs. Bold median values 

highlight significant differences (Mann-Whitney U-test) between the Dd and Ds.  

 A B C D E F G 

A - 0.33/0.42 0.33/0.40 0.71/0.40 0.18/0.40 0.18/0.40 0.18/0.40 
B 0.21 - 0.37/0.57 0.71/0.66 0.37/0.57 0.37/0.57 0.37/0.57 
C 0.12 0 - 0.71/0.71 0.37/0.42 0.37/0.42 0.37/0.42 
D 0.12 0.57 0 - 0.11/0.71 0.11/0.71 0.11/0.71 
E 0 0 0 0 - 0.37/0.42 0.37/0.42 
F 0 0 0 0 0 - 0.37/0.42 
G 0 0 0 0 0 0 - 

 
 



are not highly overlapping. Therefore, since among 21 pairs, 15 pairs fit the situation 
where similarity-based selection is effective, two do not, and four are neutral, we can 
conclude that, overall, in most cases “test cases that find different faults tend to be 
more different from each other than test cases that find the same faults”.  

Overall, the results of our analysis confirm that diversity in test case selection 
should be encouraged and that our similarity measure is adequate. It also seems that 
since test cases finding the same faults are clustered together and these clusters are 
mostly distinct, clustering algorithms are a reasonable candidate approach to achieve 
diversity, though we will investigate what is the best strategy in the next research 
question. 

5.3.2 What Is the Most Cost-effective Way to Diversify a Set of Test Cases? 

To answer RQ2 we first compare the AHC clustering algorithm with CovGr and Rnd 
introduced in Section  5.2. Fig. 1 shows the FDR results of the algorithms.  

Overall, the results show that for all sample sizes AHC is more effective than its 
two alternatives except that for sample sizes less than 30 (~10% of the test suite) the 
difference between the average FDRs of CovGr and AHC is not statistically 
significant (based on Mann-Whitney tests). Considering the fact that in practice the 
results for smaller sample sizes are more important, AHC may not be preferred to 
CovGr given the high cost of a clustering technique compared to simple Greedy 
search. On average (for all sample sizes over 100 runs) each selection requires 350ms, 
10ms, and less than 1ms when using AHC, CovGr, and Rnd, respectively. Though 
those time differences may not seem relevant, they may become so on much larger 
test suites of thousands of test cases. However, for sample sizes higher than 40, there 
is a huge (up to 40%) improvement using AHC compared to CovGr. In addition, 
AHC ensures 100% FDR with 80 test cases whereas CovGr and Rnd find less than 
95% of the faults even with 140 test cases.  

Note that, in theory, since Rnd does not use any heuristic to increase FDR, we 
cannot improve it. However, we can improve CovGr by running it several time with 
different random selections, wherever the coverage among alternative test cases is 
equal, and reporting the best result out of all runs. To compare the FDR results of 
CovGr when it costs exactly the same as AHC, we let CovGr improve its results by 
random reselection and stopped the algorithm after 350ms. The results showed that in 
our case, there is no practically significant difference in CovGr FDR for 10 and 350 
ms of running time. 

Addressing RQ2.1, given that the FDR of AHC is always equal or superior to that 
of CovGr or Rnd, and the fact that we cannot predict for a given test suite the sample 
size threshold above which AHC will be certain to fare significantly better, we favor 
the systematic use of AHC over CovGr and Rnd. Moreover, in practice, this strategy 
makes even more sense when considering that test case execution time (which in our 
case is in the range of minutes) is usually much higher than selection time for any of 
the techniques (which in our case is in the range of milliseconds). 

Comparing search-based techniques with AHC, first we need to find out which 
search technique is more cost-effective. In this study, we compare the FDR of ART 
and a GA. The GA is stopped after 10,000 fitness evaluations, and ART is run 1000 
times with K=10 (so both algorithms use the same number of similarity comparisons).  



Fig. 2 shows the average FDR of the techniques for each sample size over 100 runs. 
In general, the GA fares better and more particularly so from sample size 20 (~7% of 
the test suite) to 70 (~25% of the test suite). For sample sizes larger than 70, the FDR 
of both techniques converges to 1.0. The differences for smaller sample sizes are 
statistically significant but, because these differences may not practically significant 
(at most 10% improvement for the GA), we need to look closely at the relative cost of 
ART and the GA.  

As we mentioned earlier, the number of fitness evaluations is usually a good 
platform-independent measure for the cost of search techniques. However, in our 
implementation, a matrix made of all pair-wise similarities is created before any 
search. Therefore, this overhead is the same for all search algorithms and the fitness 
evaluation is not an expensive part of the search. Therefore, we cannot be sure that 
total cost is proportional to the number of fitness evaluation. In Fig. 3, we have 
plotted the actual time spent by the two algorithms (ART and the GA with 10,000 
fitness evaluations). The required time for 10,000 fitness evaluations using both 
techniques is exponentially increasing and they both spend almost the same time for 
very small sample sizes (less than 20). For sample sizes higher than 20 (~7% of the 
test suite), ART quickly gets more expensive than the GA. Given that it always has 
equal or worse FDR results, there is no reason for choosing ART over the GA.  

In the next step, we compare AHC with the GA but using the same execution time 
that AHC requires for its selection (350ms). Fig. 4 shows that the GA is clearly 
preferable over AHC considering that spending the same time as AHC, the GA fares 
in general much better and can almost double the average FDR results of AHC for 
small sample sizes. It is also more effective in finding all faults: AHC requires 80 test 
cases whereas the GA only needs 40 test cases to achieve 100% FDR. To draw more 
conservative conclusions regarding the superiority of the GA, we even conducted 
another experiment and ran AHC a relatively long time (20,000ms) to compare its 
FDR result with the GA using 350ms ( Fig. 4). However, even when letting AHC 
work for almost 60 times longer than the GA it still yields much lower FDR. 
Therefore, our suggested answer to RQ2 is using the GA over the other alternatives. 

5.3.3 How Cost-effective Is Diversifying Test Cases Compared to State of 
Practice Techniques for Test Case Selection? 

To answer RQ3, we compare our best candidate based on RQ2, which is similarity-
based selection using a GA, with a coverage-based Greedy search (CovGr). Looking 
at Fig. 1, the first observation is that the GA can save more than 80% of the test case 
execution cost, given the fact that the GA, on average, finds more than 99% of the 
faults by 40 test cases whereas CovGr requires more than 220 test cases to achieve the 
same (not plotted in the figure). To have a more detailed cost-effectiveness 
assessment, we look at the improvement that the GA may provide over time. Since 
this improvement varies over sample sizes as well, we plotted in Fig. 5 the percentage 
of FDR improvement provided by the GA over CovGr for five sample sizes: 10, 15, 
20, 25, and 50 (ranging from 4 to 18 % of the test suite), over a time period of 10ms 
(the average time required by CovGr to select test cases) to 350ms (the average time 
required by AHC to select test cases). Note that as we mentioned earlier, as opposed 
to the GA, CovGr does not improve over time.  



 

 Fig. 1. The average FDR of AHC, Rnd, 
and CovGr for different sample sizes 

 Fig. 2. The average FDR of ART and the 
GA with 10,000 fitness evaluations for 

different sample sizes   

 Fig. 3. The time in milliseconds required 
by the GA and ART to run 10,000 fitness 

evaluations for different sample sizes  

 Fig. 4. The average FDR of the GA with 
350ms and AHC with 350 and 20,000ms 

for different sample sizes  

 
A first observation from Fig. 5 is that the smaller the sample size, the larger the 

improvement provided by the GA. Also, it is interesting to see that the GA, even with 
10ms execution time, always detects more faults than CovGr. For example, the 
average FDR of the GA is 80% larger than the CovGr FDR for 10ms. Finally, a cost 
analysis shows that in cases where we can afford spending more time for selection, 
the GA can be greatly improved. For all five sample sizes shown in Fig. 5, the GA’s 
improvement over CovGr almost doubles if we give it 350ms instead of 10ms. This 
improvement over time gets very large when the sample size gets smaller. For 
example, for sample size 10 the GA can yield a 160% higher FDR than CovGr, which 
in practice is a great benefit given that the cost for this improvement is only 350ms 
for a test suite of 281 test cases where the cost of running one extra test case is in the 
order of minutes. 



6 Discussion on Validity Threats 

The main threats to the validity of this study are firstly the fairness of comparisons in 
terms of cost and secondly the generalizability of the results.  

Similarity comparisons of test cases and clusters are the most influential part of 
selection techniques. In our implementations of the algorithms, all pair-wise 
similarities are pre-calculated in a similarity matrix which is given to the selection 
algorithm as an input parameter. Obviously, this implementation is not scalable and 
the similarity matrix will face memory limitations for large test suites. However, if we 
can afford pre-calculation, then the most expensive part of the search algorithms may 
not be the fitness evaluation anymore. We can see its effect on comparing ART and 
the GA where having the same number of similarity evaluations ART requires much 
more time. We have not studied on-demand similarity calculations, which might give 
different FDR results using the same stopping time. In addition, inter-cluster 
similarity calculation in AHC is very expensive and in our implementation it is 
repeated for each iteration of the algorithm. The code can be optimized by caching the 
similarities between clusters in each iteration and in the next iteration only calculate 
the similarities if it is not already available. However, implementing this improvement 
is not trivial since saving similarities of all combinations of clusters in all iterations 
may be not possible due to memory limitations. There is a tradeoff to be made 
between memory cost and execution speed.  

The second issue is due to the fact that all our results and conclusions rely on a 
single industrial case study using a given set of real faults. Though running such 
studies is time consuming, it must obviously be replicated. However, as discussed 
earlier, the system used here is typical of a broad category of industrial systems: 
control systems with state-dependent behavior, controlling sensors and actuators. 

Fig. 5. The percentage of improvement of similarity-based selection using GA over CovGr 
for different sample sizes (SS) in time range of 10 to 350ms 



7 Conclusion and Future Work 

In practice, executing test cases generated by model-based testing (MBT) techniques 
is costly. This cost is due to the large test suites which are typically generated by 
MBT tools on industrial-scale systems to systematically achieve a coverage/adequacy 
criterion. However, for system level testing, in many situations testing should take 
place on the deployment platform where the cost (time and resource) of each test 
execution may be high. This may be due to the cost of using actual hardware, 
potential damages in case of failure, or access to restricted infrastructure (e.g., test 
network). In addition, for many systems, automatically generating oracles from 
models is very difficult or impossible. In such cases, test cases should be evaluated 
manually, greatly increasing the cost of test execution and analysis. In cases such as 
the ones mentioned above, one must execute a subset of the generated test suite whose 
size is dependent on context. In this paper, we propose a new approach for test case 
selection from UML state machines, by maximizing the diversity of the selected test 
cases. To measure diversity we used a specific test case representation for UML state 
machines (triggers-guards sets), which should be adapted in case of using other 
models, and a model-independent similarity function (Jaccard Index). We investigated 
why diversifying test cases with respect to our similarity measure increases fault 
detection rates and compared different strategies to diversify the test cases: 
Clustering, Adaptive Random Testing, and Genetic Algorithms (GAs). The results of 
our study on an industrial software system and actual faults showed that: (1) 
rewarding diversity leads to finding more faults, (2) our proposed similarity-based 
selection (using Jaccard Index on the set of trigger-guards with a GA selection) is the 
most cost-effective approach compared to the other alternatives. In addition, we 
showed that in practice this approach can reduce the cost of test case execution in 
MBT by selecting a small set of test cases which can find all (or most) faults in short 
amount of time. In the future, we plan to replicate the study on another industrial 
system. In addition, we will evaluate alternative optimization and search techniques.  
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