
An Enhanced Test Case Selection Approach for Model-
Based Testing: An Industrial Case Study

Hadi Hemmatia,b, Lionel Brianda,b, Andrea Arcuria, Shaukat Alia,b
a Simula Research Laboratory

b Department of Informatics, University of Oslo
{hemmati, briand, arcuri, shaukat} @simula.no

ABSTRACT
In recent years, Model-Based Testing (MBT) has attracted an
increasingly wide interest from industry and academia. MBT
allows automatic generation of a large and comprehensive set of
test cases from system models (e.g., state machines), which leads
to the systematic testing of the system. However, even when using
simple test strategies, applying MBT in large industrial systems
often leads to generating large sets of test cases that cannot
possibly be executed within time and cost constraints. In this
situation, test case selection techniques are employed to select a
subset from the entire test suite such that the selected subset
conforms to available resources while maximizing fault detection.
In this paper, we propose a new similarity-based selection
technique for state machine-based test case selection, which
includes a new similarity function using triggers and guards on
transitions of state machines and a Genetic algorithm-based
selection algorithm. Applying this technique on an industrial case
study, we show that our proposed approach is more effective in
detecting real faults than existing alternatives. We also assess the
overall benefits of model-based test case selection in our case
study by comparing the fault detection rate of the selected subset
with the maximum possible fault detection rate of the original test
suite.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]

General Terms
Experimentation and Verification.

Keywords
Test case selection, model-based testing, similarity-based
selection, genetic algorithms.

1. INTRODUCTION
Model-Based Testing (MBT) is getting increasing attention both
in industry and academia as a test automation approach [1]. The
idea is to generate executable test cases by systematically
traversing specification models (e.g. represented as UML state
machines [2]) based on a test strategy such as a coverage criterion
that aims to cover certain features of the model (e.g., all
transitions). There are many academic and commercial MBT tools
[3] and some studies report on the applicability and cost-
effectiveness of MBT [1]. Unfortunately, in practice, more
specifically at the integration and system levels, MBT may lead to
very large test suites, even for simple coverage criteria. We have
observed cases [3] leading to the generation of thousands of test
cases for relatively modest industrial case studies with well-
known coverage criteria such as all transition-pairs and all round-
trip paths [4]. Therefore, in many situations where deadlines are
tight, resources limited, the testing cost is high due to the use of

hardware-in-the-loop or access to dedicated test infrastructures
(e.g., network), executing the entire test suite is not an option.
This is typically the case for many embedded and distributed
systems. For example, system level testing of a video
conferencing system requires establishing connections with other
video conferencing systems over the network and streaming audio
and video and communicating control data. To test the software of
such system, we have to assign enough resources (actual physical
devices dedicated for the test) to the test case, which increases the
cost of executing each test case compared to running a test case
created for testing a local function on a PC. In addition, such test
cases should properly handle acceptable delays in the system
execution and the network communication, which means that the
execution time of each test case can be quite high in such systems.
The goal of selection techniques, given limited resources leading
to an estimated maximum test suite size, is to maximize the fault
detection rate of the selected subset. In general, this test case
selection problem is NP hard (traditional set cover) [5]. Other than
random selection, there have been two main types of test case
selection heuristics proposed in the literature. The first class of
techniques (coverage-based) tries to directly maximize the
coverage of the selected subset [6] and the second type
(similarity-based), which has recently been getting more interest
among researchers, is about minimizing similarity (where its
definition varies on different studies) between selected test cases
and each selected subset of test cases contains test cases that are
less similar to each other [7].
In this paper, we propose a new similarity-based selection
technique which is applied on test suites automatically generated
from UML state machines. The approach, which does not require
any execution information and is applied before executing any test
case, first improves the similarity function for model-based test
case selection introduced in [7], by using triggers and guards on
transitions of UML state machine as a basis of measuring
similarity. Second, it improves the selection algorithm by using
Genetic Algorithms (GA) [8] instead of a Greedy search. This
work, to the best of authors’ knowledge, is the first to address
similarity-based test case selection for UML-based testing. The
selection technique is integrated with a fully automated test case
generation tool (TRUST) [3], where the inputs are UML state
machines and outputs are the selected executable test cases. The
context and objectives of industrial case study can be briefly
characterized as follows: (1) our selection technique is applied to
an industrial system where MBT was already used for test case
generation, (2) there are no seeded faults and all faults are based
on actual mistakes made by developers, (3) the size of the test
suite is significantly larger than that of previous, similar studies
[7, 9] (more than double of their largest test suite), (4) a
comparison is performed not only with other similarity-based
techniques (even those which are not specific to MBT but are

applicable), but also with all other well-known selection
techniques (additional coverage-based [10, 11], GA-based
coverage [12, 13], and random selection [4]), (5) we provide a
thorough discussion on cost analysis, (6) the improvement, in
terms of fault detection rate, by our selection technique is
compared to using a stricter coverage criterion, and (7) the
practical benefits of using our test case selection technique for
MBT is investigated by showing that our approach can select a
small (approximately 10%) subset of the automatically generated
test suite which can find more than 90% of the faults detectable by
the entire test suite.
The rest of the paper is organized as follows. The next section
reports on background information about test case selection.
Section 3 discusses the basic principles regarding GA which are
necessary to understand the paper. Section 4 provides a brief
overview of related works covering similarity-based selection
techniques. Section 5 introduces our approach for test case
selection in state machine-based testing, and Section 6 reports the
experimentation results of applying the technique on an industrial
case study. Section 7 concludes the paper and outlines our future
work plan.

2. TEST CASE SELECTION
There are several strategies for reducing the number of
automatically generated test cases in MBT. One can try using a
stricter coverage criterion (i.e., the criterion that results in fewer
number of test cases). For instance, if using all transition-pairs [4]
generates a far too large test suite, the all-transitions [4] criterion
can be adopted instead to decrease the number of test cases, which
still achieves systematic testing but may reduce the fault detection
rate. However, often this is not a practical solution as one cannot
ensure that the number of test cases will be below a required
threshold. Test suite reduction can also be useful when the goal is
to minimize the test suite by removing redundant test cases with
respect to a criterion (e.g. code coverage). In test case selection,
given a maximum number of test cases, the goal is to select a
subset of the entire test suite that maximizes fault detection.
Prioritization techniques, on the other hand, do not remove any
test case but order their execution [4, 5, 14], and therefore do not
address our problem. As a result, we focus in this paper only on
test case selection.

Test case selection is mostly studied in the context of regression
testing, where the goal of test case selection is to find a subset of
the original test suite that guarantees the execution of fault-
revealing test cases [4, 5, 14]. The main differences between
model-based test case selection and selection in the context of
regression testing are that, in our context, we are not interested in
finding the affected parts of the system and we do not have
execution information of the test suite as it is the case in
regression testing. Therefore, heuristics such as using component
meta data [15], model differences [16], and execution traces (e.g.
call stack [17]) are not applicable here. In addition, most studies
in test case selection (even those which are general purpose and
not specific to regression testing) are based on code-level
information and do not directly apply to MBT (e.g. code-based
dependency analysis [18, 19] and additional statement coverage
[10, 11]). Rather, MBT selection heuristics are based only on the
characteristics of the (abstract) test cases.
There are three main classes of selection techniques which are
introduced for MBT:

1) Random [5] or semi-random selection [4], where there
is no guidance to select test cases.

2) Coverage-based selections, where we hypothesize that
“the test cases which have more coverage (such as
model-based and requirement-based coverage) are
more likely to detect faults”. The idea is inspired from
redundant test case removal in test case reduction,
where redundant test cases are those which have the
same coverage. Note that assessing the coverage of a
test case must not necessarily require its execution. For
example, transition coverage in a state machine can be
determined if traceability has been preserved between a
test case and its source state machine. Most coverage-
based techniques are re-expressed into optimization
problems where the goal is to select the best
combination (or permutation in case of prioritization
[11]) of test cases to achieve full coverage [20-23]. For
example, in [11] a Greedy search selects, at every step,
the test case that covers the most uncovered statements
whereas in [12, 22] a GA is used to find the maximum
coverage.

3) Similarity-based selections, where we hypothesize that
“the more diverse the test cases the higher their fault
revealing capacity [24]”. To use this approach one
needs a (dis)similarity function to measure the diversity
of a subset by averaging all pair-wise similarity values.
Code-based similarity functions have been proposed in
the literature. However, to the best of authors’
knowledge, there is only one model-based similarity
function [7], denoted here as Identical Transitions
Similarity (It). For any two test paths tpi and tpj, It(tpi ,
tpj) is defined as:

“The number of identical transitions (which in
UML state machines means: same source states,
triggers, and target states) in tpi and tpj divided
by the average length (number of transitions in
the test path) of tpi and tpj”.

After defining a similarity function, a selection
algorithm is required to choose a sample of test cases
with the minimum pair-wise similarity among its
members.

3. GENETIC ALGORITHMS
For a given similarity measure, several alternative selection
techniques can be used, such as optimization techniques, Greedy
search, and clustering. In this paper we use GA and compare it
with Greedy search (which is the only reported similarity-based
test case selection algorithm to date in the context of state-based
testing and MBT in general [7]) as a baseline. GA is used in this
paper since the nature of our problem, which is a form of
optimization, resembles typical problems addressed in search-
based software engineering [25] where GA is the most used and
successful reported technique [25]. A more comprehensive study
of selection algorithms will be part of our future work. Though
further details on how we have employed GA in a test case
selection context will be discussed in Section 4, we provide below
minimum background information on GA.
GA rely on four basic features: population, selection, crossover
and mutation. More than one solution is considered at the same
time (population). At each generation (i.e., at each step of the

algorithm), some good solutions in the current population chosen
by the selection mechanism generate offspring using the crossover
operator. This operator combines parts of the chromosomes (i.e.,
the solution representation) of the offspring with a certain
probability; otherwise it just produces copies of the parents. These
new offspring solutions will fill the population of the next
generation.
The mutation operator is applied to make small changes in the
chromosomes of the offspring. To avoid the possible loss of good
solutions, a number of best solutions can be copied directly to the
new generation without any modification. Another option is to use
a steady state approach, in which only the offspring that are not
worse than their parents are added to the next generations. Fitter
individuals should have more chances to survive and reproduce.
This is represented by the selection mechanism, and there are
several variants for it. Eventually, after a number of generations,
an individual that solves the addressed problem will be evolved.

4. RELATED WORK
In this section, we only review studies on similarity-based test
case selection techniques, since we have already discussed about
alternative techniques and their limitations for our context in
Section 2. Although there exist studies regarding similarity-based
selection, minimization, and prioritization on code-based testing,
model-based test case selection using a similarity function has not
been a focus of study in the literature. However many ideas from
code-based selection can be adapted to MBT.

Not surprisingly, most similarity-based techniques have been
performed in the context of code-based regression testing and use
code coverage or other types of execution information. In [26] the
similarity function is based on all def-use pairs coverage and they
use a classification algorithm as a selection technique, where they
classify similar test cases in one class and distribute their selection
over different classes. Basic block coverage in the code (e.g.,
statement coverage) is a basis for defining similarity functions in
[27], [13], and [24, 28]. Greedy search, adaptive random
selection, and clustering are used in these studies for selection. In
[29] different heuristics are used based on execution information
from the original test suite to support regression testing (e.g.,
memory operations with values from dynamic execution of a test
case is used in a similarity function). Ledru et al. [9] have
introduced a similarity-based selection technique which can be
applied on both code-based and model-based techniques, since it
is based on the test scripts and not the source code or a
specification model. The basic idea is to analyze the test script as
a string and compare each pair of test cases as two strings using
edit-distance functions such as Levenshtein [30]. In the current
paper, we refer to this similarity function as String-Based
Similarity (Sb). Using this function Ledru et al. applied a Greedy
search to select test cases.

The only similarity-based test case selection technique in MBT is
introduced in [7], where sequences of transitions in a Labeled
Transition System (LTS) model of the software under test (SUT)
are used for representing test paths. The similarity function is It,
as defined in Section 2, and the selection technique is a Greedy
search. This work and the work of Ledru in [9] can be considered
as potential baselines of comparison for our study.

Some empirical studies [13, 29] do not use basic random selection
as a baseline of comparison. However, it is very important to at
least compare any (meta)heuristic-based technique with random

selection to show that the improvement, if any, is worth the extra
cost which is incurred when using such heuristics. Furthermore,
other studies [7, 9, 26] do not have a comparison with coverage-
based techniques [10, 11], which may be considered state-of-
practice.

5. TEST CASE SELECTION BASED ON
SIMILARITIES BETWEEN TEST PATHS
USING TRIGGERS AND GUARDS
The problem of test case selection in our context can be
formalized as:

“Given a test suite TS that detects a set of faults (F) in the
system, our goal is to maximize FD(sn), where sn is a
subset of TS of size n and FD(sn) is the percentage of F
which is detected by sn”.

Since there is no information about the fault detection rate of each
test case without prior execution, a surrogate measure for FD(sn)
is required. In similarity-based selection techniques the
assumption is that the more diverse the selected subset, the larger
the number of detected faults. Therefore, the problem is
reformulated as minimizing 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑛𝑛):

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑛𝑛) = � 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑡𝑡𝑗𝑗)
𝑡𝑡𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑡𝑡𝑗𝑗 ∈𝑠𝑠𝑛𝑛 ∧ 𝑖𝑖>𝑗𝑗

Where SimFunc(tpi , tpj) returns the similarity of two test paths
(abstract test cases in MBT) in sn represented by tpi and tpj.
According to this definition, we need to define 1) a representation
for a test path (tp), 2) a similarity function (SimFunc), and 3) a
selection algorithm to select the optimal sn.
In MBT finding the best test case representation depends on the
type of input model, which in our case is a UML 2.0 state
machine. A path on the model (test path) seems to be the best
representation, since it is both abstract enough to be used as a
similarity function input and rich enough to contain all relevant
state-based testing information. Abstract test cases in this notation
(called test path) are sequences of states and transitions, identified
by their corresponding trigger. If a transition has k triggers it will
be considered to be k transitions from the same source to the same
target but with different triggers. A test path can therefore be
formalized as follows:
<tp> ::= <init> “,” <trans>
<trans> ::= <event> “,” <target> | <event> “,” <target> “,” <trans>
<event> ::= <triggerName>|<guardValue>|<Id>|

 <guardValue>“,”<triggerName>

where <init> and <target> are taken from the set of states and
<triggerName> and <guradName> from the set of triggers and
guards on the transitions of the model and <Id> is a unique id
assigned to transitions which do not have any trigger or guard. If a
transition is guarded <event> contains <guardValue>.
The similarity function that we use in this study is similar to It in
[7] with a minor but important difference. Because It is based on
identical transitions, they do not consider two transitions which
have the same trigger (same method call or same signal reception)
but different source or target state, to be identical. However, our
similarity measure (trigger-based similarity, Tb) is based on
identical triggers. According to this definition of identical triggers,
Tb is defined as follows:

“Tb(tpi , tpj) =Number of identical triggers in tpi and tpj
divided by the average length (number of transitions in the
test path) of tpi and tpj”.

Since identical triggers are more likely than identical transitions to
be present in two test paths, Tb can be considered less strict than It
in assigning similarity to test paths. As a result, Tb might be more
effective in cases where there are identical triggers in different
transitions in the state machine, which is a common situation. Tb
tends to distinguish similarity among transitions in a more gradual
fashion. For example, let us assume tp1 = <1,a,2,b,3>, tp2 =
<1,c,4,b,3>, and tp3 = <1,d,5,e,6>, where numbers are state
identifiers and characters are trigger names (and there is no
guard). Note that tp3 is completely different than the two others
(no similarities except for the initial state “1”). Though similarity-
based test case selection seeks to keep the selected test cases as
diverse as possible, It cannot detect any similarity between any
pair of test paths as there is no identical transitions among tp1, tp2,
and tp3. However, Tb(tp1 , tp2) = 0.5 since there is one identical
trigger “b” and the average length of the two test paths is two.
Therefore, if we want to select two test paths out of the three, It
selects randomly (since all similarity values are zero), but Tb will
choose one of tp1 or tp2 to discard, thus achieving more diversity
among remaining test cases.
In this paper, we use a steady state GA as a selection technique.
An individual (i.e., a solution to the problem) is sn (subset of TS
with size n). Given a similarity function SimFunc(tpi , tpj), the
fitness function f to minimize is the sum of SimFunc(tpi , tpj) for
each pair of (tpi , tpj) in TS (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑛𝑛)). The selection
mechanism is the rank selection with bias 1.5 which has been
shown to work well [31]. The population size is fixed to 50. We
use a single point crossover to combine two different parents 𝑠𝑠𝑛𝑛𝑥𝑥
and 𝑠𝑠𝑛𝑛

𝑦𝑦 . A random position r such that 0<r<n is chosen. All test
paths in 𝑠𝑠𝑛𝑛𝑥𝑥 from position r and onward are swapped with the
values in the same positions in 𝑠𝑠𝑛𝑛

𝑦𝑦 . Crossover is applied with
probability Pxover (0.75 in our experiments) with probability 1-
Pxover, the offspring are just be copies of their parents. For
example, if 𝑠𝑠4

1 and 𝑠𝑠4
2 are two individuals of the population in

iteration i, and r = 2, there is a probability of 0.75 that they will be
replaced by 𝑠𝑠4

1́ and 𝑠𝑠4
2́ in iteration i+1, where:

 𝑠𝑠4
1 =< 𝑡𝑡𝑡𝑡1 , 𝑡𝑡𝑡𝑡2 , 𝑡𝑡𝑡𝑡3 , 𝑡𝑡𝑡𝑡4 > 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠4

2 =< 𝑡𝑡𝑡𝑡𝑎𝑎 , 𝑡𝑡𝑡𝑡𝑏𝑏 , 𝑡𝑡𝑡𝑡𝑐𝑐 , 𝑡𝑡𝑡𝑡𝑑𝑑 >

 𝑠𝑠4
1́ =< 𝑡𝑡𝑡𝑡1 , 𝑡𝑡𝑡𝑡2 , 𝑡𝑡𝑡𝑡𝑐𝑐 , 𝑡𝑡𝑡𝑡𝑑𝑑 > 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠4

2́ =< 𝑡𝑡𝑡𝑡𝑎𝑎 , 𝑡𝑡𝑡𝑡𝑏𝑏 , 𝑡𝑡𝑡𝑡3 , 𝑡𝑡𝑡𝑡4 >
The selected mutation operator is similar to what is typically used
for bit strings. Each test path in sn is mutated with probability 1/n.
A mutated test path is replaced by a test path that is selected at
random from the set of all possible test paths. For example if
 𝑠𝑠4
𝑥𝑥 =< 𝑡𝑡𝑡𝑡1 , 𝑡𝑡𝑡𝑡2 , 𝑡𝑡𝑡𝑡𝑐𝑐 , 𝑡𝑡𝑡𝑡𝑑𝑑 > and 𝑡𝑡𝑡𝑡5 ∈ 𝑇𝑇𝑇𝑇 then 𝑠𝑠4

𝑦𝑦 =<
𝑡𝑡𝑡𝑡1 , 𝑡𝑡𝑡𝑡2 , 𝑡𝑡𝑡𝑡5 , 𝑡𝑡𝑡𝑡𝑑𝑑 > can be a mutated version of 𝑠𝑠4

𝑥𝑥 . The pseudo-
code of the employed GA is defined as follows:
Sample a population G of m test cases uniformly from the search
space (i.e., the set of all possible valid sets with a given size n)
Repeat until the specified time is expired
 Choose 𝑠𝑠𝑛𝑛𝑥𝑥 and 𝑠𝑠𝑛𝑛

𝑦𝑦 from G
 �𝑠𝑠𝑛𝑛𝑥́𝑥 , 𝑠𝑠𝑛𝑛

𝑦́𝑦� ∶= crossover (𝑠𝑠𝑛𝑛𝑥𝑥 , 𝑠𝑠𝑛𝑛
𝑦𝑦 ,𝑃𝑃𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥)

 Mutate(𝑠𝑠𝑛𝑛𝑥́𝑥 , 𝑠𝑠𝑛𝑛
𝑦́𝑦)

 If valid (𝑠𝑠𝑛𝑛𝑥́𝑥 , 𝑠𝑠𝑛𝑛
𝑦́𝑦) ∧ min (𝑓𝑓(𝑠𝑠𝑛𝑛𝑥́𝑥), 𝑓𝑓(𝑠𝑠𝑛𝑛

𝑦́𝑦)) ≤ min (f(𝑠𝑠𝑛𝑛𝑥𝑥), f(𝑠𝑠𝑛𝑛
𝑦𝑦))

 Then 𝑠𝑠𝑛𝑛𝑥𝑥 ∶= 𝑠𝑠𝑛𝑛𝑥́𝑥 and 𝑠𝑠𝑛𝑛
𝑦𝑦 ∶= 𝑠𝑠𝑛𝑛

𝑦́𝑦

Notice that we only accept “valid” solutions. A solution sn is valid
if all the test paths in sn are unique. The first randomly generated
population is forced to contain only unique test paths. However,
search operators such as crossover and mutation can produce new
offspring that have repeated test paths in them. There are several
ways to handle constraints in evolutionary algorithms. One way is
to design search operators that always produce valid individuals.
In this paper we simply discard the offspring that are not valid.
The smaller the sample (test suite) size, the lower the probability
of such occurrences. Since we focus here on small samples of test
cases, this seems as a more suitable strategy in our context. For
example, in our case study experiments, while sampling less than
2% of the total test suite, the probability of generating an invalid
individual in one GA run is less than 3%. Increasing the sample
size to 30% of the test suite increases this probability up to 30%.
However, even with a 30% chance of invalid individual
generation, given the fixed short time for one run of the GA, it is
still more effective than its baseline of comparison (Greedy
search) in detecting faults. Note that this probability also depends
on the stopping criterion, since if we let the GA run longer, the
diversity in the GA population decreases, which then results in
less invalid individuals generated by the crossover operator.
We have applied three types of stopping criteria for GA in this
study: (1) stopping after specific number of iterations, (2)
stopping after a fixed period of time (e.g., 1sec), and (3) letting
the GA run for some time (e.g., 1sec) and then stop only if there is
no improvement over a specified period of time (e.g., 200
milliseconds).

6. EMPIRICAL EVALUATION
In this section, we assess the effectiveness of the proposed
approach by applying it on an industrial case study. In addition,
we evaluate its fault detection rate (referred below as FDR) by
comparing it to other alternatives already reported in the literature.
Information about the case study is sanitized due to confidentiality
restrictions.

6.1 Case study description
The SUT is a safety monitoring component in a safety-critical
control system implemented in C++. We chose this system
because it exhibits a complex state-based behavior that is modeled
as UML state machines complemented by constraints specifying
state invariants and guards, which are useful to derive automated
test oracles. This SUT is typical of a broad category of reactive
systems interacting with sensors and actuators. The first version of
the system (including models and code) was developed and
verified by company experts and our research team. The 26 faults
used in the study were introduced during maintenance activities of
subsequent versions of the SUT by developers and re-introduced
for the purpose of the experiment in the latest version of the SUT.

The correct and most up-to-date UML state machine, representing
the latest version of the SUT’s behavior, consists of one
orthogonal state with two regions. Enclosed in the first region are
two simple states and two simple-composite states. The simple-
composite states contain two and three simple states. The second
region encloses one simple state and four simple-composite states
that again consist of, respectively, two, two, two, and three simple
states. This adds up to one orthogonal state, 17 simple states, six
simple-composite states, and a maximum hierarchy level of two.
The unflattened state machine contains 61 transitions and the
flattened state machine consists of 70 simple states and 349
transitions.

Among the 26 faults, 11 of them were sneak paths (illegal
transitions in the modified model) [4]. To detect such faults the
model should account for the behavior of the SUT when receiving
unexpected triggers. Such robustness behavior is not currently
modeled and therefore, these 11 faults could not be caught by any
test case generated from the model. The remaining 15 faults
(detectable by the test cases generated from the model) are
collected and 15 faulty versions of the code (mutant programs) are
made by introducing one fault per program. Each of these faults
belongs to one of the following categories: wrong guards on
transitions, wrong state invariant, missing transition, and wrong
OnEntry action of states. The purpose was to study each real fault
in isolation in order to avoid masking effects and compute fault
detection scores. Since a test case stops executing after detecting
the first failure, in a program with multiple faults we should either
rerun test cases on the SUT after each bug fix, or isolate faults by
seeding one fault per mutant program. We chose the latter case to
avoid manual bug fixing after each run. Our approach should not
be confused with mutation testing which makes use of mutation
operators to create faults and then seed them in the SUT one by
one. In our approach, all faults were real faults, as described
above.

In the next step, the correct UML state machine is given to our
test case generation tool [3] as an input model and executable test
cases were automatically generated. Note that our selection
technique is based on similarities between test paths (abstract test
cases without test data). In general different faults can be detected
by the same test path instantiated with different test data.
Therefore, it is necessary to run the selected test paths with
different input data and compare the FDR distribution of the test
paths selected by different techniques. However, in our case study
if a test path has the ability to detect a fault, it can be detected by
any valid test data for that test path. Therefore, in our experiment,
we have one test case per test path and the FDR of a test path is
equal to the FDR of the corresponding test case.

6.2 Experiment design
To evaluate our selection technique we formulated the following
four research questions:
RQ1. Which similarity measure is more effective for UML state
machine-based test case selection, in terms of FDR?
RQ2. Is using GA for test case selection significantly more cost-
effective (in terms of time spent to find a solution) compared to a
Greedy search?
RQ3. Are similarity-based selection techniques more effective
than coverage-based and random selection techniques?
RQ4. In the context of MBT, what is the practical benefit of test
case selection, on a representative industrial case study, when
applying GA using our similarity measure (Tb)?
For the first three research questions, the input test suite is
generated by TRUST using All-Transitions coverage and in RQ4
we will discuss about the effect of using other coverage criteria.
The test suite is made of 281 test cases and can detect all 15
detectable faults. Among 281 test cases 207 cannot detect any
faults and 74 catch at least one fault. The average number of
detected faults per test case is 0.72 and the maximum is five. Each
fault is also detected on average by 13 test cases. There are nine
faults which are only detected by three test cases and two faults
are detectable by 65 test cases.

To capture the randomness of FDR results, which exists for all
selection algorithms (even in Greedy search when it needs to
select among test cases which have the same similarity measure),
we ran each experiment 100 times and report distribution
statistics. We report the results of different techniques for sample
sizes less than 140 (~50% of the test suite) with intervals of 10,
since our focus is, for practical reasons, on smaller size subsets.
This is due to the fact that in practice test case selection is mostly
used for selecting a relatively small sample of the test suite.
Furthermore, for large sample sizes all selection techniques will
usually be as good as random selection which typically detects
most faults. We have performed parametric (t-test) and non-
parametric (Mann-Whitney) statistical tests, with a significance
level 𝛼𝛼 = 0.05, to compare the FDR means and medians of the
proposed and alternative selection techniques. Due to space
constraints, we only report the results of the non-parametric test,
since it is more robust than the t-test when there are strong
departures from normality and since we have a large enough
sample of observations (100). In addition, we provide FDR means
and medians over different runs for six sample sizes.

To compare effectiveness of different techniques, we use three
measures based on FDR. These measures are complementary and
help interpreting the FDR from different angles:

(1) 𝜌𝜌(𝑖𝑖)Γ is the number of faults detected by 𝑠𝑠𝑖𝑖 (a subset of
size i selected by technique Γ from the test suite TS with
size n) divided by the total number of detectable faults
in TS (15 in our case). This measure is used in the paper
wherever we want to simply report the FDR for a given
technique and sample size. Since we run each test suite
100 times on faulty programs we report the FDR means
and variances.

(2) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚
𝛾𝛾 (Γ). Enables the overall comparison of two

selection techniques for a range of sample sizes.
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚

𝛾𝛾 (Γ), which is inspired by the APFD measure
[11] for test case prioritization, is adapted to test case
selection in our context. It is a measure for comparing
curves and measures the sum of all 𝜌𝜌(𝑖𝑖)Γ for all sample
sizes in the given intervals and range (0 to m). More
precisely, it is equal to the area under the curve
representing 𝜌𝜌(𝑖𝑖)Γ (y-axis) over different sample sizes
(x-axis). Since sample size has discrete values, the area
under the curve is calculated as:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚
𝛾𝛾 (Γ) =

𝜌𝜌(0) + 𝜌𝜌(𝑚𝑚)
2 + ∑ 𝜌𝜌(𝑖𝑖 ∗ 𝛾𝛾)Γ

�𝑚𝑚𝛾𝛾 �−1

𝑖𝑖=1
𝑚𝑚
𝛾𝛾

where 0 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚
𝛾𝛾 (Γ) ≤ 1

As we discussed, in this paper we report the result of
sample sizes less than 140 (~50% of the test suite) with
intervals of 10, therefore we always report 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140

10 (Γ).

(3) mink(Γ) is the minimum number of test cases from the
given test suite TS that are selected by technique Γ to
detect at least 𝑘𝑘% of the detectable faults. This measure
is more useful, from a practical standpoint, when
selection techniques are compared with respect to their
reduction in cost while ensuring a given fault detection
rate.

To compare the cost of GA and Greedy, the execution time spent
by the algorithms to select a subset is used as cost measure. The
experiments has been conducted on a PC with Intel Core(TM)2
Duo CPU 2.40 Hz and 4 GB memory running Windows 7.

6.3 Experiment results
In the following subsections, we investigate each of the research
questions stated above.

6.3.1 Which similarity measure is more effective for
UML State Machine-based test case selection, in
terms of FDR?
Since there is no reported similarity-based selection measure for
UML state machines, we need to tailor results from the most
similar studies to obtain a baseline of comparisons. Sb by Ledru et
al. in [9] and It by Cartaxo et al. in [7] are two potential similarity
functions that we can adapt and apply on UML state machine-
based test paths.

The measure It was straightforward to apply in our case, using the
representation of our test paths from Section 5. We identify each
transition uniquely, by a string composed of its source state,
trigger, guard, and target state. States are identified by their name,
triggers by the name of the operation or signal reception, and
guards by their constraint. This means that transitions can be
considered identical only if the entire string is the same. Since Sb
is a general purpose function (it applies to the text of test scripts),
it requires some modifications to be useful for our case. This was
necessary since our executable test scripts are long and contain
significant platform dependant information. Therefore, comparing
such test scripts as strings results in useless similarity measures
which are significantly blurred by irrelevant information. But we
nevertheless decided to implement our adjusted version of Sb for
strings using abstract test scripts, which in our case are the test
paths defined in Section 5. Therefore, all elements of the test
paths (states, triggers, and guards) constitute the alphabet of the
strings to be compared. We then applied Levenshtein distance
with standard parameters (1 for match and 0 for mismatch and
gap) [32] on these strings. We denote this technique as modified
Sb (Ms). The main difference between Ms and It is the fact that
Ms accounts for orders of states and triggers (with or without
guards) in the paths, whereas It only looks at the number of
common transitions. We also have introduced yet another measure
using only state similarities, Identical State Similarity (Is), which
is equal to the number of identical states in two test paths divided
by their average number of states. This measure is at the same
level of detail as It but targeting different state-related faults.

We compare Ms, Is, and Tb with It as it is the only directly
applicable solution from the literature for our models. We use a
Greedy search since this is the technique used with It in the
original study [7]. In short, for all similarity measures, our
implementation of similarity-based Greedy search is exactly the
same as in [7] and works as follows: In each step, the algorithm
finds the most similar pair of test cases and removes the one
which has less number of transitions from the test suite. This will
continue till the number of remaining test paths in the test suite
becomes equal to the required sample size. Removing the shorter
test path in the selected pair actually aims to keep transition
coverage as high as possible, while diversifying the subset. In
cases where there is more than one pair with maximum similarity
value, one of them is randomly chosen.

Figure 1and Figure 2 show the FDR means of the Greedy search
using Tb, Is, Ms, and It (𝜌𝜌(𝑖𝑖)𝑇𝑇𝑇𝑇Gr , 𝜌𝜌(𝑖𝑖)𝐼𝐼𝐼𝐼Gr , 𝜌𝜌(𝑖𝑖)𝑀𝑀𝑀𝑀Gr , and
𝜌𝜌(𝑖𝑖)𝐼𝐼𝐼𝐼Gr) after running the algorithms 100 times for sample sizes
less than 140 (~50% of the test suite). In addition, summarizes
means and medians of 𝜌𝜌(𝑖𝑖) for these techniques and reports the
Mann-Whitney test results highlighting cells in gray shade when
there is a statistical difference between the selected comparison
techniques and our proposed similarity measure Tb.

The results show that Tb and Is have the highest and lowest fault
detection rates, respectively. The reason that Is is by far worse
than the others can be explained by the fact that there are
commonly several transitions per state and Is simply ignores
differences between them as far as they have the same source or
target states. The results also show that It is more effective than
Sb for smaller sample sizes. This means that even when string
similarity measures (e.g., Levenshtein) use detailed path
information (e.g., the order of states and triggers), it may not be
effective without careful tuning (e.g., gap and mismatch) and
therefore makes such an approach less practical.

Since It is more effective than Ms and Is, we now take it as a
baseline of comparison with our proposal Tb. As it is shown in
Figure 1, Figure 2, and Table 1, for sample sizes less than 90
(~32% of the test suite) 𝜌𝜌(𝑖𝑖)𝑇𝑇𝑇𝑇Gr is always higher than 𝜌𝜌(𝑖𝑖)𝐼𝐼𝐼𝐼Gr
and after 90 both techniques find all faults. This difference
between Tb and It goes up to 35% (sample size 50) and is also
shown to be statistically significant. An overall comparison of the
two curves also shows the improvement brought by Tb
(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140

10 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 0.88 vs. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140
10 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) ≅ 0.76). This

shows that in practice, our case study suggests it is likely better to
use Tb than It. TbGr is also very effective with respect to finding
most faults with fewer test cases: min95(𝑇𝑇𝑇𝑇) ≅ 35 ≅
(12% of the test suite) vs. min95(𝐼𝐼𝐼𝐼) ≅ 90 ≅ (~32% of the test
suite). Although on average Tb is always more effective than It,
looking at Figure 2 suggests that both techniques show a large
variance for smaller sample sizes. In practice, this means that if
the tester runs out of luck, selecting a subset of test cases can lead
to a very low fault detection. In the next section we show how
using GA can help increase our confidence in Tb by decreasing its
variance.

Figure 1. The average FDR of TbGr, ItGr, MsGr, IsGr for

different sample sizes.

Table 1. RQ1: The median and mean FDRs per sample size (10 to 100 intervals of 10) over 100 runs and the Mann-Whitney test

results (significant differences on medians with TbGr highlighted as gray cells) for different measures using Greedy search.

Selection technique
FDRs per sample size

10 20 30 40 50 60 70 80 90 100

TbGr median 0.4 0.57 0.93 1 1 1 1 1 1 1
mean 0.41 0.57 0.90 0.97 0.97 0.97 0.98 1 1 1

ItGr median 0.33 0.53 0.6 0.6 0.5 0.8 0.8 0.8 1 1
mean 0.33 0.53 0.62 0.65 0.63 0.70 0.79 0.87 0.95 1

IsGr median 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
mean 0.29 0.42 0.43 0.43 0.44 0.44 0.44 0.45 0.44 0.44

MsGr median 0.13 0.4 0.4 0.6 0.6 0.6 0.8 1 1 1
mean 0.18 0.35 0.5 0.53 0.57 0.6 0.77 0.99 1 1

Table 2. RQ2-3: The median and mean FDRs per sample size (10 to 100 intervals of 10) over 100 runs and the Mann-Whitney test

results (significant differences on medians with TbGa(175ms) highlighted as gray cells) for different selection techniques.

Selection
technique

FDR per sample size

10 20 30 40 50 60 70 80 90 100

TbGa
175ms

median 0.53 0.93 0.93 1 1 1 1 1 1 1
mean 0.56 0.83 0.92 0.96 0.97 0.97 0.99 0.98 0.98 0.98

TbGa
1000ms

median 0.53 0.9 0.93 0.93 0.93 1 1 1 1 1
mean 0.55 0.82 0.94 0.95 0.95 0.97 0.99 1 1 1

TbGr median 0.4 0.57 0.93 1 1 1 1 1 1 1
mean 0.41 0.57 0.90 0.97 0.97 0.97 0.98 1 1 1

ItGr median 0.33 0.53 0.6 0.6 0.5 0.8 0.8 0.8 1 1
mean 0.33 0.53 0.62 0.65 0.63 0.70 0.79 0.87 0.95 1

CvGr median 0.4 0.53 0.6 0.6 0.6 0.8 0.8 0.8 0.8 0.8
mean 0.37 0.52 0.63 0.67 0.69 0.77 0.77 0.81 0.85 0.86

Rnd median 0.27 0.37 0.5 0.6 0.6 0.6 0.8 0.8 0.8 0.8
mean 0.28 0.38 0.5 0.57 0.61 0.65 0.76 0.76 0.8 0.84

Figure 2. FDR (y-axis) Boxplots for different selection techniques (x-axis) for sample sizes ranging from 10 to 110 by intervals of 20
over 100. The Boxplots show the 10th, 25th, 50th, 75th, and 90th percentiles and means.

6.3.2 Is using GA for test case selection significantly
more cost-effective (in terms of time spent to find a
solution) compared to a Greedy search?
Before discussing about the cost-effectiveness analysis between
GA and Greedy search, it is worth mentioning that using an
exhaustive search in our case (and for most realistic cases) is not
an option, since the search space size for selecting a subset of size
n is equal to the number of possible n-combinations within a test
suite of a given size. In our case, as an example, the search space
size for n=28 (~10% of the test suite) is �281

28 � ≅2.9*10^38.

Our implementation of Greedy search does not have any
parameter settings. In this paper, we do not tune GA, instead we
use the parameters based on our previous experience in using GA
[33]. The only setting of GA that we will discuss here is the
stopping criterion since it has direct effect on GA’s cost and there
is no obvious decision. In this paper, we only report the result
taken from experiments with the fixed execution time stopping
criterion since we wanted to keep cost constant when comparing
FDR with Greedy search.
Cost here will be measured as execution time since this drives the
applicability of a test strategy as discussed in Section 1. Running
Greedy search 100 times for sample sizes from 10 to 140 showed
that it needs 175ms on average for each selection. Therefore, we
set the GA stopping criterion to 175ms to compare their FDR
using constant execution time. Next, we will increase execution
time to a significantly larger but yet practical number (1000ms)
and investigate how much more effective GA can be. Note that
Greedy search cannot be improved even if one can afford running
it for a longer period of time as opposed to GA which can
potentially be improved within practical bounds.
Using our proposed similarity measure Tb we investigate the
extent to which GA can improve FDR. Using execution times of
175ms (as for Greedy search), Figure 3 and Figure 2 show FDR
distributions for GA and Greedy search using Tb (𝜌𝜌(𝑖𝑖)𝑇𝑇𝑇𝑇Ga and
𝜌𝜌(𝑖𝑖)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) while running the algorithms 100 times for each sample
size from 10 to 140 (~50% of the test suite). Greedy always shows
a lower FDR (Table 2 shows that the differences are statistically
significant) than GA for sample sizes less than 75 (~27% of the
test suite), with a maximum difference of ~30% (sample size 25).
In practice, for large test suites, this is probably the most
important part of the sample size range. For larger sample sizes,
an execution tie of 175ms does not seem to be enough for GA to
be as effective as Greedy search. The main reason is that for
larger sample size GA takes a great deal of time to generate an
initial population with unique test paths and does not have enough
time to generate many subsequent populations. Still for the overall
sample size range GA is more effective: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140

10 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 0.88
vs. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140

10 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 0.90. To find 95% of the faults both
techniques need the same number of test cases: min95(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) =
min95(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 35. However, the FDR variance for Greedy
search is significantly higher than that for GA (Figure 2),
especially for sample sizes less than 50 (~ 18% of the test suite).
This means that although both techniques, on average, can find
95% of the faults with 35 test cases, GA entails less risk. In
practice, people need to be confident in the results of a technique
to use it. They cannot rely on chance. One selects only one subset,
and no one wants to incur the risk (no matter how low the
probability) of missing most of the faults.

The increase in execution time for GA’s stopping criterion shows
that on average there is no practically significant FDR
improvement (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140

10 (𝑇𝑇𝑇𝑇𝑆𝑆𝐺𝐺𝐺𝐺) ≅ 0.90 for both 175ms and 1sec
execution times). In this case, running GA for longer execution
times does not seem to produce significantly better results. An
explanation could be within 175ms GA finds a (near-)optimal
solution in our case. However, increasing execution time helps
decrease the FDR variance and therefore decreases the risk
involved in test selection. Another point is that GA needs less
time for smaller sample sizes. Therefore, GA running 175ms
starts to perform slightly worse than GA running 1000ms for
subsets larger than 70 (~25% of the test suite), as illustrated in
Figure 2 (sample sizes > 70).

Figure 3. The average FDR of TbGr and TbGa(175ms) for

different sample sizes.

6.3.3 Are similarity-based selection techniques more
effective than coverage-based and random selection
techniques?
In this research question, we are interested in the improvement
that similarity-based techniques can provide for model-based test
case selection when compared to simpler alternatives. We
compare our proposal (TbGa) with three different techniques: (1)
Random selection (RnD) as a baseline of comparison for any type
of (meta)heuristic search, (2) Additional coverage Greedy
selection [10, 11] (CvGr), and (3) ItGr as the state of the art for
similarity-based techniques. We also have experimented with
using GA for coverage-based selection as it is defined in [12, 22].
The results show that CvGr outperforms the GA-coverage-based
technique in our case study, as visible in Figure 2. Therefore, we
compare with CvGr in this section.

All techniques are spending almost the same execution time for
selection (on average less than 200 ms). Figure 2 and Figure 4
show FDR for the different techniques (𝜌𝜌(𝑖𝑖)𝑇𝑇𝑇𝑇Ga , 𝜌𝜌(𝑖𝑖)𝐼𝐼𝐼𝐼Gr ,
𝜌𝜌(𝑖𝑖)𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝜌𝜌(𝑖𝑖)Rnd) when running the algorithms 100 times for
each sample size from 10 to 140. Based on Table 2, for all sample
sizes, TbGa(175ms) is significantly more effective than the others.
As we can see that, on average, the FDR of TbGa is significantly
higher than that for Rnd and CvGr for all sample sizes, with
maximum differences of 35% (Rnd) and 30% (CvGr). The
comparison over the entire sample size range also confirms this
observation: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140

10 (𝑅𝑅𝑅𝑅𝑅𝑅) ≅ 0.66, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140
10 (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) ≅ 0.72

and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴140
10 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 0.90.

The next best technique, both in terms of 𝜌𝜌(𝑖𝑖) and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚10, is
ItGr, which shows that again a similarity-based technique
outperforms the coverage-based and random selection. TbGa is
also very effective in finding more faults with less number of test
cases. For example, TbGa (175ms) can find 95% of the faults with
only 35 test cases (min95(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 35) where both coverage-
based and random selection techniques cannot find 95% of the
faults, even when using 140 test cases. Another observation is that
coverage-based techniques are not much more effective than
random selection.

Figure 4. The average FDR of Rnd, CvGr, ItGr, TbGa(175ms),

for different sample sizes

6.3.4 In the context of MBT, what is the practical
benefit of test case selection, on a representative
industrial case study, when applying TbGa?
In this subsection, we look at a broader question which is about
the usefulness of test case selection for reducing the size of the
test suite generated by MBT tools, which is the main motivation
for this study. We will answer RQ4 by answering two sub-
questions:
RQ4.1. Are test selection techniques more effective than using
stricter coverage criteria?
RQ4.2. How effective is test selection in reducing the cost of
testing in MBT?
As we discussed in Section 2, using a stricter criterion (for
example using all-transitions instead of all-transition-pairs) is an
alternative to selection techniques. If after using the least
demanding criterion (e.g., all-transitions), the test suite is still too
large, then using criteria such as all-length-N, where N is the
maximum test path length can be used. Here we compare these
alternatives with using a similarity-based selection technique. In
our case, N=3 results in around 150 test cases and N=2 yields 27
test cases. Since TbGa (1sec) shows on average a 100% FDR with
75 test cases, then a test suite of 150 is obviously suboptimal.
Comparing the result of length-2 with TbGa(175ms) yields
𝜌𝜌(27)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≅ 0.90 whereas 𝜌𝜌(27)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ_2 ≅ 0.34. This result
confirms our claim that stricter criteria cannot be a replacement
for test selection techniques.

With respect to RQ 4.2, we are looking at the reduction of cost
that a selection technique like TbGa can provide for a MBT
testing strategy. In our case the original test suite contains 281 test
cases. For a one-second execution time, min100 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 75

meaning that 75 test cases are as effective (same FDR) as the
entire test suite (281 test cases), entailing a 73% reduction in cost.
As we discussed earlier, in distributed and embedded software
systems (as our case study system), where test execution cost can
be very significant, this 73% reduction is of practical importance.

6.3.5 Discussion on validity threats
In this subsection we discuss the potential threats to the validity of
the study using the framework discussed in [34] about conducting
empirical studies for search-based testing.
Construct validity: For measuring test execution cost, we used the
actual time spent by different algorithms and running all
algorithms on the same machine. Our effectiveness measure
(FDR) is based on a set of real faults, as explained earlier, that we
used to create mutant programs.
Internal validity: We implemented both Greedy and GA
algorithms and strived to achieve the same level of optimization.
GA parameter tuning may have positive effect on its performance
(which we have not systematically carried out) but Greedy does
not have any influential parameter. This means that GA could
possibly work better with some fine tuning. Regarding our
implementation of It, since we had to adapt its definition to our
context (UML state machine and the encoding and representation
of test paths), it might be a potential threat and one could argue
that it is possible to more effectively implement it.
Conclusion validity: Hundred independent runs were performed to
account for random variation and obtain a sufficient number of
observations to report means, medians, and standard deviations.
We used the t-test and Mann-Whitney test for independent
samples to check the statistical differences in FDR across
selection techniques, but only reported the latter here for reasons
explained earlier. We also discussed about practical significance
by looking at the magnitude of the differences between FDR and
cost of different techniques.
External validity: Our results rely on one industrial case study
using a given set of real faults. Though running such studies is
very time consuming, it is obviously required to replicate it as
many times as possible. However, as discussed earlier, the system
used here is typical of a broad category of industrial systems:
control systems with state-dependent behavior, controlling sensors
and actuators.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a new technique for selecting test
cases in the context of Model-Based Testing (MBT), more
specifically UML state machine-based testing. Our motivation is
to make MBT scalable in situations where executing test cases
satisfying a coverage criterion (e.g., all transitions) is too
expensive, such as when there is hardware in the loop, interacting
external systems, or test case executions are lengthy.
We propose a new similarity-based test case selection technique,
which contains a similarity measure based on UML state
machines’ triggers and guards on the transitions. It uses a Genetic
Algorithm (GA) as a selection mechanism in order to minimize
similarity among test cases. Our results, based on an industrial
case study of a safety controller, showed that our approach yields
significantly better results than other alternatives such as random,
coverage-based, and other existing similarity-based selection
techniques. We also have shown that our technique can
significantly reduce the cost of test case execution in MBT by

selecting 27% of the test suite to be executed, while retaining a
100% fault detection rate. In the future, we plan to have a more
exhaustive investigation of other possible similarity measures and
selection techniques. We will also investigate hybrid techniques
which use both coverage and similarity measures, for example
using a multi-objective GA. We will also conduct additional
studies on other industrial systems to replicate the current study.

8. REFERENCES
[1] Utting, M. and Legeard, B., Practical Model-Based Testing: A
Tools Approach, Morgan-Kaufmann, 2006.
[2] Pender, T., UML Bible, Wiley, 2003.
[3] Ali, S., Hemmati, H., Holt, N. E., Arisholm, E. and Briand, L.,
Model Transformations as a Strategy to Automate Model-Based
Testing - A Tool and Industrial Case Studies, Simula Research
Laboratory, Technical Report(2010-01), 2010.
[4] Binder, R. V., Testing Object-Oriented Systems: Models,
Patterns, and Tools, Addison-Wesley Professional, 1999.
[5] Mathur, A. P., Foundations of Software Testing, Addison-
Wesley Professional, 2008.
[6] Jones, J. A. and Harrold, M. J., Test-Suite Reduction and
Prioritization for Modified Condition/Decision Coverage, IEEE
Transactions on Software Engineering, 29(3), 2003, 195-209.
[7] Cartaxo, E. G., Machado, P. D. L. and Neto, F. G. O., On the
use of a similarity function for test case selection in the context of
model-based testing, Software Testing, Verification and
Reliability, Published Online: 22 Jul 2009.
[8] Goldberg, D. E., Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley Professional, 2001.
[9] Ledru, Y., Petrenko, A. and Boroday, S., Using String
Distances for Test Case Prioritisation, In Proceedings of the 24th
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2009), 2009.
[10] Rothermel, G., Harrold, M. J., Ronne, J. v. and Hong, C.,
Empirical studies of test-suite reduction, Software Testing,
Verification and Reliability, 12(4), 2002, 219-249.
[11] Elbaum, S. G., Malishevsky, A. G. and Rothermel, G., Test
Case Prioritization: A Family of Empirical Studies, IEEE
Transactions on Software Engineering, 28(2), 2002, 159-182.
[12] Li, Z., Harman, M. and Hierons, R. M., Search Algorithms
for Regression Test Case Prioritization, IEEE Transactions on
Software Engineering, 33(4), 2007, 225-237.
[13] Yoo, S., Harman, M., Tonella, P. and Susi, A., Clustering test
cases to achieve effective and scalable prioritisation
incorporating expert knowledge, In Proceedings of the eighteenth
international symposium on Software testing and analysis, 2009.
[14] Fahad, M. and Nadeem, A., A survey of UML based
regression testing. , In Proceedings of the Intelligent Information
Processing, 2008.
[15] Orso, A., Do, H., Rothermel, G., Harrold, M. J. and
Rosenblum, D. S., Using component metadata to regression test
component-based software, Software Testing, Verification and
Reliability, 17(2), 2007, 61-94.
[16] Muccini, H., Using Model Differencing for Architecture-level
Regression Testing, In Proceedings of the 33rd EUROMICRO
Conference on Software Engineering and Advanced Applications,
2007.
[17] McMaster, S. and Memon, A., Call-Stack Coverage for GUI
Test Suite Reduction, IEEE Transactions on Software
Engineering, 34(1), 2008, 99-115.
[18] Chen, Y., Probert, R. L. and Ural, H., Regression test suite
reduction based on SDL models of system requirements, Journal

of Software Maintenance and Evolution: Research and Practice,
21(6), 2009, 379-405.
[19] Jourdan, G.-V., Ritthiruangdech, P. and Ural, H., Test Suite
Reduction Based on Dependence Analysis, Computer and
Information Sciences – ISCIS 2006, Springer Berlin / Heidelberg,
4263/2006, 1021-1030, 2006.
[20] Farooq, U. and Lam, C. P., A Max-Min Multiobjective
Technique to Optimize Model Based Test Suite, In Proceedings of
the 10th ACIS International Conference on Software Engineering,
Artificial Intelligences, Networking and Parallel/Distributed
Computing, 2009.
[21] Farooq, U. and Lam, C. P., Evolving the Quality of a Model
Based Test Suite, In Proceedings of the Proceedings of the IEEE
International Conference on Software Testing, Verification, and
Validation Workshops, 2009.
[22] Ma, X. Y., Sheng, B. K. and Ye, C. Q., Test-Suite Reduction
Using Genetic Algorithm, Advanced Parallel Processing
Technologies, Springer Berlin / Heidelberg, 3756/2005, 2005.
[23] Chen, T. Y. and Lau, M. F., A simulation study on some
heuristics for test suite reduction, Information and Software
Technology, 40(13), 1998, 777-787.
[24] Leon, D. and Podgurski, A., A Comparison of Coverage-
Based and Distribution-Based Techniques for Filtering and
Prioritizing Test Cases, In Proceedings of the IEEE International
Symposium on Software Reliability Engineering, 2003.
[25] Harman, M., The Current State and Future of Search Based
Software Engineering, In Proceedings of the Future of Software
Engineering, 2007, IEEE Computer Society.
[26] Simão, A. d. S., Mello, R. F. d. and Senger, L. J., A
Technique to Reduce the Test Case Suites for Regression Testing
Based on a Self-Organizing Neural Network Architecture, In
Proceedings of the COMPSAC, 2006.
[27] Jiang, B., Zhang, Z., Chan, W. K. and Tse, T. H., Adaptive
random test case prioritization, In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering
(ASE 2009), 2009.
[28] Masri, W., Podgurski, A. and Leon, D., An Empirical Study
of Test Case Filtering Techniques Based on Exercising
Information Flows, IEEE Transactions on Software Engineering,
33(7), 2007.
[29] Ramanathan, M. K., Koyutürk, M., Grama, A. and
Jagannathan, S., PHALANX: a graph-theoretic framework for test
case prioritization. , In Proceedings of the 23rd Annual ACM
Symposium on Applied Computing, 2008.
[30] http://www.levenshtein.net/
[31] Whitley, D., The genitor algorithm and selective pressure:
Why rank-based allocation of reproductive trials is best, In
Proceedings of the Third International Conference on Genetic
Algorithms (ICGA-89), 1989.
[32] Gusfield, D., Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology, Cambridge
University Press, 1997.
[33] Arcuri, A., Insight Knowledge in Search Based Software
Testing, In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), 2009.
[34] Ali, S., Briand, L. C., Hemmati, H. and Panesar-Walawege,
R. K., A Systematic Review of the Application and Empirical
Investigation of Search-based Test-Case Generation, Accepted for
publication in IEEE Transactions on Software Engineering,
Special issue on Search-Based Software Engineering (SBSE),
2009.

http://www.levenshtein.net/�

	1. INTRODUCTION
	2. TEST CASE SELECTION
	3. GENETIC ALGORITHMS
	4. RELATED WORK
	5. TEST CASE SELECTION BASED ON SIMILARITIES BETWEEN TEST PATHS USING TRIGGERS AND GUARDS
	6. EMPIRICAL EVALUATION
	6.1 Case study description
	6.2 Experiment design
	6.3 Experiment results
	6.3.1 Which similarity measure is more effective for UML State Machine-based test case selection, in terms of FDR?
	6.3.2 Is using GA for test case selection significantly more cost-effective (in terms of time spent to find a solution) compared to a Greedy search?
	6.3.3 Are similarity-based selection techniques more effective than coverage-based and random selection techniques?
	6.3.4 In the context of MBT, what is the practical benefit of test case selection, on a representative industrial case study, when applying TbGa?
	6.3.5 Discussion on validity threats

	7. CONCLUSIONS AND FUTURE WORK
	8. REFERENCES

