
8

A Precise Method-Method Interaction-Based Cohesion Metric
for Object-Oriented Classes

JEHAD AL DALLAL, Kuwait University
LIONEL C. BRIAND, Simula Research Laboratory and University of Oslo

The building of highly cohesive classes is an important objective in object-oriented design. Class cohesion
refers to the relatedness of the class members, and it indicates one important aspect of the class design
quality. A meaningful class cohesion metric helps object-oriented software developers detect class design
weaknesses and refactor classes accordingly. Several class cohesion metrics have been proposed in the litera-
ture. Most of these metrics are applicable based on low-level design information such as attribute references
in methods. Some of these metrics capture class cohesion by counting the number of method pairs that share
common attributes. A few metrics measure cohesion more precisely by considering the degree of interaction,
through attribute references, between each pair of methods. However, the formulas applied by these metrics
to measure the degree of interaction cause the metrics to violate important mathematical properties, thus
undermining their construct validity and leading to misleading cohesion measurement. In this paper, we
propose a formula that precisely measures the degree of interaction between each pair of methods, and we
use it as a basis to introduce a low-level design class cohesion metric (LSCC). We verify that the proposed
formula does not cause the metric to violate important mathematical properties. In addition, we provide a
mechanism to use this metric as a useful indicator for refactoring weakly cohesive classes, thus showing its
usefulness in improving class cohesion. Finally, we empirically validate LSCC. Using four open source soft-
ware systems and eleven cohesion metrics, we investigate the relationship between LSCC, other cohesion
metrics, and fault occurrences in classes. Our results show that LSCC is one of three metrics that explains
more accurately the presence of faults in classes. LSCC is the only one among the three metrics to comply
with important mathematical properties, and statistical analysis shows it captures a measurement dimen-
sion of its own. This suggests that LSCC is a better alternative, when taking into account both theoretical
and empirical results, as a measure to guide the refactoring of classes. From a more general standpoint,
the results suggest that class quality, as measured in terms of fault occurrences, can be more accurately
explained by cohesion metrics that account for the degree of interaction between each pair of methods.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-Oriented Programming;
D.2.7 [Software Engineering]: Distribution and Maintenance—Enhancement, restructuring; D.2.8
[Software Engineering]: Metrics

General Terms: Measurement

Additional Key Words and Phrases: Object-oriented software quality, class cohesion, low-level design,
method, attribute, refactoring, method-method interaction

ACM Reference Format:
Al Dallal, J. and Briand, L. C. 2012. A precise method-method interaction-based cohesion metric for object-
oriented classes. ACM Trans. Softw. Eng. Methodol. 21, 2, Article 8 (March 2012), 34 pages.
DOI = 10.1145/2089116.2089118 http://doi.acm.org/10.1145/2089116.2089118

This work was supported by Kuwait University Research Grant WI04/07.
L. C. Briand is currently affiliated with the University of Luxembourg.
Authors’ addresses: J. Al Dallal, Department of Information Science, Kuwait University, P.O. Box 5969,
Safat 13060, Kuwait; email: j.aldallal@ku.edu.kw; L. C. Briand, University of Luxembourg, SnT/FTSC, 6,
rue Richard Coudenhove-Kalergi, L-1359 Luxembourg; email: lionel.briand@uni.lu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1049-331X/2012/03-ART8 $10.00

DOI 10.1145/2089116.2089118 http://doi.acm.org/10.1145/2089116.2089118

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:2 J. Al Dallal and L. C. Briand

1. INTRODUCTION

The development of high-quality software is a primary goal in software engineering.
Such software systems are likely to be stable and maintainable. During the develop-
ment process, developers and managers typically apply quality metrics to assess and
improve software quality. Cohesion, coupling, and complexity are common types of
such metrics. The cohesion of a module indicates the extent to which the components
of the module are related. A highly cohesive module performs a set of closely related
actions and cannot be split into separate modules [Bieman and Ott 1994]. Such a mod-
ule is believed to be easier to understand, modify, and maintain than a less cohesive
module [Briand et al. 2001a; Chen et al. 2002].

Classes are the basic units of design in object-oriented programs. Class cohesion
refers to the relatedness of class members, that is, its attributes and methods. Several
class cohesion metrics have been proposed in the literature. These metrics are based
on information available during high- or low-level design phases. High-level design
(HLD) cohesion metrics identify potential cohesion issues early in the HLD phase;
see the HLD cohesion metrics proposed by Briand et al. [1999]; Bansiya et al. [1999];
Counsell et al. [2006]; and Al Dallal and Briand [2010]. These metrics do not support
class refactoring activities that require information about the interactions between
the methods and attributes in a class, because these interactions are not precisely
known and defined in the HLD phase. Low-level design (LLD) cohesion metrics use
finer-grained information than that used by the HLD cohesion metrics; see the LLD co-
hesion metrics proposed by Chidamber and Kemerer [1991, 1994], Hitz and Montazeri
[1995], Bieman and Kang [1995], Chen et al. [2002], Badri and Badri [2004], Wang
et al. [2005], Bonja and Kidanmariam [2006], Fernández and Peña [2006], Chae
et al. [2000, 2004], and Zhou et al. [2002]. LLD cohesion information relies on precise
knowledge of the relations between attributes and methods. Some LLD cohesion
metrics [e.g., Henderson-Sellers 1996, Briand et al. 1998] are based on measuring
attribute-method interactions by simply counting the total number of referenced at-
tributes within the methods of a class, regardless of the allocation of these references.
As a result, these metrics cannot directly identify weakly cohesive class members
as required by refactoring. For example, in Figure 1, rectangles, circles, and links
represent the methods, attributes, and use of attributes by methods, respectively, of a
class including a weakly cohesive method m3. Its removal would clearly improve class
cohesion. Metrics based on counting the number of links (i.e., uses of attributes by
methods) can indicate whether a class is strongly or weakly cohesive. However, these
metrics fail to indicate the members of the class whose removal would improve class co-
hesion. Other LLD metrics [Badri and Badri 2004; Bieman and Kang 1995; Bonja and
Kidanmariam 2006; Chidamber and Kemerer 1991, 1994; Fernandez and Pena 2006;
Hitz and Montazeri 1995; Li and Henry 1993] are based on measuring Method-Method
Interactions (MMIs) by considering shared attributes between each pair of methods,
which indicates to what extent each method is interconnected with other methods.
This finer-grained information is important to help developers refactoring classes and
detecting which methods to possibly remove (i.e., the methods that exhibit a few or
even no interconnections with other methods). For example, when any of these MMI
metrics is applied to measure the cohesion for the class represented in Figure 1, the
interconnection between each pair of methods is calculated, and it is clearly found that
method m3 is weakly interconnected to the other methods in the class. This suggests
that method m3 should be removed from the class. Czibula and Serban [2006] and De
Lucia et al. [2008] propose refactoring approaches based on MMI cohesion metrics.

Several definitions for MMIs have been proposed. In some studies [Badri and
Badri 2004; Bieman and Kang 1995; Chidamber and Kemerer 1991, 1994; Hitz and

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:3

Fig. 1. Sample representative graph for a hypothetical class.

Montazeri 1995; Li and Henry 1993], a pair of methods is considered to fully interact
if they share at least one common attribute (i.e., a common attribute is referenced by
each of the two methods). A counterintuitive case is when a pair of methods within
the same class that share only one attribute is deemed to have the same cohesion
degree as a pair of methods sharing all attributes. In other studies [Bonja and Kidan-
mariam 2006; Fernández and Peña 2006], this problem is solved by using the number
of shared attributes as a basis to measure the degree of interaction between each pair
of methods. This is referred to as similarity degree and the authors provide formulas
by which it can be calculated. However, these MMI similarity-based cohesion metrics
have several limitations. The first limitation is that they are based on method-method
similarity definitions, which are, in some cases, counterintuitive. For instance, in some
studies [Bonja and Kidanmariam 2006; Fernández and Peña 2006], a pair of methods,
within the same class, that share relatively few attributes can be considered more co-
hesive than a pair of methods sharing more attributes. The second limitation is that
MMI similarity-based cohesion metrics proposed to date have not been validated in
terms of their mathematical properties and, in fact, violate key properties. The third
limitation is that MMI similarity-based cohesion metrics proposed to date have not
been empirically investigated in terms of their (1) usefulness as cohesion indicators,
(2) correlations with other cohesion metrics, and (3) relationship with external soft-
ware quality attributes (e.g., fault proneness, ease of change). Finally, the effect of
considering (1) the interactions of methods through transitive method invocations, (2)
class inheritance, and (3) different types of methods (i.e., setters, getters, construc-
tor, and destructors) have neither been discussed nor empirically studied for MMI
similarity-based cohesion metrics.

As a result, MMI metrics inherently consider the interaction between each pair
of methods and this makes them particularly useful for refactoring when compared
to other HLD and LLD metrics. However, MMI metrics proposed to date either do
not consider the degree of interactions between methods, which weakens their ability
to precisely indicate the degree of cohesion, or violate key cohesion properties. This
highlights the need for an MMI metric that both considers the degree of interaction
between each pair of methods and complies with key cohesion properties.

In this paper, we review and discuss some existing class cohesion metrics, with
an emphasis on MMI metrics as they are better candidates to support refactoring,
since they consider interactions between each pair of methods. We propose a LLD,
Similarity-based Class Cohesion metric (LSCC), which is an MMI metric that accounts
for the degree of interaction between each pair of methods. We demonstrate the use of
LSCC as an indicator for refactoring weakly cohesive classes and derive computation-
ally effective decision criteria for large scale analysis. The validity of a metric has to
be studied both theoretically and empirically [Kitchenham et al. 1995]. Theoretical

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:4 J. Al Dallal and L. C. Briand

validation tests whether the proposed metric complies with necessary properties of
the measured attribute, although such properties are usually a matter of debate. Em-
pirical validation tests whether what is being measured exhibits expected statistical
relationships with other measures, such as measures of external quality attributes.
Consistent with this general validation approach, LSCC is then validated from both
theoretical and empirical standpoints.

Our theoretical validation involves analyzing the compliance of LSCC with the
properties proposed by Briand et al. [1998], and our proofs show that LSCC does
not violate any of them. The empirical validation involves eleven cohesion metrics,
including the most common MMI cohesion metrics in the literature and LSCC, to
classes selected from four open source Java systems for which fault report repositories
are available. As a way to obtain indirect evidence that they measure what they
purport to, we explore the correlations between the eleven metrics being considered
and the occurrence of faults in classes. The results show that LSCC is one of three
metrics that better explains the presence of faults in classes, as compared to the other
proposed metrics. Additionally, it fares much better in that respect than other MMI
cohesion metrics that do not consider the degree of interaction between each pair of
methods. Taking into account both theoretical and empirical results, this indirectly
suggests that LSCC is a better cohesion metric. This is based on the widely used
and accepted assumption that a (cohesion) metric that better explains the presence
of faults is a better quality indicator and therefore a better constructed measure
[e.g., Aggarwal et al. 2007; Briand et al. 1998, 2001b; Gyimothy et al. 2005; and
Marcus et al. 2008].

The major contributions of this paper are as follows:

(1) Introducing an MMI-based cohesion metric (LSCC) that considers the degree of
interaction between each pair of methods and, at the same time, satisfies key co-
hesion mathematical properties;

(2) Proposing an objective, mathematical-based refactoring procedure based on the
new cohesion metric;

(3) Empirically validating LSCC by analyzing its correlation with eleven existing
cohesion metrics and investigating its relationship, along with these other met-
rics, on the presence of faults in classes of four open source Java systems: The
goal was not to build fault prediction models but to study the relative fault
prediction capability of LSCC and indirectly assess its strength as a quality
indicator;

(4) Theoretically and empirically studying the effect of including or excluding con-
structors, destructors, and access methods on LSCC calculation.

This article is organized as follows. Section 2 reviews related work. Section 3 de-
fines the proposed metric, and Section 4 shows its use as a class-refactoring indicator.
Section 5 discusses the theoretical validation of the proposed metric, and Section 6
illustrates several empirical case studies and reports and discusses results. Finally,
Section 7 concludes the article and discusses future work.

2. RELATED WORK

In this section, we summarize a widely used set of mathematical properties that all
class cohesion metrics are expected to satisfy and on which we will rely for our theoret-
ical validation. In addition, we review and discuss several existing MMI class cohesion

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:5

metrics for object-oriented systems and other related work in the area of software
cohesion measurement.

2.1 Class Cohesion Metric Necessary Properties

Briand et al. [1998] defined four mathematical properties that provide a supportive
underlying theory for class cohesion metrics. The first property, called nonnegativ-
ity and normalization, states that a cohesion measure belongs to a specific interval
[0, Max]. Normalization allows for easy comparison between the cohesion of differ-
ent classes. The second property, called null value and maximum value, holds that
the cohesion of a class equals 0 if the class has no cohesive interactions (i.e., interac-
tions among attributes and methods of a class), while the cohesion of a class is equal
to Max if all possible interactions within the class are present. The third property,
called monotonicity, holds that the addition of cohesive interactions to the module can-
not decrease its cohesion. The fourth property, called cohesive modules, holds that the
merging of two unrelated modules into one module does not increase the module’s co-
hesion. Therefore, given two classes, c1 and c2, the cohesion of the merged class c’
must satisfy the following condition: cohesion(c’) ≤ max {cohesion(c1), cohesion(c2)}.
If a metric does not satisfy any of these properties, it is considered ill-defined [Briand
et al. 1998]. These properties were widely used to support the theoretical validation
for several proposed class cohesion metrics [e.g., Al Dallal 2010; Briand et al. 1998;
Zhou et al. 2002, 2004].

2.2 MMI Class Cohesion Metrics

Several metrics have been proposed in the literature to measure class cohesion during
the HLD and LLD phases. These metrics use different underlying models and formu-
las. Table I provides definitions for ten of the most relevant works regarding MMI
cohesion metrics. Other LLD and HLD metrics and less directly relevant work are
briefly discussed in the subsequent subsection.

Al Dallal [2010] proved that none of the lack of cohesion metrics (i.e., LCOM1,
LCOM2, LCOM3, and LCOM4) satisfies the normalization property. In addition,
LCOM3 and LCOM4 do not satisfy the null value and maximum value property.
The metrics LCOM1, LCOM2, LCOM3, LCOM4, TCC, LCC, DCD, and DCI do not
distinguish between pairs of methods that share different numbers of attributes.
Thus, counter-intuitively, a pair of methods within the same class that shares only one
attribute has the same cohesion degree as a pair of methods sharing all attributes.
The CC metric measures the cohesion more precisely than the aforementioned
metrics, because it considers the number of shared attributes between each pair of
methods. However, CC does not satisfy the monotonicity property in some cases. That
is, when a cohesive interaction is added to a class, the counter-intuitive result may
be a class with a lower CC value, as depicted in classes A and B, given in Figure 2,
where rectangles, circles, and links represent methods, attributes, and the use of the
attributes by the methods, respectively. This occurs because the addition of a cohesive
interaction may increase the similarity between a pair of methods and decrease the
similarity between other pairs of methods. In this case, the cohesion increases if the
summation of the similarities between pairs of methods increases, and vice versa.
Similar to CC, SCOM measures the cohesion more precisely than the aforementioned
metrics because it considers the number of shared attributes between each pair of
methods. However, SCOM does not satisfy the monotonicity property in some cases,
as depicted in classes C and D, given in Figure 2. Both CC and SCOM neither consider
transitive method-method interactions nor account for inheritance or different types

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:6 J. Al Dallal and L. C. Briand

Table I. Definitions of the Considered MMI Class Cohesion Metrics

Class Cohesion Metric Definition/Formula
Lack of Cohesion of Methods
(LCOM1) [Chidamber and
Kemerer 1991]

LCOM1 = Number of pairs of methods that do not share attributes.

LCOM2 [Chidamber and
Kemerer 1994]

P = Number of pairs of methods that do not share attributes.
Q = Number of pairs of methods that share attributes.

LCOM2 =

{
P − Q if P − Q ≥ 0
0 otherwise

LCOM3 [Li and Henry 1993] LCOM3 = Number of connected components in the graph that
represents each method as a node and the sharing of at least one
attribute as an edge.

LCOM4 [Hitz and Montazeri
1995]

Similar to LCOM3 and additional edges are used to represent
method invocations.

Tight Class Cohesion (TCC)
[Bieman and Kang 1995]

TCC = Relative number of directly connected pairs of methods,
where two methods are directly connected if they are directly
connected to an attribute. A method m is directly connected to an
attribute when the attribute appears within the method’s body
or within the body of a method invoked by method m directly or
transitively.

Loose Class Cohesion (LCC)
[Bieman and Kang 1995]

LCC = Relative number of directly or transitively connected pairs
of methods, where two methods are transitively connected if they
are directly or indirectly connected to an attribute. A method m,
directly connected to an attribute j, is indirectly connected to an
attribute i when there is a method directly or transitively connected
to both attributes i and j.

Degree of Cohesion-Direct (DCD)
[Badri and Badri 2004]

DCD = Relative number of directly connected pairs of methods,
where two methods are directly connected if they satisfy the
condition mentioned above for TCC or if the two methods directly
or transitively invoke the same method.

Degree of Cohesion-Indirect (DCI)
[Badri and Badri 2004]

DCI = Relative number of directly or transitively connected pairs
of methods, where two methods are transitively connected if they
satisfy the same condition mentioned above for LCC or if the two
methods directly or transitively invoke the same method.

Class Cohesion (CC) [Bonja and
Kidanmariam 2006]

CC = Ratio of the summation of the similarities between all pairs
of methods to the total number of pairs of methods. The similarity
between methods i and j is defined as:

Similarity(i, j) =
∣∣Ii∩I j

∣∣∣∣Ii∪I j
∣∣ , where Ii and I j are the sets of attributes

referenced by methods i and j, respectively.
Class Cohesion Metric (SCOM)
[Fernández and Peña 2006]

SCOM = Ratio of the summation of the similarities between all
pairs of methods to the total number of pairs of methods. The simi-
larity between methods i and j is defined as:

Similarity(i, j) =
∣∣Ii∩I j

∣∣
min(|Ii|,

∣∣I j
∣∣) ·

∣∣Ii∪I j
∣∣

l , where l is the number of at-

tributes

of methods, and they have not been empirically validated against external quality
attributes such as fault occurrences.

2.3 Overview of Other Relevant Work

Yourdon and Constantine [1979] proposed seven levels of cohesion. These levels in-
clude coincidental, logical, temporal, procedural, communicational, sequential, and
functional. The cohesion levels are listed in ascending order of their desirability. Since
then, several cohesion metrics have been proposed for procedural and object-oriented
programming languages. Different models have been used to measure the cohesion

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:7

Fig. 2. Classes with different method-method connectivity patterns.

of procedural programs, such as the control flow graph [Emerson 1984], the variable
dependence graph [Lakhotia 1993], and program data slices [Al Dallal 2007, 2009;
Bieman and Ott 1994; Ott and Thuss 1993]. Cohesion has also been indirectly mea-
sured by examining the quality of structure designs [Bieman and Kang 1998; Troy and
Zweben 1984].

Several LLD class cohesion metrics have been proposed in the literature, including
the ones discussed in the previous subsection. Henderson-Sellers [Henderson-Sellers
1996] proposed a metric called LCOM5 that measures a lack of cohesion in methods by
considering the number of methods referencing each attribute. In this case, LCOM5 =
(a-kl)/(l-kl), where l is the number of attributes, k is the number of methods, and a
is the number of distinct attributes accessed in the methods of a class. Briand et al.
[1998] proposed a cohesion metric, called Coh, that computes cohesion as the ratio
of the number of distinct attributes accessed in the methods of a class. Wang et al.
[2005] introduced a Dependence Matrix-based Cohesion (DMC) class cohesion metric
based on a dependency matrix that represents the degree of dependence among the
instance variables and methods in a class. Chen et al. [2002] used dependence analysis
to explore attribute-attribute, attribute-method, and method-method interactions.
They measured cohesion as the relative number of interactions. Chae et al. [2000]
proposed a metric called Cohesion Based on Member Connectivity (CBMC) that does
not consider only the number of interactions, but also the patterns of the interactions
between the methods in a class. The metric considers the ratio of the number of
glue methods to the number of methods of interest. The number of glue methods
equals the minimum number of methods required such that their removal causes the
method-attribute interaction graph to become disjoint. Zhou et al. [2002] introduce
ICBMC, an improved version of CBMC, that considers the cut sets instead of glue
methods. The cut set is the minimum set of edges such that their removal causes the
method-attribute interaction graph to become disjoint. Chae et al. [2004] consider the
effects of dependent attributes on the measurement of cohesion. Dependent attributes

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:8 J. Al Dallal and L. C. Briand

are the attributes whose values are obtained using other attributes. Zhou et al. [2004]
and Etzkorn et al. [2004] analyze and compare several LLD class cohesion metrics.

Several HLD class cohesion metrics have also been proposed in the literature, in-
cluding Cohesion Among Methods in a Class (CAMC), Normalized Hamming Distance
(NHD), Scaled NHD (SNHD), and Similarity-based Class Cohesion (SCC). The CAMC
metric [Bansiya et al. 1999] uses a parameter-occurrence matrix that has a row for
each method and a column for each data type used at least once as the type of a param-
eter in at least one method in the class. The value in row i and column j in this matrix
equals 1 when the ith method has a parameter of the jth data type, and it equals 0 oth-
erwise. The CAMC metric is defined as the ratio of the total number of 1s in the matrix
to the total size of the matrix. The NHD metric [Counsell et al. 2006] uses the same
parameter-occurrence matrix used by CAMC. The metric calculates the average pa-
rameter agreement between each pair of methods. The parameter agreement between
a pair of methods is defined as the number of entries in which the corresponding rows
in the parameter-occurrence matrix match. SNHD [Counsell et al. 2006] is a metric
that represents the closeness of the NHD metric to the maximum value of NHD, as
compared to the minimum value. The SCC metric [Al Dallal and Briand 2010] uses a
matrix called a Direct Attribute Type (DAT) matrix, which has a row for each method
and a column for each distinct parameter type that matches an attribute type. The
value in row i and column j in the matrix equals 1 when the jth data type is a type of
at least one of the parameters or return of the ith method, and it equals 0 otherwise.
The SCC metric is the weighted average of four different metrics that consider method-
method, attribute-attribute, and attribute-method direct and transitive interactions.
Method-Method through Attributes Cohesion (MMAC) considers method-method in-
teractions, and it is defined as the ratio of the summation of the similarities between
all pairs of methods to the total number of possible pairs of methods. The similarity
between a pair of methods is defined as the ratio of shared parameter types that match
attribute types to the number of parameter types represented in the DAT matrix.

In summary, several class cohesion metrics have been introduced in the literature.
Some of these metrics are based on measuring MMIs defined during the LLD phase.
However, these metrics have one or more of the following limitations: (1) they do not
consider the number of shared attributes; (2) they do not satisfy key mathematical co-
hesion properties; (3) they do not consider class inheritance, different types of methods,
or transitive interactions; and (4) they have not been empirically validated in terms of
their relationships to external quality attributes such as fault occurrences. To address
these issues, in this paper, we propose a metric called LLD Similarity-based Class
Cohesion (LSCC). LSCC is based on a precise MMI definition that satisfies widely ac-
cepted class cohesion properties and is useful as an indicator for restructuring weakly
cohesive classes. Also, LSCC can easily account for class inheritance and direct and
transitive interactions. In addition, LSCC differentiate between various types of meth-
ods (i.e., access methods, constructors, and destructors).

3. LLD SIMILARITY-BASED CLASS COHESION (LSCC)

The LLD Similarity-based Class Cohesion (LSCC) proposed in this paper considers
MMIs modeled in a matrix, denoted here as Method-Attribute Reference (MAR). The
matrix and the corresponding metric are defined as follows.

3.1 Model Definition

The Method-Attribute Reference (MAR) matrix is a binary k × l matrix, where k is the
number of methods and l is the number of attributes in the class of interest. The MAR

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:9

Table II. The MAR Matrix for the PrintValues Class
including Transitive Interactions

x y z
printX 1 0 0
printY 0 1 0
printXZ 1 0 1
printYZ 0 1 1
printXZY 1 1 1

matrix has rows indexed by the methods and columns indexed by the attributes, and
so for 1≤ i ≤ k, 1≤ j ≤ l,

mij =

{
1 if ith method references jth attribute,
0 otherwise

The information required to construct this matrix is obtained by analyzing the source
code of the class of interest. Note that a reference to a variable where the name
matches the name of both a local variable and an attribute is not considered a reference
to the attribute unless it is explicitly indicated (e.g., using the this keyword in Java).
The matrix implicitly models method-method interactions. A cohesive method-method
interaction is represented in the MAR matrix by two rows that share the binary values
of 1 in a column.

The MAR matrix can account for transitive interactions caused by method invoca-
tions. In this case, the binary value 1 in the matrix indicates that the attribute is
directly or transitively referenced by the method. An attribute is transitively refer-
enced by method mj if the attribute is directly referenced by method mi and if method
mj directly or transitively invokes method mj. For example, Table II shows the MAR
matrix corresponding to the sample PrintValues Java class shown in Figure 3. The
MAR matrix shows that methods PrintX andPrintY directly reference attributes x and
y, respectively, and methods printXZ and printYZ directly reference attribute z. In
addition, the table shows five binary values of 1, highlighted in boldface for clarifica-
tion purposes, to represent the transitive references of attribute x by method printXZ,
attribute y by method printYZ, and attributes x, y, and z by method printXZY.

3.2 The Metric

The similarity between two items is the collection of their shared properties. In the
context of the MAR matrix introduced in Section 3.1, the similarity between two rows
quantifies the cohesion between a pair of methods. As in the study by Al Dallal and
Briand [2010], the similarity between a pair of rows is defined as the number of entries
in a row that have the same binary values as the corresponding elements in the other
row. The normalized similarity, denoted as ns(i, j), between a pair of rows i and j is
defined as the ratio of similarity between the two rows to the number of entities Y in
the row of the matrix, and it is formally defined as follows:

ns(i, j) =

Y∑
x=1

(mix ∧ mjx)

Y
, (1)

where ∧ is the logical and relation.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:10 J. Al Dallal and L. C. Briand

Fig. 3. Sample PrintValues Java class.

Cohesion refers to the degree of similarity between module components. LSCC is
the average cohesion of all pairs of methods. Using the MAR matrix, the LSCC of a
class C consisting of k methods and lattributes is formally defined as follows:

LSCC(C) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if l = 0 and k > 1,
1 if (l > 0 and k = 0) or k = 1,

2
k(k−1)

k−1∑
i=1

k∑
j=i+1

ns(i, j,) otherwise.
(2)

LSCC is undefined for the meaningless case of a class with no attributes and methods.
If a class with several methods does not have any attributes, the methods will be
considered unrelated and the cohesion will be the minimum value. If a class that has
attributes does not have methods, the attributes declare the structure of a class that
does not have behavior. Our interpretation for this case is that we would expect all the
attributes to describe the features of the same object. Therefore, the class is expected
to be fully cohesive. The general definition for a cohesive module is that it performs
a single task and cannot be easily split [Bieman and Ott 1994]. Assuming that each
method performs a cohesive task, a class that has a single method is associated with
a single task, namely the task performed by its method, and cannot be easily split.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:11

Therefore, the cohesion value for such a class must be the maximum. By substituting
Eq. (1) for Eq. (2), the LSCC of class C is calculated in the case of a class with multiple
methods as follows:

LSCC(C) =
2

lk(k − 1)

k−1∑
i=1

k∑
j=i+1

l∑
w=1

(miw ∧ mjw). (3)

The following metric is an alternative form of the LSCC metric, which facilitates the
analysis of the metric and speeds up its computation:

PROPOSITION 3.1. For any class C,

LSCC(C) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if l = 0 and k > 1,

1 if (l > 0 and k = 0) or k = 1,
l∑

i=1
xi(xi − 1)

lk(k − 1)
otherwise.

(4)

Note that xi is the number of 1s in the ith column of the MAR matrix.

PROOF. By definition, when l = 0 or k ≤ 1, Eqs. (3) and (4) are equal. Otherwise, for
the ith column, there are xi(xi-1)/2 similarities between the methods (i.e., cases where
two methods access the same attribute), and therefore:

LSCC(C) =
2

lk(k − 1)

k−1∑
i=1

k∑
j=i+1

l∑
w=1

(miw ∧ mjw) =
2

lk(k − 1)

l∑
i=1

xi(xi − 1)

2
,

which equals the preceding formula.

For example, using Eq. (4) and the MAR matrix given in Table II, leaving out
transitive interactions, the LSCC metric for the PrintValues class is calculated as
follows:

LSCC(PrintValues) =
1(0) + 1(0) + 2(1)

3(5)(4)
= 0.033

In this case, the value of LSCC appears to be low because ignoring the transitive in-
teractions leaves only two methods, namely printXZ and printYZ, to share a common
attribute and all other methods to be disjoint. When transitive interactions are con-
sidered, the LSCC metric for thePrintValues class is calculated as follows:

LSCC(PrintValues) =
3(2) + 3(2) + 3(2)

3(5)(4)
= 0.3

Typically, object oriented classes include constructors and access methods (i.e., setter
and getter methods). In some object-oriented programming languages, such as C++,
classes can have destructors too. Usually, the constructor method provides initial
values for most or all of the class attributes. Therefore, typically, the similarity,
defined in Eq. (1), between the constructor and any other method m is equal to or

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:12 J. Al Dallal and L. C. Briand

higher than the similarity between method m and any other method in the class. As
a result, including constructors can cause LSCC to increase artificially. The same
argument applies for destructors, although destructors are less problematic, because
they typically do not reference most if not all attributes. An access method references
by definition one attribute, and therefore, the similarity, defined by LSCC, between
the access method and each nonaccess method is relatively low. In addition, the
similarity between each pair of setter methods equals zero. The same applies for each
pair of getter methods. Therefore, the presence of access methods causes LSCC to
decrease artificially. As a result, when applying LSCC, constructors, destructors, and
access methods should be excluded based on theoretical grounds.

Note that the same argument is not applicable for CC and SCOM. In CC, the similar-
ity between a pair of methods is defined as the ratio of the number of shared attributes
by the two methods to the number of distinct attributes referenced by either of the two
methods. As a result, unlike the similarity defined for LSCC, the similarity, defined
for CC, between a method m and a constructor, a destructor, or an access method can
be less than, greater than, or equal to the similarity between method m and any other
method in the class. Therefore, the average similarities between method m and each
of the other methods including the constructor can be less than, greater than, or equal
to that when the constructor is excluded. In conclusion, ignoring the constructor, de-
structor, or access methods from the computation of CC causes unpredictable effect on
CC values. Similar to CC, the similarity defined by SCOM, between two methods also
depends on the number of shared attributes and the number of distinct attributes ref-
erenced by the two methods. As a result, contrary to LSCC, the impact of ignoring the
access methods, constructors, and destructors from the computation of CC and SCOM
is hard to determine theoretically.

To account for class inheritance, all directly and transitively accessible inherited
methods and attributes must be included in the MAR matrix. The inherited meth-
ods can be extracted with source code analysis, although dynamic binding introduces
complications as it is not considered in the MAR matrix because the source code anal-
ysis is performed statically. Including inherited attributes and methods allows for
measuring the cohesion of the class as a whole, whereas excluding them results in
measuring the cohesion of the class locally. This means that including or excluding the
inherited attributes and methods depends on the measurement purpose. Inherited
methods do not reference the attributes of the inheriting class. Therefore, including
only the inherited methods decreases the average similarities between each pair of
methods, and consequently, decreases the LSCC value. On the other hand, inherited
attributes are supposed to be referenced by some of the methods in the inheriting class.
Therefore, the change in the LSCC value after including only the inherited attributes
depends on whether the added references increase or decrease the average similari-
ties between each pair of methods. Finally, the change in the value of LSCC, when
including both the inherited attributes and methods, depends on (1) the change in the
similarities between each pair of inheriting methods, (2) the average similarities be-
tween each pair of inherited methods, and (3) the average similarities between each
pair of inheriting and inherited methods. The first and third factors can cause the
value of LSCC to increase or decrease. On the other hand, the second factor causes the
value of LSCC to decrease because, in this case, the number of attributes considered
is increased, whereas the number of references and the number of methods remain
the same.

One advantage of LSCC over LCOM1, LCOM2, TCC, LCC, DCD, and DCI is that
it considers the number of shared attributes between each pair of methods in the
class. In addition, it is better than CC and SCOM in the sense that it (1) accounts for
transitive interactions and class inheritance, (2) differentiates between different types

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:13

of methods, and (3) satisfies the mathematical cohesion properties, as discussed in
Section 5.

4. REFACTORING THRESHOLD

Refactoring aims at enhancing code understandability and maintainability, and it
refers to the process of changing an existing object-oriented software code to improve
its internal structure while preserving its external behavior [Fowler 1999]. Tokuda
and Batory [2001] identify several refactoring benefits including automating design
changes, reducing testing efforts, simplifying designs, assisting validation, and experi-
menting new designs. Fowler [1999] describes when and how to perform several refac-
toring scenarios. Researchers use design metrics, including cohesion, to either validate
their refactoring techniques [e.g., O’Keeffe and Cinneide 2006] or guide refactoring
activities [e.g., De Lucia et al. 2008 and Czibula and Serban 2006]. Bois et al. [2004]
identify Move Method and Extract Class among the refactoring activities that can im-
prove the cohesion and coupling of an existing code. Move Method refers to moving a
method from one class to the class in which the method is used most, and Extract Class
refers to creating a new class to include related attributes and methods currently exist-
ing in the original class [Fowler 1999]. De Lucia et al. [2008] propose a cohesion-based
refactoring technique that considers the structural and semantic similarity between
each pair of methods. The structural similarity is based on the similarity metric origi-
nally proposed by Bonja and Kidanmariam [2006], whereas the semantic similarity is
based on the conceptual cohesion metric [Marcus and Poshyvanyk 2005] that consid-
ers the comments and identifiers included in the source code. De Lucia et al. [2008]
suggest an experimental-based value for the refactoring threshold. However, the ex-
ternal validity of this value is necessary limited due to the specificities of the classes
selected to run the experiment. In this section, we propose a theory-based refactoring
threshold using LSCC. Consequently, the proposed threshold is independent of any ex-
perimental context. Two refactoring scenarios are considered. In the first scenario, the
threshold based on LSCC is introduced to support Move Method (i.e., decide whether a
certain method should be removed from a class, and probably, moved to another class,
to improve overall software cohesion). In the second scenario, the threshold is used to
guide Extract Class (i.e., decide whether a class should be split into several classes to
enhance overall software cohesion). Although we realize that there are other factors to
consider besides cohesion, using multiple criteria for class feature assignment is out of
the scope of this paper.

4.1 Move Method Refactoring

A method should be removed from a class if its interaction with the other methods
is weak to the extent that the method’s inclusion in the class weakens its overall co-
hesion. In this case, the cohesion of the class after method removal is higher than
that before method removal. Let us denote the method that we would like to consider
removing as m, the class before the removal of the method as Cold, the class after the
removal of the method as Cnew, the number of attributes and methods in Cold as l and k,
respectively, the number of 1s in the ith column (ith attribute) in the MAR matrix rep-
resenting class Cold as xi, and the value of the entry in row m and column i in the MAR
matrix (i.e., the reference of attribute i by method m) as yi. As discussed in the proof of
Eq. (4), the numerator of the formula equals twice the number of similarities between
the methods of the class under consideration, and it therefore equals the summation
of twice the number of similarities between the methods of the class excluding method
m and twice the number of similarities between method m and the other methods of
the class, which is denoted α. In other words, α is the degree of interaction between

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:14 J. Al Dallal and L. C. Briand

method m and the other methods in class Cold, and it is calculated as α=2
l∑

i=1
xiyi. The

method should be removed when:

LSCC(Cold) < LSCC(Cnew) ⇒

l∑
i=1,i�=m

xi(xi − 1) + α

lk(k − 1)
<

l∑
i=1,i�=m

xi(xi − 1)

l(k − 1)(k − 2)
⇒ α <

2
l∑

i=1,i�=m
xi(xi − 1)

k − 2
.

Instead of computing LSCC for the class before and after the method removal and com-
paring the results, the preceding inequality eases the required computations, a clear
benefit when facing many methods and a large number of classes. The inequality is ap-
plicable when there are more than two methods in the class. When the class includes
only two methods, developers are advised to move a method to a more appropriate class
if the degree of interaction between the considered method and the methods of the tar-
get class is greater than the degree of interaction between the considered method and
the other method in the considered class. Intuitively, it is rather obvious that develop-
ers should not be advised to move a method from a class when this class includes one
method. LSCC is consistent with this expectation as, given the definition in Eq. (4),
such a class has the maximum possible value.

For example, for the class given in Figure 3, the preceding inequality can be applied
to decide whether to move method printX. In this case, we refer to the MAR matrix
given in Table II, x1y1 = 1 × 2 = 2, where x1 is the cell value in the first column of
the matrix in the row representing the methods printX, and y1 is the number of 1s
in the first column of the matrix in the rows representing the other methods. Simi-
larly, xiyi can be calculated for each of the three columns in the matrix. As a result,

the value for α for method printX equals 2
l∑

i=1
xiyi = 2[1(2) + 0(3) + 0(3)] = 4. In this

case, the value for the other side of the inequality equals 2[2(1) + 3(2) + 3(2)]/(5-2) =
9.33. Since the inequality is true, we conclude that the method should be removed,
and in this case, the cohesion of the class will increase. Similarly, the values for α
for each of the other methods given in Table II equal 4, 8, 8, and 12, respectively.
The corresponding values for the other side of the inequality equal 9.33, 6.67, 6.67,
and 4, respectively. Since the inequality is true only for printY, as well as printX,
as shown above, we conclude that these two methods should be removed from the
class, and the other methods should be retained. This result matches our expecta-
tion, since removal of these two methods from the class increases its LSCC value from
0.3 to 0.55.

Ignoring the constructors, destructors, and access methods, when calculating LSCC,
prevents mistakenly recommending that these methods be removed from the class.
That is, if the access methods are included in the LSCC calculation, the refactoring
threshold can mistakenly indicate that the access methods have to be removed from
the class because the similarity between each of such methods and each of the other
methods is expected to be low. In refactoring, cohesion has to be considered locally
(i.e., inherited methods and attributes should be ignored). Otherwise, including such
methods and attributes can cause recommending their removal from the class, which
would be absurd. Finally, considering transitive interactions decreases the chances of
mistakenly recommending the removal of methods invoked by other methods in the
class.

Note that the proposed refactoring threshold α is only applicable when LSCC for
the class before moving the method is greater than zero. If none of the pairs of meth-
ods in the class before moving the method share a common attribute, the class LSCC

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:15

value will be zero. In this case, during refactoring, developers are advised to move the
methods of the class to more appropriate classes.

4.2 Extract Class Refactoring

Based on the definition of the LSCC metric, a threshold can be defined and used as
a support for deciding whether a class should be kept as is or divided into several
classes. A class could be partitioned into several classes if the cohesion of these classes
is greater than the cohesion of the original class. Each of these classes consists of a set
of methods moved from the original class, and therefore, the Move Method refactoring,
tackled in Section 4.1, is a special case of the more general Extract Class refactor-
ing. The cohesion of software consisting of several classes is defined as the weighted
cohesion of the classes, where the numerator part of the weight of a class equals l if
k equals one; otherwise, the numerator part of the weight of a class is equal to the
denominator of Eq. (4), given in Section 3.2, for that class. For all classes, the de-
nominator part of the weight is equal to the summation of the denominator part of
Eq. (4) for all classes. For simplicity, the case in which we must decide whether a class
should be split into two classes is considered here. The same concept can be applied
to a decision about partitioning a class into more than two classes. For a class C,
given that the numerator and denominator of Eq. (4) are denoted by N(C) and D(C),
respectively, when class C is split into two classes C1 and C2, the weighted cohesion of
the two classes (i.e., the resulting cohesion of the cluster consisting of the two classes)
equals:

LSCC(C1) × D(C1) + LSCC(C2) × D(C2)
D(C1) + D(C2)

=
N(C1) + N(C2)
D(C1) + D(C2)

As discussed in the proof of Eq. (4), N(C) is twice the number of similarities between
the methods of class C, and it therefore equals the summation of (1) twice the number
of similarities between the methods of class C1, (2) twice the number of similarities
between the methods of class C2, and (3) twice the number of similarities between the
methods of class C1 and the methods of class C2, which is denoted as α. As a result,
the numerator of Eq. (4) for class C before splitting equals N(C1) + N(C2) + α. In this
case, class C should be split into two classes C1 and C2 when:

N(C1) + N(C2)
D(C1) + D(C2)

>
N(C1) + N(C2) + α

D(C)
. (5)

The term α defined above equals 2
l∑

i=1
xiyi, where l is the number of attributes in class

C, and xi and yi are the number of 1s in column iof the MAR matrix in the rows
representing the methods of classes C1 and C2, respectively. The term α indicates the
degree of interaction between the methods of the two classes. Recall that the formula
used to compute α is the same for both Extract Class refactoring addressed here and
Move Method refactoring addressed in Section 4.1. The only difference is in the value
of xi, which equals the number of 1s in column i in the rows representing the moved
out methods. That is, in Move Method refactoring, only one row corresponding to
the moved method is considered, whereas several rows corresponding to the set of
moved methods are considered in Extract Class refactoring. By substituting the nu-
merator and denominator of Eq. (4) in inequality (5), the threshold for α is defined as
follows:

α<

[D(C) − D(C1) − D(C2)][N(C1) + N(C2)]
D(C1) + D(C2)

=
[l.k(k − 1) − l1.k1(k1 − 1) − l2.k2(k2 − 1)][

l1∑
i=1

xi(xi − 1) +
l2∑
i=1

yi(yi − 1)]

l1.k1(k1 − 1) + l2.k2(k2 − 1)
,

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:16 J. Al Dallal and L. C. Briand

where l, l1, l2, k, k1, and k2 are the numbers of attributes and methods in classes C, C1,
and C2, respectively. Because the weight of the cohesion of a class equals lif k equals
one, the above inequality is defined for all possible cases as follows:

α <

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[l.k(k−1)−l1−l2][l1+l2]
l1+l2

= l.k(k − 1) − l1 − l2 if k1 = 1and k2 = 1

[l.k(k−1)−l1−l2.k2(k2−1)][l1+
l2∑
i=1

yi(yi−1)]

l1+l2.k2(k2−1) if k1 = 1and k2 > 1

[l.k(k−1)−l1.k1(k1−1)−l2][
l1∑
i=1

xi(xi−1)+l2]

l1.s1(s1−1)+l2
if k1 > 1and k2 = 1

[l.k(k−1)−l1.k1(k1−1)−l2.k2(k2−1)][
l1∑
i=1

xi(xi−1)+
l2∑
i=1

yi(yi−1)]

l1.k1(k1−1)+l2.k2(k2−1) if k1 > 1and k2 > 1

(6)

Inequality (6) reduces the complexity of the computations required for the class
refactoring decision. That is, instead of (1) computing LSCC for each of the classes
considered, (2) computing the weighted average of the calculated LSCC values, (3)
computing LSCC for the resulting class, and (4) comparing the results of steps 2 and
3 to decide whether to split the class, inequality (6) can be used directly to make the
refactoring decision. For example, for the class given in Figure 3, inequality (6) can be
applied to decide whether to split the class in two, with one containing the methods
printX and printY and the other containing the other three methods. In this case, we
refer to the MAR matrix given in Table II, x1y1 = 1 × 2 = 2, where x1 is the number
of 1s in the first column of the matrix in the rows representing the methods printX
and printY, and y1 is the number of 1s in the first column of the matrix in the rows
representing the other methods. Similarly, xiyi can be calculated for each of the three

columns in the matrix. As a result, α = 2
3∑

i=1
xiyi = 2[1(2) + 1(2) + 0(3)] = 8. In addition,

referring to the data given in Table II, note that l = 3, l1 = 2 (i.e., numbers of attributes
referenced by the class containing the methods printX and printY), l2 = 3, k = 5, k1 =
2, and k2 = 3, and therefore, the inequality in (6) can be computed as follows:

8 <
[3(5)(5 − 1) − 2(2)(2 − 1) − 3(3)(3 − 1)][(0 + 0) + (2(2 − 1) + 2(2 − 1) + 3(3 − 1))]

2(2)(2 − 1) + 3(3)(3 − 1)
.

Since the inequality is true, we conclude that the class should be split as specified
above. In contrast, the following application of the inequality shows that the class
should not be split into two classes, namely, one containing the methods printX, printY,

and printZ and the other containing the other two methods. In this case, α = 2
3∑

i=1
xiyi =

2[2(1) + 2(1) + 1(1)] = 12. In addition, referring to the data given in Table II, note that
l = 3, l1 = 3, l2 = 3, k = 5, k1 = 3, and k2 = 2, and therefore, the inequality is as follows:
12 > [3(5)(5−1)−3(3)(3−1)−3(2)(2−1)][(2+0+0)+(0+2+2)]

3(3)(3−1)+3(2)(2−1) , which indicates that the class should not
be split as specified above.

Note that inequality (6) is only applicable when the LSCC value of the class before
being split is greater than zero. If none of the pairs of methods in the class before being
split shares a common attribute, the LSCC value of the class will be zero. In this case,
the class must be strongly considered as a candidate for refactoring.

4.3 Refactoring Case Study

Extract Class refactoring, in which several methods are moved out from a class,
is a generalized case of the Move Method refactoring, in which a single method is

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:17

moved out. In this case study, we assessed the proposed Move Method refactoring
criterion based on LSCC in order to determine whether it leads to adequate deci-
sions. The same results follow for the Extract Class refactoring criterion that con-
siders moving more than a method, because both criteria are based on the same
principle.

To assess whether our proposed LSCC-based, Move Method refactoring crite-
rion (Section 4.1) is really appropriate to decide about refactoring, we applied it to
classes randomly selected from JHotDraw version 7.4.1 [JHotDraw 2010], an open
source framework developed as an exercise for using design patterns. JHotDraw is
well-known for its good design [Czibula and Serban 2006]; it consists of 576 classes.
To a large extent and with high confidence, JHotDraw can therefore be considered a
well-designed system. In such a system, methods are expected to be encapsulated in
their most appropriate classes. As a result, a method that would artificially be moved
from its original class to an arbitrary target class is highly likely to be weakly related
to the target class members. Such a case should therefore be detected by a well-defined
refactoring criterion—such as the one we defined—when applied to the modified target
class. In order to assess our refactoring criterion we tested this conjecture on JHot-
Draw classes to determine whether the newly moved methods were misplaced and
should be taken out.

A research assistant, who was not previously involved in this research, randomly
selected 130 JHotDraw classes. Among them, 65 classes were randomly selected as
target classes to which methods would be moved. The restrictions placed on the choice
of these target classes were that they (1) are not utility classes (i.e., not classes defined
to provide common reusable methods) and (2) include several attributes and several
methods other than the access methods and constructors. In other words, each of the
selected target classes constitutes an abstract data type encapsulating methods and
attributes. As a result, each time a class was sampled randomly from the pool of the
130 classes, its compliance with the two criteria was assessed. The classes that fit
both criteria were included in the set of target classes, and the other classes were
discarded. This process terminated when the required 65 classes were identified. The
discarded and remaining classes were used as source classes from which classes were
moved.

A method was randomly selected from each of the classes that were not previously
selected as target classes. The restrictions placed on the choice of these methods were
that they were not constructors or access methods and their size was not trivial based
on an arbitrary threshold of 20 LOC. Each of the selected methods was moved using the
Move Method refactoring process defined by Fowler [1999] to a different class selected
randomly from the 65 target classes. Note that moving a method normally requires
adjusting the method to make it work in the target class (e.g., if the moved method
references attributes of the source class, new get methods may be needed in the source
class interface). As a result, each of the 130 selected classes was used once as either
a source or a target class. Our Move Method refactoring criterion was then applied
on each of the artificially moved methods in the target 65 classes to test whether the
resulting decision correctly matched the expectation that the misplaced method should
be removed from its class.

Using the LSCC-based inequality in Section 4.1, our results showed that our Move
Method refactoring criterion was able to detect that all the methods artificially moved
to target classes should be moved out. This empirically supports our claims, previously
made based on theoretical arguments, that LSCC is an appropriate cohesion metric to
guide refactoring, which as stated earlier, is our main motivation in defining it. Since
they are based on similar principles, similar results would be expected for the Extract
Class refactoring criterion.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:18 J. Al Dallal and L. C. Briand

4.4 Applications

This section does not introduce a refactoring approach. Instead, it proposes a thresh-
old that can be used in guiding class refactoring activities. This threshold is based
on theoretical analysis of LSCC, and therefore, it eliminates the limitation of the ap-
proach proposed by De Lucia et al. [2008], where an experimental threshold value is
proposed. There are several applications for our theory-based threshold. A developer
can apply the introduced inequalities to point out hot spots that suggest refactoring
opportunities. For example, in a real setting, both sides of the inequality proposed in
Section 4.1 can be calculated for each method in each class in the system. The classes
can be ranked according to the percentage of methods for which the inequality holds.
Classes with higher percentages of such methods are considered hot refactoring spots
and have to be given higher priority during the refactoring process.

The refactoring approach proposed by De Lucia et al. [2008] considers both struc-
tural and semantic cohesion. However, as discussed earlier in this section, that ap-
proach is based on experimental threshold values. It can however be extended by
applying the same ideas proposed in this section for calculating the threshold for both
structural and semantic cohesion metrics. The combination of both thresholds can be
used to decide whether a set of methods should be extracted to form another class or
whether a specific method should be removed from a class. The extended approach has
to be evaluated experimentally to compare its results with the refactoring results ob-
tained using the experimental-based thresholds. Such a study is left open for further
research.

4.5 Limitations

The proposed threshold is based on structural information of the source code, whereas
semantic information is ignored. In some cases, this can cause refactoring out meth-
ods that are structurally weakly cohesive but strongly cohesive semantically. The
second application introduced in the previous subsection can be applied to overcome
this limitation.

Refactoring classes requires not only accounting for cohesion, but also accounting
for other quality attributes, such as coupling [e.g., Bois et al. 2004]. Coupling refers
to the degree to which classes are connected to each other. Software developers aim
at increasing class cohesion and decreasing coupling between classes. Cohesion and
coupling are the two quality factors identified for improvement by refactoring activities
[Bois et al. 2004]. When performing refactoring tasks, developers have to keep the
balance between improving both cohesion and coupling because improving one of these
quality attributes can weaken the other. Despite the importance of considering these
two factors together, in this paper, we focus on cohesion, and we leave the consideration
of coupling and other factors open for future research.

Finally, effective class refactoring also requires accounting for the attributes (i.e.,
whether to keep the attributes in a class or to remove them). This paper considers
only MMIs, which indirectly considers the relations between attributes. The refactor-
ing threshold specified above can be improved by accounting for the degree of interac-
tions between attributes as well as methods. In summary, a comprehensive refactoring
approach should account for coupling between classes and structural and semantic co-
hesion among the methods and attributes of a class. The approach should aim at
restructuring the class to maximize its internal cohesion and minimize its coupling
with other classes. Thresholds have to be computed to decide whether to apply Extract
Class or Move Method.

To obtain the best solution for class splitting, α must be calculated for each possible
splitting scenario. Given a class consisting of k methods, there are C(k,n) = k!/[k!(k−n)!]

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:19

possible ways to split the class into two classes, when one of them includes n methods
and the other includes the remaining methods. Considering possible values of n, there

are
	 k

2
∑
n=1

C(k, n) possible ways to split the class into two classes, a typically large num-

ber which requires efficient computation. This justifies the importance of introducing
inequality (6) to speed up the computation required for refactoring decisions. Fur-
thermore, the number of possible ways to partition a class increases much more when
considering scenarios with more than two classes, which means that calculating α for
each of the possible cases is not feasible for classes consisting of a large number of
methods. In the future, we plan to introduce a clustering-based algorithm that uses α
to partition the methods into several groups such that each group represents a class
and overall software cohesion is improved. This approach can be compared with the
one proposed by De Lucia et al. [2008].

5. THEORETICAL VALIDATION

We validate LSCC using the properties for a class cohesion metric proposed by Briand
et al. [1998] and discussed in Section 2.1.

PROPERTY LSCC.1. The LSCC metric complies with the non-negativity and nor-
malization property.

PROOF. The minimum value for the LSCC metric for a class is 0 when the class has
either (1) several methods and no attributes or (2) several methods such that none of
their pairs share a common attribute. The maximum value for the LSCC metric for a
class is 1 when the class has (1) one or more attributes and no methods, (2) one method,
or (3) several methods and one or more attributes with each pair of methods sharing
all attributes in the class (i.e., each method references all attributes in the class). As a
result, the LSCC metric ranges over the interval [0, 1], and it therefore complies with
the non-negativity and normalization property.

PROPERTY LSCC.2. The LSCC metric complies with the null and maximum values
property.

PROOF. Given a class with a set of methods and attributes, if none of the pairs of
methods share a common attribute (that is, the class has no MMIs), the value of the
LSCC metric will be 0. Alternatively, if each attribute is shared between each pair of
methods (that is, the class features all possible MMIs), the value of the LSCC metric
will be 1 (that is, the maximum possible value). Hence, the LSCC metric complies with
the null and maximum values property.

PROPERTY LSCC.3. The LSCC metric complies with the monotonicity property.

PROOF. The addition of an MMI to the MAR matrix is represented by changing an
entry value from 0 to 1 in a column that has at least one entry value of 1. Changing
such an entry value from 0 to 1 increases the number of 1s in the column, which
increases the numerator value in Eq. (4). An increase in the numerator in Eq. (4)
increases the value of the LSCC metric, because the denominator does not change
unless the size of the matrix changes. As a result, the addition of a cohesive interaction
represented in the MAR matrix always increases the LSCC value, which means that
the LSCC metric complies with the monotonicity property.

PROPERTY LSCC.4. The LSCC metric complies with the cohesive module property.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:20 J. Al Dallal and L. C. Briand

PROOF. The merging of two unrelated classes c1 and c2 implies that none of the
methods in each of the two classes are shared and that none of them share common
attributes. Therefore, the number of rows and columns in the MAR matrix of the
merged class equals the sum of the number of rows and columns in the MAR matrices
of the unrelated classes. The number of 1s in each column in the MAR matrix of
the merged class equals the number of 1s in the corresponding column in the MAR
matrices of the unrelated classes. Therefore, for the MAR k × l matrix representing
class c1, the MAR m × n matrix representing class c2, and the MAR (k + m) × (l + n)
matrix representing the merged class c3:

l∑
i=1

xi(xi − 1) +
n∑

i=1

xi(xi − 1) =
l+n∑
i=1

xi(xi − 1)

Suppose that LSCC(c1) ≥ LSCC (c2), then:

l∑
i=1

xi(xi−1)

lk(k−1) ≥
n∑

i=1
xi(xi−1)

mn(m−1) ⇒ mn(m − 1)
l∑

i=1
xi(xi − 1) ≥ lk(k − 1)

n∑
i=1

xi(xi − 1)

⇒ [mn(m − 1) + lk(k − 1)]
l∑

i=1
xi(xi − 1) ≥ lk(k − 1)[

n∑
i=1

xi(xi − 1) +
l∑

i=1
xi(xi − 1)]

⇒

l∑
i=1

xi(xi − 1)

lk(k − 1)
≥

n∑
i=1

xi(xi − 1) +
l∑

i=1
xi(xi − 1)

mn(m − 1) + lk(k − 1)
>

n∑
i=1

xi(xi − 1) +
l∑

i=1
xi(xi − 1)

mn(m − 1) + lk(k − 1) + (l + n)km + (lm + nk)(k + m − 1)

⇒
l∑

i=1
xi(xi−1)

lk(k−1) >

l+n∑
i=1

xi(xi−1)

(l+n)(m+k)(k+m−1) ⇒ LSCC(c1) > LSCC(c3)

So, Max{LSCC(c1),LSCC(c2)}>LSCC(c3).
This means that the LSCC metric complies with the cohesive module property.

By showing that a cohesion metric fulfills expected mathematical properties, the
chances that the metric is a meaningful class cohesion indicator increase and it is
therefore more likely to relate to external quality indicators such as fault occurrences
in classes. This, however, is not necessarily guaranteed and must be empirically in-
vestigated. The following section reports on a large-scale empirical investigation that
explores whether LSCC explains more of the statistical variation in fault occurrences
than other MMI cohesion metrics. If confirmed, this would indirectly provide addi-
tional evidence that LSCC is a better defined metric.

6. EMPIRICAL VALIDATION

When assessing whether LSCC is a useful contribution, several criteria must be con-
sidered together: its mathematical properties, its accuracy as an indicator of external
quality attributes (e.g., faults), and its relationships with existing metrics. The math-
ematical properties are considered in Section 5; the other two criteria are addressed
in this section. We present three analyses. The first explores the correlations among
eleven cohesion metrics, including LSCC and other well-known metrics, and applies
principal component analysis [Dunteman 1989] to explore the orthogonal dimensions
within this set of cohesion metrics. The goal is to confirm that LSCC does indeed con-
tribute new information. The second analysis explores the extent to which the eleven
class cohesion metrics, including LSCC, can explain the presence of faults in classes.
The goal of this analysis is to determine whether there is empirical evidence, either
direct or indirect, that LSCC is indeed a well-defined measure and, as such, is bet-
ter than existing, comparable cohesion metrics. In this study, we rely on the widely
accepted assumption used in many studies [e.g., Aggarwal et al. 2007, Briand et al.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:21

1998, 2001b, Gyimothy et al. 2005, Marcus et al. 2008, and Olague et al. 2007],
that the metric which predicts faulty classes more precisely is expected to be a better
quality indicator. Note that building a fault prediction model is not one of the em-
pirical study goals because this goal would require considering other factors such as
size, coupling, and complexity, which is out of the scope of this paper. The third anal-
ysis compares the fault prediction results when accounting for transitive MMIs with
previous results. The goal of this analysis is to determine whether considering transi-
tive MMIs in LSCC improves its ability to predict faulty classes and would therefore
suggest that this leads to better measurement.

6.1 Software Systems and Metrics

We chose four Java open source software systems from different domains: Art of
Illusion version 2.5 [Illusion 2009], GanttProject version 2.0.5 [GanttProject 2009],
JabRef version 2.3 beta 2 [JabRef 2009], and Openbravo version 0.0.24 [Openbravo
2009]. Art of Illusion consists of 488 classes and about 88 K lines of code (LOC),
and it is a 3D modeling, rendering, and animation studio system. GanttProject
consists of 496 classes and about 39 KLOC, and it is a project scheduling application
featuring resource management, calendaring, and importing or exporting (MS Project,
HTML, PDF, spreadsheets). JabRef consists of 599 classes and about 48 KLOC,
and it is a graphical application for managing bibliographical databases. Openbravo
consists of 452 classes and about 36 KLOC, and it is a point-of-sale application
designed for touch screens. We chose these four open source systems randomly from
http://sourceforge.net. The restrictions placed on the choice of these systems were that
they (1) are implemented using Java, (2) are relatively large in terms of the number
of classes, (3) are from different domains, and (4) have available source code and fault
repositories. The same systems were considered by Al Dallal and Briand [2010] for
validating the SCC HLD-based metric.

We selected ten MMI cohesion metrics to compare with LSCC. The metrics are CC,
SCOM, LCOM1, LCOM2, LCOM3, LCOM4, TCC, LCC, DCD, and DCI. The former
two metrics consider measuring the degree of MMIs, whereas the rest do not. They
were selected because they have already been extensively studied and compared to
each other [Al Dallal 2011b; Al Dallal and Briand 2010; Briand et al. 1999, 2000,
2001b; Marcus et al. 2008]. Therefore, our results can be compared to those obtained
in previous empirical studies.

We applied the considered metrics for 1355 selected classes among 2035 classes from
the four open source systems. We excluded all classes for which at least one of the
metrics is undefined. For example, classes consisting of single methods were excluded
because their LCOM1, LCOM2, TCC, LCC, DCD, DCI, CC, and SCOM values are
undefined. In addition, classes not consisting of any attributes were excluded because
their TCC, LCC, DCD, DCI, CC, and SCOM values are undefined. An advantage of the
LSCC metric is that it is defined in all cases, as discussed in Section 3.2. Therefore,
none of the classes were excluded because of an undefined LSCC value. Exclusion of
the classes that have undefined cohesion values using the metrics under consideration
allows us to perform the same analysis for all metrics on the same set of classes and
therefore compare their results in an unbiased manner. Interfaces were also excluded
because LLD metrics, including LSCC, are undefined in this case.

We developed our own Java tool to automate the cohesion measurement process for
Java classes using eleven metrics, including LSCC. The tool analyzed the Java source
code, extracted the information required to build the matrices, and calculated the co-
hesion values using the eleven considered metrics. Table III shows descriptive statis-
tics for each cohesion measure including the minimum, 25% quartile, mean, median,

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:22 J. Al Dallal and L. C. Briand

Table III. Descriptive Statistics for Cohesion Measures

Metric Min 25% Mean Med 75% Max Std Dev
LSCC 0 0.03 0.44 0.22 1.00 1.00 0.44

CC 0 0.08 0.31 0.19 0.42 1.00 0.31
SCOM 0 0.09 0.36 0.25 0.58 1.00 0.34

LCOM1 0 2.00 57.88 9.00 36.50 3401.00 200.57
LCOM2 0 0.00 38.98 2.00 22.00 2886.00 159.25
LCOM3 0 1.00 1.25 1.00 1.00 17.00 1.01
LCOM4 0 1.00 1.18 1.00 1.00 17.00 0.90

TCC 0 0.24 0.52 0.50 0.80 1.00 0.34
LCC 0 0.33 0.64 0.71 1.00 1.00 0.36
DCD 0 0.26 0.53 0.50 0.80 1.00 0.33
DCI 0 0.33 0.65 0.71 1.00 1.00 0.36

75% quartile, maximum value, and standard deviation. As indicated in Briand et al.
[2001b], LCOM1, LCOM2, LCOM3, and LCOM4 are not normalized, and they feature
extreme outliers due to accessor methods that typically reference single attributes.
The 25% quartile, mean, median, and 75% quartile for LSCC are less than those for
CC and SCOM due to the corresponding normalized similarity definitions. LSCC is
normalized by dividing the similarity degree by the total number of attributes of the
class, whereas CC and SCOM are normalized by dividing the similarity degree by a
smaller factor that depends on the number of attributes referenced by at least one of
the considered pair of methods. Table III also shows that the 25% quartile, mean,
median, and 75% quartile for LSCC, CC, and SCOM are less than those for the other
MMI metrics. This occurs because the degree of similarity between a pair of methods
sharing at least one common attribute, as calculated using LSCC, CC, and SCOM, is
greater than zero and less than or equal to 1, whereas it always equals 1 when using
LCOM1, LCOM2, LCOM3, LCOM4, TCC, LCC, DCD, and DCI.

Although we showed how to include inherited methods and attributes when
measuring LSCC, the following analyses do not consider inheritance. As discussed in
Section 4, considering inheritance misleads refactoring decisions, which is the main
focus of this article. In addition, LSCC that is based on static and dynamic analysis to
accurately measure cohesion (as it was done by Briand et al. in 2004 for coupling) in
the presence of inheritance is an entirely new problem to be addressed by future work.
Finally, our only goal here is to compare LSCC with other cohesion metrics, which
do not account for inheritance, in terms of correlations and fault predictions. Using
inheritance in the definition of LSCC would therefore make such comparisons difficult.

6.2 Correlation and Principal Component Analyses

Principal Component Analysis (PCA) [Dunteman 1989] is a technique used here to
identify and understand the underlying orthogonal dimensions that explain the rela-
tions between the cohesion metrics [Marcus et al. 2008]. For each pair of cohesion met-
rics under consideration, we used the Mahalanobis Distance [Barnett and Lewis 1994]
to detect outliers, and we found that the removal of outliers does not lead to significant
differences in the final PCA results. We calculated the nonparametric Spearman corre-
lation coefficient [Siegel and Castellan 1988] among the considered cohesion metrics.
Table IV shows the resulting correlations among the considered metrics accounting for
all four systems. They are all statistically significant (p-value < 0.0001). Coefficients
showing strong correlations (≥0.8) are highlighted in boldface. The results show that
the correlations among CC, SCOM, TCC, and DCD are strong. Among these metrics,

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:23

Table IV. Spearman Rank Correlations Among the Cohesion Metrics

Metric CC SCOM LCOM1 LCOM2 LCOM3 LCOM4 TCC LCC DCD DCI

LSCC 0.54 0.59 −0.60 −0.58 −0.22 −0.17 0.49 0.42 0.47 0.42
CC 1.00 0.91 −0.59 −0.75 −0.14 −0.09 0.85 0.72 0.84 0.71
SCOM 1.00 −0.67 −0.80 −0.24 −0.17 0.87 0.77 0.85 0.76
LCOM1 1.00 0.80 0.33 0.27 −0.56 −0.42 −0.55 −0.41
LCOM2 1.00 0.35 0.28 −0.73 −0.61 −0.72 −0.60
LCOM3 1.00 0.90 −0.15 −0.11 −0.15 −0.11
LCOM4 1.00 −0.14 −0.13 −0.14 −0.13
TCC 1.00 0.90 0.99 0.90
LCC 1.00 0.89 0.99
DCD 1.00 0.90

Table V. The Loading Matrix

PC1 PC2 PC3 PC4
Eigenvalue 5.61 2.35 1.44 0.92
Percent 50.99 21.36 13.06 8.34
Cum. Per. 50.99 72.35 85.41 93.76
LSCC 0.56 −0.08 0.27 0.67
CC 0.85 0.12 0.15 0.29
SCOM 0.91 0.08 0.12 0.24
LCOM1 −0.30 0.76 −0.52 0.20
LCOM2 −0.32 0.77 −0.48 0.25
LCOM3 −0.35 0.69 0.60 −0.12
LCOM4 −0.33 0.67 0.64 −0.09
TCC 0.96 0.17 < 0.01 −0.13
LCC 0.87 0.27 −0.16 −0.29
DCD 0.95 0.18 −0.01 −0.13
DCI 0.87 0.28 −0.16 −0.30

the correlations between CC and SCOM, among TCC, LCC, DCD, and DCI, between
LCOM1 and LCOM2, and between LCOM3 and LCOM4 are greater than 0.9. This is
because each of these groups of metrics have similar definitions. The other cohesion
metrics, including LSCC, are weakly or moderately intercorrelated.

To obtain the principal components (PCs), we used the varimax rotation technique
[Jolliffe 1986; Snedecor and Cochran 1989] in which the eigenvectors and eigenvalues
(loadings) are calculated and used to form the PC loading matrix. Table V shows the
PCA results: the loading matrix shows four PCs that capture 93.76% of the data set
variance. In addition, it shows the eigenvalues (i.e., measures of the variances of the
PCs), their percentages, and the cumulative percentage. High coefficients (loadings)
for each PC indicate the influential metrics contributing to the captured dimension.
Coefficients above 0.5 are highlighted in boldface in Table V. Based on an analysis of
these coefficients, the resulting PCs can then be interpreted as follows:

PC1: LSCC, CC, SCOM, TCC, LCC, DCD, and DCI. These MMI metrics measure
cohesion directly and they are normalized.

PC2 and PC3: LCOM1, LCOM2, LCOM3, and LCOM4. These MMI metrics mea-
sure a lack of cohesion. In addition, they are not normalized and can have extreme
outliers.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:24 J. Al Dallal and L. C. Briand

PC4: LSCC: This is our new metric, which measures the degree of interactions
between each pair of methods and is the only MMI considered metric that ignores
constructors, destructors, and access methods.

The PCA results show that LSCC metric captures a measurement dimension of its
own as it is the only significant factor in PC4, although it also contributes to PC1.
This supports the fact that LSCC captures cohesion aspects that are not addressed by
any of the cohesion metrics considered in this analysis, thus confirming the results of
correlation analysis.

6.3 Predicting Faults in Classes

To study the relationship between the values of the collected metrics and the extent to
which a class is prone to faults, we applied logistic regression [Hosmer and Lemeshow
2000], a standard and mature statistical method based on maximum likelihood esti-
mation. This method is widely applied to predict fault-prone classes [Briand et al.
1998; 2001b, Gyimothy et al. 2005, and Marcus et al. 2008], and although other anal-
ysis methods, such as those discussed by Briand and Wuest [2002], Subramanyam
and Krishnan [2003], and Arisholm et al. [2008], could have been used, this is out of
the scope of this paper. In logistic regression, explanatory or independent variables
are used to explain and predict dependent variables. A dependent variable can only
take discrete values and is binary in the context where we predict fault-prone classes.
The logistic regression model is univariate if it features only one explanatory variable
and multivariate when including several explanatory variables. In this case study, the
dependent variable indicates the presence of one or more faults in a class, and the ex-
planatory variables are the cohesion metrics. Univariate regression is applied to study
the fault prediction capability of each metric separately, whereas multivariate regres-
sion is applied to study the combined fault prediction of several cohesion metrics; the
goal is to determine whether LSCC improves the fit of these combinations. Univariate
regression analysis was applied to compare the fault prediction power of (1) the eleven
metrics under consideration, (2) each of the metrics that consider the interaction be-
tween methods (i.e., LSCC, CC, and SCOM) with and without considering transitive
MMIs, and (3) each of the metrics that consider the degree of interactions between
methods including and excluding constructors and access methods. The goal of the
first study is to compare the fault prediction power of LSCC with those of the other
MMI metrics. The second study explores whether it is better, from a fault prediction
perspective, to consider transitive MMI interactions in LSCC, CC, and SCOM. Finally,
the third study investigates whether it is better, from a fault prediction perspective,
to consider constructors and access methods in the class cohesion measurement using
LSCC, CC, and SCOM. Note that CC and SCOM were originally defined to include
access methods and constructors, but here we nevertheless investigate whether ex-
cluding these methods improves the performance of these metrics in predicting faulty
classes. When excluding access methods and constructors, the remaining number of
methods in some classes can be less than two. LSCC is defined for such classes,
whereas CC and SCOM are undefined. It was found that 116 (8.6%) of the consid-
ered classes consist of less than two methods when access methods are excluded. In
addition, 415 (30.6%) of the considered classes included less than two methods when
both access methods and constructors are excluded. This relatively high percentage of
classes for which CC and SCOM are undefined demonstrates one of their drawbacks.
The applicability of CC and SCOM, as well as other cohesion metrics, is thoroughly
studied by Al Dallal [2011a]. Al Dallal suggests values for classes whose cohesion was
previously undefined using CC, SCOM, and other cohesion metrics, and shows that
these values increase the applicability of the metrics and also improve the precision of

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:25

Table VI. Fault Data Extracted from the VCS of the Considered Systems

Art of Illusion Gantt-Project JabRef Open-bravo All systems
No. of considered classes 399 337 300 319 1355
No. of faulty classes 189 188 233 249 859
No. of faults 213 460 494 357 1524
No. of classes having one fault 176 119 183 189 667

Fig. 4. The distribution of the number of faults detected in classes.

most metrics in indicating class quality. We used these values to make CC and SCOM
applicable for all considered classes when excluding access methods and constructors.
This allows us to perform regression analysis on the same set of considered classes.

We collected fault data for the classes in the considered software systems from
publicly available fault repositories. The developers of the considered systems used
an online Version Control System (VCS) to keep track of source code changes. The
changes, called revisions, are due to either detected faults or required feature improve-
ments. Each revision is associated with a report including the revision description and
a list of classes involved in this change. Two research assistants, one with a B.Sc. in
computer science and six years of experience in software development, and the other
with a B.Sc. and MS in computer science, manually and independently traced the de-
scription of each revision and identified faults. The first author of this article compared
the manual results and rechecked those where the two assistants differed to choose the
correct one. Finally, we used the lists of classes involved in changes due to detected
faults to count the number of faults in which each class was involved. For each of the
systems, Table VI reports the number of classes, the number of faulty classes, and the
sum of the number of faults involved in the classes. Figure 4 shows the distribution
of the number of faults reported for the classes of the four systems. The fault reposito-
ries include reports about the detected and fixed faults and specify which classes are
involved in these faults. We manually traced the reports and counted the number of
faults detected in each class. We classified each class as being fault-free or as having
at least one fault, as a small percentage of classes contain two faults or more. Ideally,

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:26 J. Al Dallal and L. C. Briand

Table VII. Univariate Logistic Regression Results for the Eleven Metrics Under Consideration

Std. Odd Std. 95% 95%
Type Metric Coeff. Odd Error Confidence Confidence p-value PrecisionRecallROC

ratio Interval Interval
Coeff. odd ratio

Considering LSCC1 −0.46 0.63 0.06 [−0.57,−0.35] [0.57,0.71] < 0.0001 63.1 65.5 64.3
degree of LSCC2 −0.45 0.64 0.06 [−0.56,−0.34] [0.57,0.71] < 0.0001 63.7 65.8 60.5
interaction LSCC3 −0.57 0.64 0.06 [−0.56,−0.33][0.57,0.72]< 0.0001 65.3 65.3 64.5

CC1 −0.45 0.64 0.06 [−0.57,−0.34] [0.57,0.71] < 0.0001 63.0 65.5 63.6
CC2 −0.43 0.65 0.06 [−0.55,−0.32] [0.58,0.73] < 0.0001 63.7 65.8 60.1
CC3 −0.53 0.59 0.06 [−0.64,−0.41] [0.53,0.66] < 0.0001 63.3 63.9 62.7

SCOM1 −0.49 0.61 0.06 [−0.61,−0.38] [0.54,0.68] < 0.0001 63.4 65.8 63.6
SCOM2 −0.39 0.68 0.06 [−0.50,−0.28] [0.61,0.76] < 0.0001 40.8 63.8 59.2
SCOM3 −0.53 0.59 0.06 [−0.65,−0.42] [0.52,0.66] < 0.0001 60.5 63.3 63.0

Not considering LCOM1 1.07 2.93 0.2 [0.68,1.47] [1.97,4.36] < 0.0001 40.8 63.8 62.8
degree of LCOM2 1.23 3.41 0.24 [0.75,1.7] [2.12,5.49] < 0.0001 40.8 63.8 62.0
interaction LCOM3 0.06 1.07 0.06 [−0.06,0.18] [0.95,1.2] 0.29 40.8 63.8 49.6

LCOM4 0.03 1.03 0.06 [−0.09,0.14] [0.92,1.15] 0.65 40.8 63.8 48.5
TCC −0.4 0.67 0.06 [−0.51,−0.29] [0.6,0.75] < 0.0001 56.6 62.9 60.7
LCC −0.31 0.73 0.06 [−0.43,−0.2] [0.65,0.82] < 0.0001 40.8 63.8 58.8
DCD −0.38 0.69 0.06 [−0.49,−0.26] [0.61,0.77] < 0.0001 40.8 63.8 60.0
DCI −0.29 0.75 0.06 [−0.41,−0.18] [0.66,0.84] < 0.0001 40.8 63.8 58.4

Considering LSCC −0.56 0.57 0.06 [−0.67,−0.44] [0.51,0.64] < 0.0001 65.4 65.0 63.3
transitive CC −0.44 0.64 0.06 [−0.56,−0.33] [0.57,0.72] < 0.0001 63.2 65.6 62.2
MMIs SCOM −0.48 0.62 0.06 [−0.59,−0.36] [0.55,0.7] < 0.0001 63.2 65.5 62.7

class cohesion should be measured before each fault occurrence and correction, and
used to predict this particular fault occurrence. However, not only would this mean
measuring cohesion for dozens of versions (between each fault correction) for each sys-
tem, but we would not be able to study the statistical relationships of a set of faults
with a set of consistent cohesion measurements for many classes. Our cohesion mea-
surement is based on the latest version of the source code, after fault corrections, and
is therefore an approximation. This is however quite common in similar research en-
deavors [e.g., Briand et al. 1998, 2001b, Gyimothy et al. 2005, and Marcus et al. 2008]
and is necessary to enable statistical analysis.

The results of the univariate regression studies are reported in Table VII. The re-
sults for LSCC, CC, and SCOM shown in the first nine rows of Table VII only consider
direct MMIs, whereas the results for these metrics reported in the last three rows of
Table VII consider direct and transitive MMIs. The results reported in the first three
rows are for the following cases (1) LSCC1 accounts for constructors and access meth-
ods, (2) LSCC2 ignores access methods, and (3) LSCC3 ignores both constructors and
access methods. Note that the third case is the one recommended in Section 3.2, and
its results are highlighted in boldface in Table VII. Similarly, CC1, CC2, CC3, SCOM1,
SCOM2, and SCOM3 are defined and their results are reported in the next six rows.
The results for LSCC, CC, and SCOM, when transitive MMIs are considered, are re-
ported in the last three rows of Table VII. In the computation of each of the three
metrics, we included the transitive MMIs in the computation of the metric version
that had the best results among those reported in the first nine rows of Table VII.
For example, transitive MMIs are considered in the computation of LSCC3, because

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:27

the fault prediction results of LSCC3 are the best among the ones reported in the first
three rows. Similarly, transitive MMIs are considered in the computations of CC1
and SCOM1 because the results for these versions of the metrics are the best among
the three studied versions. Estimated regression coefficients are reported, as well as
their 95% confidence intervals. The larger the absolute value of the coefficient is, the
stronger the impact (positive or negative, according to the sign of the coefficient) of the
metric on the probability of a fault being detected in a class. The considered metrics
have significantly different standard deviations as shown in Table III. Therefore, to
help compare the coefficients, we standardized the explanatory variables by subtract-
ing the mean and dividing by the standard deviation and, as a result, they all have an
equal variance of 1; the coefficients reported in Table VII are also standardized. These
coefficients represent the variation in standard deviations in the dependent variable
when there is a change of one standard deviation in their corresponding independent
variable. The p-value is the probability of the coefficient being different from zero by
chance, and is also an indicator of the accuracy of the coefficient estimate: The larger
the p-value, the larger the confidence interval for the coefficient. A common practice is
to use odd ratios [Hosmer and Lemeshow 2000] to help interpret coefficients as they
are not linearly related to the probability of fault occurrences. In our context, an odd
ratio captures how less (more) likely it is for a fault to occur when the corresponding
(lack of) cohesion metric augments by one standard deviation. We report odd ratios
and their 95% confidence interval in Table VII. As an example, for LSCC, the proba-
bility of fault occurrence when there is an increase of one standard deviation in LSCC
is estimated to decrease by 37%. Those can be easily compared across cohesion met-
rics. We use a typical significance threshold (α = 0.05) to determine whether a metric
is a statistically significant fault predictor. To avoid the typical problem of inflation
of type-I error rates in the context of multiple tests, we used a corrected significance
threshold using the Bonferroni adjustment procedure: α/11 = 0.0045 [Abdi 2007].

To evaluate the prediction accuracy of logistic regression models, we used the tra-
ditional precision and recall evaluation criteria [Olson and Delen 2008]. Precision
is defined as the number of classes correctly classified as faulty divided by the total
number of classes classified as faulty. It measures the percentage of faulty classes cor-
rectly classified as faulty. Recall is defined as the number of classes correctly classified
as faulty divided by the actual number of faulty classes. It measures the percentage
of faulty classes correctly or incorrectly classified as faulty. Such criteria, however,
require the selection of a probability threshold to predict classes as faulty. Follow-
ing the recommendation in Briand et al. [2000], a class is classified as faulty if its
predicted probability of containing a fault is higher than a threshold that is selected
such that the percentage of classes that are classified as faulty is roughly the same as
the percentage of classes that are actually faulty.

To evaluate the performance of a prediction model regardless of any particular
threshold, we used the receiver operating characteristic (ROC) curve [Hanley and Mc-
Neil 1982]. In a fault prediction context, the ROC curve is a graphical plot of the ratio
of classes correctly classified as faulty versus the ratio of classes incorrectly classified
as faulty at different thresholds. The area under the ROC curve shows the ability of
the model to correctly rank classes as faulty or nonfaulty. A 100% ROC area repre-
sents a perfect model that correctly classifies all classes. The larger the ROC area, the
better the model in terms of classifying classes. The ROC curve is often considered a
better evaluation criterion than standard precision and recall, as selecting a threshold
is always somewhat subjective.

To obtain a more realistic assessment of the predictive capacities of the metrics,
we used cross-validation, a procedure in which the data set is partitioned into k
subsamples. The regression model is then built and evaluated k times. Each time, a

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:28 J. Al Dallal and L. C. Briand

different subsample is used to evaluate the precision, recall, and ROC area of the
model, and the remaining sub-samples are then used as training data to build the
regression model.

The results in Table VII lead to the following observations.

(1) Except for LCOM3 and LCOM4, all of the cohesion metrics are statistically signif-
icant (i.e., their coefficients are significantly different from 0), even when account-
ing for Bonferroni’s adjustment (α = 0.05/11 = 0.0045).

(2) LSCC, recommended in Section 3.2, is the best metric among the eleven MMI met-
rics under consideration in terms of ROC area.

(3) The logistic regression results for the metrics that consider the degree of interac-
tion between each pair of methods are very close to each other. However, based on
the fact that CC and SCOM violate key cohesion properties, that may lead to in-
correct cohesion assessment, LSCC is therefore a preferable cohesion metric. Note
that, in Section 6.2, it is shown that LSCC captures a distinct cohesion dimension.

(4) LSCC is considerably better in terms of ROC area than metrics that do not account
for the degree of interaction between each pair of methods. From this perspective,
LSCC is a better cohesion metric, when compared to LCOM1, LCOM2, LCOM3,
LCOM4, TCC, LCC, DCD, and DCI, because it better explains the presence of
faulty classes.

(5) LSCC has the largest standardized coefficient among MMI cohesion metrics. This
is confirmed by a relatively smaller odd ratio (0.64), thus suggesting that an in-
crease in LSCC has the strongest impact on reducing fault occurrence probability
among MMI metrics. To compare the odd ratios of inverse cohesion metrics—which
have coefficients above one—with LSCC, we must divide one by these odd ratios
to obtain a comparable value (i.e., the odd ratio when there is a decrease of one
standard deviation in lack of cohesion). For example, with LCOM2 which has the
largest effect among inverse metrics, this odd ratio is 1/1.23 = 0.81.

(6) As expected, the estimated regression coefficients are positive for the inverse cohe-
sion measures LCOM1, LCOM2, LCOM3, and LCOM4, whereas they are negative
for straight cohesion measures LSCC, CC, SCOM, TCC, LCC, DCD, and DCI.

(7) Among MMI metrics under consideration, LCOM1, LCOM2, LCOM3, LCOM4,
LCC, DCD, and DCI are the worst metrics in terms of precision, and LCOM4 is
the worst metric in terms of ROC area.

(8) Ignoring constructors and access methods in the computation of LSCC consider-
ably increases its standard coefficient and precision, and it slightly enhances its
ROC area. This empirically supports the theoretical justification for ignoring con-
structors and access methods as discussed in Section 3.2. To the contrary, ignoring
constructors and access methods in the computation of CC and SCOM weakens
their performance in predicting faulty classes.

(9) Considering transitive MMIs in the computation of LSCC, CC, and SCOM does
not increase their standard coefficient, precision, recall, and ROC area. In other
words, considering transitive MMIs for these metrics does not improve their ability
in explaining the presence of faulty classes.

Table VII also shows that the differences between the results obtained with and
without accounting for transitive MMIs are very small and not statistically significant.
Moreover, ignoring transitive MMIs even provides slightly better results. Account-
ing for transitive MMIs requires analyzing the source code to obtain information on
method invocations, which requires additional work. As a result, from a fault predic-
tion perspective, accounting for transitive MMIs does not bring clear benefits, whereas
ignoring constructors and access methods improves the fault prediction results.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:29

Table VIII. The Model Based on MMI Metrics

Metric Std. Coeff. Std. Error p-value
LSCC -0.97 0.15 < 0.0001
LCOM2 < 0.01 < 0.01 0.012
LCOM4 -0.15 0.07 0.041
TCC -6.75 3.05 0.027
DCD 6.31 3.06 0.039

Let us now turn our attention to multivariate analysis and the impact of LSCC when
building a class fault-proneness prediction model based on MMI cohesion metrics. To
study whether an optimal yet minimal multivariate model would contain LSCC, we
used a backward selection process where all MMI metrics are first included in the
model, and then removed one by one as long as one metric has a p-value above 0.05,
starting with measures showing higher p-values. The results given in Table VIII show
that LSCC, LCOM2, LCOM4, TCC, and DCD remain in the prediction model as sig-
nificant covariates. This somehow shows that they are complementary in predicting
faults.

To demonstrate that LSCC helps predict faulty classes, even when considering other
MMI cohesion metrics, we performed multivariate regression analysis on four sets of
MMI metrics including (1) CC1, SCOM1, and other MMI metrics excluding LSCC, (2)
CC1, SCOM1, and other MMI metrics including LSCC, (3) CC3, SCOM3, and other
MMI metrics excluding LSCC, and (4) CC3, SCOM3, and other MMI metrics includ-
ing LSCC. The purpose of the analysis is to investigate whether including LSCC in
the model improves its ability in predicting faulty classes in both cases when CC and
SCOM are used as they are originally defined and when access methods and construc-
tors are removed from their measurement. We applied the backward selection pro-
cess explained earlier on each of the four sets of metrics and reported the results in
Table IX. The results show that in both cases, when including or excluding access
methods and constructors from the measurement of CC and SCOM, once LSCC is
included in the set of selected metrics, it remains in the prediction model and the abil-
ity of the model in predicting faulty classes improves (precision, recall, ROC). This is
derived from comparing the results of the first and second, and third and fourth pre-
diction models. The number of classes classified correctly as faulty and nonfaulty using
each of the four considered models is reported in the last column of Table IX. These
results show that the models that include LSCC classify faulty and nonfaulty classes
more correctly than the ones that exclude LSCC, and therefore, these results confirm
the results for precision, recall, and ROC area. In conclusion, the results show that
LSCC is able to contribute to the prediction of faulty classes even when already ac-
counting for other MMI cohesion metrics. Though our goal here is not to build fault
prediction models, the results are useful in the sense that they show that LSCC cap-
tures complementary aspects of quality not accounted for by other MMI cohesion
metrics.

Overall, the results show that the MMI metrics that account for the degree of inter-
action between each pair of methods (namely, LSCC, CC, and SCOM) explain the pres-
ence of faulty classes more accurately than the other MMI metrics. This observation
supports the hypothesis that metrics that account more precisely for interactions
between methods in terms of the number of shared attributes are preferable. Although
LSCC, CC, and SCOM yield similar regression results in terms of fault prediction,
LSCC is a better alternative because it also complies with important cohesion proper-
ties and, as shown by the multivariate analysis, it captures a complementary cohesion

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:30 J. Al Dallal and L. C. Briand

Table IX. Several Models Based on MMI Metrics

Prediction Model Remaining Metrics Precision Recall ROC Correctly
area predicted

classes
Model 1

SCOM1, LCOM1, TCC, and DCD 63.5 65.8 65.2 892excluding LSCC
Model 2

LSCC, LCOM2, LCOM4, TCC, and DCD 65.9 67.4 66.9 913including LSCC
Model 3

CC2, LCOM1, LCOM4, TCC, and DCD 65.2 66.9 66.7 907excluding LSCC
Model 4 LSCC, CC2, SCOM2, LCOM2, TCC,

66.0 67.5 67.2 914including LSCC and DCD

dimension. As a result, considering both the theoretical and empirical validation re-
sults together, LSCC is the best alternative among MMI metrics.

6.4 Threats to Validity

A. External validity. Several factors may restrict the generality and limit the interpre-
tation of our results. The first factor is that all four of the considered systems are
implemented in Java. The second is that all the considered systems are open-source
systems that may not be representative of all industrial domains, although this is com-
mon practice in the research community. Although differences in design quality and
reliability between open source systems and industrial systems have been investigated
[e.g., Samoladas et al. 2003, 2008, Spinellis et al. 2009], there is yet no clear, general
result we can rely on. The third factor is that, although they are not artificial exam-
ples, the selected systems may not be representative in terms of the number and sizes
of classes. To generalize the results, different systems written in different program-
ming languages, selected from different domains, and including real-life, large-scale
software should be taken into account in similar large-scale evaluations.

B. Internal validity. Although the presence of faults is one important aspect of quality,
it is obviously not driven exclusively by class cohesion. Many other factors play an
important role in driving the occurrence of faults [Arisholm et al. 2008]. However, our
goal here is not to predict faults in classes, but to investigate whether there is empir-
ical evidence that LSCC is strongly related to observable aspects of quality, therefore
suggesting that it is a well-defined cohesion measure that is complementary or an
even better option than existing MMI cohesion metrics. So, although the effect of co-
hesion on the presence of faults may be partly due to the correlation of cohesion with
other unknown factors, it does not affect our objectives. Our cohesion measurement is
an approximation because, as a practical necessity to enable statistical analysis, it is
based on the latest version of the source code, which is the version after the faults are
corrected. This likely affects the strength of the observed relationships between co-
hesion and fault occurrences. However, this is a quite common practice in similar
research endeavors, as mentioned earlier in Section 6.3.

7. CONCLUSIONS AND FUTURE WORK

This paper introduces a new cohesion metric (LSCC) which addresses a number of
problems in existing cohesion metrics that account for interactions between methods,
an important category of cohesion metrics (MMI) to support refactoring. It is defined
for use during the Low-Level Design (LLD) phase of object-oriented software, and is
based on measuring the degree of method pair interactions caused by the sharing of

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:31

attributes in a class. The metric considers the number of shared attributes between
each pair of methods and uses it to measure the degree of “similarity” between meth-
ods. The main targeted application of LSCC in this paper is to define an indicator to
guide the refactoring of weakly cohesive classes. LSCC can easily account for transi-
tive interactions and class inheritance for applications where it is deemed necessary.
The effect of ignoring or considering constructors, destructors, and access methods in
LSCC calculation is theoretically and empirically investigated. LSCC satisfies mathe-
matical properties that have been widely considered necessary for cohesion measures.
Empirical results from a large-scale study on four systems show that LSCC, consid-
ered individually or in combination with other MMI cohesion metrics, is one of the
most strongly related, from a statistical standpoint, to fault occurrences in classes. In
addition, the correlation study shows that LSCC captures a cohesion measurement
dimension of its own. In a case study, LSCC was shown to provide accurate guidance
regarding the removal of methods from a class, an example refactoring operation. In
summary, LSCC features the positive sides of other metrics and eliminates their prob-
lems. That is, except LSCC, none of the existing metrics fulfills all of the following
criteria: (1) the metric is based on MMIs such that it can be used to guide refactor-
ing activities, (2) the metric satisfies widely accepted cohesion properties, and (3) the
metric has relatively strong fault prediction power. All other studied metrics in this
paper are MMI-based, and therefore, all of them satisfy the first criterion. However,
CC, SCOM, LCOM1, and LCOM2 do not satisfy the second criterion, TCC, LCC, DCD,
and DCI do not satisfy the third one, and LCOM3 and LCOM4 do not satisfy either
the second or third criteria. Taking into account both theoretical and empirical results,
LSCC is therefore the best alternative cohesion metric during the LLD phase for the
sake of supporting class refactoring.

Our metric does not distinguish between attributes and methods of different acces-
sibility levels (i.e., public, private, and protected). Studies of the effect of considering
or ignoring private and protected attributes and methods on the computation of LSCC
and its fault prediction power are left open for future research. Finally, empirically
assessing the impact of inheritance on LSCC and its fault prediction power is also rel-
evant but requires complex static and dynamic analysis, as indicated in Section 6.1.
There are several approaches to validate cohesion metrics. In this article, we followed
a widely used approach in which the cohesion is studied in terms of fault prediction
capability, which is an indirect way to assess them as quality indicators. A future study
could focus on applying other validation approaches such as providing the classes to
developers to evaluate cohesion based on intuition and comparing the findings with
LSCC results.

ACKNOWLEDGMENTS

In addition, the authors would like to thank Walid Bahsow for developing the class cohesion measuring tool
and Saqiba Sulman for assisting in collecting the cohesion results.

REFERENCES
ABDI, H. 2007. Bonferroni and Sidak corrections for multiple comparisons. In Encyclopedia of Measurement

and Statistics, Neil Salkind Ed., Sage, Thousand Oaks, CA, 1–9.
AGGARWAL, K., SINGH, Y., KAUR, A., AND MALHOTRA, R. 2007. Investigating effect of design metrics on

fault proneness in object-oriented systems. J. Object Technol. 6, 10, 127–141.
AL DALLAL, J. 2007. Efficient program slicing algorithms for measuring functional cohesion and paral-

lelism. Int. J. Inf. Technol. 4, 2, 93–100.
AL DALLAL, J. 2009. Software similarity-based functional cohesion metric. IET Softw. 3, 1, 46–57.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:32 J. Al Dallal and L. C. Briand

AL DALLAL, J. 2010. Mathematical validation of object-oriented class cohesion metrics. Int. J. Comput. 4, 2,
45–52.

AL DALLAL, J. 2011a. Measuring the discriminative power of object-oriented class cohesion metrics. IEEE
Trans. Softw. Eng. 37, 6, 788–804.

AL DALLAL, J. 2011b. Improving the applicability of object-oriented class cohesion metrics. Inf. Softw. Tech-
nol. 53, 9, 914–928.

AL DALLAL, J. AND BRIAND, L. C. 2010. An object-oriented high-level design-based class cohesion metric,
submitted for publication. Inf. Softw. Technol. 52, 12, 1346–1361.

ARISHOLM, E., BRIAND, L. C., AND JOHANNESSEN, E. B. 2010. A systematic and comprehensive investi-
gation of methods to build and evaluate fault prediction models. J. Syst. Softw. 83, 1, 2–17.

BADRI, L. AND BADRI, M. 2004. A proposal of a new class cohesion criterion: An empirical study. J. Object
Technol. 3, 4, 145–159.

BANSIYA, J., ETZKORN, L., DAVIS, C., AND LI, W. 1999. A class cohesion metric for object-oriented designs.
J. Object-Oriented Program 11, 8, 47–52.

BARNETT, V. AND LEWIS, V. 1994. Outliers in Statistical Data 3rd Ed. Wiley.
BIEMAN, J. AND OTT, L. 1994. Measuring functional cohesion. IEEE Trans. Softw. Eng. 20, 8, 644-657.
BIEMAN, J. AND KANG, B. 1995. Cohesion and reuse in an object-oriented system. In Proceedings of the

Symposium on Software Reusability. 259–262.
BIEMAN, J. AND KANG, B. 1998. Measuring design-level cohesion. IEEE Trans. Softw. Eng. 24, 2, 111–124.
BOIS, B., DEMEYER, S., AND VERELST, J. 2004. Refactoring—Improving coupling and cohesion of exist-

ing code. Proceedings of the 11th Working Conference on Reverse Engineering (WCRE). Netherlands,
144–151.

BONJA, C. AND KIDANMARIAM, E. 2006. Metrics for class cohesion and similarity between methods. In
Proceedings of the 44th Annual ACM Southeast Regional Conference. ACM, New York, 91–95.

BRIAND, L. C. AND WUEST, J. 2002. Empirical studies of quality models in object-oriented systems. In
Advances in Computers, Academic Press, 97–166.

BRIAND, L. C., BUNSE, C., AND DALY, J. 2001a. A controlled experiment for evaluating quality guidelines
on the maintainability of object-oriented designs. IEEE Trans. Softw. Eng. 27, 6, 513–530.

BRIAND, L. C., WUEST, J., AND LOUNIS, H. 2001b. Replicated case studies for investigating quality factors
in object-oriented designs. Empirical Softw. Eng. 6, 1, 11–58.

BRIAND, L. C., DALY, J., AND WUEST, J. 1998. A unified framework for cohesion measurement in object-
oriented systems. Empirical Softw. Eng. Int. J. 3, 1, 65–117.

BRIAND, L. C., MORASCA, S., AND BASILI, V. R. 1999. Defining and validating measures for object-based
high-level design. IEEE Trans. Softw. Eng. 25, 5, 722–743.

BRIAND, L.C., WUEST, J., DALY, J., AND PORTER, V. 2000. Exploring the relationship between design
measures and software quality in object-oriented systems. J. Syst. Softw. 51, 3, 245–273.

CHAE, H. S., KWON, Y. R., AND BAE, D. 2000. A cohesion measure for object-oriented classes. Softw. Pract.
Exper. 30, 12, 1405–1431.

CHAE, H. S., KWON, Y. R., AND BAE, D. 2004. Improving cohesion metrics for classes by considering de-
pendent instance variables, IEEE Trans. Softw. Eng. 30, 11, 826–832.

CHEN, Z., ZHOU, Y., AND XU, B. 2002. A novel approach to measuring class cohesion based on dependence
analysis. In Proceedings of the International Conference on Software Maintenance. 377–384.

CHIDAMBER, S. R. AND KEMERER, C. F. 1991. Towards a metrics suite for object-oriented design. In
Proceedings of the Object-Oriented Programming Systems, Languages and Applications Conference
(OOPSLA). (Special issue of SIGPLAN Not. 26, 10). ACM, New York, 197–211.

CHIDAMBER, S. R. AND KEMERER, C. F. 1994. A metrics suite for object oriented design. IEEE Trans. Softw.
Eng. 20, 6, 476–493.

COUNSELL, S., SWIFT, S., AND CRAMPTON, J. 2006. The interpretation and utility of three cohesion metrics
for object-oriented design. ACM Trans. Softw. Eng. Methodol. 15, 2, 123–149.

CZIBULA, I. AND SERBAN, G. 2006. Improving systems design using a clustering approach. IJCSNS Int. J.
Comput. Sci. Netw. Security 6, 12, 40–49.

DE LUCIA, A., OLIVETO, R., AND VORRARO, L. 2008. Using structural and semantic metrics to improve
class cohesion. In Proceedings of the IEEE International Conference on Software Maintenance. IEEE,
Los Alamitos, CA, 27–6.

DUNTEMAN, G. 1989. Principal components analysis. Saga University Paper 7–69, Saga Publications.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

A Precise Method-Method Interaction-Based Cohesion Metric 8:33

EMERSON, T. 1984. A discriminant metrics for module cohesion. In Proceedings of the 7th International
Conference on Software Engineering (ICSE’84). IEEE, Los Alamitos, CA, 294–303.

ETZKORN, L., GHOLSTON, S., FORTUNE, J., STEIN, C., UTLEY, D., FARRINGTON, P., AND COX, G. 2004.
A comparison of cohesion metrics for object-oriented systems. Inf. Softw. Technol. 46, 10, 677-687.

FERNÁNDEZ, L. AND PEÑA, R. 2006. A sensitive metric of class cohesion. Int. J. Inf. Theor. Appl.13, 1, 82–91.
FOWLER, M. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston, MA.
GANTTPROJECT. 2009. http://sourceforge.net/projects/ganttproject/.
GYIMOTHY, T., FERENC, R., AND SIKET, I. 2005. Empirical validation of object-oriented metrics on open

source software for fault prediction. IEEE Trans. Softw. Eng. 3, 10, 897–910.
HANLEY, J. A. AND MCNEIL, B. J. 1982. The meaning and use of the area under a receiver operating

characteristic (ROC) curve. Radiology 143, 1, 29–36.
HENDERSON-SELLERS, B. 1996. Object-Oriented Metrics Measures of Complexity. Prentice-Hall, Englewood

Cliffs, NJ.
HITZ, M. AND MONTAZERI, B. 1995. Measuring coupling and cohesion in object oriented systems. In Pro-

ceedings of the International Symposium on Applied Corporate Computing. 25–27.
HOSMER, D. AND LEMESHOW, S. 2000. Applied Logistic Regression 2nd Ed. Wiley Interscience.
ILLUSION. 2009. http://sourceforge.net/projects/aoi.
JABREF. 2009. http://sourceforge.net/projects/jabref/.
JHOTDRAW. 2010. http://sourceforge.net/projects/jhotdraw/.
JOLLIFFE, I. T. 1986. Principal Component Analysis. Springer, Berlin.
KITCHENHAM, B., PFLEEGER, S. L. AND FENTON, N. 1995. Towards a framework for software measure-

ment validation. IEEE Trans. Softw. Eng. 21, 12, 929–944.
LAKHOTIA, A. 1993. Rule-based approach to computing module cohesion. In Proceedings of the 15th Inter-

national Conference on Software Engineering. 35–44.
LI, W. AND HENRY, S. M. 1993. Maintenance metrics for the object oriented paradigm. In Proceedings of

1st International Software Metrics Symposium. 52–60.
MARCUS, A. AND POSHYVANYK, D. 2005. The conceptual cohesion of classes. In Proceedings of the 21th

IEEE International Conference on Software Maintenance. 133–142.
MARCUS, A., POSHYVANYK, D., AND FERENC, R. 2008. Using the conceptual cohesion of classes for fault

prediction in object-oriented systems. IEEE Trans. Softw. Eng. 34, 2, 287–300.
O’KEEFFE, M. AND CINNEIDE, M. 2006. Search-based software maintenance. In Proceedings of the 10th

European Conference on Software Maintenance and Reengineering. 249–260.
OLAGUE, H., ETZKORN, L., GHOLSTON, S., AND QUATTLEBAUM, S. 2007. Empirical validation of three

software metrics suites to predict fault-proneness of object-oriented classes developed using highly iter-
ative or agile software development processes. IEEE Trans. Softw. Eng. 33, 6, 402–419.

OLSON, D. AND DELEN, D. 2008. Advanced Data Mining Techniques 1st Ed. Springer, Berlin.
OPENBRAVO. 2009. http://sourceforge.net/projects/openbravopos.
OTT, L. AND THUSS, J. 1993. Slice based metrics for estimating cohesion. In Proceedings of the 1st Interna-

tional Software Metrics Symposium. 71–81.
SAMOLADAS, I., BIBI, S., STAMELOS, I., AND BLERIS. G. L. 2003. Exploring the quality of free/open source

software: A case study on an ERP/CRM system. In Proceedings of the 9th Panhellenic Conference in
Informatics.

SAMOLADAS, I., GOUSIOS, G., SPINELLIS, D., AND STAMELOS, I. 2008. The SQO-OSS quality model: Mea-
surement based open source software evaluation. In Open Source Development, Communities and Qual-
ity, IFIP, vol. 275, 237–248.

SIEGEL, S. AND CASTELLAN, J. 1988. Nonparametric Statistics for the Behavioral Sciences 2nd Ed.
McGraw-Hill, New York.

SNEDECOR, G. AND COCHRAN, W. 1989. Statistical Methods 8th Ed. Blackwell.
SPINELLIS, D., GOUSIOS, G., KARAKOIDAS, V., LOURIDAS, P., ADAMS, P. J., SAMOLADAS, I., AND STAME-

LOS, I. 2009. Evaluating the quality of open source software. In Electronic Notes in Theoretical Com-
puter Science, vol. 233, 5–28.

SUBRAMANYAM, R. AND KRISHNAN, M. 2003. Empirical analysis of CK metrics for object-oriented design
complexity: Implications for software defects. IEEE Trans. Softw. Eng. 29, 4, 297–310.

TOKUDA, L. AND BATORY, D. 2001. Evolving object-oriented designs with refactorings. Automated Softw.
Eng. 8, 89–120.

TROY, D. AND ZWEBEN, S. 1984 Measuring the quality of structured designs. J. Syst. Softw. 2, 113–120.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

8:34 J. Al Dallal and L. C. Briand

WANG, J., ZHOU, Y. WEN, L., CHEN, Y., LU, H., AND XU, B. 2005. DMC: A more precise cohesion measure
for classes. Inf. Softw. Technol. 47, 3, 167–180.

YOURDON, Y. AND CONSTANTINE, L. 1979. Structured Design. Prentice-Hall, Englewood Cliffs, NJ.
ZHOU, Y., XU, B., ZHAO, J., AND YANG, H. 2002. ICBMC: An improved cohesion measure for classes. In

Proceedings of the International Conference on Software Maintenance. 44–53.
ZHOU, Y., LU, J., LU, H., AND XU, B. 2004. A comparative study of graph theory-based class cohesion

measures. ACM SIGSOFT Softw. Eng. Notes 29, 213–13.

Received August 2009; revised May 2010; accepted July 2010

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 8, Publication date: March 2012.

