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ABSTRACT 
In recent years, Model-Based Testing (MBT) has attracted an 
increasingly wide interest from industry and academia. MBT 
allows automatic generation of a large and comprehensive set of 
test cases from system models (e.g., state machines), which leads 
to the systematic testing of the system. However, even when using 
simple test strategies, applying MBT in large industrial systems 
often leads to generating large sets of test cases that cannot 
possibly be executed within time and cost constraints. In this 
situation, test case selection techniques are employed to select a 
subset from the entire test suite such that the selected subset 
conforms to available resources while maximizing fault detection. 
In this paper, we propose a new similarity-based selection 
technique for state machine-based test case selection, which 
includes a new similarity function using triggers and guards on 
transitions of state machines and a Genetic algorithm-based 
selection algorithm. Applying this technique on an industrial case 
study, we show that our proposed approach is more effective in 
detecting real faults than existing alternatives. We also assess the 
overall benefits of model-based test case selection in our case 
study by comparing the fault detection rate of the selected subset 
with the maximum possible fault detection rate of the original test 
suite. 

Categories and Subject Descriptors 
D.2.5 [Testing and Debugging]  

General Terms 
Experimentation and Verification. 

Keywords 
Test case selection, model-based testing, similarity-based 
selection, genetic algorithms. 

1. INTRODUCTION 
Model-Based Testing (MBT) is getting increasing attention both 
in industry and academia as a test automation approach [1]. The 
idea is to generate executable test cases by systematically 
traversing specification models (e.g. represented as UML state 
machines [2]) based on a test strategy such as a coverage criterion 
that aims to cover certain features of the model (e.g., all 
transitions). There are many academic and commercial MBT tools 
[3] and some studies report on the applicability and cost-
effectiveness of MBT [1]. Unfortunately, in practice, more 
specifically at the integration and system levels, MBT may lead to 
very large test suites, even for simple coverage criteria. We have 
observed cases [3] leading to the generation of thousands of test 
cases for relatively modest industrial case studies with well-
known coverage criteria such as all transition-pairs and all round-
trip paths [4]. Therefore, in many situations where deadlines are 
tight, resources limited, the testing cost is high due to the use of 

hardware-in-the-loop or access to dedicated test infrastructures 
(e.g., network), executing the entire test suite is not an option. 
This is typically the case for many embedded and distributed 
systems. For example, system level testing of a video 
conferencing system requires establishing connections with other 
video conferencing systems over the network and streaming audio 
and video and communicating control data. To test the software of 
such system, we have to assign enough resources (actual physical 
devices dedicated for the test) to the test case, which increases the 
cost of executing each test case compared to running a test case 
created for testing a local function on a PC. In addition, such test 
cases should properly handle acceptable delays in the system 
execution and the network communication, which means that the 
execution time of each test case can be quite high in such systems. 
The goal of selection techniques, given limited resources leading 
to an estimated maximum test suite size, is to maximize the fault 
detection rate of the selected subset. In general, this test case 
selection problem is NP hard (traditional set cover) [5]. Other than 
random selection, there have been two main types of test case 
selection heuristics proposed in the literature. The first class of 
techniques (coverage-based) tries to directly maximize the 
coverage of the selected subset [6] and the second type 
(similarity-based), which has recently been getting more interest 
among researchers, is about minimizing similarity (where its 
definition varies on different studies) between selected test cases 
and each selected subset of test cases contains test cases that are 
less similar to each other [7].  
In this paper, we propose a new similarity-based selection 
technique which is applied on test suites automatically generated 
from UML state machines. The approach, which does not require 
any execution information and is applied before executing any test 
case, first improves the similarity function for model-based test 
case selection introduced in [7], by using triggers and guards on 
transitions of UML state machine as a basis of measuring 
similarity. Second, it improves the selection algorithm by using 
Genetic Algorithms (GA) [8] instead of a Greedy search. This 
work, to the best of authors’ knowledge, is the first to address 
similarity-based test case selection for UML-based testing. The 
selection technique is integrated with a fully automated test case 
generation tool (TRUST) [3], where the inputs are UML state 
machines and outputs are the selected executable test cases. The 
context and objectives of industrial case study can be briefly 
characterized as follows: (1) our selection technique is applied to 
an industrial system where MBT was already used for test case 
generation, (2) there are no seeded faults and all faults are based 
on actual mistakes made by developers, (3) the size of the test 
suite is significantly larger than that of previous, similar studies 
[7, 9] (more than double of their largest test suite), (4) a 
comparison is performed not only with other similarity-based 
techniques (even those which are not specific to MBT but are 



applicable), but also with all other well-known selection 
techniques (additional coverage-based [10, 11], GA-based 
coverage [12, 13], and random selection [4]),  (5)  we provide a 
thorough discussion on cost analysis, (6) the improvement, in 
terms of fault detection rate, by our selection technique is 
compared to using a stricter coverage criterion, and (7) the 
practical benefits of using our test case selection technique for 
MBT is investigated by showing that our approach can select a 
small (approximately 10%) subset of the automatically generated 
test suite which can find more than 90% of the faults detectable by 
the entire test suite. 
The rest of the paper is organized as follows. The next section 
reports on background information about test case selection.  
Section 3 discusses the basic principles regarding GA which are 
necessary to understand the paper. Section 4 provides a brief 
overview of related works covering similarity-based selection 
techniques. Section 5 introduces our approach for test case 
selection in state machine-based testing, and Section 6 reports the 
experimentation results of applying the technique on an industrial 
case study. Section 7 concludes the paper and outlines our future 
work plan.  

2. TEST CASE SELECTION 
There are several strategies for reducing the number of 
automatically generated test cases in MBT. One can try using a 
stricter coverage criterion (i.e., the criterion that results in fewer 
number of test cases). For instance, if using all transition-pairs [4] 
generates a far too large test suite, the all-transitions [4] criterion 
can be adopted instead to decrease the number of test cases, which 
still achieves systematic testing but may reduce the fault detection 
rate. However, often this is not a practical solution as one cannot 
ensure that the number of test cases will be below a required 
threshold. Test suite reduction can also be useful when the goal is 
to minimize the test suite by removing redundant test cases with 
respect to a criterion (e.g. code coverage). In test case selection, 
given a maximum number of test cases, the goal is to select a 
subset of the entire test suite that maximizes fault detection. 
Prioritization techniques, on the other hand, do not remove any 
test case but order their execution [4, 5, 14], and therefore do not 
address our problem. As a result, we focus in this paper only on 
test case selection.  

Test case selection is mostly studied in the context of regression 
testing, where the goal of test case selection is to find a subset of 
the original test suite that guarantees the execution of fault-
revealing test cases [4, 5, 14]. The main differences between 
model-based test case selection and selection in the context of 
regression testing are that, in our context, we are not interested in 
finding the affected parts of the system and we do not have 
execution information of the test suite as it is the case in 
regression testing. Therefore, heuristics such as using component 
meta data [15], model differences [16], and execution traces (e.g. 
call stack [17]) are not applicable here. In addition, most studies 
in test case selection (even those which are general purpose and 
not specific to regression testing) are based on code-level 
information and do not directly apply to MBT (e.g. code-based 
dependency analysis [18, 19] and additional statement coverage 
[10, 11]). Rather, MBT selection heuristics are based only on the 
characteristics of the (abstract) test cases. 
There are three main classes of selection techniques which are 
introduced for MBT:  

1) Random [5] or semi-random selection [4], where there 
is no guidance to select test cases.  

2) Coverage-based selections, where we hypothesize that 
“the test cases which have more coverage (such as 
model-based and requirement-based coverage) are 
more likely to detect faults”. The idea is inspired from 
redundant test case removal in test case reduction, 
where redundant test cases are those which have the 
same coverage. Note that assessing the coverage of a 
test case must not necessarily require its execution. For 
example, transition coverage in a state machine can be 
determined if traceability has been preserved between a 
test case and its source state machine. Most coverage-
based techniques are re-expressed into optimization 
problems where the goal is to select the best 
combination (or permutation in case of prioritization 
[11]) of test cases to achieve full coverage [20-23]. For 
example, in [11] a Greedy search selects, at every step, 
the test case that covers the most uncovered statements 
whereas in [12, 22] a GA is used to find the maximum 
coverage.  

3) Similarity-based selections, where we hypothesize that 
“the more diverse the test cases the higher their fault 
revealing capacity [24]”. To use this approach one 
needs a (dis)similarity function to measure the diversity 
of a subset by averaging all pair-wise similarity values. 
Code-based similarity functions have been proposed in 
the literature. However, to the best of authors’ 
knowledge, there is only one model-based similarity 
function [7], denoted here as Identical Transitions 
Similarity (It). For any two test paths tpi and tpj,  It(tpi , 
tpj) is defined as:  

“The number of identical transitions (which in 
UML state machines means: same source states, 
triggers, and target states) in tpi and tpj divided 
by the average length (number of transitions in 
the test path) of tpi and tpj”.  

After defining a similarity function, a selection 
algorithm is required to choose a sample of test cases 
with the minimum pair-wise similarity among its 
members.  

3. GENETIC ALGORITHMS  
For a given similarity measure, several alternative selection 
techniques can be used, such as optimization techniques, Greedy 
search, and clustering. In this paper we use GA and compare it 
with Greedy search (which is the only reported similarity-based 
test case selection algorithm to date in the context of state-based 
testing and MBT in general [7]) as a baseline. GA is used in this 
paper since the nature of our problem, which is a form of 
optimization, resembles typical problems addressed in search-
based software engineering [25] where GA is the most used and 
successful reported technique [25]. A more comprehensive study 
of selection algorithms will be part of our future work. Though 
further details on how we have employed GA in a test case 
selection context will be discussed in Section 4, we provide below 
minimum background information on GA. 
GA rely on four basic features: population, selection, crossover 
and mutation. More than one solution is considered at the same 
time (population). At each generation (i.e., at each step of the 



algorithm), some good solutions in the current population chosen 
by the selection mechanism generate offspring using the crossover 
operator. This operator combines parts of the chromosomes (i.e., 
the solution representation) of the offspring with a certain 
probability; otherwise it just produces copies of the parents. These 
new offspring solutions will fill the population of the next 
generation. 
The mutation operator is applied to make small changes in the 
chromosomes of the offspring. To avoid the possible loss of good 
solutions, a number of best solutions can be copied directly to the 
new generation without any modification. Another option is to use 
a steady state approach, in which only the offspring that are not 
worse than their parents are added to the next generations. Fitter 
individuals should have more chances to survive and reproduce. 
This is represented by the selection mechanism, and there are 
several variants for it. Eventually, after a number of generations, 
an individual that solves the addressed problem will be evolved. 

4. RELATED WORK 
In this section, we only review studies on similarity-based test 
case selection techniques, since we have already discussed about 
alternative techniques and their limitations for our context in 
Section 2. Although there exist studies regarding similarity-based 
selection, minimization, and prioritization on code-based testing, 
model-based test case selection using a similarity function has not 
been a focus of study in the literature. However many ideas from 
code-based selection can be adapted to MBT.  

Not surprisingly, most similarity-based techniques have been 
performed in the context of code-based regression testing and use 
code coverage or other types of execution information. In [26] the 
similarity function is based on all def-use pairs coverage and they 
use a classification algorithm as a selection technique, where they 
classify similar test cases in one class and distribute their selection 
over different classes. Basic block coverage in the code (e.g., 
statement coverage) is a basis for defining similarity functions in 
[27], [13], and [24, 28]. Greedy search, adaptive random 
selection, and clustering are used in these studies for selection. In 
[29] different heuristics are used based on execution information 
from the original test suite to support regression testing (e.g., 
memory operations with values from dynamic execution of a test 
case is used in a similarity function). Ledru et al. [9] have 
introduced a similarity-based selection technique which can be 
applied on both code-based and model-based techniques, since it 
is based on the test scripts and not the source code or a 
specification model. The basic idea is to analyze the test script as 
a string and compare each pair of test cases as two strings using 
edit-distance functions such as Levenshtein [30]. In the current 
paper, we refer to this similarity function as String-Based 
Similarity (Sb). Using this function Ledru et al. applied a Greedy 
search to select test cases.  

The only similarity-based test case selection technique in MBT is 
introduced in [7], where sequences of transitions in a Labeled 
Transition System (LTS) model of the software under test (SUT) 
are used for representing test paths. The similarity function is It, 
as defined in Section 2, and the selection technique is a Greedy 
search. This work and the work of Ledru in [9] can be considered 
as potential baselines of comparison for our study. 

Some empirical studies [13, 29] do not use basic random selection 
as a baseline of comparison. However, it is very important to at 
least compare any (meta)heuristic-based technique with random 

selection to show that the improvement, if any, is worth the extra 
cost which is incurred when using such heuristics. Furthermore, 
other studies [7, 9, 26] do not have a comparison with coverage-
based techniques [10, 11], which may be considered state-of-
practice.  

5. TEST CASE SELECTION BASED ON 
SIMILARITIES BETWEEN TEST PATHS 
USING TRIGGERS AND GUARDS 
The problem of test case selection in our context can be 
formalized as:  

“Given a test suite TS that detects a set of faults (F) in the 
system, our goal is to maximize FD(sn), where sn is a 
subset of TS of size n and FD(sn) is the percentage of F 
which is detected by sn”.  

Since there is no information about the fault detection rate of each 
test case without prior execution, a surrogate measure for FD(sn) 
is required. In similarity-based selection techniques the 
assumption is that the more diverse the selected subset, the larger 
the number of detected faults. Therefore, the problem is 
reformulated as minimizing 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑛𝑛): 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑛𝑛) = � 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡𝑖𝑖  , 𝑡𝑡𝑡𝑡𝑗𝑗 )
𝑡𝑡𝑡𝑡𝑖𝑖  , 𝑡𝑡𝑡𝑡𝑗𝑗 ∈𝑠𝑠𝑛𝑛  ∧ 𝑖𝑖>𝑗𝑗

 

 
Where SimFunc(tpi , tpj) returns the similarity of two test paths 
(abstract test cases in MBT) in sn represented by tpi and tpj. 
According to this definition, we need to define 1) a representation 
for a test path (tp), 2) a similarity function (SimFunc), and 3) a 
selection algorithm to select the optimal sn. 
In MBT finding the best test case representation depends on the 
type of input model, which in our case is a UML 2.0 state 
machine. A path on the model (test path) seems to be the best 
representation, since it is both abstract enough to be used as a 
similarity function input and rich enough to contain all relevant 
state-based testing information. Abstract test cases in this notation 
(called test path) are sequences of states and transitions, identified 
by their corresponding trigger. If a transition has k triggers it will 
be considered to be k transitions from the same source to the same 
target but with different triggers. A test path can therefore be 
formalized as follows:   
<tp> ::= <init> “,” <trans> 
<trans> ::= <event> “,” <target> | <event> “,” <target> “,” <trans> 
<event> ::= <triggerName>|<guardValue>|<Id>| 

    <guardValue>“,”<triggerName> 
 
where <init> and <target> are taken from the set of states and 
<triggerName> and <guradName> from the set of triggers and 
guards on the transitions of the model and <Id> is a unique id 
assigned to transitions which do not have any trigger or guard. If a 
transition is guarded <event> contains <guardValue>. 
The similarity function that we use in this study is similar to It in 
[7] with a minor but important difference. Because It is based on 
identical transitions, they do not consider two transitions which 
have the same trigger (same method call or same signal reception) 
but different source or target state, to be identical. However, our 
similarity measure (trigger-based similarity, Tb) is based on 
identical triggers. According to this definition of identical triggers, 
Tb is defined as follows: 



“Tb(tpi , tpj) =Number of identical triggers in tpi and tpj 
divided by the average length (number of transitions in the 
test path) of tpi and tpj”. 

Since identical triggers are more likely than identical transitions to 
be present in two test paths, Tb can be considered less strict than It 
in assigning similarity to test paths. As a result, Tb might be more 
effective in cases where there are identical triggers in different 
transitions in the state machine, which is a common situation. Tb 
tends to distinguish similarity among transitions in a more gradual 
fashion.  For example, let us assume tp1 = <1,a,2,b,3>, tp2 = 
<1,c,4,b,3>, and tp3 = <1,d,5,e,6>, where numbers are state 
identifiers and characters are trigger names (and there is no 
guard). Note that tp3 is completely different than the two others 
(no similarities except for the initial state “1”). Though similarity-
based test case selection seeks to keep the selected test cases as 
diverse as possible, It cannot detect any similarity between any 
pair of test paths as there is no identical transitions among tp1, tp2, 
and tp3. However, Tb(tp1 , tp2) = 0.5 since there is one identical 
trigger “b” and the average length of the two test paths is two. 
Therefore, if we want to select two test paths out of the three, It 
selects randomly (since all similarity values are zero), but Tb will 
choose one of tp1 or tp2 to discard, thus achieving more diversity 
among remaining test cases.  
In this paper, we use a steady state GA as a selection technique. 
An individual (i.e., a solution to the problem) is sn (subset of TS 
with size n). Given a similarity function SimFunc(tpi , tpj), the 
fitness function f to minimize is the sum of SimFunc(tpi , tpj) for 
each pair of (tpi , tpj) in TS (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑛𝑛)). The selection 
mechanism is the rank selection with bias 1.5 which has been 
shown to work well [31]. The  population size is fixed to 50. We 
use a single point crossover to combine two different parents 𝑠𝑠𝑛𝑛𝑥𝑥  
and  𝑠𝑠𝑛𝑛

𝑦𝑦 . A random position r such that 0<r<n is chosen. All test 
paths in  𝑠𝑠𝑛𝑛𝑥𝑥  from position r and onward are swapped with the 
values in the same positions in 𝑠𝑠𝑛𝑛

𝑦𝑦 . Crossover is applied with 
probability Pxover (0.75 in our experiments) with probability 1-
Pxover, the offspring are just be copies of their parents. For 
example, if  𝑠𝑠4

1 and  𝑠𝑠4
2 are two individuals of the population in 

iteration i, and r = 2, there is a probability of 0.75 that they will be 
replaced by  𝑠𝑠4

1́  and  𝑠𝑠4
2́  in iteration i+1, where: 

 𝑠𝑠4
1 =< 𝑡𝑡𝑡𝑡1 , 𝑡𝑡𝑡𝑡2 , 𝑡𝑡𝑡𝑡3 , 𝑡𝑡𝑡𝑡4 > 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠4

2 =< 𝑡𝑡𝑡𝑡𝑎𝑎  , 𝑡𝑡𝑡𝑡𝑏𝑏  , 𝑡𝑡𝑡𝑡𝑐𝑐  , 𝑡𝑡𝑡𝑡𝑑𝑑 > 

 𝑠𝑠4
1́ =< 𝑡𝑡𝑡𝑡1 , 𝑡𝑡𝑡𝑡2 , 𝑡𝑡𝑡𝑡𝑐𝑐  , 𝑡𝑡𝑡𝑡𝑑𝑑 > 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠4

2́ =< 𝑡𝑡𝑡𝑡𝑎𝑎  , 𝑡𝑡𝑡𝑡𝑏𝑏  , 𝑡𝑡𝑡𝑡3 , 𝑡𝑡𝑡𝑡4 > 
The selected mutation operator is similar to what is typically used 
for bit strings. Each test path in sn is mutated with probability 1/n. 
A mutated test path is replaced by a test path that is selected at 
random from the set of all possible test paths. For example if  
 𝑠𝑠4
𝑥𝑥 =< 𝑡𝑡𝑡𝑡1 , 𝑡𝑡𝑡𝑡2 , 𝑡𝑡𝑡𝑡𝑐𝑐  , 𝑡𝑡𝑡𝑡𝑑𝑑 > and 𝑡𝑡𝑡𝑡5 ∈ 𝑇𝑇𝑇𝑇 then  𝑠𝑠4

𝑦𝑦 =<
𝑡𝑡𝑡𝑡1 , 𝑡𝑡𝑡𝑡2 , 𝑡𝑡𝑡𝑡5 , 𝑡𝑡𝑡𝑡𝑑𝑑 > can be a mutated version of  𝑠𝑠4

𝑥𝑥 . The pseudo-
code of the employed GA is defined as follows: 
Sample a population G of m test cases uniformly from the search 
space (i.e., the set of all possible valid sets with a given size n) 
Repeat until the specified time is expired 
    Choose 𝑠𝑠𝑛𝑛𝑥𝑥  and 𝑠𝑠𝑛𝑛

𝑦𝑦  from G  
    �𝑠𝑠𝑛𝑛𝑥́𝑥  , 𝑠𝑠𝑛𝑛

𝑦́𝑦� ∶= crossover (𝑠𝑠𝑛𝑛𝑥𝑥  , 𝑠𝑠𝑛𝑛
𝑦𝑦 ,𝑃𝑃𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ) 

    Mutate(𝑠𝑠𝑛𝑛𝑥́𝑥  , 𝑠𝑠𝑛𝑛
𝑦́𝑦 ) 

    If valid (𝑠𝑠𝑛𝑛𝑥́𝑥  , 𝑠𝑠𝑛𝑛
𝑦́𝑦 ) ∧ min (𝑓𝑓(𝑠𝑠𝑛𝑛𝑥́𝑥), 𝑓𝑓(𝑠𝑠𝑛𝑛

𝑦́𝑦)) ≤ min ( f(𝑠𝑠𝑛𝑛𝑥𝑥), f(𝑠𝑠𝑛𝑛
𝑦𝑦 )) 

   Then 𝑠𝑠𝑛𝑛𝑥𝑥 ∶= 𝑠𝑠𝑛𝑛𝑥́𝑥  and 𝑠𝑠𝑛𝑛
𝑦𝑦 ∶= 𝑠𝑠𝑛𝑛

𝑦́𝑦  

Notice that we only accept “valid” solutions. A solution sn is valid 
if all the test paths in sn are unique. The first randomly generated 
population is forced to contain only unique test paths. However, 
search operators such as crossover and mutation can produce new 
offspring that have repeated test paths in them. There are several 
ways to handle constraints in evolutionary algorithms. One way is 
to design search operators that always produce valid individuals. 
In this paper we simply discard the offspring that are not valid. 
The smaller the sample (test suite) size, the lower the probability 
of such occurrences. Since we focus here on small samples of test 
cases, this seems as a more suitable strategy in our context. For 
example, in our case study experiments, while sampling less than 
2% of the total test suite, the probability of generating an invalid 
individual in one GA run is less than 3%. Increasing the sample 
size to 30% of the test suite increases this probability up to 30%. 
However, even with a 30% chance of invalid individual 
generation, given the fixed short time for one run of the GA, it is 
still more effective than its baseline of comparison (Greedy 
search) in detecting faults. Note that this probability also depends 
on the stopping criterion, since if we let the GA run longer, the 
diversity in the GA population decreases, which then results in 
less invalid individuals generated by the crossover operator.  
We have applied three types of stopping criteria for GA in this 
study: (1) stopping after specific number of iterations, (2) 
stopping after a fixed period of time (e.g., 1sec), and (3) letting 
the GA run for some time (e.g., 1sec) and then stop only if there is 
no improvement over a specified period of time (e.g., 200 
milliseconds).  

6. EMPIRICAL EVALUATION 
In this section, we assess the effectiveness of the proposed 
approach by applying it on an industrial case study. In addition, 
we evaluate its fault detection rate (referred below as FDR) by 
comparing it to other alternatives already reported in the literature. 
Information about the case study is sanitized due to confidentiality 
restrictions.  

6.1 Case study description 
The SUT is a safety monitoring component in a safety-critical 
control system implemented in C++. We chose this system 
because it exhibits a complex state-based behavior that is modeled 
as UML state machines complemented by constraints specifying 
state invariants and guards, which are useful to derive automated 
test oracles. This SUT is typical of a broad category of reactive 
systems interacting with sensors and actuators. The first version of 
the system (including models and code) was developed and 
verified by company experts and our research team. The 26 faults 
used in the study were introduced during maintenance activities of 
subsequent versions of the SUT by developers and re-introduced 
for the purpose of the experiment in the latest version of the SUT. 

The correct and most up-to-date UML state machine, representing 
the latest version of the SUT’s behavior, consists of one 
orthogonal state with two regions. Enclosed in the first region are 
two simple states and two simple-composite states. The simple-
composite states contain two and three simple states. The second 
region encloses one simple state and four simple-composite states 
that again consist of, respectively, two, two, two, and three simple 
states. This adds up to one orthogonal state, 17 simple states, six 
simple-composite states, and a maximum hierarchy level of two. 
The unflattened state machine contains 61 transitions and the 
flattened state machine consists of 70 simple states and 349 
transitions. 



Among the 26 faults, 11 of them were sneak paths (illegal 
transitions in the modified model) [4]. To detect such faults the 
model should account for the behavior of the SUT when receiving 
unexpected triggers. Such robustness behavior is not currently 
modeled and therefore, these 11 faults could not be caught by any 
test case generated from the model. The remaining 15 faults 
(detectable by the test cases generated from the model) are 
collected and 15 faulty versions of the code (mutant programs) are 
made by introducing one fault per program. Each of these faults 
belongs to one of the following categories: wrong guards on 
transitions, wrong state invariant, missing transition, and wrong 
OnEntry action of states. The purpose was to study each real fault 
in isolation in order to avoid masking effects and compute fault 
detection scores. Since a test case stops executing after detecting 
the first failure, in a program with multiple faults we should either 
rerun test cases on the SUT after each bug fix, or isolate faults by 
seeding one fault per mutant program. We chose the latter case to 
avoid manual bug fixing after each run. Our approach should not 
be confused with mutation testing which makes use of mutation 
operators to create faults and then seed them in the SUT one by 
one. In our approach, all faults were real faults, as described 
above. 

In the next step, the correct UML state machine is given to our 
test case generation tool [3] as an input model and executable test 
cases were automatically generated. Note that our selection 
technique is based on similarities between test paths (abstract test 
cases without test data). In general different faults can be detected 
by the same test path instantiated with different test data. 
Therefore, it is necessary to run the selected test paths with 
different input data and compare the FDR distribution of the test 
paths selected by different techniques. However, in our case study 
if a test path has the ability to detect a fault, it can be detected by 
any valid test data for that test path. Therefore, in our experiment, 
we have one test case per test path and the FDR of a test path is 
equal to the FDR of the corresponding test case.  

6.2 Experiment design 
To evaluate our selection technique we formulated the following 
four research questions: 
RQ1. Which similarity measure is more effective for UML state 
machine-based test case selection, in terms of FDR? 
RQ2. Is using GA for test case selection significantly more cost-
effective (in terms of time spent to find a solution) compared to a 
Greedy search?  
RQ3. Are similarity-based selection techniques more effective 
than coverage-based and random selection techniques? 
RQ4. In the context of MBT, what is the practical benefit of test 
case selection, on a representative industrial case study, when 
applying GA using our similarity measure (Tb)?  
For the first three research questions, the input test suite is 
generated by TRUST using All-Transitions coverage and in RQ4 
we will discuss about the effect of using other coverage criteria. 
The test suite is made of 281 test cases and can detect all 15 
detectable faults. Among 281 test cases 207 cannot detect any 
faults and 74 catch at least one fault. The average number of 
detected faults per test case is 0.72 and the maximum is five. Each 
fault is also detected on average by 13 test cases. There are nine 
faults which are only detected by three test cases and two faults 
are detectable by 65 test cases. 

To capture the randomness of FDR results, which exists for all 
selection algorithms (even in Greedy search when it needs to 
select among test cases which have the same similarity measure), 
we ran each experiment 100 times and report distribution 
statistics. We report the results of different techniques for sample 
sizes less than 140 (~50% of the test suite) with intervals of 10, 
since our focus is, for practical reasons, on smaller size subsets. 
This is due to the fact that in practice test case selection is mostly 
used for selecting a relatively small sample of the test suite. 
Furthermore, for large sample sizes all selection techniques will 
usually be as good as random selection which typically detects 
most faults. We have performed parametric (t-test) and non-
parametric (Mann-Whitney) statistical tests, with a significance 
level 𝛼𝛼 = 0.05, to compare the FDR means and medians of the 
proposed and alternative selection techniques. Due to space 
constraints, we only report the results of the non-parametric test, 
since it is more robust than the t-test when there are strong 
departures from normality and since we have a large enough 
sample of observations (100). In addition, we provide FDR means 
and medians over different runs for six sample sizes.  

To compare effectiveness of different techniques, we use three 
measures based on FDR. These measures are complementary and 
help interpreting the FDR from different angles:  

(1) 𝜌𝜌(𝑖𝑖)Γ  is the number of faults detected by 𝑠𝑠𝑖𝑖  (a subset of 
size i selected by technique Γ from the test suite TS with 
size n) divided by the total number of detectable faults 
in TS (15 in our case). This measure is used in the paper 
wherever we want to simply report the FDR for a given 
technique and sample size. Since we run each test suite 
100 times on faulty programs we report the FDR means 
and variances.  

(2) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚
𝛾𝛾 (Γ). Enables the overall comparison of two 

selection techniques for a range of sample sizes. 
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚

𝛾𝛾 (Γ), which is inspired by the APFD measure 
[11] for test case prioritization, is adapted to test case 
selection in our context. It is a measure for comparing 
curves and measures the sum of all 𝜌𝜌(𝑖𝑖)Γ  for all sample 
sizes in the given intervals and range (0 to m). More 
precisely, it is equal to the area under the curve 
representing 𝜌𝜌(𝑖𝑖)Γ  (y-axis) over different sample sizes 
(x-axis). Since sample size has discrete values, the area 
under the curve is calculated as:   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚
𝛾𝛾 (Γ) =

𝜌𝜌(0) + 𝜌𝜌(𝑚𝑚)
2 + ∑ 𝜌𝜌(𝑖𝑖 ∗ 𝛾𝛾)Γ

�𝑚𝑚𝛾𝛾 �−1

𝑖𝑖=1
𝑚𝑚
𝛾𝛾

 

where 0 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚
𝛾𝛾 (Γ) ≤ 1  

As we discussed, in this paper we report the result of 
sample sizes less than 140 (~50% of the test suite) with 
intervals of 10, therefore we always report 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140

10 (Γ).    

(3) mink(Γ) is the minimum number of test cases from the 
given test suite TS that are selected by technique Γ to 
detect at least 𝑘𝑘% of the detectable faults. This measure 
is more useful, from a practical standpoint, when 
selection techniques are compared with respect to their 
reduction in cost while ensuring a given fault detection 
rate. 



To compare the cost of GA and Greedy, the execution time spent 
by the algorithms to select a subset is used as cost measure. The 
experiments has been conducted on a PC with Intel Core(TM)2 
Duo CPU 2.40 Hz and 4 GB memory running Windows 7.  

6.3 Experiment results 
In the following subsections, we investigate each of the research 
questions stated above. 

6.3.1 Which similarity measure is more effective for 
UML State Machine-based test case selection, in 
terms of FDR? 
Since there is no reported similarity-based selection measure for 
UML state machines, we need to tailor results from the most 
similar studies to obtain a baseline of comparisons. Sb by Ledru et 
al. in [9] and It by Cartaxo et al. in [7] are two potential similarity 
functions that we can adapt and apply on UML state machine-
based test paths.  

The measure It was straightforward to apply in our case, using the 
representation of our test paths from Section 5. We identify each 
transition uniquely, by a string composed of its source state, 
trigger, guard, and target state. States are identified by their name, 
triggers by the name of the operation or signal reception, and 
guards by their constraint. This means that transitions can be 
considered identical only if the entire string is the same. Since Sb 
is a general purpose function (it applies to the text of test scripts), 
it requires some modifications to be useful for our case. This was 
necessary since our executable test scripts are long and contain 
significant platform dependant information. Therefore, comparing 
such test scripts as strings results in useless similarity measures 
which are significantly blurred by irrelevant information. But we 
nevertheless decided to implement our adjusted version of Sb for 
strings using abstract test scripts, which in our case are the test 
paths defined in Section 5. Therefore, all elements of the test 
paths (states, triggers, and guards) constitute the alphabet of the 
strings to be compared. We then applied Levenshtein distance 
with standard parameters (1 for match and 0 for mismatch and 
gap) [32] on these strings. We denote this technique as modified 
Sb (Ms). The main difference between Ms and It is the fact that 
Ms accounts for orders of states and triggers (with or without 
guards) in the paths, whereas It only looks at the number of 
common transitions. We also have introduced yet another measure 
using only state similarities, Identical State Similarity (Is), which 
is equal to the number of identical states in two test paths divided 
by their average number of states. This measure is at the same 
level of detail as It but targeting different state-related faults.  

We compare Ms, Is, and Tb with It as it is the only directly 
applicable solution from the literature for our models. We use a 
Greedy search since this is the technique used with It in the 
original study [7]. In short, for all similarity measures, our 
implementation of similarity-based Greedy search is exactly the 
same as in [7] and works as follows: In each step, the algorithm 
finds the most similar pair of test cases and removes the one 
which has less number of transitions from the test suite. This will 
continue till the number of remaining test paths in the test suite 
becomes equal to the required sample size. Removing the shorter 
test path in the selected pair actually aims to keep transition 
coverage as high as possible, while diversifying the subset. In 
cases where there is more than one pair with maximum similarity 
value, one of them is randomly chosen.  

Figure 1and Figure 2 show the FDR means of the Greedy search 
using Tb, Is, Ms, and It (𝜌𝜌(𝑖𝑖)𝑇𝑇𝑇𝑇Gr , 𝜌𝜌(𝑖𝑖)𝐼𝐼𝐼𝐼Gr , 𝜌𝜌(𝑖𝑖)𝑀𝑀𝑀𝑀Gr , and 
𝜌𝜌(𝑖𝑖)𝐼𝐼𝐼𝐼Gr ) after running the algorithms 100 times for sample sizes 
less than 140 (~50% of the test suite). In addition, summarizes 
means and medians of 𝜌𝜌(𝑖𝑖) for these techniques and reports the 
Mann-Whitney test results highlighting cells in gray shade when 
there is a statistical difference between the selected comparison 
techniques and our proposed similarity measure Tb. 

The results show that Tb and Is have the highest and lowest fault 
detection rates, respectively. The reason that Is is by far worse 
than the others can be explained by the fact that there are 
commonly several transitions per state and Is simply ignores 
differences between them as far as they have the same source or 
target states. The results also show that It is more effective than 
Sb for smaller sample sizes. This means that even when string 
similarity measures (e.g., Levenshtein) use detailed path 
information (e.g., the order of states and triggers), it may not be 
effective without careful tuning (e.g., gap and mismatch) and 
therefore makes such an approach less practical.  

Since It is more effective than Ms and Is, we now take it as a 
baseline of comparison with our proposal Tb. As it is shown in 
Figure 1, Figure 2, and Table 1, for sample sizes less than 90 
(~32% of the test suite) 𝜌𝜌(𝑖𝑖)𝑇𝑇𝑇𝑇Gr  is always higher than 𝜌𝜌(𝑖𝑖)𝐼𝐼𝐼𝐼Gr  
and after 90 both techniques find all faults. This difference 
between Tb and It goes up to 35% (sample size 50) and is also 
shown to be statistically significant. An overall comparison of the 
two curves also shows the improvement brought by Tb 
(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140

10 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 0.88 vs. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140
10 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) ≅ 0.76). This 

shows that in practice, our case study suggests it is likely better to 
use Tb than It. TbGr is also very effective with respect to finding 
most faults with fewer test cases: min95(𝑇𝑇𝑇𝑇) ≅ 35 ≅
(12% of the test suite) vs. min95(𝐼𝐼𝐼𝐼) ≅ 90 ≅ (~32% of the test 
suite). Although on average Tb is always more effective than It, 
looking at Figure 2 suggests that both techniques show a large 
variance for smaller sample sizes. In practice, this means that if 
the tester runs out of luck, selecting a subset of test cases can lead 
to a very low fault detection. In the next section we show how 
using GA can help increase our confidence in Tb by decreasing its 
variance.   

 
Figure 1. The average FDR of TbGr, ItGr, MsGr, IsGr for 

different sample sizes.  



 
Table 1. RQ1: The median and mean FDRs per sample size (10 to 100 intervals of 10) over 100 runs and the Mann-Whitney test 

results  (significant differences on medians with TbGr highlighted as gray cells) for different measures using Greedy search.  

Selection technique 
FDRs per sample  size 

10 20 30 40 50 60 70 80 90 100 

TbGr median 0.4  0.57  0.93  1 1 1 1 1 1  1 
mean 0.41 0.57 0.90 0.97 0.97 0.97 0.98 1 1 1 

ItGr median 0.33 0.53 0.6 0.6 0.5 0.8 0.8 0.8 1 1 
mean 0.33 0.53 0.62 0.65 0.63 0.70 0.79 0.87  0.95 1 

IsGr median 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
mean 0.29 0.42 0.43 0.43 0.44 0.44 0.44 0.45 0.44 0.44 

MsGr median 0.13 0.4 0.4 0.6 0.6 0.6 0.8 1  1 1 
mean 0.18 0.35 0.5 0.53 0.57 0.6 0.77 0.99 1 1 

 
Table 2. RQ2-3: The median and mean FDRs per sample size (10 to 100 intervals of 10) over 100 runs and the Mann-Whitney test 

results (significant differences on medians with TbGa(175ms) highlighted as gray cells) for different selection techniques. 

Selection  
technique 

FDR per sample  size 

10 20 30 40 50 60 70 80 90 100 

TbGa 
175ms 

median 0.53 0.93 0.93 1 1 1 1 1 1 1 
mean 0.56 0.83 0.92 0.96 0.97 0.97 0.99 0.98 0.98 0.98 

TbGa 
1000ms 

median 0.53 0.9 0.93 0.93 0.93 1 1 1 1 1 
mean 0.55 0.82 0.94 0.95 0.95 0.97 0.99 1 1 1 

TbGr median 0.4  0.57  0.93  1 1 1 1 1 1  1 
mean 0.41 0.57 0.90 0.97 0.97 0.97 0.98 1 1 1 

ItGr median 0.33 0.53 0.6 0.6 0.5 0.8 0.8 0.8 1 1 
mean 0.33 0.53 0.62 0.65 0.63 0.70 0.79 0.87  0.95 1 

CvGr median 0.4 0.53 0.6 0.6 0.6 0.8 0.8 0.8 0.8 0.8 
mean 0.37 0.52 0.63 0.67 0.69 0.77 0.77 0.81 0.85 0.86 

Rnd median 0.27 0.37 0.5 0.6 0.6 0.6 0.8 0.8 0.8 0.8 
mean 0.28 0.38 0.5 0.57 0.61 0.65 0.76 0.76 0.8 0.84 

 

   

   

Figure 2. FDR (y-axis) Boxplots for different selection techniques (x-axis) for sample sizes ranging from 10 to 110 by intervals of 20 
over 100. The Boxplots show the 10th, 25th, 50th, 75th, and 90th percentiles and means. 

 



6.3.2 Is using GA for test case selection significantly 
more cost-effective (in terms of time spent to find a 
solution) compared to a Greedy search? 
Before discussing about the cost-effectiveness analysis between 
GA and Greedy search, it is worth mentioning that using an 
exhaustive search in our case (and for most realistic cases) is not 
an option, since the search space size for selecting a subset of size 
n is equal to the number of  possible n-combinations within a test 
suite of a given size. In our case, as an example, the search space 
size for n=28 (~10% of the test suite) is �281

28 � ≅2.9*10^38. 

Our implementation of Greedy search does not have any 
parameter settings. In this paper, we do not tune GA, instead we 
use the parameters based on our previous experience in using GA 
[33]. The only setting of GA that we will discuss here is the 
stopping criterion since it has direct effect on GA’s cost and there 
is no obvious decision. In this paper, we only report the result 
taken from experiments with the fixed execution time stopping 
criterion since we wanted to keep cost constant when comparing 
FDR with Greedy search. 
Cost here will be measured as execution time since this drives the 
applicability of a test strategy as discussed in Section  1. Running 
Greedy search 100 times for sample sizes from 10 to 140 showed 
that it needs 175ms on average for each selection. Therefore, we 
set the GA stopping criterion to 175ms to compare their FDR 
using constant execution time. Next, we will increase execution 
time to a significantly larger but yet practical number (1000ms) 
and investigate how much more effective GA can be. Note that 
Greedy search cannot be improved even if one can afford running 
it for a longer period of time as opposed to GA which can 
potentially be improved within practical bounds.  
Using our proposed similarity measure Tb we investigate the 
extent to which GA can improve FDR. Using execution times of 
175ms (as for Greedy search), Figure 3 and Figure 2 show FDR 
distributions for GA and Greedy search using Tb (𝜌𝜌(𝑖𝑖)𝑇𝑇𝑇𝑇Ga  and 
𝜌𝜌(𝑖𝑖)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ) while running the algorithms 100 times for each sample 
size from 10 to 140 (~50% of the test suite). Greedy always shows 
a lower FDR (Table 2 shows that the differences are statistically 
significant) than GA for sample sizes less than 75 (~27% of the 
test suite), with a maximum difference of ~30% (sample size 25). 
In practice, for large test suites, this is probably the most 
important part of the sample size range. For larger sample sizes, 
an execution tie of 175ms does not seem to be enough for GA to 
be as effective as Greedy search. The main reason is that for 
larger sample size GA takes a great deal of time to generate an 
initial population with unique test paths and does not have enough 
time to generate many subsequent populations. Still for the overall 
sample size range GA is more effective: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140

10 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 0.88 
vs. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140

10 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 0.90. To find 95% of the faults both 
techniques need the same number of test cases: min95(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) =
min95(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 35. However, the FDR variance for Greedy 
search is significantly higher than that for GA (Figure 2), 
especially for sample sizes less than 50 (~ 18% of the test suite).  
This means that although both techniques, on average, can find 
95% of the faults with 35 test cases, GA entails less risk. In 
practice, people need to be confident in the results of a technique 
to use it. They cannot rely on chance. One selects only one subset, 
and no one wants to incur the risk (no matter how low the 
probability) of missing most of the faults.    

The increase in execution time for GA’s stopping criterion shows 
that on average there is no practically significant FDR 
improvement (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140

10 (𝑇𝑇𝑇𝑇𝑆𝑆𝐺𝐺𝐺𝐺) ≅ 0.90 for both 175ms and 1sec 
execution times). In this case, running GA for longer execution 
times does not seem to produce significantly better results. An 
explanation could be within 175ms GA finds a (near-)optimal 
solution in our case. However, increasing execution time helps 
decrease the FDR variance and therefore decreases the risk 
involved in test selection. Another point is that GA needs less 
time for smaller sample sizes. Therefore, GA running 175ms 
starts to perform slightly worse than GA running 1000ms for 
subsets larger than 70 (~25% of the test suite), as illustrated in 
Figure 2 (sample sizes > 70).  

 
Figure 3. The average FDR of TbGr and TbGa(175ms) for 

different sample sizes.  

6.3.3 Are similarity-based selection techniques more 
effective than coverage-based and random selection 
techniques? 
In this research question, we are interested in the improvement 
that similarity-based techniques can provide for model-based test 
case selection when compared to simpler alternatives. We 
compare our proposal (TbGa) with three different techniques: (1) 
Random selection (RnD) as a baseline of comparison for any type 
of (meta)heuristic search, (2) Additional coverage Greedy 
selection [10, 11] (CvGr), and (3) ItGr as the state of the art for 
similarity-based techniques. We also have experimented with 
using GA for coverage-based selection as it is defined in [12, 22]. 
The results show that CvGr outperforms the GA-coverage-based 
technique in our case study, as visible in Figure 2. Therefore, we 
compare with CvGr in this section. 

All techniques are spending almost the same execution time for 
selection (on average less than 200 ms). Figure 2 and Figure 4 
show FDR for the different techniques (𝜌𝜌(𝑖𝑖)𝑇𝑇𝑇𝑇Ga , 𝜌𝜌(𝑖𝑖)𝐼𝐼𝐼𝐼Gr , 
𝜌𝜌(𝑖𝑖)𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝜌𝜌(𝑖𝑖)Rnd ) when running the algorithms 100 times for 
each sample size from 10 to 140. Based on Table 2, for all sample 
sizes, TbGa(175ms) is significantly more effective than the others. 
As we can see that, on average, the FDR of  TbGa  is significantly 
higher than that for Rnd and CvGr for all sample sizes, with 
maximum differences of 35% (Rnd) and 30% (CvGr). The 
comparison over the entire sample size range also confirms this 
observation: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140

10 (𝑅𝑅𝑅𝑅𝑅𝑅) ≅ 0.66, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140
10 (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) ≅ 0.72 

and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140
10 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 0.90. 



The next best technique, both in terms of 𝜌𝜌(𝑖𝑖) and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚10, is 
ItGr, which shows that again a similarity-based technique 
outperforms the coverage-based and random selection. TbGa is 
also very effective in finding more faults with less number of test 
cases. For example, TbGa (175ms) can find 95% of the faults with 
only 35 test cases (min95(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 35) where both coverage-
based and random selection techniques cannot find 95% of the 
faults, even when using 140 test cases. Another observation is that 
coverage-based techniques are not much more effective than 
random selection. 

 
Figure 4. The average FDR of Rnd, CvGr, ItGr, TbGa(175ms), 

for different sample sizes 

6.3.4 In the context of MBT, what is the practical 
benefit of test case selection, on a representative 
industrial case study, when applying TbGa?  
In this subsection, we look at a broader question which is about 
the usefulness of test case selection for reducing the size of the 
test suite generated by MBT tools, which is the main motivation 
for this study. We will answer RQ4 by answering two sub- 
questions:  
RQ4.1. Are test selection techniques more effective than using 
stricter coverage criteria?  
RQ4.2. How effective is test selection in reducing the cost of 
testing in MBT? 
As we discussed in Section 2, using a stricter criterion (for 
example using all-transitions instead of all-transition-pairs) is an 
alternative to selection techniques. If after using the least 
demanding criterion (e.g., all-transitions), the test suite is still too 
large, then using criteria such as all-length-N, where N is the 
maximum test path length can be used. Here we compare these 
alternatives with using a similarity-based selection technique. In 
our case, N=3 results in around 150 test cases and N=2 yields 27 
test cases. Since TbGa (1sec) shows on average a 100% FDR with 
75 test cases, then a test suite of 150 is obviously suboptimal. 
Comparing the result of length-2 with TbGa(175ms) yields 
𝜌𝜌(27)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≅ 0.90 whereas 𝜌𝜌(27)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ_2 ≅ 0.34. This result 
confirms our claim that stricter criteria cannot be a replacement 
for test selection techniques. 

With respect to RQ 4.2, we are looking at the reduction of cost 
that a selection technique like TbGa can provide for a MBT 
testing strategy. In our case the original test suite contains 281 test 
cases. For a one-second execution time, min100 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 75 

meaning that 75 test cases are as effective (same FDR) as the 
entire test suite (281 test cases), entailing a 73% reduction in cost. 
As we discussed earlier, in distributed and embedded software 
systems (as our case study system), where test execution cost can 
be very significant, this 73% reduction is of practical importance.  

6.3.5 Discussion on validity threats 
In this subsection we discuss the potential threats to the validity of 
the study using the framework discussed in [34] about conducting 
empirical studies for search-based testing.  
Construct validity: For measuring test execution cost, we used the 
actual time spent by different algorithms and running all 
algorithms on the same machine. Our effectiveness measure 
(FDR) is based on a set of real faults, as explained earlier, that we 
used to create mutant programs.  
Internal validity: We implemented both Greedy and GA 
algorithms and strived to achieve the same level of optimization. 
GA parameter tuning may have positive effect on its performance 
(which we have not systematically carried out) but Greedy does 
not have any influential parameter. This means that GA could 
possibly work better with some fine tuning. Regarding our 
implementation of It, since we had to adapt its definition to our 
context (UML state machine and the encoding and representation 
of test paths), it might be a potential threat and one could argue 
that it is possible to more effectively implement it.  
Conclusion validity: Hundred independent runs were performed to 
account for random variation and obtain a sufficient number of 
observations to report means, medians, and standard deviations. 
We used the t-test and Mann-Whitney test for independent 
samples to check the statistical differences in FDR across 
selection techniques, but only reported the latter here for reasons 
explained earlier. We also discussed about practical significance 
by looking at the magnitude of the differences between FDR and 
cost of different techniques.   
External validity: Our results rely on one industrial case study 
using a given set of real faults. Though running such studies is 
very time consuming, it is obviously required to replicate it as 
many times as possible. However, as discussed earlier, the system 
used here is typical of a broad category of industrial systems: 
control systems with state-dependent behavior, controlling sensors 
and actuators.  

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we introduced a new technique for selecting test 
cases in the context of Model-Based Testing (MBT), more 
specifically UML state machine-based  testing.  Our motivation is 
to make MBT scalable in situations where executing test cases 
satisfying a coverage criterion (e.g., all transitions) is too 
expensive, such as when there is hardware in the loop, interacting 
external systems, or test case executions are lengthy.  
We propose a new similarity-based test case selection technique, 
which contains a similarity measure based on UML state 
machines’ triggers and guards on the transitions. It uses a Genetic 
Algorithm (GA) as a selection mechanism in order to minimize 
similarity among test cases. Our results, based on an industrial 
case study of a safety controller, showed that our approach yields 
significantly better results than other alternatives such as random, 
coverage-based, and other existing similarity-based selection 
techniques. We also have shown that our technique can 
significantly reduce the cost of test case execution in MBT by 



selecting 27% of the test suite to be executed, while retaining a 
100% fault detection rate. In the future, we plan to have a more 
exhaustive investigation of other possible similarity measures and 
selection techniques. We will also investigate hybrid techniques 
which use both coverage and similarity measures, for example 
using a multi-objective GA. We will also conduct additional 
studies on other industrial systems to replicate the current study.   
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