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Abstract—Concurrency problems, such as starvation and deadlocks, should be identified early in the design process. As
larger, more complex concurrent systems are being developed, this is made increasingly difficult. We propose here a 
general approach, based on the analysis of specialized design models expressed in the Unified Modeling Language (UML) 
that uses a specifically designed genetic algorithm to detect concurrency problems. Though the current paper addresses 
deadlocks and starvation, we will show how the approach can be easily tailored to other concurrency issues. Our main 
motivations are (1) to devise solutions that are applicable in the context of the UML design of concurrent systems without 
requiring additional modeling and (2) to use a search technique to achieve scalable automation in terms of concurrency 
problem detection. To achieve the first objective, we show how all relevant concurrency information is extracted from 
systems’ UML models that comply with the UML Modeling and Analysis of Real-Time and Embedded Systems (MARTE) 
profile. For the second objective, a tailored genetic algorithm is used to search for execution sequences exhibiting deadlock 
or starvation problems. Scalability in terms of problem detection is achieved by showing that the detection rates of our 
approach are in general high and are not strongly affected by large increases in the size of complex search spaces. 

Keywords—Search based software engineering, MDD, deadlock, starvation, model analysis, concurrent systems, UML, 
MARTE, genetic algorithms

I. INTRODUCTION

ONCURRENCY problems, such as deadlocks and starvation, should be identified early in the 

design process. This is made increasingly difficult as larger and more complex concurrent 

systems are being developed. With the recent trend towards Model Driven Development (MDD) 

[27], the choice of using Unified Modeling Language (UML) models and their extensions as a 
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source of concurrency information at the design level is natural and practical. However, the 

analysis of concurrency properties should not require additional modeling or a high learning 

curve on the part of the designers, or should at least minimize it. We hence propose an approach 

for the detection of concurrency problems that is based on design models expressed in UML 

[35]. When the UML notation is not enough to completely model a system for a given purpose, 

the notation is extended via profiles. Of particular interest here is the standardization of the 

Modeling and Analysis of Real-Time and Embedded Systems (MARTE) profile [33] that 

addresses domain specific aspects of real-time, concurrent system modeling. Our aim is to 

develop a scalable, automated method that can be easily tailored to all types of concurrency 

faults, and that can be easily integrated into a Model Driven Architecture (MDA) approach, the 

UML-based MDD standard by the OMG [27]. This is achieved through three steps: 1. 

Demonstrating the feasibility of extracting all relevant concurrency information from 

UML/MARTE design diagrams. 2. Showing the effectiveness of the proposed search based 

technique in detecting concurrency faults and 3. Demonstrating scalability in terms of fault 

detection as the size of the problem grows.  

The approach we describe requires a UML/MARTE annotated front end model of the system 

under test. It relies on a backend based on a number of tailored Genetic Algorithms (GAs), each 

directed at finding a particular concurrency fault. Each tailored GA uses information available in 

the UML/MARTE design model of a software system to search for conditions under which 

threads can lead to either deadlocks or starvations. 

We begin by automatically collecting all information relevant to a deadlock (e.g., thread/lock 

interaction) or starvation (e.g., thread/lock interaction, thread priorities) from the system’s UML 

design model extended with the MARTE profile. This step can be easily automated using one of 
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various existing UML tools and the underlying UML/MARTE metamodel. The extracted 

information is then fed to the GA with a fitness function tailored to deadlock detection, or with a 

fitness function tailored to starvation detection, depending on the type of fault the test engineer is 

interested in discovering. Since deadlock and starvation problems can be revealed by specific 

interleavings of thread executions, the GA specifically searches for such thread execution 

interleavings that have a high probability of exhibiting either fault. 

The approach we adopt is meant to be general and can be adapted (as illustrated in this paper 

on two types of faults) to a variety of concurrency faults by tailoring the fitness function of our 

specifically designed GA in order to address problems such as deadlock, starvation, data races 

and data flow problems. The current paper addresses both starvation and deadlocks, which have a 

lot in common. We start here by fully addressing starvation, then address only the differences 

(namely inputs and fitness function) for deadlock. Future work will address other types of 

problems. The proposed method is also geared towards large, complex systems characterized by 

numerous interacting threads and frequent synchronization. For this particular type of problem, 

GAs seem to fare well, as later shown in the reported case studies in Section  VIII.

We next present an overview of related work, followed by an overview about deadlock and 

starvation, highlighting the information needed as input (Section  III). Section  IV introduces the 

MARTE profile and discusses the mapping between the profile and various deadlock and 

starvation concepts, showing that the information needed as input (Section  III) can be extracted 

from UML/MARTE design models. This section achieves the first step of our aim. Sections  V

and  VI describe our method in detail, for starvation and deadlock detection, respectively. Section 

 VII presents our tool support and Section  VIII discusses six case studies along with their results 

(including a study of scalability), thus demonstrating the last two steps of our aim. We conclude 
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in Section  IX.

II. RELATED WORK

Our approach spans several fields of research, namely verification of concurrent systems (in 

terms of deadlocks, starvation, data races and data flow), search-based software verification, as 

well as the use of UML profiles for concurrency. Indeed, our verification approach can be 

considered a combination of three aspects: (1) It is based on using design information from UML 

models, (2) it focuses on non-functional, concurrency aspects, and (3) it makes use of search 

techniques to identify our targeted faults. Model checking has predominantly been used to 

address design-based, non-functional verification but has not (exclusively) relied on information 

captured by UML models. In addition, other works are related to ours in that they cover one or 

more of the three aspects mentioned above. For the sake of completeness, we also discuss other 

works that use the MARTE profile. We present these works in the aforementioned order: model 

checking (Section  II.A), search-based, non-functional testing (Section  II.B), and uses of MARTE 

(Section  II.C).

A. Related Work: Model Checking  

Essentially, model checking has the same general aim as our approach though it is based on 

different requirements: using system models to automatically detect whether a given system 

meets its specifications in terms of safety, concurrency, or other important properties [36]. We do 

not aim at outperforming model checkers. Instead, we aim at extending the use of model-based 

verification to UML-based development in a practical fashion. Model checking properties are 

normally expressed in a form of temporal logic [36]. Hence, they are not easily adopted by the 

many users unfamiliar with and reluctant to use temporal logic. The approach we propose is 
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meant to be used in the context of the OMG’s MDA, hence our reliance on the UML standard 

and the MARTE profile [27] for modeling real-time, concurrency information. An aspect that 

results from these choices and that may be considered a drawback is that we have to rely on 

heuristic search algorithms to detect concurrency faults. But the advantages of using our 

approach are two-fold: 1) Familiarity with UML: Using extended UML diagrams to detect 

concurrency faults is easier for designers already working with UML. On the one hand, one may 

consider that diagrams required by our approach are more detailed than those required when the 

system is initially designed. On the other hand, details on timing of events, estimated task 

execution times, and so on, would anyway be identified when designing real-time, concurrent 

systems [19], and adding such details to UML diagrams would be natural in a MDA process..

Furthermore, adding information to pre-existing diagrams for verification purposes is probably 

easier than working with a different, unfamiliar model. 2) Design model reuse: Existing design 

models can be reused for verification purposes, rather than developing different models for 

verification. Our approach is thus an alternative to model checking; one that can more easily be 

adopted in circumstances where UML is already prevalent.  

Some model checkers, such as the Java Path Finder [9], aim at detecting data races, while 

others are geared more towards deadlocks and starvation detection. These can further be 

categorized according to the source of input information as well as various search techniques 

used. In terms of the source of input information, some model checkers use models of the system 

under test while others use the system’s source code: UPPAAL [8] uses a network of timed-

automata, and properties to verify are expressed via UPPAAL’s query language, which uses a 

version of Computation Tree Logic (CTL) [8]; SPIN [23] uses automata (expressed with the 

Process Meta Language (Promela)) and properties to be verified are expressed in Linear 
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Temporal Logic (LTL) [23]. In [17, 28, 41] transformations from UML to other intermediate 

languages are used, before being inputted to model checkers. Properties to be checked by the 

model checkers are specified in temporal logic. For example, the work in [17] transforms UML 

state, class and communication diagrams into Maude specifications which are then fed to a 

model checker, where properties to be verified are defined in LTL. Other model checkers, such 

as Verisoft [18], rely on source code analysis to search for error states.  

Model checkers use various search techniques: exhaustive search (SPIN [23]); graph 

exploration algorithms - such as depth first, breadth first and A* search techniques - constructing 

only relevant parts of the search space (HSF-SPIN [14], DELFIN+ [20]); heuristic searches such 

as GAs (Verisoft [18]) or Ant Colony optimization [4].  

Direct, quantitative comparisons with the various model checking techniques we have 

encountered were not possible as some works, such as [14], did not provide enough details in the 

case studies to enable meaningful comparisons. The only work that we came across where results 

were clearly reported was that described in [18]. For others, such as [20], the tools used were not 

readily available so we could not run them for our case studies on the same hardware. More 

importantly, our aim is not to provide a technique that is better at detecting concurrency faults 

than model checking, but rather an alternative that is more practical in the context of UML, 

MDA development. So comparisons with the above techniques, though interesting, are not an 

absolute necessity to demonstrate the value of our work.  

B. Related Work: Search-Based, Non-Functional Testing 

Current trends in the field of search-based software engineering are wide and varied. They 

cover almost all aspects of the development life cycle: requirements engineering, planning, 

testing, maintenance and quality assessment [21]. Search-based, non-functional testing, the 
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closest to our aim, can be refined by goal into primarily five categories: usability, safety, 

execution time, buffer overflow and quality of service (QoS) [3]. Safety testing searches for 

inputs that violate a safety property and is probably the closest category to our work here. GAs 

and simulated annealing have both been used to generate inputs and sequences of inputs that aim 

at violating a safety property [3]. In [44], software fault tree analysis is used: a safety property is 

assumed to be violated at a certain statement within the system’s code, then working backwards, 

the set of inputs that lead to this violation are determined via a meta-heuristic. Somewhat 

similarly in [2], the system under test is executed and observed as to whether or not a safety 

property is violated. This is done in terms of stepwise construction of test scenarios whereby each 

step explores the continuation of the previous step where the property is violated [2].  

Design-based verification works aim at uncovering deadlocks and starvation as well as data 

races. They do so without using search-based techniques. One approach for deadlock and 

starvation detection [26] is to build a model—in the form of a UML state machine—that captures 

both the aspects of the system’s behavior that one wants to test and the underlying programming 

language concurrency mechanisms, specifically Java. The Symbolic Analysis Laboratory (SAL) 

model checker derives test sequences from the model, which are then executed with Concurrency 

Analyzer (ConAn), a deterministic, run-to-completion testing tool [26]. A similar work is 

presented by Lei, Wang and Li [30]. Here, the authors use a model-based approach for the 

detection of data races. Data races are identified by checking the state transitions of shared 

resources at runtime. The corresponding test scenarios leading to the race are then identified 

using UML activity diagrams extended with data operation tags. This extension is necessary as 

UML activity diagrams provide no means to model data sharing. Hence, the authors extend them 

with stereotypes to depict data sharing. The extended UML diagrams can then serve as an oracle 
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for verifying execution traces [30]. They also serve to ensure that both code and design are 

consistent. Both works differ from our approach as our goal is to reuse existing UML design 

models rather than to create UML models specifically for testing language specific 

implementations. 

Other works also aim at verifying concurrent systems in the context of detecting data races. 

Some of them [15, 16, 1, 25] do so using the code of the system under test. The work by Kahlon 

et al. in [25] begins by statically detecting the presence of shared variables in the code, before 

proceeding to output warnings about the presence of data races. Chugh et al. [10] also use a form 

of static analysis. They use program code to develop a data flow analysis for the system under 

test. They combine this with a race detection engine to obtain a data flow analysis that is suitable 

for concurrent threads. Both approaches necessitate putting off the detection of data races until 

the system under test is implemented. This has the disadvantage that any data races that are found 

due to design faults are very costly to fix. Furthermore, data races due to dynamically allocated 

shared resources might go undetected. Other works, such as Savage et al. [40], tackle this point. 

They also use system code in their Eraser tool, but do so dynamically (at run time). In so doing, 

they ensure that dynamically allocated shared variables involved in data races are also detected. 

There are limitations to their technique, however, the most important of which is that they are 

limited to examining paths that are triggered by their test cases. If the test cases chosen are not 

sufficient to visit a particular path where data races occur, the data race will remain undetected. 

C. Related Work: Uses of MARTE 

In the context of using UML profiles for concurrency, a number of works utilize MARTE’s 

predecessor: the SPT profile. Such works, (e.g., [37]), mostly focus on performance analysis 

rather than the analysis of model properties. Other works such as [31] and [11] use the MARTE 
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profile. However, in [31], the profile is used to create an approach for real-time embedded system 

modeling along with transformations to execute those models. In [11], the authors aim at probing 

the capabilities of MARTE by applying it to a case study. 

D. Summary 

None of the above works aim at developing a scalable, automated approach that can be easily 

integrated into an MDA development approach, as we set out to do. The advantages of our model 

analysis approach include design model reuse whereby existing design models can be reused for 

verification purposes. Furthermore, familiarity of designers with UML brings another advantage: 

Using extended UML diagrams to detect concurrency faults is easier for designers already 

working with UML. While model checking is perhaps the closest to our aim, it does so in a 

different context by employing different types of models as well as temporal logic. Works using 

transformations from UML to other intermediate languages before using model checkers also 

need to specify the properties to be checked in temporal logic. The transformations may also be a 

potential, practical drawback as the original model undergoes multiple transformations: from 

UML to an intermediate language and from that intermediate language to some form of 

automaton. Such transformations tend to add overhead and complexity. They may also introduce 

scalability issues. Our approach has the added advantage that the verification process is easily

integrated into the UML modeling environment, for example as a plug-in.  

In the next sections, we present how we achieve our aim of developing a verification technique 

focused on concurrency, using only UML designs as inputs, and applying search-based 

techniques to find faults. We begin with some background information by first introducing the 

concurrency fault taxonomy. 
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III. DEADLOCKS AND STARVATION

Concurrency introduces the need for communication between executing threads, which require 

a means to synchronize their operations. One of these means is shared memory communication, 

which ensures that shared resources are accessed individually and appropriately [13]. The most 

common techniques for shared memory communication are semaphores and mutexes. 

Semaphores, or counting semaphores, represent multiple access locks: at most n tasks (n>1) will 

have access to a shared resource [13]. The resource’s capacity is the maximum number of 

threads executing within a shared resource. Mutexes are single access locks and are equivalent to 

a binary semaphore (n=1) [13]. Both types of shared memory communication will be referred to 

as locks in the remainder of this paper. Locks are first acquired before they are used, then later 

released when threads no longer need them. Threads waiting for access to a lock are placed in a 

conceptual wait queue. Wait queues define an access policy, e.g., FIFO, round robin, shortest-

job-first, priority [7]. The various access policies require additional knowledge about threads. 

FIFO and round robin imply knowledge of thread access times of locks. These access times may 

be specified as ranges or definite values, although ranges are probably more common due to 

uncertainty at design time. Shortest-job-first implies knowledge of thread execution times within 

locks while the priority access policy implies knowledge of thread priorities.

Fig. 1: Deadlock and starvation depicted in a RAG 
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Deadlocks occur when a thread is unable to continue its execution because it is blocked 

waiting for a lock that is held indefinitely by another thread [13]. Consider the Resource 

Allocation Graph (RAG) - which depicts the allocation of resources to threads [7] – in Fig. 1.

Thread T1 locks mutex M1 (as indicated by the solid arrow) and requests access to M2 (as 

indicated by the dotted arrow). This request places T1 in M2’s conceptual wait queue because 

M2 is currently held by T2, which is also requesting access to M1. Neither T1 nor T2 can 

proceed because each is waiting for the mutex held by the other. 

In general, four conditions must be true before a deadlock occurs: 1. Threads share information 

that is placed under a lock, 2. Threads acquire a lock while waiting for more locks, 3. Locks are 

non preemptible, 4. There exists a circular chain of requests and locks (the circularity condition), 

as identified in a RAG [7].

Thread starvation has generally been defined in two contexts: the operating system context and 

the concurrency context. From an operating system point of view, thread starvation refers to the 

inability of threads to access enough CPU cycles to complete their execution [43]. In other 

words, if a thread is not allocated CPU cycles, it is never given the chance to execute, hence it 

starves. This type of starvation is often referred to as CPU starvation [32]. It is argued that 

scheduling algorithms largely influence the potential for CPU starvation [43]. This type of 

starvation, hence, lies outside the scope of this work since we are interested in starvation 

problems that are due to design decisions (e.g., decisions regarding priorities of threads). In the 

context of concurrency, starvation is related to locks, and is therefore coined lock starvation [32]. 

Much like CPU starvation, where threads wait for CPU access indefinitely, lock starvation occurs 

when some threads wait for lock access indefinitely [32], making them similar to a deadlock 

situation. However, unlike deadlocks, only some—not all—threads accessing a lock are at a 
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standstill. Consider, for example, a solution to the reader/writer problem. Readers are allowed to 

access the critical section upon arrival, whereas writers are placed in a wait queue if the critical 

section is locked by at least one thread. Hence, writers can only proceed when there are no 

readers accessing the critical section. As seen in Fig. 1, a situation arises where a writer (W1) 

arrives when readers (T1 and T3) are executing in the critical section, and hence W1is placed in 

the wait queue. Before all readers exit the critical section, more readers arrive and are granted 

access to the critical section. As long as new readers arrive before the ones in the critical section 

complete their execution, the writer will never be allowed to access the critical section. Unlike a 

deadlock situation, some threads are executing (T3), while others (W1) are denied access to the 

critical section [13].

To proceed with our method, we must first map both deadlock and starvation concepts, in 

particular those appearing in italics in this section, to UML and MARTE concepts, as they form 

the inputs of the genetic algorithm. 

IV. MARTE PROFILE TO DEADLOCK AND STARVATION MAPPING 

This section describes how we can fulfill the first of our three steps in achieving our goal. It 

demonstrates the feasibility of extracting all relevant concurrency information from 

UML/MARTE design diagrams. We begin by first describing the aspects of concurrency that are 

already present in UML. We then show how missing concurrency aspects can then be extracted 

from MARTE models. 

In UML, active objects have their own thread of control, and can be regarded as concurrent 

threads [35]. Only extensions of the UML standard, such as the MARTE profile [33], provide 

mechanisms to model detailed information pertaining to concurrency. The MARTE profile is a 

replacement of the Schedulability, Performance and Time (SPT) profile [34]. MARTE is geared 

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



13

13

towards both the real-time and embedded system domains. The profile is roughly divided into 

two sub-divisions: the MARTE design model and the MARTE analysis model. The former 

models various features of real-time and embedded systems while the latter allows the annotation 

of models for system analysis purposes. Both sub-divisions are based on a common foundation, 

the MARTE foundation, which defines time concepts and use of concurrent resources. Much like 

its SPT predecessor, the MARTE profile is modular in structure, allowing users to choose the 

appropriate subsets needed for their applications. We next describe the aspects of the profile that 

are relevant to our work. We illustrate these concepts on an online airline reservation system, 

where a user, represented by a thread named user1, can reserve an airline seat online. 

Concepts are initially obtained from the foundations of MARTE, namely the Generic Resource 

Modeling (GRM) package. The GRM::ResourceTypes package introduces two stereotypes, 

namely <<Acquire>> and <<Release>>, that are of interest to us as they allow modeling the 

acquisition and release of resources, respectively. Resources cannot be accessed or released until 

both actions have been executed successfully. The Software Resource Modeling (SRM) sub-

profile presents mechanisms for designing multitasking applications. SRM is further subdivided 

into four packages: SW_ResourceCore (which contains all the basic resource concepts), 

SW_Concurrency (which contains concurrent execution concepts), SW_Interaction (which 

deals with communication and synchronization resources) and SW_Brokering (which deals with 

resource management). In the SW_Concurrency package, concurrently executing entities 

competing for resources are depicted with the <<SwConcurrentResource>> stereotype. As 

aforementioned, concurrency is also depicted in standard UML, but 

<<SwConcurrentResource>> enhances concurrent execution modeling due to its associated 

attributes, such as priorityElements, which is used to determine the priority of the associated 
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thread. In our example, user1 would be designated as an <<SwConcurrentResource>>, with its 

priority indicated using priorityElements.

During system execution, resources may be shared by various concurrent actions and hence 

must be protected. Protected resources (i.e., locks) are stereotyped 

<<SwMutualExclusionResource>> in the SRM::SW_Interaction package. Attributes 

associated with this stereotype include accessTokenElements, which defines resource capacity 

and waitingQueuePolicy, which defines the access control policy for elements waiting in the 

wait queue (e.g., FIFO, LIFO, Priority). Seats in the airline reservation system would be 

stereotyped as <<SwMutualExclusionResource>>, whereby only one user at a time can access 

the seat for booking. A relationship of <<Acquire>> and <<Release>> must be present between 

the seats and user1. Each seat would additionally define its number of accessTokenElements as 

one, with a priority waitingQueuePolicy (an airline agent has higher priority than online users 

when reserving seats). The Generic Quantitative Analysis Modeling (GQAM) sub-profile defines 

stereotype <<saStep>> (that extends stereotype <<gaStep>>) which is used when decisions 

about the allocation of system resources is made. Its tags include priority (the priority of the 

action on the host processor), interOccTime (interval between multiple initiations of the action), 

and execTime (the execution time of the action). Execution times can be specified as maximum 

and minimum time ranges. For the airline system, the time between seat reservations would be 

indicated as interOccTime with execTime designating the amount of time taken to book a seat. 

This overview of MARTE illustrates that the input needed, i.e., the concepts related to 

deadlock and starvation discussed (presented in italics) in Section  III, can be retrieved from a 

UML/MARTE design model. The mapping between those concepts and the profile is 

summarized in Table 1, illustrating the fact that we rely on three sub-profiles of the MARTE 
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profile. It is then clear that the information used by our GA can be automatically retrieved from 

UML/MARTE models, in particular from sequence diagrams where those stereotypes and tags 

are used, as illustrated in Section  VIII on three examples.

Table 1: Concept to MARTE Mapping 

Concept MARTE Stereotype/Tag MARTE sub-profile
Thread <<SwConcurrentResource>> SRM::SW_Concurrency
Lock <<SwMututalExclusionResource>> SRM::SW_Interaction
Lock acquire <<Acquire>> GRM::ResourceTypes
Lock release <<Release>> GRM::ResourceTypes
Wait queue access 
policy

<<SwMutualExclusionResource>>/ 
waitingQueuePolicy 

SRM::SW_Interaction

Thread priority <<SwConcurrentResource>>/ 
priorityElements 

SRM::SW_Concurrency

Lock execution time <<gaStep>>/execTime GQAM::GQAM_Workload
Lock capacity <<SwMutualExclusionResource>>/ 

accessTokenElements 
SRM::SW_Interaction

Lock accessrange <<gaStep>>/interOccTime | 
<<gaStep>>/execTime 

GQAM::GQAM_Workload

V. STARVATION DETECTION

We proceed with describing how the input required for our method, as described in Section  III,

is used for detecting starvation faults. As discussed in Section  I, we are interested in finding 

thread execution interleavings that have a high probability of revealing starvation faults. These 

interleavings are obtained through thread interleavings of particular access times to locks. In 

other words, we are interested in those sequences that will result in the worst possible scenario of 

thread executions, namely lock starvation. Our objective is therefore a form of optimization. 

Hence, the values to be optimized to try to reach starvation are the particular access times of 

threads to locks. Techniques abound for solving optimization problems. These aim at efficiently 

searching the search space for a solution to the optimization problem. The search space is the set 

of all possible solutions to the problem. In our approach, we use Genetic Algorithms (GAs), 

which are known to perform well when the search space is large and complex - as is our case 

(Section  VIII). GAs are based on concepts adopted from genetic and evolutionary theories [22]. 

They are comprised of several components: a representation of the solution (referred to as the 
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chromosome), a fitness of each chromosome (referred to as the objective or fitness function), the 

genetic operations of crossover and mutation which generate new chromosomes, and selection 

operations which choose chromosomes fit for survival [22].

A GA first randomly creates an initial, random population of chromosomes, then selects a 

number of these chromosomes based on a selection policy, and performs crossover and mutation 

to create new chromosomes. The fitness of the newly generated chromosomes is compared to 

others in the population. Following a replacement policy, individuals from the original 

population and children populations are merged into a single new population. The most 

commonly used replacement policy is elitism, whereby fitter individuals of the older population 

and newly created chromosomes are retained while less fit ones are removed. The process of 

selection, crossover and mutation, fitness comparison and replacement continues until the 

stopping criterion, such as a maximum number of generations [22], is reached.  

Recall that in the context of concurrency, starvation occurs when threads cannot gain access to 

a lock because their executions are constantly delayed by other threads. By definition, a thread 

waiting for access to a lock cannot proceed in execution until it acquires that lock. Hence, a 

thread waiting on a lock cannot be simultaneously in the wait queue of another lock. This implies 

that if starvation occurs for a particular thread, it will do so in the context of a single lock. We 

allow test designers to track starvation for a target thread and target lock, and do this in turn for 

every thread and lock that is deemed critical. Therefore, the values to be optimized during 

starvation detection are the particular access times of threads to locks, such that the target thread 

waiting to access the target lock starves. We next introduce the various constituting components 

of our GA, with this objective in mind. 
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It is interesting to note that the chromosome representation and the mutation and cross-over 

operators (Sections  V.A and  V.B) are common to starvation and deadlock detection. What differs 

mainly among them is the fitness function (Section  V.D). This illustrates that the whole approach 

is easy to adapt from one type of concurrency problem to another, with adaptations performed 

mainly on the fitness function. Work is underway to adapt it to other types of concurrency 

problems. 

It is important to note that the solution we propose below is applicable to any concurrent 

system, as long as the input discussed previously is available. In other words, the GA 

components are defined only once for targeted concurrency problems and what vary from system 

to system are the input values. 

A. Chromosome Representation 

A chromosome is composed of genes and models a solution to the optimization problem. The 

collection of chromosomes used by the GA is dubbed a population [22]. The values to be 

optimized during starvation detection are the particular access times of threads to locks, such that 

the target thread waiting for the target lock starves. These access times are the values that will be 

altered by the GA to try to reach a starvation situation. The access times must reflect schedulable 

scenarios. In other words, we need to ensure that all execution sequences represented by 

chromosomes are schedulable [19]. This entails meeting system specifications of periods, 

minimum arrival times, etc. Thus, we need to encode threads, locks and access times, which are 

available in the input model: <<SwConcurrentResource>>, <<SwMutualExclusionResource>>,

and <<gaStep>> / interOccTime or <<gaStep>> / execTime, respectively (Table 1). Note 

that when the initial population is first randomly generated, this is done within the allowable 
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system specifications. As a result of mutation and crossover these specifications may no longer 

be met by chromosomes, which is why we need to introduce a repair operation ( V.B and  V.C).

A gene can be depicted as a 3-tuple (T, L, a), where T is a thread, L is a lock, and a is a

specific time unit when T accesses L. We refer to this value as access time. Note that access time 

is distinct from, but related to lock access range (Table 1).  Access time is a specific time unit 

chosen within the acceptable lock access range. Overall, a tuple represents the execution of a 

thread when trying to access a lock. Tuples are defined for a user specified time interval during 

which the test engineer wants to study the system’s behavior. Ideally, to be able to detect 

starvation, the time interval should start with the start of the system under test and end with it. 

However, most concurrent systems are embedded in real-time applications that are constantly 

running (e.g., control systems). Furthermore, such verification would be rather costly to perform 

for most systems. Alternatively, a reduced time interval can be used, following some user defined 

heuristic based on the available resources for verification. The heuristic depends on the amount 

of time that can be spent on each GA run. This is determined by time availability and practical 

considerations. Designers can choose an initial time interval (e.g., [0 100]), use it to run a few 

generations, then decide based on these runs an appropriate time interval that fits their timing 

constraints. The time interval controls how many times each thread can access each lock. An 

increase in the time interval can lead to the increase in the number of times each thread can 

access a lock, depending on the lock access range. It can also lead to an increase in the number of 

threads accessing locks. In both scenarios, more tuples/genes are added to the chromosome, 

thereby increasing its size. An increase in size ultimately increases verification time. Hence, a 

balance should be achieved when determining the time interval: it should be long enough for 

starvation to occur, but not too long such that it unnecessarily increases verification time. 
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Furthermore, without specifying a time interval, we cannot assume a fixed size for chromosomes, 

thus making crossover operations much more complex [24].  

Because a chromosome models a solution to the optimization problem, it needs to be large 

enough to model all schedulable scenarios during the time interval. Hence, the chromosome size

(its number of genes) is equal to the total number of times all threads attempt to access all locks 

in the given time interval. A thread can appear more than once in the chromosome if it accesses a 

lock multiple times. A special value of -1 is used to depict lock access times that lie outside this 

interval: (T, L, -1) represents a lock access that does not occur. 

Three constraints must be met for the formation of valid chromosomes and to simplify the 

crossover operation discussed below. 1.) All genes within the chromosome are ordered according 

to increasing thread identifiers, then lock identifiers, then increasing access times. 2.) Lock 

access times must fall within the specified time interval or are set to -1. 3.) Consecutive genes for 

the same thread and lock identifiers must have access time differences equal to at least the 

minimum and at most the maximum lock access range of the associated thread and lock, if start 

and end times are defined as ranges (Section  IV).

Consider, for example, a set of three threads T1 (lock access range [23-25] time units), T2 (lock 

access range [15-22]) and T3 (lock access range [25-35]) each accessing a lock L1. In a time 

interval of [0-30] time units, the chromosome length would be three since each of the threads can 

access L1 at most once during this time interval. The following is then a valid chromosome: 

(T1,L1,24) (T2,L1,20) (T3,L1,-1) where T1 accesses L1 at time unit 24, hence its access time is 

24, T2’s access time is 20 and T3 does not access the lock before time 30. 
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B. Crossover Operator 

Crossover is the means by which desirable traits are passed on from parents to their offspring 

[22]. We use a one-point, sexual crossover operator: two parents are randomly split at the same 

location into two parts which are alternated to produce two children. For example in Fig. 2(a), the 

two parents on the left produce the offspring on the right. If, after crossover, any two consecutive 

genes of the same thread and lock no longer meet their lock access time requirements (constraint 

3 is violated), the second gene’s access time is randomly changed such that constraint 3 is met. 

Hence, a value from the set of possible access times is randomly chosen (using a uniform 

probability distribution) to replace the second gene’s access time. This is repeated until all 

occurrences of this situation satisfy constraint 3. 

 

Fig. 2: (a) Crossover and (b) mutation examples 

C. Mutation Operator 

Mutation introduces new genetic information, hence further exploring the search space, while 

aiding the GA in avoiding getting caught in local optima [22]. Mutation proceeds as follows: 

each gene in the chromosome is mutated based on a mutation probability and the resulting 

chromosome is evaluated for its new fitness. Each gene has an equal mutation probability. Our 

mutation operator mutates a gene by altering its access time. The rationale is to move access 

times along the specified time interval, with the aim of finding the optimal times at which these 

access times will be more likely to cause starvation. When a gene is chosen for mutation, a new 
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timing value is randomly chosen (using uniform distribution) from the range of possible lock 

access range values. If the value chosen lies outside the time interval, the timing information is 

set to -1 to satisfy Constraint 2. Similar to the crossover operator, if, after mutation, two 

consecutive genes no longer meet their lock access time requirements, the affected genes are 

altered such that the requirements are met. For example, assume threads T1, T2 and T3 attempt 

to access lock L1 with access times [4-7], [20-30], [12-15], respectively, and the time interval is 

[0-25]. The original chromosome of Fig. 2(b) is then valid. When the second gene of the 

chromosome is chosen for mutation (second chromosome in Fig. 2(b)), a new value (say, 27) is 

chosen from its lock access range [20-30]. Because this falls outside the time interval specified, 

the mutated gene is set to -1.

D. Objective Function 

Recall that starvation detection requires the tester to select both a target thread and target lock. 

The chances of lock starvation increase when the number of threads accessing a particular target 

lock at the same time as the target thread increases. In other words, the more threads that try to 

access the target lock at the same time as the target thread, the greater the chance of starvation. 

We use this premise to develop an appropriate fitness function. Because threads wait for access 

to a resource in a wait queue, we also need to examine the wait queue of the target lock over the 

time interval: e.g., if the wait queue of the target lock becomes empty, then the target thread 

accesses the lock and there is no starvation. 

We next define a number of properties that we deem the fitness function should possess: 1.) 

Because starvation involves at least the target thread waiting in the target lock’s wait queue, the 

fitness of scenarios where the target thread is waiting for the target lock should always be greater 

than the situations where: a.) no thread is waiting for access to the target lock or b.) threads are 
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waiting for access to the target lock, but the target thread is not one of them; 2.) If the target 

thread gains access to the target lock once, later accesses in subsequent time units should still be 

checked for starvation. Hence, each access of the target thread should be treated as a separate 

instance of possible starvation. Property 1 ensures that situations where no starvation occurs are 

penalized, whereas property 2 ensures that multiple target thread accesses will be treated 

separately.

Based on the premise and properties aforementioned, we examine the fitness function f(c)

below of a chromosome c, given a target lock and a target thread in the system under test. Details 

of how this fitness function satisfies the aforementioned properties are provided in Appendix A.

The fitness function is weighted such that the longer the target thread spends waiting on the 

target lock, the greater its fitness. 

otherwise0
andif

and and 0i if1

ii

iiendTime

startTimei
eadswaitingThrAsexecThreadA

eadswaitingThrAsexecThreadA
icf (1) 

The variable A represents the target thread. Variables startTime and endTime denote the time 

interval start and end times, respectively. The set of threads executing within the target lock at

time unit i is denoted execThreadsi and  waitingThreadsi is the set of threads waiting for 

access to the target lock at time i. The sets execThreadsi and waitingThreadsi are obtained 

after scheduling threads and are calculated for every time unit of the time interval. This means 

that before a fitness value is associated with a chromosome, the execution of threads, as specified 

by their access times to locks in the chromosome must be scheduled by a scheduler (as further 

discussed in Section  VI and  VII).

Our fitness function is defined to give higher fitness values to situations where the target thread 

is waiting longer on the target lock, as well as later in the time interval; larger values are 
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therefore indicative of fitter individuals. The fitness function assigns a fitness value to a 

chromosome based on whether the target thread is waiting on the target lock during each time 

unit of the time interval. If the target thread is waiting, the time unit is added (or 1 in the case of 

time unit 0). If, during i, the target thread executes within the target lock, or is not waiting on the 

target lock, the fitness value is not incremented. The fitness is weighted in the sense that the 

longer the target waits along the time interval, the greater its chance of being starved. 

It is important to note that the fitness function focuses on one target thread for a target lock at a 

time. This is because the search can only focus on one thread and one lock at a time when 

searching for starvation scenarios. The user can, however, investigate various threads and locks 

in turn, following an order that can be determined by their order of criticality, for example. 

Consider an example with the following chromosome: (T1, L1, 0) (T2, L1, 0) over the time 

interval [0-3]. T2 and L1 are the target thread and lock, respectively. L1 has capacity 1. Further 

assume that the execution time of T1 in L1 is 2 and the execution time of T2 in L1 is 4 time 

units. T1 has a high priority and T2 has a low priority. At time unit 0, both threads attempt to 

access the target lock. Because T1 has higher priority, it gains access to the lock, leaving T2 

waiting in the wait queue. At time unit 1, T1 continues to execute in L1, with T2 still waiting in 

the queue. At time unit 2, T1 releases L1 and T2 is granted access to the lock, leaving the wait 

queue empty. Thus, at time unit 2, the target thread accesses the target lock. The fitness values 

for each time unit are as follows: 

Time unit 0: fitnessValue0 = 1 
Time unit 1: fitnessValue1= 1 + 1(fitnessValue0) = 2
Time unit 2: fitnessValue2 = 0 + 2 (fitnessValue1) = 2
Time unit 3: fitnessValue3 = 0 + 2 (fitnessValue2) = 2
f((T1, L1, 0) (T2, L1, 0)) = fitnessValue3 = 2
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If, for the same example, both threads tried to access the lock at time unit 3 instead of time unit 

0, the fitness values would be as follows:  

Time unit 0: fitnessValue0 = 0
Time unit 1: fitnessValue1= 0 + 0(fitnessValue0) = 0
Time unit 2: fitnessValue2 = 0 + 0(fitnessValue1) = 0
Time unit 3: fitnessValue3 = 3 + 0 (fitnessValue2) = 3
f((T1, L1, 3) (T2, L1, 3)) = fitnessValue3 = 3

It is important to note that according to the defined fitness function, the only situations that 

would result in starvation situations are ones where the target thread is waiting on the target lock 

at the end of the time interval (i.e., A ϵ waitingThreadsendTime). This is the termination criterion 

used to determine the presence of starvation and it may result in false positives. False positives 

arise when the target thread remains waiting on the target lock at the end of the time interval, but 

if the time interval were increased, the target thread would eventually execute within the target 

lock. This is the case with the second chromosome (f((T1, L1, 3) (T2, L1, 3))) from the example 

above. If the time interval were increased to [0 5], T2 would gain access to the lock. Even when 

false positives occur, they can still unveil problems in the system under study. For some systems, 

performance constraints may necessitate a maximum wait time for threads on resources. If this 

maximum wait time elapses, performance constraints are violated.  

VI. DEADLOCK DETECTION

Deadlock detection [42] proceeds somewhat similarly to starvation. Our objective is to 

illustrate that we use the same kinds of inputs and that the main difference with starvation 

detection is the fitness function. It uses the same chromosome representation, crossover, and 

mutation operators. However, unlike starvation, deadlock detection does not require the 

specification of either target thread or lock. Deadlock detection also differs in the objective 

function:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



25

25

2if#
2if#

tingthreadsWaitieslockCapacitingthreadsWaiLockExecs
tingthreadsWaitingthreadsWaiLockExecs

cf  (2) 

threadsWaiting is the total number of threads waiting on any lock. By definition, a thread 

waiting on a lock is blocked and its execution cannot resume until it gains access to the lock. 

This variable is in the range [0-#T], where #T is the total number of threads in the system. 

#LockExecs is the total number of threads executing within all locks. It is the summation of the 

slots in all locks that are occupied. This variable is in the range [0-lockCapacities], where 

lockCapacities is the summation of all lock capacities. threadsWaiting and #LocksExecs

are obtained after scheduling and are calculated at the end of the time interval, whereas 

lockCapacities comes from the UML/MARTE input (Table 1). This fitness function also gives 

higher fitness to fitter individuals since high values are obtained in situations where more threads 

are executing and waiting on more locks. For example, recall the example of Fig. 1. There are 

three threads waiting for access to a lock (T1, T2, W1), hence threadsWaiting>=2. Assuming that 

S1 has capacity 5, f(c) = 4 + 3 + 7 = 14. It is important to note that when there is a deadlock 

situation, the fitness function does not guarantee that the fitness value will be maximized. For 

example, near deadlock situations where threadsWaiting>2 may overshadow a deadlock 

situation where threadsWaiting=2. Consider Fig. 3, a modified version of Fig. 1. Here, f(c) = 7

+ 2 + 7 = 16. The situation of Fig. 3 has higher fitness than Fig. 1, yet the latter is an instance of a 

deadlock while the former is not. In Fig. 1, a cycle is present: T1, M2, T2, M1, T1. In Fig. 3, no 

such cycle is present. To ensure that a deadlock is detected when there is one, a RAG is built 

after scheduling, i.e., once we know the allocation of resources to threads according to 

chromosome data, when threadsWaiting 2. Cycles in a RAG indicated deadlocks. Identifying 
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cycles in such a graph is a well-known problem of linear time complexity1. Once a deadlock is 

detected from the RAG, the GA terminates and the chromosome yielding the deadlock is 

returned.  

Fig. 3: Fitness function example

 The fitness function in (2) possesses a number of qualities: : 1.) Because deadlocks involve at 

least two waiting threads, the fitness of scenarios where at least two threads are waiting on locks 

is always greater than the fitness of scenarios where zero or one thread is waiting; 2.) The fitness 

function is driven by the number of locks locked, i.e., an additional thread executing in a lock 

should increase the fitness; 3.) The fitness function is driven by the number of threads waiting on 

locks, i.e., an additional thread waiting for access to a lock should increase the fitness. Property 1 

ensures that situations where no deadlock is possible are penalized, whereas properties 2 and 3 

guide the search towards situations where deadlocks are possible and increasingly likely. Details 

of how this fitness function satisfies the aforementioned properties are provided in Appendix B.

 The timing interval here is based on the longest thread execution time in all locks (lt) and the 

maximum lock access time of all threads (ll). Our heuristic is to guarantee, using these two 

variables, that all thread accesses will occur at least twice, giving deadlocks a chance to occur. 

1 Tarjan’s algorithm has linear running time based on the sum of the number of edges and nodes in the graph.
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Therefore, the time interval equals: [0-(lt+ll)*2]. Readers interested in more details on 

deadlock detection are referred to [42].

VII. TOOL AND GA PARAMETERS

We have built a prototype tool, Concurrency Fault Detector (CFD), supporting our method.

CFD is an automated system that identifies concurrency faults in any concurrent application 

modeled with the UML/MARTE notation. Currently, it can help identify deadlock and starvation 

faults, and work is in progress for the detection of other types of concurrency faults. CFD 

involves a sequence of steps. Users first input two categories of information: (1) UML/MARTE 

sequence diagrams for the analyzed system, (2) the execution time interval during which the 

system is to be analyzed, and (3) the type of concurrency fault targeted: deadlock or starvation. In 

the latter case, the target thread and target lock are also inputted. CFD then extracts the required 

information from the inputted UML/MARTE model (i.e., from its sequence diagrams). 

CFD is decomposed into three portions: a scheduler, a genetic algorithm, and a RAG evaluator. 

Depending on the type of concurrency fault targeted, the appropriate objective function is used in 

the GA, as described in Sections  V, and  VI. When a system is designed, assumptions are made 

about the architecture it will be run on. These deployment assumptions are incorporated in CFD 

in the form of the scheduler. It is important to note that the approach we propose is not affected 

by the scheduling technique chosen and CFD can, in the future, provide a choice of several 

schedulers. In the context of our case studies, CFD’s scheduler currently emulates single 

processor execution and is POSIX compliant. 

Deadlock detection is performed using a RAG whenever a chromosome results in at least two 

threads waiting on locks. If a cycle is found, CFD outputs the details of the chromosome causing 

it (executing threads and waiting threads for each lock as well as lock access times), the 
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corresponding RAG and the fitness value. If no deadlock is found, CFD terminates, showing both 

the fitness value and output details of the highest fitness chromosome found. 

Starvation is detected when the target thread is waiting on the target lock at the end of the time 

interval. CFD uses this as a termination criterion for starvation detection. When starvation is 

detected, CFD terminates showing the fitness value as well as executing and waiting threads of 

the target lock for the highest fitness chromosome found. It also shows the times when the target 

thread executed within the target lock as well as the times the target thread requested access of 

the target lock. When the target thread remains waiting at the end of the time interval, we may be 

in presence of a starvation case or a false positive. This is however difficult to decide. One 

practical approach is for the user to use the output of CFD to determine how long the thread has 

been waiting and whether this is beyond a practical maximum above which this can be 

considered a starvation case for all practical purposes. If it is not, users can increase the time 

interval and re-run CFD. For example, assume that T1 and L1 are the target threads and locks 

respectively, and a run of CFD produces the following for a time interval of [0 400]: 

Starvation Detected! 
Times T1 accessed L1:  
22  
chromosome: (T1, L1, 22) (T1, L1, 129) (T1, L1, 236) (T1, L1, 343) (T1, L40, 23)… 

T1 accesses L1 at time unit 22, but it is unable to do so from time unit 129—the next time it 

attempts to access L1 (second gene)—until the end of the time interval (400). The designer 

determines that the wait time for T1 has not exceeded the maximum wait time of 750 time units, 

so the time interval is increased to 800 and CFD is run again, yielding the same results. The 

designer will then consider this an instance of starvation and will alter the design. 

When no starvation is detected, CFD terminates, outputting details of the executing and 

waiting threads of the target lock for the fittest chromosome found. 
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Though various parameters of the GA must be specified, we can fortunately rely on a 

substantial literature reporting empirical results and making recommendations. Parameters 

include the type of GA used, termination criterion, population size, mutation and crossover rates 

and selection operator. All parameter values are based on findings reported in the literature, as 

detailed below. In addition, we have fine tuned population size and the termination criterion 

based on some experimentations.

The type of GA we use is a steady state GA, with a replace worst replacement scheme and 50% 

replacement, as suggested in [22]. The population size we apply is 200. This is higher than the 

size suggested in [22], but works more effectively for larger search spaces (see below). The 

selection operator is rank selector, whereby chromosomes with higher fitness are more likely to 

be chosen than ones with lower fitness [29]. Mutation and crossover rates are l75.1  (where 

denotes the population size and l is the length of the chromosome) and 0.8, respectively. Both are 

based on the findings in [6] and [22], respectively. The termination criterion we apply is number 

of generations. In particular, the GA terminates after 1000 generations if no deadlock or 

starvation is found. According to [39], the value of the termination criterion requires some 

knowledge of the application to determine an appropriate search length [39]. Hence, there is no 

set value or guideline for this criterion. Through experimentation on our case studies, we found 

1000 generations to be adequate for our various search spaces. In the future, further studies of 

convergence are needed to verify this value. 

These parameter values have worked exceedingly well in all our case studies when considering 

both the detection rate and execution time to find a concurrency fault. The same parameter values 

can be used for other system designs, though further empirical investigation is required to ensure 

the generality of these parameter values in our application context. In the worst case, if one wants 
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to be on the safe side and ensure fully optimal results, the parameters can be fine tuned once for 

each new system design: when the system design being checked is first analyzed. For further 

design modifications of the same system, the parameters need not be fine tuned. 

Since collecting input data is easy to automate from a UML case tool, and all the other phases 

are automated, CFD is meant to be used interactively: the user is expected to fix the design of the 

system when CFD terminates with a detected deadlock situation or starvation. This is the main 

reason why we developed a strategy that only reports one deadlock or starvation scenario at a 

time, i.e., per run of CFD, allowing designers to fix the system’s design before running the 

modified design again on CFD. Such a stepwise refinement process requires, however, the 

problem detection to be efficient enough and scale up, even on large UML/MARTE models.  

CFD is used to investigate whether scenarios can be generated where starvation or deadlock 

problems occur. If no such scenario is found, this does not guarantee that none exist, as GAs are 

based on heuristics. However, one can still feel more confident that such a case is unlikely (i.e., 

rare in the search space). One can feel even more confident by running CFD several times. The 

number of times differs for each system, depending on the available timing constraints as well as 

the acceptable probability of not detecting a deadlock or starvation. If designers are bound by 

timing constraints, they may choose to run CFD only a few times if each run takes long to 

execute. However, as a tradeoff, they must also consider the resulting probability of not detecting 

a fault in those runs. For n runs, the probability of not detecting a fault - assuming each run is 

independent and no bias is introduced - is: (1-detection rate)n. For example, assuming a detection 

rate of 10%, running CFD twice will result in an 81% chance of faults going undetected. 

However, ideally this probability should be made very small by running CFD a sufficient number 

of times, within practical time constraints. In practice, one would make an estimate (possibly 
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pessimistic to be conservative) for a run to detect faults, and then compute the number of runs 

required to achieve a selected, very large probability of detection over all runs. 

VIII. CASE STUDIES

We use our tool to run six case studies. These studies aim at evaluating the effectiveness of our 

method at detecting deadlock and starvation faults based on UML/MARTE design models. We 

also look at run-time efficiency though we realize that a great deal of improvement could be 

obtained with that respect by using more powerful hardware and distributed GAs [12]. Results 

demonstrate the scalability of our approach with respect to fault detection rates. The case studies 

cover a variety of different classes of problems. The dining philosophers problem is the epitome 

of deadlock identification and is often used in the literature as a case study. The bank problem 

represents a class of problems with large, complex search spaces. These are precisely the types of 

problems GAs are designed to handle well. To determine the overhead associated with using a 

GA on a small search space as well as on large, simple search spaces, we introduce the cruise 

control and starve problems, respectively.  

It can be argued that a careful design inspection might highlight the possibility of concurrency 

faults in these case studies. However, such inspections are unlikely to be effective in detecting 

concurrency problems in large industrial systems, hence the need for our approach. Our aim is, 

not to replace, but to support and enhance such careful design inspections by reporting on 

particular scenarios that can be used by system designers to prioritize faults in the system.  

We first describe the case studies used for deadlock detection, followed by those used for 

starvation detection before discussing results. 
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A. Deadlock Detection Case Studies 

1) The Dining Philosophers Problem (Phil) 

The renowned n-dining philosophers problem has commonly been used to demonstrate 

deadlock detection and avoidance [18, 20]. It is an interesting problem as it provides complex 

resource sharing as well as a large search space. The problem is summarized as follows: 40 

philosophers are sitting at a round table either eating or thinking. Every two philosophers 

share one fork, yet only one can access a shared fork at a time. The forks are set so that each 

philosopher has one on their right and one on their left. When they are thinking, philosophers 

do not access forks. When they are hungry and attempt to eat, they pick up their left forks first 

followed by the right forks. When finished eating, forks are released in the same order. This 

design can be deadlocked if all philosophers attempt to eat at the same time and all pick up 

their left forks.  

To detect a deadlock, we need to search the set of possible sequences of threads 

(philosophers) accesses to locks (forks) for at least one that yields a deadlock. This set of 

possible sequences is called the search space. To get an idea of the magnitude of the search 

space, the state space (states that the philosophers can be in, independent of the solution) is 

approximately2 1.2 * 1019. For the particular solution we use, factoring in the chosen time 

interval and thinking and eating times, the search space is approximately 1.9 *10116.

A search space is further characterized by its complexity. Points in the search space that 

result in concurrency problems are called global optima, whereas local optima are ones where 

all surrounding points have worse fitness, but the point itself is not an instance of a 

concurrency fault. The more local optima in the search space, the more complex it is. 

2 The search space for large numbers of philosophers corresponds to 3#phil, where #phil is the number of philosophers. 
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Fig. 4: Dining philosophers sequence diagram

Concurrency aspects for the philosopher problem are depicted in Fig. 4 for philosopher 1 and 

its two forks, as a UML/MARTE sequence diagram. This is an excerpt of the complete 

sequence diagram, which would show the interactions of all philosophers and all forks. 

Philosopher 1 is depicted as a concurrently executing thread via 

<<SwConcurrentResource>>. It acquires two locks, Fork 40 and Fork 1, designated by 

<<SwMutualExclusionResource>>. Fork 40 (left fork) and Fork 1 (right fork) each allow 

only one thread to execute at any given point in time, as indicated by accessTokenElements.

Each lock’s waiting threads are accessing the lock on a first come first served basis as 

specified by waitingQueuePolicy. The philosopher’s thinking time (lock access range) is 
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represented by execTime in the first <<gastep>>. Access time has a minimum and maximum 

time range. Execution times are discrete uniform distributions between 1 and 100 seconds. 

The execution duration of Philosopher 1 (thread) in each of the locks is defined by execTime

on each lock’s <<gastep>>, i.e., between 1 and 100 time units. 

For deadlock detection, CFD requires two inputs. The first input is the complete sequence 

diagram. The second input is the time interval. We used our heuristic (Section  VI): the longest 

thread execution time is 100 (maximum eating time), and the longest lock access time (i.e., 

thinking time) is 100, hence the time interval is 400. 

2) The Bank Transfer Problem (Bank) 

The bank fund transfer is based on a simple banking functionality: fund transfer between 

accounts; and simulates multiple threads transferring funds among different accounts [46]. 

Ten threads, representing 10 account holders, repeatedly transfer funds between any two 

randomly selected accounts out of 50 available accounts. It is an interesting problem as it 

models repeated resource sharing. When transferring from account A to account B, account A 

is first locked, then checks on the balance of A is performed. If A can transfer the amount, 

account B is locked and the user is prompted to verify the transfer of the amount, before the 

transfer is completed. Account B is released first, followed by account A. In this problem, a 

deadlock can occur if one thread is transferring from account A to B, while another is 

simultaneously transferring from B to A. The state space of this problem depends on the 

number of threads and the number of accounts, specifically (n2-n)t, where n is the number of 

accounts and t is the number of threads3. For 10 threads and 50 accounts, the state space is 

approximately 7.7 * 1033. For the particular solution we use, the search space is approximately 
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2.7 * 1066. Again, all the necessary information used by the GA, including data to determine 

the time interval, can be retrieved from the UML/MARTE model: see Fig. 5.  

Fig. 5: Bank transfer sequence diagram

In Fig. 5, Thread 1 is a concurrently executing thread: stereotype 

<<SwConcurrentResource>>. Each account is associated with a lock and each thread 

randomly selects the two accounts (Account $i and Account $j, stereotyped 

<<SwMutualExlcusionResource>>) that will be involved in the transaction: first action 

stereotyped <<gastep>> that takes 1 ms. The thread then acquires the lock associated with the 

transfer source (Account $i). This begins within a timing range of [1-200] ms. Once that is 

                                                                                                                                                                                          
3 The search space for one thread is the cross product of the accounts minus the number of accounts (to remove the cases where the source 

and destination are the same account). The total search space is then the cross product of the thread search spaces 
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done, an initiateTransfer() is applied, executing for 1 ms, after which the transfer 

destination lock is acquired (Account $j). The actual fund transfer takes 1 ms before the 

transfer destination lock is released, followed by the source lock. Hence, overall, the source 

account is locked for a total of 2ms. The destination account is locked for only 1 ms, and this 

locking occurs after 1 ms of execution within the transfer source’s lock. 

For deadlock detection, the input time interval used is based on our heuristic: the longest 

thread execution time is 2 ms (maximum transfer time), and the longest lock access time is 

200 ms, hence the time interval is (200 + 2) * 2 = 404. 

For starvation, this problem would not be interesting as the designated target thread might 

never access the designated target lock. 

3) The Cruise Control Problem (Cruise) 

The cruise control problem emulates a car simulator along with its cruising controller. The 

system is divided into a number of classes: CarSimulator simulates the car engine, runs a 

thread while the car is started, and simulates car speed changes based on the throttle and brake 

settings as well as the controlled speed by the cruising system when it is enabled; 

CruiseControl is a container for both car simulator and cruise controller of the car. This is 

the entry class that receives commands and dispatches them to the car and the controller; 

SpeedControl is a thread that runs in the Controller to adjust car speed whenever cruising 

is enabled. When cruising is enabled, the current car speed is recorded and maintained for the 

duration of cruising time. When resuming cruising, the latest recorded speed is used as the 

speed to maintain during cruising; Controller simulates the cruise control of the car, 

disabling, enabling or resuming cruising according to the commands received by 
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CruiseControl. It creates a new SpeedControl thread when cruising is enabled. A

simplified version of the class diagram is presented in Fig. 6. 

Unlike the other case studies, many different scenarios of execution, involving acceleration, 

cruising and breaking, are available here for verification. We limit our study to the following 

test case scenario, which tests a number of threads and locks, as shown in Fig. 7:

engine on 
repeat 
accelerate 
cruise control on 
brake 

Fig. 6: Cruise control class diagram 
A deadlock can occur during breaking when the CarSimulator is executing the brake 

command and the SpeedControl is in its periodic run. Furthermore, in these particular states, 

a deadlock shows up only when the timing is just right so that both acquire two locks 

(brakepedal and throttle) at just the right times. 
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For deadlock detection, the input time interval used is based on our heuristic: the longest 

thread execution time is 15 sec, and the longest lock access time is 2 sec, hence the time 

interval is (15 + 2) * 2 = 34.

 

Fig. 7: Cruise control sequence diagram 

It is important to note that, in practice when using a modeling tool, the sequence diagram of 

Fig. 7 would be much simpler and feature a different layout. Information about various 
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stereotypes would be embedded within the tool used to create the diagram, rather than 

appearing as comments. Information appears in comments here only to facilitate 

understanding.  

B. Starvation Detection Case Studies 

1) Modified Dining Philosophers Problem (ModPhil) 

Notice that for the dining philosophers problem as defined for deadlock detection above, 

only two threads access each lock. This would make for a rather simple test for starvation. To 

test for starvation, the problem is therefore altered slightly as follows, as shown in Fig. 8: 80 

philosophers (squares) are sitting in two concentric circles, with 40 forks (circles) shared 

between them, such that every two philosophers share the same two forks. Hence, each fork is 

accessed by four philosophers. Philosopher 1 is assigned low priority while others are 

randomly assigned either a high or low priority. A philosopher can starve in this solution if the 

surrounding three philosophers constantly pick up the shared fork before the philosopher has 

the chance to do so. The state space4 here is approximately 9.8 * 1037. The actual search space

is 3.9 * 10232.

To test for starvation, the inputs to CFD are: Fork 1 and Philosopher 1 are designated the 

target lock and thread, respectively. The time interval used is 400 as for deadlock detection 

(recall from Section  V.A that there is no associated heuristic: it is left up to users to determine 

an appropriate interval). 

4 The search space here is an approximation: 3#phil – 3#phil-1. The first term is like the one for deadlocks. However, there are now more illegal 
situations for an additional #phil-1 philosophers. 
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Fig. 8:  Modified dining philosophers for starvation 

2) The Starvation Problem (Starve) 

The previous case studies were originally designed for verifying deadlocks. Bank is unfit for 

starvation, and Cruise is too simple for starvation detection. We hence created the starvation 

problem to create an environment where verification of starvation would prove more 

challenging. Six threads access a common lock with properties defined in Table 2.

Table 2: Thread properties for the starvation example

Thread Priority Lock access  range 
(units of time)

Repetition time 
(units of time)

Execution time 
(units of time)

T1 32 1-2 7 1
T2 31 0-2 9 2
T3 30 3-9 7 1
T4 29 4-9 7 2
T5 28 2-6 20 2
T6 27 3 24 2

T6 is the target thread. It has the lowest priority, while T1 has the highest priority. The time 

interval chosen is [0-24]. Here, the search space is 4.8 X 108: there are 4.8 X 108 different 

ways the threads can combine to execute within the time interval. For T1, it can access the 
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lock between time units [1-2], [8-9], [15-16] and [22-23]. T2 can access the lock between 

time units [0-2], [9-11] and [18-20]. T3 can access between [3-9], [10-16], [17-23] and [24]. 

T4 can access between [4-9], [11-16], [18-23]; T5 between [2-6] and [22-24]. T6 can only 

access the lock at time unit 3. There are two choices for each lock access range for T1, three 

choices for T2, 7 for T3, 6 for T4, 5 for T5 and only one for T6. Hence, the total number of 

combinations is: 16 (2*2*2*2 for T1) * 27 (3*3*3 for T2) * 343 (7*7*7*1 for T3) * 216 

(6*6*6 for T4) * 15 (5*3 for T5) * 1 (for T3) = 4.8 X 108. Here, the target thread will starve if 

every time slot after time unit 3 is occupied by another thread. This happens in 704,295 

combinations5. Hence, only 0.14% of the population results in starvation. 

3) Modified Cruise Control Problem (ModCruise) 

The same cruise control problem is used for starvation. However, to test for starvation, the 

CarSimulator thread is designated the target thread, with low priority, and the target lock is 

brakepedal. The time interval used here is 24. 

C. Case Studies Design 

Here, we briefly describe the techniques used for deadlock and starvation detection, then we 

discuss how the case studies were set up to ensure that all techniques are comparable. 

We use three different techniques to detect both deadlocks and starvations: random generation, 

hill climbing and our GA approach. Both random and hill climbing are simpler techniques that  

are often suggested as benchmarks to justify the need for a GA search [5].  

In random generation, a point in the search space (generated in such a way that it satisfies the 

same constraints imposed on the genes when using GAs) is randomly chosen and checked for a 

5 Because it could not be done analytically, a computer program was developed to calculate the number of combinations that would lead to 
starvation.
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fault. Running a random search involves running a pre-determined, usually large number of 

points in the search space. 

For hill climbing, we use stochastic hill climbing [38]. One random point is generated, then a

neighboring point is generated by mutating the current point. If the new point is better than the 

current point, it replaces it and a new neighboring point is generated. If no point is better than the

current point, execution stops. This continues until a maximum number of sequences are 

generated [38].

Because each of the three techniques proceeds differently, we analyzed the number of 

sequences generated by the GA and generated the same number for other techniques to ensure a 

fair comparison. All sequences for both random and hill climbing are generated in such a way 

that they satisfy the same constraints imposed on the genes when using a GA. As GAs are 

heuristic optimization techniques, variance occurs in the results they produce. To account for the 

variability in results, we ran each case study 25 times on an Intel Core 2 2.0 GHz processor. 

Twenty five runs is a reasonable number for the case studies provided: they execute within 

reasonable time constraints, they result in fine-grained enough data to compare the detection rate 

of search techniques, and they turned out to be sufficient to find the cases of starvation and 

deadlocks at least once in all case studies. Random generation and hill climbing were also run 25 

times, with each run generating the same number of sequences as the number created and 

evaluated on average by a GA run. For example, with a timing interval of 400, a GA run 

generates on average 5,922 sequences per run for Phil during deadlock detection. Hence, 5,922 

sequences were generated per run for both random search and hill climbing. To further ensure 

fairness of comparison, for random, hill climbing and the GA, when a deadlock or starvation is 

detected, execution stops for that run and a new run of the 25 is executed. 
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D. Results 

Results for the detection of both deadlocks and starvation are presented in Table 3 for each of 

the six case studies. For all cases, except Phil, we based our analysis on 100 runs. Phil takes a 

much longer time to run and results are sufficiently clear and statistically significant with 25 

runs. To assess the significance of the difference between our proposed GA and the other 

techniques regarding detection rates, we conducted a Fisher Exact hypothesis test to assess 

differences in proportions. Two-tailed p-values6 are reported in Table 3. A widespread practice is 

to consider p-values below 0.05 as significant.  

1) Deadlock 
For deadlock detection, most of the three techniques are capable of uncovering a fault, but with 

very different probabilities. For Cruise, the case study with a very small search pace, random 

search is expected to be nearly as effective as the GA. Indeed, the GA mostly detects a fault in 

the random initialization of the population and both techniques detect a fault in 100% of the 

cases. However, hill climbing does not perform well as shown in Table 3: 70% of the time, it is 

unable to detect a deadlock, and the difference with GA is statistically significant. This is 

because its performance depends on the initial randomly generated chromosome for each run. 

Recall that, to ensure fair comparison, the number of sequences generated by the GA was 

analyzed and the same number of sequences was generated for hill climbing. If the initial hill 

climbing chromosome is very different from the optimal chromosome, it will take many 

mutations to reach the optimum. Hence, hill climbing may exhaust its allocated number of 

sequences. In Bank, which has a larger search space, the GA outperforms hill climbing and 

random search. For Phil - which has by far the largest search space - the GA significantly 

outperforms again both random search and hill climbing, but to a much larger extent. It is 
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interesting to note that other than the search space size, the conditions for a deadlock are more 

stringent in Phil than Bank: All 40 philosophers must be accessing all left forks simultaneously, 

versus any two accounts with inverted source and destinations would suffice to create a deadlock. 

This makes the search harder in Phil than in Bank and, expectedly, execution time is substantially 

increased in Phil. The GA, however, is much less affected by the complexity of the search space 

whereby the detection rates for these two case studies are much closer (81% vs. 88%) to each 

other than for random search (0% vs. 70%). Hill climbing’s overall detection rate does not vary 

much in Phil and tends to be poor overall. From the above results we can conclude that the GA 

effectively performs as well or better than the two other alternatives and that the differences are 

driven by the size and complexity of the search space.  

2) Starvation 
For starvation, all three techniques are also capable of detecting concurrency faults. It is not 

surprising that the three techniques produce perfect detection rates for ModPhil and ModCruise, 

suggesting that these problems do not really need a GA to obtain starvation sequences. 

ModeCruise has a small search space and in ModPhil, though the search space is large, there are 

many sequences leading to starvation, as the target lock is only accessed by four threads. As a 

result, the GA is capable of detecting a fault in its initial random generation of the population. In 

ModCruise, with the smallest search space, only two threads access the target lock. Here too, the 

number of sequences leading to starvation is substantial, which is why both random and hill 

climbing fare well. In Starve, because so few sequences lead to starvation, random search cannot 

detect a problem 83% of the time whereas this is the case only 2% of the time with GA. Based on 

100 runs, p-values reveal that the GA significantly outperforms hill climbing as well. So, like for 

                                                                                                                                                                                          
6 P-Values calculated with GraphPad Software, available online from http://www.graphpad.com/quickcalcs/contingency2.cfm.
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deadlocks, we see that the relative performance of our GA depends on the size and complexity of 

the search space, but that it performs at least as well as the two other alternatives.  

For both ModCruise and ModPhil, false positives (Section  V.D) are not a concern: while the 

GA reports that the target threads for both case studies access the target locks at least once, 

subsequent accesses are denied. Further tests conducted by doubling the time interval produced 

the same results. For Starve, increasing the time interval to [1 100] results in no faults being 

reported, hence indicating that all previous results were false positives. 

Table 3: Results 
Phil Bank Cruise ModPhil Starve ModCruise

Fault type Deadlock Starvation
Search space 1.9 *10116 2.7 * 1066 245 3.9 * 10232 4.8 * 108 175

Random #Faults/#Runs 0/25 70/100 100/100 100/100 17/100 100/100
Total Runtime 
(hr:sec:min:ms)

0:11:40:697 0:04:05:568 0:00:00:489 0:00:01:546 0:00:13:924 0:00:00:432

Min. Runtime 
(hr:sec:min:ms)

0:00:23:164 0:00:00:019 0:00:00:000 0:00:00:006 0:00:00:041 0:00:00:000

Max. Runtime 
(hr:sec:min:ms)

0:00:35:967 0:00:14:208 0:00:00:060 0:00:00:036 0:00:00:182 0:00:00:011

Detection rate 0% 70% 100% 100% 17% 100%
p-value < 0.0001 0.0996 1.0 1.0 < 0.0001 1.0

GA #Faults/ #Runs 22/25 81/100 100/100 100/100 98/100 100/100
Total Runtime 
(hr:sec:min:ms)

2:34:34:482 0:15:20:322 0:00:00:552 0:00:02:558 0:00:35:292 0:00:00:534

Min. Runtime 
(hr:sec:min:ms)

0:00:20:238 0:00:00:011 0:00:00:001 0:00:00:029 0:00:00:013 0:00:00:000

Max. Runtime 
(hr:sec:min:ms)

0:43:11:998 0:00:05:904 0:00:00:051 0:00:01:010 0:00:05:233 0:00:00:026

Detection rate 88% 81% 100% 100% 98% 100%
Hill 
Climbing

#Faults/ #Runs 7/25 30/100 30/100 100/100 86/100 100/100
Total Runtime 
(hr:sec:min:ms)

0:48:05:368 0:10:45:499 0:00:06:238 0:01:52:168 0:05:06:768 0:00:00:516

Min. Runtime 
(hr:sec:min:ms)

0:00:20:596 0:00:00:011 0:00:00:000 0:00:00:010 0:00:00:010 0:00:00:000

Max. Runtime 
(hr:sec:min:ms)

0:05:27:992 0:00:15:941 0:00:00:055 0:00:02:435 0:00:00:250 0:00:00:036

Detection rate 28% 30% 30% 100% 86% 100%
p-value < 0.0001 < 0.0001 < 0.0001 1.0 0.0029 1.0

3) Execution time analysis 

Though we see from Table 3 that CFD (GA) systematically detects deadlocks and starvation in 

all case studies, and with a probability that is at least as good as with random search and hill 
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climbing, for large search spaces, it takes substantially more time for CFD to detect faults than 

for the other techniques. Execution times in both starvation and deadlock detection are driven by 

a number of factors. In the former case, the number of threads accessing the target lock 

contributes to the overall execution time: the greater the number of threads, the longer it takes to 

generate sequences where all threads are accessing the target lock. The total number of threads 

executing in a system has a similar effect on execution time in the case of deadlock detection. 

Here, the greater the total number of threads, the longer it takes to generate sequences where the 

maximum number of threads produce a deadlock. CFD’s execution times are still reasonable, 

considering the sizes of the search spaces (even with the most complex search space for deadlock 

Phil). Assuming designers would use a verification plug-in based on their MARTE designs, 

using our approach would take, in the worse cases and based on low-end hardware, a couple of 

hours or so. Such performance could be, as discussed next, easily be improved by using clusters 

or distributed computers. Given that such analyses are not frequently required, execution times 

for running the GA to find concurrency problems are likely to be practical. Furthermore, despite 

the increased execution times, since in practice the search space size and complexity is not 

known, using GAs ensures to obtain the best detection rate and is therefore the best option. 

E. Scalability 

There are two dimensions according to which we can assess the scalability of the GA solution 

we propose: execution time and fault detection rates. With respect to the former, our results 

could be substantially improved by using better hardware and distributing GA computations [12], 

as further discussed below. Optimizing execution time through sophisticated use of distribution 

and computer clusters was not our focus here. Our results are therefore not representative of what 

could be optimally obtained in terms of execution time. It is, however, interesting to assess 
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whether the detection rate is affected by the size and complexity of the search space. To do so, 

we ran the Phil problem with varying sizes of philosophers and forks. We chose the dining 

philosophers in particular because it represents a highly complex situation where deadlocks are 

difficult to detect. Fig. 9 shows our results in terms of (a) detection rate and (b) execution time 

when run on our CFD tool. The two figures are the result of a linear regression analysis and a 

smoothing spline fit, respectively. The number of philosophers used ranges from 5 to 60. This 

range is representative of most concurrent systems from the very simple, with five threads, to the 

very complex, with 60 threads accessing a specific lock. The goal of the figures is to graphically 

show the shape of the relationships and help quantify the impact of larger search spaces.  

Fig. 9: Scalability in terms of (a) fault detection and (b) execution time in seconds 

Plots in Fig. 9(a) indicate a lowest detection rate of 17/25 (68%), which is encouraging, and a 

highest rate of 25/25 (100%). The figure also shows the result of a regression analysis between 

the number of faults and philosophers: there is a significant, negative linear relationship (R2 =

0.5) showing an average of one less fault detection (out of 25 runs), or a decrease of 4% in fault 

detection rate, per additional ten philosophers. While the decrease is linear, not exponential, and 

takes an additional 10 threads accessing a specific lock for a 4% decrease in detection rate, it is 

clear that for large spaces, more runs will be necessary to ensure high probabilities of detection.  
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The scatter plot of Fig. 9(b) shows an overall exponential increase in execution time as the 

number of philosophers increases. Given the low-end hardware on which this was run, the fact 

that for a highly complex search problem (60 Philosophers) 25 runs take 13 hours is still 

manageable.  However, not much else can be concluded from this since there is much room for 

improvement by using more powerful hardware and especially distributed GAs [12]. For systems 

with large numbers of threads, such as 50 and 60 philosophers in our study, given the availability 

of faster and cheaper hardware, parallel GAs can be exploited at little additional cost [12]. The 

nature of genetic algorithms lends itself easily to distribution simply by allowing populations to 

evolve in parallel [12]. The gains of distribution strategies in terms of execution time are 

promising, as shown in [45]. For the traveling salesman problem (TSP), execution times dropped 

by more than 99.5% for some variations of distributed GAs (from 394 seconds down to 1.76 

seconds) without a decrease in effectiveness [45]. The use of distributed GAs will, however, be 

investigated and reported in future work as it requires large scale studies, such as the ones in 

[45], assessing and comparing various strategies for distribution. For example, depending on the 

type of hardware machines available for distribution, two approaches of parallel GAs can be 

used: the island model and the fine-grained, or neighborhood model. In the former case, isolated 

subpopulations evolve on separate machines, while periodically migrating their best 

chromosomes with neighboring subpopulations. In the neighborhood model, a single population 

evolves, but selection and crossover is based on neighboring chromosomes placed on a planar 

grid. The island model runs well on Multiple Instruction Multiple Data (MIMD) machines, while 

the neighborhood model runs well on Single Instruction Multiple Data (SIMD) machines [12]. 
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IX. CONCLUSIONS AND FUTURE WORK

Concurrency abounds in many software systems. Such systems usually involve threads that 

access shared resources, and complex thread communications. If not handled properly, such 

accesses can lead to many problems, such as starvation and deadlock situations, which may 

hinder system execution. It is important to detect such problems as early as possible and therefore 

find practical, scalable ways to do so. In this paper, we describe a method based on the analysis 

of design representations in UML completed with the MARTE profile, both of which are 

international standards for the object-oriented modeling of concurrent, real-time applications that 

are widely supported by commercial and open source tools. We demonstrated the feasibility of 

using concurrency information from UML/MARTE diagrams to detect concurrency problems 

based on search algorithms, in this case a tailored genetic algorithm. Our automated verification 

method can then be applied in the context of model-driven, UML-based development and thus 

reduces the need for complex tooling and training, and additional modeling to what is already 

required for UML-based development. 

Being geared towards systems characterized by large numbers or threads and complex 

synchronization among them, our method treats the detection of concurrency problems as a 

search and optimization problem. Because of their well-documented track record for global 

search in complex landscapes, genetic algorithms are then used to search through the space 

defined by access times. The best resulting sequence, measured by the fitness function, is then 

outputted. Further examining the length of the outputted sequence (e.g., if it is the shortest one 

leading to a failure), as well as the extent to which sequences can help with debugging is reserved 

for future work.  
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We demonstrated the effectiveness our approach (in terms of concurrency fault detection) 

through six case studies run on our tool support. These showed very promising results in terms of 

detecting deadlocks and starvation problems. Even in the presence of large search spaces, our 

tool’s running time is of the order of a few hours on low-end hardware to achieve very high 

chances of detection.  

Regarding scalability, results are rather encouraging with respect to fault detection rates as it 

takes many more threads to obtain a significant decrease in rates: 10 threads for a 4% decrease on 

the most complex search space. However, execution time increases exponentially for this same, 

complex search problem reaching up to 13 hours for 60 threads and 25 GA runs when run on a 

low-end PC. Execution time could however be easily improved on more powerful hardware or by 

parallelizing the execution of the genetic algorithms [12], though this will be part of future work 

as it involves assessing and comparing strategies for parallelizing the GA. Also in future works, 

we can further assess the performance of our approach and tool on systems with varying 

structures to establish the particular characteristics of systems our approach is well suited for. 

Because our approach incorporates use of a heuristic, namely a genetic algorithm, variance will

occur in the results. While no fault detection does not guarantee that no faults exist, one can still 

feel more confident that such a case is unlikely (i.e., rare in the search space). Even in scenarios 

where no starvation or deadlocks are detected, our tool is still useful. The sequences outputted 

can then be used as future test cases. These would be particularly interesting as they represent 

scenarios close to faults; they may later uncover potential problems that can arise due to actual 

execution times of threads in locks, slightly differing from estimates.  

Our approach provides a general framework that can be easily adapted to different types of 

concurrency problems: originally developed for deadlock detection, adapting it the problem of 
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starvation detection mainly required the definition of a new fitness function in the genetic 

algorithm. Though we focus on deadlocks and starvation here, work is underway to tailor our 

approach and tool (i.e., mainly its fitness function) to other concurrency problems associated with 

shared resources (namely data races) and thread communication.  

X. APPENDIX A 
The following demonstrates how the fitness function of equation (1) satisfies the properties 

required for starvation detection. 

Property 1 holds: When the target thread is the only thread waiting in the wait queue of the target 

lock during any time unit, f(c) = i+(i-1)+…+1+0, and fitness can only increase as additional 

threads wait in the queue. When the target lock’s wait queue is empty during a time unit, f(c) = 

(i-1)+(i-2)+…+1+0 (Situation a.). When the wait queue is not empty during a time unit of the 

testing interval, but the target thread is not in the wait queue during that time unit, f(c) = (i-1)+(i-

2)+…+1+0 (Situation b.). Both situations have lower fitness values than when the target thread is 

waiting in the wait queue, thus fulfilling Property 1.  

Property 2 holds:

At any given time unit in the time interval, when the target thread accesses the target lock, the 

accumulated fitness value remains the same; calculations thereafter continue as before in 

subsequent time units. 

XI. APPENDIX B 
The following demonstrates how the fitness function of equation (2) satisfies the properties 

required for deadlock detection. 
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Property 1 holds: When lock queues are empty, threadsWaiting = 0, and f(c) = #LockExecs 

which is in the range [0-lockCapacities]. When one thread is waiting, threadsWaiting = 1,

and f(c) = #LockExecs + 1 which is in range [1-lockCapacities]. When at least two 

threads are waiting (second case in the definition of our fitness function), threadsWaiting  2

and f(c) = #LockExecs + threadsWaiting + lockCapacities. The minimum value of 

f(c) is then #LockExecs + 2 + lockCapacities, with #LockExecs > 0. This is always 

greater than lockCapacities + 1. By using lockCapacities in the second case of the fitness 

function, we ensure that situations where lock queues hold up to one thread always have lower 

fitness than ones where at least two threads are held in lock queues, thus satisfying property 1. 

Property 2 holds: When the number of threads executing in locks increases, #LockExecs

increases, and therefore f(c) increases. 

Property 3 holds: When the number of waiting threads increases, threadsWaiting increases, and 

therefore f(c) increases. 
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