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ABSTRACT 

Aspect-oriented Modeling (AOM) is a relatively recent and very active field of research, whose 

application has however been limited in practice. AOM is assumed to yield several potential benefits such 

as enhanced modularization, easier evolution, increased reusability, and improved readability of models, 

as well as reduced modeling effort. However, credible, solid empirical evidence of such benefits is 

lacking. We evaluate the ―readability‖ of state machines when modeling crosscutting behavior using 

AOM and more specifically AspectSM, a recently published UML profile. This profile extends the UML 

state machine notation with mechanisms to define aspects using state machines. Readability is indirectly 

measured through defect identification and fixing rates in state machines, and the scores obtained when 

answering a comprehension questionnaire about the system behavior. With AspectSM, crosscutting 

behavior is modeled using so-called ―aspect state machines‖. Their readability is compared with that of 

system state machines directly modeling crosscutting and standard behavior together. An initial controlled 

experiment and a much larger replication were conducted with trained graduate students, in two different 

institutions and countries, to achieve the above objective. We use two baselines of comparisons—

standard UML state machines without hierarchical features (flat state machines) and standard state 

machines with hierarchical/concurrent features (hierarchical state machines). The results showed that 

defect identification and fixing rates are significantly better with AspectSM than with both flat and 

hierarchical state machines. However, in terms of comprehension scores and inspection effort, no 

significant difference was observed between any of the approaches. Results of the experiments suggest 

that one should use, when possible, aspect state machines along with hierarchical and/or concurrent 

features of UML state machines to model crosscutting behaviors. 

Keywords: Aspect-oriented Modeling, UML State machines, Controlled Experiment, Defect Identification and Fixing, 

Comprehension 

1. INTRODUCTION 

Aspect-orientation provides enhanced modularization by separating out crosscutting concerns as separate entities 

called aspects. Aspect-orientation is a very active field [1, 2], which has mainly focused on aspect-oriented 

programming (AOP), but also led to significant progress in the realms of design and modeling, denoted as aspect-

oriented Modeling (AOM) [3, 4]. Crosscutting concerns, for example related to robustness or security behavior, 

are modeled as aspect models and are subsequently woven into a primary/base model capturing nominal 

functional behavior. AOM is expected to yield benefits such as improved readability, enhanced modularization, 

easier evolution, and increased reusability of models, as well as reduced modeling effort [4]. However, there is 

very little empirical evidence of such benefits. Empirical investigations, such as controlled experiments, are 

required to support the above claims about AOM and better understand its limitations. For example, an initial 

search on the IEEE, ACM, Science Direct, Wiley Interscience, and Springer digital libraries yielded 517 papers 
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on AOM; however, none of them reported any empirical study to evaluate its benefits. This paper is a first step in 

that direction and reports on the first two controlled experiments assessing the benefits of AOM.  

In industrial models, such as state machines, one must not only capture nominal behavior but also robustness 

behavior, for example describing how the system should react to abnormal environmental conditions. Such 

robustness is considered very critical in many standards such as in the IEEE Standard Dictionary of Measures of 

the Software Aspects of Dependability [5], the ISO‘s Software Quality Characteristics standard [6], and the 

Software Assurance Standard by NASA [7]. This is for example needed to support the automated robustness 

testing of embedded or communication systems [8] based on models. Focusing on UML state machines, as it is 

the most widely used notation in practice for the specification of control and communication systems [8, 9],  

crosscutting (e.g., robustness) behavior can result in cluttered and redundant UML state machines. As a result, 

modeling such crosscutting behavior directly on UML state machines can be error-prone and is expected to 

require significant extra modeling effort. 

In a recent paper we reported on AspectSM [10], a UML profile which was defined to model crosscutting 

behavior on UML state machines using extended UML state machines, in order to facilitate the use of AOM and 

limit its associated learning curve. The focus of AspectSM was on model-based test case generation for  control 

and communication systems [8, 9], though it can potentially be applied for other purposes. Comparable 

approaches in the literature do not use UML extension mechanisms to provide complete AOM support: they make 

use of specific notations for aspect-related features that do not follow any standard. With our industrial partners, 

and generally in most industrial settings, AOM support should be based on the UML standard to facilitate 

adoption. Also, support for modeling robustness behavior as a crosscutting behavior in state invariants and guards 

is not supported by any existing AOM approach, though they are important features in many applications, such as 

the generation of automated test oracles and data generation. A detailed comparison of the AspectSM profile with 

other related profiles can be found in [10]. AspectSM was successfully applied to model the robustness behavior 

of video conferencing systems for the purpose of model-based robustness testing at Cisco Systems, Norway [10]. 

Results suggested that on average 98% of the modeling effort could potentially be saved. Consistent with AOM 

broader claims, using AspectSM to model crosscutting behavior on UML state machines as aspects, should reduce 

cluttering and redundancy in models. 

In this paper, we report the first two controlled experiments that were conducted to evaluate the ―readability‖ of 

state machines modeling crosscutting behavior using AOM, in our case AspectSM. By ―readability‖ we denote 

the ease with which state machines can be understood, analyzed, and changed by a human to perform various 

tasks. We evaluate AspectSM models by comparing them with UML state machines modeling crosscutting 

behavior directly. The first controlled experiment, which was smaller in scale than the second, was conducted 

with 27 fully trained, graduate students taking a graduate course in ‗Advanced Software Architecture‘ at the 
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University Institute of Information Technology (UIIT) at the Pir Mehr Ali Shah Arid Agriculture University, 

Rawalpindi, Pakistan. The second experiment, which can be seen as a differentiated replication of the first one, 

was conducted at the Beijing University of Aeronautics and Astronautics (BUAA) Beijing, China, with 47 

graduate students. Half of the students were taking a graduate course titled ‗Software Engineering‘, while the 

remaining half were taking a course titled ―Software Architecture‖. Two case study systems were used for the 

controlled experiments. The first one is an Elevator Control System (ECS) provided in a well-known textbook 

[11]― but we had to extend the case study system with two crosscutting behaviors: emergency stop and 

emergency call. The second case study system is a reduced version of an industrial video conferencing system 

developed by Cisco Systems, Norway. The readability of state machines is evaluated using three measures. The 

first measure is based on the ability of subjects to identify design defects seeded in state machines by checking 

their conformance against their specifications given as English text. The second measure is based on the ability of 

the subjects to fix the defects seeded in state machines. The third measure is based on subjects‘ scores to answer a 

carefully designed comprehension questionnaire. Based on these three measures, we compare the readability and 

also the effort resulting from using AspectSM, against both standard hierarchical and flat UML state machines. 

Our motivation is to assess the impact of hierarchy and/or concurrency, which is supposed to address some of the 

same issues as AOM in state machines (e.g., redundancy), on the relative benefits of using AspectSM.  

The results of the experiments show that AspectSM helps significantly increase the identification and fixing of 

defects. It also leads to significantly better comprehension scores than flat state machines but hierarchical state 

machines look better in terms of comprehension scores, though these results were not statistically significant. In 

terms of the inspection effort, no significant difference was observed. For the replication, we observed similar 

results for defect identification and fixing but there was no significant difference observed between any of the 

three approaches regarding comprehension scores.  

The rest of the paper is organized as follows: Section 2 describes the necessary background to understand the rest 

of the paper, Section 3 provides details on planning of the initial experiment and its replication, and Section 4 

reports on results of the initial experiment and replication, respectively. Section 5 discusses the possible threats to 

validity and Section 6 compares existing, related experiments in Aspect-oriented Programming (AOP) to our 

experiments. Finally, we conclude our paper in Section 7. 

2. BACKGROUND 

In this section, we provide a brief reminder of UML state machines and an overview of aspect state machines in 

AspectSM, the technology being evaluated in our controlled experiments. 
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2.1 UML State Machines 

UML state machines enable modeling the dynamic behavior of a class, subsystem, or system. State machines in 

general are extensively used to model a variety of systems such as communication [12] and control systems [9]. 

Due to the ability of state machines to capture rich and detailed information, they have been used for automatic 

code generation [13] and the automated generation of test cases [8, 14, 15]. UML state machines provide many 

advanced features such as concurrency and hierarchy, which aim at supporting large-scale modeling. Concurrency 

enables the modeling of concurrent behavior whereas state hierarchies capture commonalities among states. A 

submachine state in a state machine functions like a simple state, but is referring to another state machine. A 

submachine can be reused in more than one state machine and may refer to other submachines [16]. They can 

therefore help reduce the structural complexity of state machines. State machines developed using the hierarchical 

features of UML will be referred to as hierarchical state machines in this paper and the ones developed without 

using submachine states, with only basic features of UML state machines, will be referred as flat state machines. 

2.2 Aspect State Machines 

This section provides an introduction to the AspectSM profile, which is used to model aspect state machines.  

2.2.1 Introduction 

AspectSM is a UML profile described in [10], which supports the modeling of system robustness behavior, which 

is very common type of crosscutting behavior in many types of systems such as communication and control 

systems [4]. An example of a robustness behavior for a communication system is related to how the system 

should react, in various states, in the presence of high packet loss. The system should be able to recover lost 

packets and continue to behave normally in a degraded mode. In the worst case, the system should go back to the 

most recent state and not simply crash or show inappropriate behavior. In a control system, one needs to model, 

for example, how the system should react, in various states, when a sensor breaks down. AspectSM allows 

modeling UML state machine aspects as UML state machines (aspect state machines). Such an approach, relying 

on a standard and using the target notation as the basis to model the aspects themselves, is expected to make the 

practical adoption of aspect modeling easier in industrial contexts. In our previous work [10], we thoroughly 

compared AspectSM with the similar existing AOM profiles. Our findings showed that only AspectSM is 

exclusively based on standard UML notation and OCL, thus eliminates the need of learning additional non-

standard notations or languages, and therefore making it easy to reuse open source and commercial technology. 

This is highly important in most industrial contexts and strongly affects the adoption of modeling technologies. In 

addition, it is easy to train people in the industry for standard languages such as UML and the OCL. 

Currently, AspectSM and its weaver have limited support modeling and weaving interactions [17] that may occur 

between different aspects and may lead to conflicts between aspects during weaving. In [18], four classes of 
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aspect conflicts are discussed: conflicts due to crosscutting specification, aspect-aspect conflicts, aspect-base 

conflicts, and concern-concern conflicts. In our application context, i.e., robustness modeling and testing, the most 

relevant conflicts are aspect-aspect conflicts, which are related to inconsistent results when weaving aspects in a 

different order. Ordering conflict is most relevant in our context since, for testing purposes, we focus on 

modeling, weaving, and testing one or more related aspects at a time. We specify the ordering between aspect 

state machines in a UML state machine containing all aspect state machines as submachine states, ordered using 

state machine control structure features: decision, join, and fork. Interested readers may consult [10] about details 

on modeling the weaving order of aspects. For testing purposes, which is the focus of AspectSM at the current 

stage, one first has to focus on testing one concern at a time, and may eventually at a later stage test several 

concerns together. For robustness testing, at this stage of the work, we weave faulty behavior of the environment 

(e.g., network) one concern at a time, as the goal is to test robustness behavior one concern at a time in order to 

facilitate debugging. 

Though AspectSM was originally defined to support scalable, model-based, robustness testing, including test case 

and oracle generation, a fundamental question is whether it is easier to model crosscutting concerns such as 

robustness with AOM in general, and AspectSM in particular, than simply relying on UML state machines to do it 

all. In AspectSM, the core functionality of a system is modeled as one or more standard UML state machines 

(called base state machines). Crosscutting behavior of the system (e.g., robustness behavior) is modeled as aspect 

state machines using the AspectSM profile. A weaver [10] then automatically weaves aspect state machines into 

base state machine to obtain a complete model, that can for example be used for testing purposes. The AspectSM 

profile specifies stereotypes for all features of AOM, in which the concepts of Aspect, Joinpoint, Pointcut, 

Advice, and Introduction [4] are the most important ones. Below, we briefly describe these concepts along with 

how are they represented in the profile. Figure 1 shows the metamodel representing and relating these concepts. 

The complete discussion of the AspectSM profile can be found in [10]. We can see from that description that 

proper modeling requires the modeler to master AOM concepts and mentally determine the end result of weaving; 

an exercise that cannot be taken for granted and be a priori considered easier than directly modeling crosscutting 

concerns in a state machine. Investigating the benefits of AspectSM, and more generally AOM, is the main 

purpose of our experiments.  

 

 

Figure 1. Conceptual domain model of the AspectSM profile 
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2.2.2 Main Concepts in AspectSM 

Aspect: This concept describes a crosscutting concern, e.g., the robustness behavior of a system in the presence of 

failures in its environment (e.g., network failures in communication systems). Using the AspectSM profile, we 

model each aspect as a UML 2.0 state machine augmented with stereotypes and attributes. 

Jointpoint: A Joinpoint is a model element selected by a Pointcut (defined next) where an Advice or Introduction 

(additional behavior) can be applied [4]. In the context of UML, all modeling elements in UML can be possibly 

joinpoints. In UML state machines, joinpoints can be, for example, State, Activity, Constraint, Transition, 

Behavior, Trigger, and Event. 

Pointcut: A Pointcut selects one or more joinpoints, where Advice or Introduction can be applied. A Pointcut can 

have at most one Before advice, one Around advice and one After advice. In the AspectSM profile, all pointcuts 

are expressed with the Object Constraint Language (OCL) [16] on the UML 2.0 metamodel [16]. We decided to 

use the OCL to query joinpoints because the OCL is the standard way to write constraints and queries on UML 

models and can therefore be used to query jointpoints in UML state machines.  Also, several OCL evaluators are 

currently available that can be used to evaluate OCL expressions such as the IBM OCL evaluator [19], OCLE 2.0 

[20], and EyeOCL [21]. Furthermore, writing pointcuts as OCL expressions do not require the modeler to learn a 

notation that is not part of the UML standard. In the literature, several alternatives are proposed to write pointcuts 

[17, 22-25] but all of them either rely on languages (mostly based on wildcard characters to select joinpoints, for 

instance, ‗*‘ to select all joinpoints) or diagrammatic notations which are not standard, thus forcing modelers to 

learn and apply new notations or languages. Using the OCL, we can write precise pointcuts to select jointpoints 

with similar properties. We do so by selecting modeling elements (jointpoints) based on the properties of UML 

metaclasses. This further gives us the flexibility to specify precise pointcuts as any condition defined based on 

some or all of the properties of a UML metaclass, e.g., a pointcut on the Transition metaclass, selecting a subset 

of transitions in a base state machine, which have triggers of type CallEvent and do not have any guard.  

Advice: An Advice is one of the crosscutting behaviors of the Aspect. The Advice is attached to Joinpoint(s) 

selected by the Pointcut. In correspondence to AspectJ [26] concepts, an Advice can be of type Before, After, or 

Around. A Before advice is applied before Joinpoint(s), an After advice is applied after Joinpoint(s), whereas an 

Around advice replaces Joinpoint(s). For example, introducing guards on a set of transitions of a state machine is 

an example of a Before advice on transitions (Joinpoint).  

Introduction: An Introduction is similar to the inter-type declaration concept in AspectJ [26]. Using Introduction 

in our context, new modeling elements (e.g., state or transition) can be introduced into a UML state machine.  
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2.2.3 Example of applying AspectSM 

In this section, we present an example of the application of AspectSM. An aspect state machine modeling 

crosscutting behavior EmergencyStop is shown in Figure 2. This UML state machine is stereotyped as 

<<Aspect>>, which means that it is an aspect state machine. The <<Aspect>> stereotype has two attributes: 

name and baseStateMachine, whose values are shown in the note labeled as ‗1‘ in Figure 2. The name attribute 

contains the name of the aspect (EmergencyStop in this example), whereas the baseStateMachine attribute holds 

the name of the base state machine, on which this aspect will be woven, which is ElevatorControl in this example.  

The aspect state machine consists of two states: SelectedStates and ElevatorStopped. SelectedStates is stereotyped 

as <<Pointcut>>, which means that this state selects a subset of states from the base state machine. There are 

three attributes of <<Pointcut>>, whose values are shown in the note labeled as ‗2‘ in Figure 2. The name 

attribute indicates the name of the pointcut and type denotes the type of the pointcut, which is Subset in this case. 

In AspectSM, different types of pointcuts can defined, a complete list of other types of pointcuts is presented in 

[10]. The third attribute selectionConstraint contains a query in OCL on the UML state machine metamodel, 

which selects all states of the base state machine except ElevatorAtFloor and Idle. All the model elements 

stereotyped as <<Introduction>> (one state, two transitions) will be newly introduced elements in the base state 

machine during weaving. This aspect introduces the ElevatorStopped state in the base state machine, and selects 

all states of the base state machines except ElevatorAtFloor and Idle (via SelectedStates) and introduces 

transitions from them to ElevatorStopped with trigger EmergencyStopButtonPressed. In addition this aspect 

introduces transitions from ElevatorStopped to all the states selected by SelectedStates with trigger 

EmergencyStopButtonReleased.       

 

Figure 2. An aspect state machine for crosscutting behavior EmergencyStop 
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3. EXPERIMENTS PLANNING 

This section discusses the planning of the experiments according to the definition and reporting template defined 

by Wohlin et al. [27]. 

3.1 Goal, Research Questions and Hypotheses 

The objective of our experiments is to assess the AspectSM profile with respect to the readability of resulting 

UML state machines. Readability will be looked at from three complementary points of view: model 

comprehensibility, the ease of detecting defects, and the ease of fixing defects for designers inspecting the 

models.  

Based on the objective of our experiments, we defined the following four research questions. 

 RQ1: Does the use of AspectSM lead to better defect identification rate when inspecting state machines as 

compared to hierarchical and flat state machines? 

We wish to compare the readability of AspectSM with two different types of state machines where crosscutting 

behavior is modeled directly: hierarchical and flat state machines. None of the expected differences between them 

can a priori be certain to be in a specific direction. This therefore leads to the definition of two-tailed hypotheses. 

H
1

0: The defect identification rate in aspect state machines is the same as that for hierarchical state machines. 

H
2

0: The defect identification rate in aspect state machines is the same as that for flat state machines. 

 RQ2: Does the use of AspectSM lead to better defect fixing rate when inspecting state machines as 

compared to hierarchical and flat state machines? 

Similar to the previous question, we wish to compare the ease of defect fixing when using AspectSM with two 

different types of state machines directly capturing crosscutting behavior: hierarchical and flat state machines. 

Again, none of the expected differences between them can a priori be certain to be in a specific direction, hence 

leading to the definition of the following two-tailed hypotheses. 

H
3

0: The defect fixing rate in aspect state machines is the same as that for hierarchical state machines. 

H
4

0: The defect fixing rate in aspect state machines is the same as that for flat state machines. 

 RQ3: Does the use of AspectSM improve the ease of comprehension when compared to hierarchical and 

flat state machines? 

Similar to the previous research questions, we wish to compare the comprehensibility of AspectSM with the two 

different types of state machines directly capturing crosscutting behavior (hierarchical and flat state machines) 

based on the scores to answer a comprehension questionnaire. We defined the following two-tailed null 

hypotheses accordingly. 

H
5

0: The comprehensibility of aspect state machines is the same as that for hierarchical state machines.  
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H
6

0: The comprehensibility of aspect state machines is the same as that for flat state machines. 

 RQ4: Does the use of AspectSM reduce the required inspection effort for defect identification and 

answering the comprehension questionnaire? 

While the two previous research questions looked at the effectiveness of using alternative models, this research 

question is concerned with the effort required to inspect crosscutting behavior for defect identification and 

answering the comprehension questionnaire. This leads again to the following two-tailed null hypotheses: 

H
7

0: The effort to identify defects in aspect state machines is the same as that for hierarchical state machines. 

H
8

0: The effort to identify defects in aspect state machines is the same as that for flat state machines. 

H
9

0: The effort to answer the comprehension questionnaire for aspect state machines is the same as that for 

hierarchical state machines. 

H
10

0: The effort to answer the comprehension questionnaire for aspect state machines is the same as that for flat 

state machines. 

3.2 Participants 

The first controlled experiment was conducted at the Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 

Pakistan. The subjects in the experiment were 27 graduate students taking a graduate course in ‗Advanced 

Software Architecture‘ at the University Institute of Information Technology (UIIT). The course is offered in the 

Master of Science program. The students in this degree already hold a Bachelor in Computer Science or 

Information Technology and have already been exposed to the UML notation and extensions in the form of UML 

profiles. On average, each student went through five development and two modeling courses. Eighteen students 

(out of twenty-five) have used the UML notation for their final year projects before the experiment was 

conducted. Twenty students gained development experience in IT companies or as teaching staff in computer 

science.  

The replication of the above experiment was conducted at the Beijing University of Aeronautics and Astronautics 

(BUAA), Beijing, China. The subjects in the replication are 47 graduate students. Half of the students were taking 

a graduate course titled ‗Software Engineering‘, whereas the remaining half students were taking a graduate 

course titled ‗Software Architecture‘. Both courses rely on similar teaching materials and methods and we 

therefore can assume that all students have a similar education background regarding software engineering. These 

two courses are offered in the Master of Computer Software and Theory program. The students in this degree 

already hold a Bachelor in Computer Science and had all already been exposed to UML. On average, each student 

went through two software development courses and one modeling course. All of the students had at least one 

year of experience in development work in various industry sectors such as maritime and aerospace. In 

conclusion, the subjects have roughly the same background, although the subjects were in different years of their 
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study. Their seniority was taken into the consideration while forming experimental groups as we will discuss in 

Section 3.4.   

Our motivation in selecting these two groups of subjects was to find participants with adequate background (e.g., 

UML modeling) that could be trained to use our AOM approach over a short period of time. Our goal was to 

assess AspectSM with fully trained, competent participants in order to assess the maximum potential benefits of 

the approach. Most practitioners have very little knowledge of AOP and even less of AOM. Ensuring they have 

the required background is also difficult. This is why we relied on a group of mature and trained graduate 

students. The subjects were free to choose to participate or not into the experiments and were told their choice 

would have no effect on their course grades. All students underwent a specific, additional training for the 

experiments (Section 3.7). For the initial experiment, two students decided not to participate in the experiment. 

3.3 Material 

In this section, we provide details on the material we used for the experiments. 

3.3.1 Case Study System 

For the initial experiment, we only used an Elevator Control System (ECS), whereas for the replication of the 

experiment we used a second system as well: Video Conferencing System (VCS). Differences between the initial 

experiment and replication are summarized in Section 3.8. Information regarding the complexity of the three 

resulting state machines is provided in Table 1, measured using number of states and transitions for each system. 

For aspect state machines, we also provide the number of Pointcuts, which also contribute to modeling 

complexity. In Appendix A, we provide partial models of ECS to illustrate various models specified using 

different modeling approaches. 

Elevator Control System: It controls movements of an elevator in a building. For our experiments, we extended 

the specification of the elevator given in [11] with two additional crosscutting behaviors so that the AspectSM 

profile could be used to model them. These two crosscutting behaviors are: 1) Emergency call behavior (Call): the 

behavior of an elevator, when an emergency call is made, and 2) Emergency stop behavior (Stop): the behavior of 

an elevator, when the emergency stop button is pressed. Note that in Table 1 for ECS, in the replication, we 

improved the design of Flat and Hierarchical such that there are fewer states and transitions when compared to 

the design in the initial experiment.  

Video Conferencing System: It is a core subsystem of a video conference system called Saturn developed by 

Cisco Systems, Norway. The core functionality to be modeled manages the sending and receiving of multimedia 

streams. Audio and video signals are sent through separate channels. For the replication, we used a reduced model 

of Saturn that is related to establishing and disconnecting videoconferences. In addition to the core functionality, 

we used the following three crosscutting behaviors:  
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1) Audio Quality Loss (AQ): An important robustness behavior of Saturn is to recover from audio quality 

loss. Whenever Saturn is in a video conference, it checks audio quality after every certain time. If the 

quality is within threshold it continues the normal operation, otherwise it tries to recover audio quality. If it 

successfully recovered the audio quality it continues its normal operation, otherwise it restarts the VCS.  

2) Do Not Disturb (DnD): Whenever the Do Not Disturb feature is on, Saturn ignores all incoming calls. If 

Saturn is already in a call, it will remain in the call, but ignores any new incoming calls. 

3) Standby: The Standby behavior of Saturn becomes active when it is idle for m minutes. When any 

activity is performed on Saturn while it is in Standby mode, it becomes active.  

Table 1. Complexity of the state machines modeling the crosscutting behaviors of the case study system 

System Experiment Crosscutting 
behavior 

Base state 
machine 

Flat 
Approach 

Hierarchical 
Approach 

Aspect Approach 

# S # T # S # T # S # T # S # T # P 

ECS Experiment Call 12 15 15 27 14 18 16 18 1 

Stop 12 15 15 27 12 15 14 17 1 

ECS Replication Call 12 15 15 27 17 21 16 18 1 

Stop 12 15 13 23 14 17 14 17 1 

VCS Replication AQ 5 9 8 17 10 19 8 13 1 

DnD 5 9 6 15 8 20 7 13 1 

Standby 5 9 5 11 5 14 7 13 1 

*S: States, T: Transitions, P: Pointcuts 

The crosscutting behaviors for both systems can be modeled in three different ways: 1) by applying AspectSM to 

derive an aspect state machine (Aspect Approach), 2) by directly adding states and transitions on the base state 

machine (Flat Approach), 2) by using hierarchical/orthogonal states (Hierarchical approach) in order to avoid 

redundant modeling and reduce complexity to the maximum extent. It is, however, not always possible to use the 

hierarchical approach successfully. For instance, separating out constraints modeling non-functional properties 

(e.g., video or audio quality) from state invariants is not possible using hierarchical state machines without 

introducing accidental complexity and redundancy as we demonstrated in [10].  

3.3.2 Design Defect Classification  

Given that the correctness and completeness of defect identification through inspections are part of our evaluation 

criteria to compare state machines, experiment participants were asked to identify defects seeded in state 

machines by checking their conformance against their corresponding specifications (Section 3.4). 

To help systematically inspect state machines for various types of defects, a classification of different types of 

design defects is required. The classification we used in the experiments is given below and was adapted from 

Binder‘s book [8]. It was provided to the participants of the experiments as part of the answer sheet (Section 

3.3.5) to systematically collect their answers. 

Incorrect Transition (IT): A transition that comes from or leads to a wrong state or has an incorrect guard, trigger, 

and/or event. 
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Missing Transition (MT): According to the specification, there is a transition missing from the state machine.  

Extra Transition (ET): A transition is subsumed by another transition in a state machine. Such a transition is 

redundant in the sense that removing it still keeps the state machine in conformance to its specification.  

Missing State (MS): According to its specification, a state that should be modeled in a state machine but is 

missing.  

Incorrect State (IS): A state is incorrect if it has an incorrect state invariant, do, entry and/or exit activity. 

Extra State (ES): A state is subsumed by another state. This state is considered as an extra state in the sense that 

removing it still keeps the state machine in conformance to its specification. 

3.3.3 Seeded Defects 

It is important to note that in our experiments, we were interested in studying the readability of crosscutting 

behaviors since AspectSM is specifically designed for that purpose. Moreover, the readability of other types of 

behaviors is expected to be the same with or without AspectSM. For these reasons we only seeded defects in the 

crosscutting behaviors. Different types of defects were selected after we carefully examined the base and aspect 

state machines and identified possible independent defects. Table 2 shows the distribution of these defects that 

were seeded in the compared state machines. Note that seeded defects in ECS are different for the initial 

experiment and its replication since we improved the models in the latter.  

Because aspects model crosscutting behavior, it is expected that one defect in an aspect often corresponds to 

several defects in the corresponding hierarchical state machine. Similarly, because hierarchical states factor out 

common behavior, one defect in a hierarchical state machine often leads to several defects in its corresponding 

flat state machine. As a result, different numbers of defects were seeded in the three state machines in order to 

conceptually correspond to equivalent defects and have semantically equivalent models. Note that in Table 2, a „-‟ 

indicates that we didn‘t seed defects from a particular defect class (e.g., MT, IT).   

Table 2. Distribution of seeded defects in state machines 

Experiment System Crosscutting 
Behavior 

Aspect Hierarchical Flat 

MT IT MS IS MT IT MS IS MT IT MS IS 

Experiment ECS Stop 1 - - - 1 - - - 10 - - - 

Call 1 1 - 1 4 2 - 1 11 9 - - 

Replication ECS Stop 1 - - - 1 - - - 10 - - - 

 Call 1 1 - 1 1 1 - 1 10 10 - 1 

VCS AQ 1 1 1 - 1 1 1 - 1 4 1 - 

DnD - 2 1 1 - 2 1 1 - 8 1 1 

Standby 2 1  1 - - - - 2 1 - 1 

3.3.4 Comprehension Questionnaire 

As we discussed above, we also want to compare how easy it is to comprehend the various types of state 

machines. To this effect, a comprehension questionnaire was designed to evaluate, in a repeatable and objective 

way, the extent to which a subject can understand the state machines. For example, some questions concern what 
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scenario is triggered when an event happens in a certain state. The subjects were asked the same ten questions on 

crosscutting behaviors together for all three state machines. Participants had to answer each question by 

inspecting the state machine assigned to them and correctness scores were computed by accounting for partially 

correct answers. For example, if the answer to a question entailed to list four transitions, then pointing out each 

correct transition contributed 0.25 to the full mark of the question. 

3.3.5 Answer Sheets 

Three answer sheets were developed to collect answers for three readability measures (defect identification, defect 

fixing, and comprehension). The first answer sheet was developed to collect information about classes of defects 

that were identified by each subject, the number of defects in each class, and the location of identified defects. A 

table was provided to the subjects for each crosscutting behavior. The rows of the table were labeled with each 

defect class, whereas the columns featured two pieces of information about defects: number of defects identified 

in each class and location of each identified defect. The second answer sheet was developed to collect the state 

machine corrected by the subjects. The third answer sheet was designed to collect answers to the comprehension 

questionnaire.  

3.4 Design 

In this section, we present the design of the initial experiment and its replication. In the initial experiment, we 

used a between-subjects design for reasons discussed in Section 3.4.1, whereas in the replication, we used both 

between-subjects and within-subjects designs for each of the two rounds, respectively (Section 3.4.2). 

3.4.1 Design of the Initial Experiment 

The design of our experiment is summarized in Table 3. Our experiment design consists of two rounds and there 

were three groups denoted Group 1, Group 2, and Group 3. Given the number of the subjects, this led respectively 

to 8, 8, and 9 subjects in each group. In each round, one group was given a different type of state machines 

(Aspect, Hierarchical, or Flat). During the training sessions (Section 3.7), each subject was equally trained to 

understand the three different types of state machines: Aspect, Flat, and Hierarchical. The subjects were also 

given a modeling assignment, after the training sessions, for them to practice before the actual experiment tasks. 

This assignment was marked by the first author of this paper and grades were used to form blocks (i.e., groups of 

students of equivalent skills). The experiment groups were then formed through randomization and blocking to 

obtain three comparable groups with similar proportions of students from each skill block. The two rounds of the 

experiments were conducted in sequence on the same day. 

This initial experiment used a between-subjects design, where different groups of subjects are compared when 

using different state machine modeling techniques. As shown in Table 3, in the first round, each group was asked 

to identify defects in two separate tasks corresponding to the Call and Stop crosscutting behaviors. Group 1 was 
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given state machines modeled using the Aspect approach. The subjects in Group 1 were given one base state 

machine and one aspect state machine modeling Call in Task 1, whereas in Task 2, Group 1 was given the same 

base state machine and one aspect state machine for the Stop crosscutting behavior. Group 2 was given one 

hierarchical state machine for Call and one hierarchical state machine for Stop for Task 1 and Task 2, respectively. 

Similarly, Group 3 was given one flat state machine for Call and one flat state machine for Stop for Task 1 and 

Task 2, respectively. Seeded defects for each type of state machines (Aspect, Hierarchical, and Flat) are presented 

in Table 2. For each task, the subjects were allowed to take as much time as they needed, but when they finished 

the first task, their answer sheets for this task were collected and then they were handed the description of the 

second task and a new answer sheet. The starting and completion times were noted on each answer sheet by the 

subjects and were checked for correctness by the instructors while collecting the solutions.  

For the second round, the three groups were rotated: Group 1 was asked to answer comprehension questionnaire 

for flat state machine, Group 2 for aspect state machines, and Group 3 for hierarchical state machines. This 

rotation was performed only for pedagogical reasons such that each group can be exposed to a different type of 

state machines than the previous round. However, since we had only two tasks due to time constraints, it was not 

possible for all of the groups to experience all three approaches. The starting and completion times for this task 

were collected following the same procedure as for Round 1.  

Table 3. Design of the Initial Experiment 

Round Case study Crosscutting behavior Task Group 1 Group 2 Group 3 

1 ECS Stop DI A H F 

Call A H F 

2 Stop and Call AC F A H 

* DI: Defect Identification, AC: Answer Comprehension Questionnaire, A: Aspect, H: Hierarchical, and F: Flat 

3.4.2 Design of the Replication 

The design of the replication is summarized in Table 4. Our replication design consists once again of two rounds 

(Round 1 and Round 2) and each round was conducted on a separate day. During the training session (Section 

3.7), each subject was equally trained to understand the three different types of state machines: Aspect, Flat, and 

Hierarchical. The subjects were divided to form blocks (i.e., groups of students of equivalent skills) based on 

their seniority in their graduate programs. The groups were then formed through randomization and blocking to 

obtain three comparable groups with similar proportions of students from each skill block. We divided the 

subjects into three groups: Group 1, Group 2, and Group 3. For Round 1, there were 17, 15, and 15 subjects, 

respectively. For Round 2, due to practical reasons such as time clash with courses and exams, fewer students 

participated than in Round 1. In Round 2, we had 14, 10, and 15 in Group 1, 2 and 3, respectively.  

In Round 1, the ECS system and a between-subjects [27] design were used. We did not have a third crosscutting 

behavior to opt for a balanced, within-subjects design, as for the second round that is described next. Every 

participant was exposed to only one modeling approach. Group 1 was given state machines modeled using the 
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Aspect (A) approach, Group 2 with the Hierarchical (H) approach and Group 3 with the Flat approach (F).  

In Round 2, regarding detecting and fixing defects, we used a within-subjects design [27] since we have three 

crosscutting behaviors and three treatments (Aspect, Hierarchical, or Flat). A within-subjects design offers two 

main advantages. First, with this type of design, we can reduce the error variance due individual differences in 

human performance, which is quite common in software engineering tasks. This is due to the fact that the same 

group of students is exposed to all modeling approaches across the different crosscutting behaviors (e.g., Call and 

Stop). Second, within-subjects designs provide more statistical power as compared to a between-subjects design 

[27] as it leads to more observations for each treatment. Potential threats from within-subjects designs are 

―carryover‖ effects. To address this, for each of the three crosscutting behaviors, each group was given a different 

treatment in such a way that ordering effects were counterbalanced: each of the three modeling approaches 

occurred once in a different order across the three groups. For example, as shown in Table 4, for aspect DnD, each 

group was asked to detect and fix defects and Group 1, Group 2 and Group 3 were given treatment Aspect, 

Hierarchical, and Flat, respectively. For Standby, the three groups were rotated: Group 1 was asked to identify 

and fix defects for flat state machines, Group 2 used aspect state machines, and Group 3 used hierarchical state 

machines. Similarly, the groups were rotated again for AQ. With a within-subjects design, a matched pair analysis 

can be applied by comparing the performance of subjects with themselves across treatments.  

In both rounds, the subjects were presented with all three crosscutting behaviors together and were asked to 

answer questions from a comprehension questionnaire for one type of state machine. For each crosscutting 

behavior, the subjects were given a fixed time as shown in Table 4. Fixing the time for task execution tends to 

yield more differences in task effectiveness, but then results cannot be used to study time differences across 

treatments [27]. Note that in the replication, we ordered the crosscutting behaviors based on their complexity 

(Table 1) from simple to complex, in order to enable the subjects to tackle increasingly more complex models and 

thus smooth the learning curve.  

Table 4. Design of the Replication* 

Round Case study Aspect Task Group 1 Group 2 Group 3 Time (min) 

1 ECS Stop DI A H F 15 

DF 15 

Call DI A H F 15 

DF 15 

Stop and Call AC A H F 30 

2 VCS DnD DI A H F 15 

DF 15 

Standby DI F A N/A 15 

DF 15 

AQ DI H F A 15 

DF 15 

DnD, Standby, AQ AC A H F 30 

* DI: Defect Identification, DF: Defect Fixing, AC: Answer Comprehension Questionnaire, A: Aspect, H: Hierarchical: and F: Flat 
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3.5 Dependent Variables  

Defect Identification Rate (DIR) and Defect Fixing Rate (DFR): These variables capture whether a subject 

accurately identifies/fixes seeded defects. Based on the information collected in the answer sheet described in 

Section 3.3.5, there are several different ways to measure DIR and DFR, which we discuss below. 

1) Average DIR/DFR  

For each type of defects, Average DIR/DFR (DIR_Average/DFR_Average) is measured as the percentage of 

identified/fixed defects over the total number of seeded defects:  

number of identified or fixed defects / total number of seeded defects 

2) DIR and DFR on binary scale with minimum defect identification and fixing 

As discussed in Section 3.3.1, one defect seeded in aspect state machines may correspond to more than one 

defect in hierarchical or flat state machines. Therefore, to allow for a meaningful combination of 

observations across tasks and state machines, we use a binary measure indicating whether at least one defect 

was found (DIR_Binary) or fixed (DFR_Binary). As long as at least one defect is identified/ fixed in a given 

task by a subject in hierarchical and flat state machines, value 1 is assigned to DIR_Binary/DFR_Binary. For 

example, as shown in Table 2, the flat state machine modeling the Call crosscutting behavior contains 10 MT 

defects, 10 IT defects, and one IS defect. If at least any one of these defects is identified by a subject, then 

DIR_Binary = 1; otherwise DIR_Binary = 0. It is important to note that we developed this measure such that 

comparisons across the three approaches are made possible. This is due to the reason that different numbers 

of defects are introduced in three types of state machines corresponding to a single defect in a crosscutting 

behavior. 

3) DIR and DFR on binary scale with maximum defect identification and fixing 

This measure (DIR_Binary_Max/DFR_Binary_Max) is a variation of DIR_Binary/DFR_Binary−which is 

also comparable across state machines−and is assigned value 1 when all defects seeded in a crosscutting 

behavior are identified/fixed by a subject in a task. For instance, in Table 2, the hierarchical state machine 

modeling the Call crosscutting behavior has 10 MT defects. DIR_Binary_Max = 1, if all these defects are 

identified by a subject, otherwise it is assigned 0. In comparison with the measure DIR_Binary, this measure 

is stricter in the sense that it requires all the seeded defects in each of the three types of state machines to be 

identified to obtain a value 1. None of these measures are perfect but such binary measures are necessary to 

combine all observations in one data set. We will interpret differences in results of binary measures if they 

arise. The purpose of defining this measure is the same as for the previous measure: render possible 

comparisons across the three approaches, but in a different way.  

4) Score of the responses to the comprehension questionnaire (SCQ): Correctness of the responses to the 

comprehensive questionnaire is calculated as follows:  
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Sum of scores of all questions / 10 

In the formula above, the score for each question is calculated based on the marking procedure discussed in 

Section 3.3.4 and 10 is the total number of questions in the questionnaire. 

Table 5summarizes which dependent variables are used to answer research questions presented in Section 3.1. 

3.6 Data Collection  

For the initial experiment, the solutions were collected from the subjects and were marked by the first author of 

this paper. In the replication, the solutions were marked by the second author of this paper. The data was encoded 

into a JMP [28] data file to perform the statistical analysis.  

Table 5. Dependent variables corresponding to each research question  

Research Question Dependent Variables 

RQ1 DIR_Average, DIR_Binary, DIR_Binary_Max 

RQ2 DFR_Average, DFR_Binary, DFR_Binary_Max 

RQ3 SCQ 

RQ4 Effort 

For the experiment, data integrity was checked using the following rule: for the same subjects and for each step, 

the starting time should precede the completion time, and the completion time of the current task must precede the 

starting time of the next task. For the replication, since the time for each task was fixed (Section 3.4.2), the answer 

sheets for a task were collected before handing over the next task to the subjects to ensure that the each subject 

used exactly the same time. In addition, to avoid mistakes in marking the solutions, the first two authors double-

checked the solutions marked by the other. Moreover, for a sample of randomly selected solutions, the first two 

authors also checked the consistency of the entries in the JMP file with the marks on the answer sheets and no 

inconsistencies were detected. 

3.7 Training 

In the initial experiment, the subjects were trained by the first author of this paper. Two three-hour sessions were 

given on the following topics: 1) Recap of UML state machines since the subjects were already familiar with this 

topic preceding the training (Section 3.2), 2) Introduction to the Object Constraint Language (OCL), 3) 

Introduction to aspect-oriented software development (AOSD), and 4) Aspect-oriented modeling (AOM) using 

the AspectSM profile. Each topic was accompanied with several examples and interactive class assignments. As 

previously discussed, the subjects were given a home assignment after the training sessions to practice the three 

state machine modeling approaches and groups were later formed based on the grades of this assignment.  

For the replication, the subjects were trained by the second author of this paper. One three-hour session was given 

on the same topics as the ones used in the initial experiment. However, in this case, there were no class 

assignments given to the students due to practical constraints.   
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3.8 Replication 

There are several potential reasons why replications of experiments are necessary in software engineering [29]. 

Our replication was motivated by the following reasons: 1) to reduce the validity threats that were observed in the 

intitial experiment, 2) to increase the sample sizes and improve the statistical power of results, 3) to address the 

problems identified in the design and material. The differences between the initial experiment and its replication 

are summarized below:   

3.8.1 Reduced External Validity Threats 

In the replication, we reduced external validity threats by doing the following. 1) We added an additional case 

study, which is a reduced version of an industrial videoconferencing system developed by Cisco, Norway. In 

addition, we included three real crosscutting behaviors of the videoconferencing system. 2) We replicated the 

experiment in a different geographical area with graduate students from a different education system.   

3.8.2 Improved hierarchical modeling of ECS 

The ECS system was used in both the initial experiment and its replication. For the replication, we improved the 

design for Hierarchical. The Stop crosscutting behavior of ECS in the replication is modeled with a reduced 

number of modeling elements as compared to its design in the initial experiment.  

3.8.3 Improved Assignments of Subjects to Treatments 

In the initial experiment (Section 3.4.1), we rotated the groups for two tasks (defect identification and answering 

comprehension questionnaire) such that each group can inspect the state machines modeled with a different 

approach. Though this rotation was done for pedagogical reasons, since we had only two tasks for ECS (Section 

3.3.1), not all of the groups could experience state machines modeled with all three approaches. In the replication, 

in contrast, we used a within-subjects design for the VCS system, where each group was exposed to all treatments 

exactly once. As discussed above, this also led to higher statistical power and a reduction in variance associated 

with individual differences by enabling the use of matched pair analysis.  

3.8.4 Other Differences 

In the initial experiment, we measured readability from two perspectives: defect identification and answering a 

comprehension questionnaire. In the replication, we added another perspective: defect fixing. In the initial 

experiment, we gave subjects as much time as they wanted to perform each task. The results did not, however, 

reveal any significant differences between various approaches in terms of time (Section 4.4). In the replication, 

we fixed the time for each task and this expectedly led to most subjects using most of the allocated time. As 

expected, the differences across treatments, if any, are in such a context only visible in terms of effectiveness 

(e.g., defect identification/fixing rates) [27]. 



Simula Research Laboratory, Technical Report 2010-11, Version 3         November 2011 

 

19 

 

3.9 Overview of Statistical Tests 

In this section, we provide justifications for the statistical tests run for our data analysis. 

3.9.1 Statistical Tests 

Using statistical testing, we check whether the differences between modeling approaches are statistically 

significant to determine if we can reject the null hypotheses stated in Section 3.1. For all statistical tests reported 

in this section, we used a significance level of =0.05, though exact p-values are also reported. To check if, 

overall, there exist significant differences among the three approaches under investigation, we performed the one-

way ANOVA test [30] on each dependent variable defined on an interval scale, i.e., DIR_Average, DFR_Average, 

SCQ, and Effort. Our samples for all dependent variables meet all assumptions of the ANOVA test, which are as 

follows: 1) the samples should be approximately normal, 2) the samples must be independent, and 3) variances of 

populations must be equal. To check for normality, we performed the Shapiro–Wilk W test [30] for each 

dependent variable. The results showed that their distributions do not strongly depart from normality. The second 

assumption also holds since our samples are collected on different groups of the subjects, working independently. 

To check the equivalence of variances, we performed the Bartlett's test [30] which showed that the variances 

across samples are equal for all dependent variables. In addition to the one-way ANOVA test, we also performed 

the Kruskal–Wallis one-way analysis of variance test [30], which is a non-parametric equivalent of the one-way 

ANOVA test. The results of both tests turned out to be consistent. 

For those dependent variables for which one-way ANOVA results were significant, we performed a pair-wise 

comparison of the distributions obtained for the three state machines using Tukey_Kramer HSD [30], which is the 

ANOVA post-hoc test. As an adaptation of t-test, the Tukey_Kramer HSD test is designed to handle the increase 

in Type-I error resulting from multiple comparisons. It assumes normally distributed samples and requires 

samples of equal or comparable size, or otherwise yield conservative results [30]. We have (nearly) equal sample 

sizes (see Section 3.4) and our dependent variable distributions do not strongly depart from normality as the 

results of the Shapiro–Wilk W test [30] showed. We also report the mean differences between pairs of approaches 

indicating the direction in which the result is significant. We also performed the Wilcoxon Signed-Rank test [30], 

which is a non-parametric equivalent of Tukey_Kramer HSD. The results of both tests were consistent. 

For Round 2 in the replication, since our design is a within-subjects design, we performed the matched pairs t-test, 

in addition to the one-way ANOVA and pair-wise comparisons with Tukey-Kramer HSD since matched pairs 

analysis improves statistical power over independent sample testing, as discussed in Section 3.4. In our context, a 

pair is the same student performing the same type of task (e.g., defect identification) on different crosscutting 

behaviors (e.g., DnD and Standby) on state machines designed with different approaches (e.g., Aspect and 

Hierarchical). We double checked the results of the matched pairs t-test with a Wilcoxon matched pairs test, 
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which is an equivalent, non-parametric test. The results of the tests turned out to be consistent. Since the results of 

both parametric and non-parametric tests are consistent, we only report the results of the parametric tests in this 

paper.  

For DIR_Binary, DFR_Binary, DFR_Binary_Max, and DIR_Binary_Max, we performed the Fisher‘s exact test 

[30] to compare the defect identification/fixing proportions for the various state machines. These four measures 

are binary and observations can be therefore classified into two categories (either 0 or 1 showing ‗not found‘ or 

‗found‘, respectively), which is exactly what the Fisher‘s exact test is designed for. For these binary variables, for 

Round 2 in the replication, since our design is a within-subjects design, we also performed the McNemar's Test 

[31] for matched pairs analysis. This test is specifically designed for matched pairs analysis of binary data.  

We performed all the tests mentioned in this section using JMP [28] except for the McNemar‘s Test [31], for 

which we used the web-based application [31]. 

3.9.2 Power Analysis 

Power analysis can be used during the design stage of an experiment to determine how many subjects are likely to 

be needed, or after the fact to help interpret non-significant results. The latter may be due to small samples sizes 

and effect sizes that are smaller than expected. Power analysis is particularly important for controlled experiments 

in software engineering that involve human subjects, as they normally suffer from small sample sizes because of 

the limited availability of trained subjects and the high cost of conducting experiments. In our context, like in 

most software engineering experiments, the number of subjects is imposed by external constraints and a 

retrospective power analysis, as suggested in [32], helps interpret non-significant results in such conditions. For 

each statistical test considered, such an analysis estimates the minimum effect size at which we can observe an 

acceptable level of power (typically 80%). This means that above that minimum, we can probably interpret a non-

significant result as an absence of effect. Below this threshold the effect might be present but remain undetected.  

In our experiments, we are interested in comparing the Aspect approach to Hierarchical and Flat approaches. We 

perform power analysis for the dependent variables that did not yield significant results and followed the method 

of calculating power as reported in [32], which requires a fixed sample size, a set significance level (0.05) and 

power level (80%), and uses the observed variance to calculate the corresponding, minimum effect size. We 

didn‘t use standardized effect sizes as suggested by Cohen [33] since those cannot be easily interpreted in a 

software engineering context.  

4. RESULTS AND DISCUSSION  

We analyze and present our experiments results in this section. We present the results for the four research 

questions in Section 4.1, Section 4.2, Section 4.3, and Section 4.4, respectively. Within each section, we provide 

results for both the initial experiment and its replication, and a plausible explanation of the results. In Section 4.5, 
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we provide concluding remarks on the results and discussions. 

4.1 Results and Analysis for Defect Identification (RQ1) 

In this section, we report results for RQ1 presented in Section 3.1. As shown in Table 5, we will answer this 

research question based on the DIR_Average, DIR_Binary, and DIR_Binary_Max dependent variables, for both 

the initial experiment (Section 4.1.1) and its replication (Section 4.1.2). We provide individual discussions of the 

results for each experiment in Section 4.1.3 and an overall discussion in Section 4.1.3.3. 

4.1.1 Results for the Initial Experiment 

Regarding DIR_Average, from Table 6 we can observe higher values for Aspect than for Hierarchical and Flat. 

More specifically, the Aspect group performed 56% and 62% better than the Hierarchical and Flat groups. These 

results show that it is easier to correctly detect the defects seeded in aspect state machines than in the flat and 

hierarchical state machines. The most plausible explanation is that the number of model elements (Section 3.3.1) 

for aspect state machines is lower than in the other two types of state machines (Table 1) and complexity of 

pointcuts written as OCL queries does not override this effect. In addition, we checked whether the differences 

observed for DIR_Average are statistically significant to determine if we can reject the null hypotheses stated in 

Section 3.1. As shown in Table 7, we observed significant differences for DIR_Average. Since the results were 

statistical significant, we further performed Tukey_Kramer HSD for a pair-wise comparison of modeling 

approaches. The results showed that Aspect significantly outperformed both Flat and Hierarchical in terms of 

DIR_Average as p-values are lower than  (Table 8).  

For DIR_Binary as shown in Table 6, for Aspect, 93.7% of the subjects managed to catch at least one defect from 

any of the defect types seeded in both tasks. This is 37.5% and 27% higher than for Hierarchical and Flat, 

respectively. For DIR_Binary_Max, we observed a pattern similar to DIR_Binary for both tasks, as shown in  

Table 6. DIR_Binary_Max is higher for Aspect than that of Hierarchical and Flat, i.e., for the Aspect group, 

68.7% of the subjects managed to find all the defects seeded in both tasks, which is 56.2% more than for the 

Hierarchical group and 40.9% more than for Flat (see Table 6). As we discussed in Section 3.9, we performed the 

Fisher‘s exact test to check statistical significance of difference in binary variables and the results are provided in 

Table 9. For DIR_Binary, Aspect significantly outperformed Hierarchical, but there were no significant 

differences observed for Aspect vs Flat. In the case of DIR_Binary_Max, Aspect significantly outperformed both 

Hierarchical and Flat.   
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Table 6. Descriptive statistics for various DIR measures 

Experiment System Measure Crosscutting Behavior 
Approach 

Aspect Hierarchical Flat 

Experiment ECS DIR_Average Call and Stop 0.81 0.25 0.19 

DIR_Binary 0.94 0.56 0.67 

DIR_Binary_Max 0.69 0.13 0.28 

Replication ECS DIR_Average Stop 0.29 0.46 0.40 

DIR_Binary 0.29 0.46 0.73 

DIR_Binary_Max 0.29 0.46 0.06 

DIR_Average Call 0.27 0.53 0.16 

DIR_Binary 0.52 0.93 0.73 

DIR_Binary_Max 0.05 0.06 0 

DIR_Average Call and Stop 0.28 0.5 0.28 

DIR_Binary 0.41 0.7 0.73 

DIR_Binary_Max 0.17 0.26 0.03 

VCS DIR_Average DnD 0.30 0.1 0.18 

DIR_Binary 0.71 0.4 0.6 

DIR_Binary_Max 0 0 0 

DIR_Average Standby 0.6 - 0.33 

DIR_Binary 0.6 - 0.64 

DIR_Binary_Max 0.6 - 0 

DIR_Average AQ 0.25 0.19 0.26 

DIR_Binary 0.66 0.57 1 

DIR_Binary_Max 0 0 0 

DIR_Average DnD, Standby, and AQ 0.36 0.15 0.25 

DIR_Binary 0.66 0.5 0.71 

DIR_Binary_Max 0.15 0 0 

Table 7. Results for one-way ANOVA for DIR_Average 

Experiment System Crosscutting behavior p-value 

Experiment ECS Call and Stop 0.0001 

Replication ECS Stop 0.55 

Call 0.003 

Stop and Call 0.04 

VCS DnD 0.10 

Standby 0.12 

AQ 0.64 

DnD, Standby, and AQ 0.02 

Table 8. Comparisons of all pairs for DIR_Average using Tukey_Kramer HSD 

Experiment System Crosscutting Behavior 
Aspect vs Hierarchical Aspect vs Flat 

Mean Difference (Aspect - Hierarchical) p-value Mean Difference (Aspect - Flat) p-value 

Experiment ECS Stop and Call 0.36 0.02 0.44 0.005 

Replication ECS Call -0.25 0.04 0.11 0.48 

Stop and Call -0.21 0.03 0.003 0.99 

VCS DnD, Standby, and AQ 0.20 0.01 0.10 0.27 

4.1.2 Results for the Replication 

In this section, we provide results for the replication for defect identification. Section 4.1.2.1 provides the results 

for ECS, whereas Section 4.1.2.2 provides the results for VCS. 
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Table 9. Two tailed Fisher’s exact test for DIR binary measures at α=0.05 

Experiment System Measure Aspect vs. Hierarchical Aspect vs. Flat 

Difference in proportion 
(Aspect - Hierarchical) 

p-value Difference in proportion 
(Aspect - Flat) 

p-value 

Experiment ECS DIR_Binary 0.375 0.03 0.27 0.09 

DIR_Binary_Max 0.56 0.003 0.40 0.03 

Replication ECS DIR_Binary (Stop) -0.17 0.46 -0.43 0.03 

DIR_Binary_Max (Stop) -0.17 0.46 0.22 0.17 

DIR_Binary (Call) -0.40 0.01 -0.20 0.29 

DIR_Binary_Max (Call) -0.0007 1 0.05 1 

DIR_Binary -0.28 0.02 -0.32 0.01 

DIR_Binary_Max -0.09 0.54 0.14 0.10 

VCS DIR_Binary (DnD) 0.31 0.21 0.11 0.69 

DIR_Binary_Max (DnD) 0 - 0 - 

DIR_Binary (Standby) - - -0.04 1 

DIR_Binary_Max 
(StandBy) 

- - 0.6 0.001 

DIR_Binary (AQ) 0.09 0.71 -0.33 0.06 

DIR_Binary_Max (AQ) 0 - 0 - 

DIR_Binary 0.16 0.28 -0.05 0.80 

DIR_Binary_Max 0.15 0.07 0.15 0.02 

4.1.2.1 Results for the ECS System 

Table 6 shows descriptive statistics for various measures of ECS. For Stop, DIR_Average for Hierarchical (0.46) 

and Flat (0.40) is better than Aspect (0.29). For Call, again Hierarchical has higher DIR_Average (0.53) than 

Aspect (0.27). However, in this case Aspect has higher DIR_Average than Flat (0.16). For Stop and Call together 

Hierarchical has higher DIR_Average (0.53) than Aspect and Flat, and DIR_Average is tied between Aspect and 

Flat. For Stop, DIR_Binary is higher (0.73) for Flat than Hierarchical and Aspect, which are 0.46 and 0.29 

respectively. DIR_Binary of Call for Hierarchical (0.93) is higher than Aspect (0.52) and Flat (0.73), 

respectively. For Call and Stop together, Flat (0.73) has higher DIR_Binary than Hierarchical (0.7) and Flat 

(0.41). For DIR_Binary_Max in Stop, Hierarchical (0.46) outperformed Aspect (0.15) and Flat (0.40), but for 

Call, Hierarchical and Aspect show values for DIR_Binary_Max of 0.06 and 0.5, respectively, whereas Flat has 

DIR_Binary_Max of 0. For Stop and Call together, Hierarchical is better than both Aspect and Flat.  

In addition, we checked the statistical significance of DIR_Average using one-way ANOVA, as discussed in 

Section 3.9. Table 7 shows the ANOVA results for ECS, where the p-values are made bold when below than our 

chosen significance level (0.05). For ECS, we observed significant differences in DIR_Average for Call 

individually and Stop and Call together. We then performed a pair-wise comparison of the distributions obtained 

for the three state machines using Tukey_Kramer HSD [30]. The results are presented in Table 8. For DIR_Binary 

and DIR_Binary_Max, we performed the two-tailed Fisher‘s Exact test, whose results are also summarized in 

Table 9. 
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4.1.2.2 Results for the VCS System 

Table 6 shows the descriptive statistics for various measures of VCS. For DnD, Aspect outperformed both 

Hierarchical and Flat for DIR_Average and DIR_Binary; however, DIR_Binary_Max is 0 for all groups. Note 

that we could not model the Standby crosscutting behavior with Hierarchical. Again, for Standby, Aspect 

outperformed Flat for DIR_Average and DIR_Binary_Max, whereas we observed the reverse for DIR_Binary 

(Table 6). In case of DIR_Average and DIR_Binary for AQ, Flat outperformed Aspect, which in turn 

outperformed Hierarchical. For all three crosscutting behaviors together, Aspect outperformed Hierarchical and 

Flat in terms of DIR_Average and DIR_Binary_Max, whereas for DIR_Binary, Flat (1.0) outperformed Aspect 

(0.66), which in turn outperformed Hierarchical (0.57).   

In addition, the ANOVA results (Table 7) showed significant differences in DIR_Average with Call individually 

and Stop and Call together. We therefore performed a pair-wise comparison of the distributions obtained for the 

three state machines using Tukey_Kramer HSD [30]. The results of the test are reported in Table 8. For VCS, in 

addition we performed the matched pairs t-test (Section 3.9) as reported in Table 10. We observed that Aspect 

significantly outperformed Hierarchical and Flat with p-values of 0.002 and 0.02 (Table 10), respectively. Hence, 

it shows that Aspect has a high likelihood of having higher DIR_Average than both Flat and Hierarchical. For 

DIR_Binary and DIR_Binary_Max, we performed the two-tailed Fisher‘s Exact test, whose results are also 

summarized in Table 9. The results of the McNemar‘s test for matched pairs analysis of these binary measures are 

reported in Table 10. For DIR_Binary_Max, Aspect significantly performed better than both Hierarchical and 

Flat. For DIR_Binary, Aspect significantly outperformed Hierarchical, but Flat significantly performed better 

than Aspect.  

Table 10. Results of the matched pairs for VCS at α=0.05 for various DIR measures 

Measure Test Pair of approaches Mean Difference p-value 

DIR_Average t-test Aspect-Hierarchical 0.27 0.002 

DIR_Average Aspect-Flat 0.19 0.02 

DIR_Binary McNemar’s test Aspect-Hierarchical 0.16 0.03 

DIR_Binary Aspect-Flat -0.05 0.02 

DIR_Binary_Max Aspect-Hierarchical 0.15 0.001 

DIR_Binary_Max Aspect-Flat 0.15 5.42e-07 

4.1.3 Discussion 

In this section, we discuss the results reported in Section 4.1.1 and Section 4.1.2. First, we provide discussion of 

the results for each experiment (Section 4.1.3.1 and Section 4.1.3.2) individually followed by an overall 

discussion in Section 4.1.3.3. 
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4.1.3.1 Analysis of Results for the Initial Experiment 

Based on the experiment results reported in Section 4.1.1, we conclude that overall, Aspect state machines are 

better than Flat and Hierarchical ones in terms of the overall defect identification rate, even though the difference 

between Aspect and Flat for one of the binary measures (DIR_Binary) is not statistically significant given our 

selected  (0.05) and sample size. One reasonable explanation is that, when compared with flat and hierarchical 

state machines, aspect state machines are much less complex in terms of number of states and transitions (Table 

1); therefore it is expected to be much easier to identify defects in aspect state machines. It is also interesting to 

note that the additional complexity introduced by pointcuts in Aspect does not have any visible negative effect on 

defect identification. 

We further analyzed non-significant results using the power analysis reported in Table 11. The table shows the 

estimated effects size thresholds corresponding to 80% power for DIR_Binary (Aspect vs Flat) that yielded non-

significant results in the previous section (Minimum effect size). This means that for effect sizes less than these 

thresholds, power is less than 80% thus entailing a significant risk of error (type II) in not rejecting the null 

hypotheses. In other words, for effect sizes below these thresholds, we cannot draw conclusions with confidence 

from the statistical test results in Table 11. The Average column in Table 11 shows the average values for the 

dependent variables, when combining all the observations being compared. The last column shows the percentage 

of Average that corresponds to the minimum effect size. The result of power analysis for DIR_Binary regarding 

Aspect vs Flat (Table 11) shows an estimated effect size of 0.20 (24% of average) to achieve 80% power. The 

observed effect size is 0.14, which is lower than this estimated effect size thus explaining the lack of significance. 

This suggests that we need to collect more observations, if we want to draw conclusions with confidence for 

effect sizes below 24% of the average, regarding which approach (Aspect or Flat) is better in terms of 

DIR_Binary.  

Table 11. Estimation of the effect size corresponding to 80% power for ECS* 

Experiment Measure p-value Observed 
Effect Size 

Minimum Effect 
Size 

Average  Minimum Effect 
Size/Average 

Experiment DIR_Binary (A vs F) 0.09 0.14 0.20 0.80 0.24 

Replication DIR_Average (A vs F) 0.99 0.001 0.13 0.29 0.46 

DIR_Binary_Max (A vs H) 0.54 0.04 0.15 0.22 0.69 

* A: Aspect, H: Hierarchical, F: Flat 

4.1.3.2 Analysis of Results for the Replication 

In this section, we provide a discussion on DIRs for each crosscutting behavior individually and all crosscutting 

behaviors together for the replication. Recall that DIRs are measured with three dependent variables: 

DIR_Average, DIR_Binary, and DIR_Binary_Max. Results for all those variables for which the results were 

statistically significant are summarized in Table 12. The first column lists the dependent variables which are used 

to answer RQ1 (Table 5). The second column represents a pair of approaches being compared and each dependent 
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variable has two rows in this column: A>X and X>A denoting whether Aspect (A) is significantly better than 

Hierarchical or Flat (X), and Hierarchical or Flat (X) are significantly better than Aspect (A), respectively. The 

third column (labeled ―Crosscutting Behavior (X)‖) presents two pieces of information: 1) name(s) of the 

crosscutting behavior(s) for which the results were significant for ECS, 2) name of the approach in brackets 

against which the results were significant, i.e., the approach is either significantly better than Aspect if it is in the 

row X>A or vice-versa if it is in the row A>X. For example, in case of DIR_Average in the row labeled “X>A”, 

Call (H) means that Hierarchical is significantly better than Aspect for the Call crosscutting behavior. If results 

were significant for all crosscutting behaviors together, for instance in the case of ECS, when the observations are 

combined for Call and Stop for a dependent variable (e.g., DIR_Average), we denote it as All in the table. The 

fourth column is similar to the third column except that it presents the results of VCS. The sixth column is similar 

to the fourth column, but the only difference is that the sixth column represents the results of the matched pairs 

tests, whereas the fourth column shows the results of Tukey-Kramer HSD for VCS. The fifth column represents 

the type of the matched pairs tests applied to each dependent variable. For instance, the McNemar‘s test is applied 

to the two binary dependent variables. Non-significant results are indicated by ―-‖ in Table 12. 

Table 12. Summary of statistically significant results for DIR measures* 

Dependent 
Variable 

Approach pair Round 1 Round 2 

ECS VCS (Tukey-Kramer HSD) VCS (Matched Pairs) 

Crosscutting Behavior (X) Crosscutting Behavior (X) Test Crosscutting Behavior (X) 

DIR_Average A>X - All (H) t-test All (H), All (F) 

X>A Call (H), All (H) - - 

DIR_Binary A>X - - McNemar’s 
test 

All (H) 

X>A Stop (F), Call (H), All (F), All 
(H) 

- All (F) 

DIR_Binary_Max A>X - Standby (F), All (F) All (H), All (F) 

X>A - - - 

* X: Either H (Hierarchical) or F (Flat), A: Aspect, H: Hierarchical, F: Flat, ‗-‘ indicates non-significant results. 

From Table 12, we can see that in the case of the ECS system, we observed a significance difference across the 

three approaches for Call and for Stop and Call together in terms of DIR_Average, where Hierarchical fared 

significantly better than Aspect. This could be due to the reason that in this first round, students were more 

familiar with standard UML state machines as compared to aspect state machines. For VCS, in case of 

DIR_Average, Aspect has significantly higher DIR_Average than Hierarchical for all crosscutting behaviors 

together (column 4, row 1, in Table 12). The results of the matched pairs t-test on VCS show consistent results 

with Tukey-Kramer HSD, since in both cases Aspect significantly outperformed Hierarchical and Flat.  

In case of DIR_Binary, for ECS, again Hierarchical and Flat significantly performed better than Aspect, whereas 

for VCS we didn‘t observe significant differences between approaches using the Tukey-Kramer HSD test. 

However, based on the results of matched pairs analysis with the McNemar‘s test for DIR_Binary, we observed 

that Aspect significantly outperformed Hierarchical, whereas Flat significantly outperformed Aspect. Regarding 

the latter, it could be due to an inherent bias of DIR_Binary towards Flat as finding just one defect out of all 
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seeded defects will give Flat a maximum score (Section 3.5). For DIR_Binary_Max in ECS we didn‘t observe any 

significant differences. With VCS, Aspect significantly outperformed Flat for Standby and Aspect significantly 

performed better than Flat for all crosscutting behaviors together. Similar results were observed for the 

McNemar‘s test for DIR_Binary_Max, where Aspect outperformed both Flat and Hierarchical. In conclusion, a 

plausible explanation for the results presented above is that, when compared with flat and hierarchical state 

machines, aspect state machines are much less complex in terms of number of states and transitions (Table 1); 

therefore it is expected to be easier to identify defects in aspect state machines. The fact that the reader has to 

mentally weave the aspects with the base state machines to get the full picture does not seem to be a severe 

hindrance for these defect identification tasks. 

By looking at the above results, it is also interesting to note that the results of Round 2 are different than those of 

Round 1 since all the results in Round 2, as opposed to Round 1, are in favor of AspectSM, except the 

McNemar‘s test results for DIR_Binary between Aspect and Flat. This could be due to the following reasons: 1) 

AspectSM entails a steep learning curve as the experience gained by the subjects of the Aspect group in Round 1 

helped them in performing significantly better than the subjects in other groups in Round 2, 2) AspectSM may be 

more beneficial when modeling more complex crosscutting behaviors—recall that VCS used in Round 2 is more 

complex than ECS used in Round 1 (Table 1).  

To discuss non-significant results, we performed power analysis, which results are summarized in Table 11 and 

Table 13. Note that we did so only for those cases where the results were not significant when observations were 

combined for all crosscutting behaviors. In case of DIR_Average (Stop and Call) regarding the three approaches 

(Table 11), an estimated minimum effect size of 0.13 (46% of average) is required to achieve 80% power as 

shown in Table 11. The observed effect size is 0.001, which is much lower than 0.13. Since this is a quite large 

effect size threshold, to draw useful conclusions with confidence regarding which approach (Aspect or Flat or 

Hierarchical) is better in terms of DIR_Average for Stop and Call, we probably need more observations. Similar 

results are obtained for other dependent variables for which the results were not significant, as shown in Table 11 

and Table 13. 

Table 13. Estimation of the effect size corresponding to 80% power for VCS* 

Dependent Variable p-
value 

Observed 
Effect Size 

Minimum Effect 
Size 

Average Minimum Effect 
Size/Average 

DIR_ Average (A vs F) 0.27 0.05 0.1 0.31 0.32 

DIR_Binary (A vs H) 0.28 0.1 0.11 0.28 0.39 

DIR_Binary (A vs F) 0.80 0.05 0.11 0.31 0.35 

DIR_Binary_Max (A vs H) 0.54 0.08 0.18 0.6 0.30 

* A: Aspect, H: Hierarchical, F: Flat 

4.1.3.3 Overall Discussion 

In this section, we discuss the results of RQ1 for the initial experiment and the replication together. Table 14 

summarizes the statistically significant results of the initial experiment and its replication. The first column 
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represents dependent variables for defect identification, i.e., DIR_Average, DIR_Binary, and DIR_Binary_Max. 

The second column denotes the pair of approaches being compared, e.g.,  A>X reports on whether the Aspect (A) 

approach is significantly better than Hierarchical and/or Flat (X). In our particular case, we have three 

approaches Aspect, Hierarchical, and Flat denoted as A, H, and F respectively in the table. In addition, each 

dependent variable has two corresponding rows: A>X and X>A reporting on whether Aspect is significantly better 

than Hierarchical or Flat, and Hierarchical or Flat are significantly better than Aspect, respectively. The third 

column tells the name(s) of the approaches(s) for which the results were significant for ECS in the experiment. 

For example, for RQ1, in the case of DIR_Average in the row labeled “A>X”, H means that Aspect is 

significantly better than Hierarchical. The fourth and fifth columns are similar to the third column, but the only 

difference is that these columns represent the results for ECS and VCS for the replication using Tukey-Kramer 

HSD. The seventh column presents the results of matched pairs for VCS, whereas the sixth column lists tests 

being applied for matched pairs analysis for all the dependent variables. In the table, “-” indicates non-significant 

results.  

For DIR_Average, in the experiment, for ECS, Aspect performed significantly better than both Flat and 

Hierarchical. In contrast, in the replication, we observed that Hierarchical outperformed Aspect for 

DIR_Average. This can be explained from the fact that the subjects in the initial experiment had more training and 

previous experience in modeling as compared to the subjects in the replication (Section 3.7). This can be further 

seen from the results of the VCS system in the replication, where Aspect significantly performed better than 

Hierarchical and Flat using matched pairs analysis for DIR_Average, consistent with those for the ECS system in 

the initial experiment.   

Table 14. Summary of statistically significant results for both experiments* 

Dependent 
Variable 

Pair of approaches  Experiment Replication 

ECS ECS VCS (Tukey-Kramer HSD) VCS (Matched Pairs) 

DIR_Average A>X H, F - H t-test H, F 

X>A - H - - 

DIR_Binary A>X H - - McNemar’s test H 

X>A - H, F  - F 

DIR_Binary_Max A>X H, F - F H, F 

X>A - - - - 

* X: Either H (Hierarchical) or F (Flat), A: Aspect, H: Hierarchical, F: Flat, and ‗-‘ indicates non-significant results. 

We observed similar results for DIR_Binary. In the initial experiment, Aspect significantly outperformed 

Hierarchical for ECS but for the replication, we observed that Flat and Hierarchical performed significantly 

better than Aspect. Again, this is probably due to the differences in training that the subjects received in the initial 

experiment and replication. For DIR_Binary_Max, we observed consistent results for the initial experiment and 

the replication, in which Aspect outperformed Flat and Hierarchical. 
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4.2 Results and Analysis for Defect Fixing (RQ2) 

In this section, we present results for defect fixing (RQ2) based on the DFR_Average, DFR_Binary, and 

DFR_Binary_Max dependent variables (Section 3.5). Recall from Section 3.8 that defect fixing was only 

conducted in the replication. 

4.2.1 Results for the ECS system 

For ECS, in case of the Stop crosscutting behavior (Table 15), Hierarchical scored 0.66 for DFR_Average 

outperforming Aspect (0.64) and Flat (0.49). For DFR_Binary, Flat (0.93) outperformed Hierarchical (0.66) and 

Aspect (0.64). For DFR_Binary_Max (Table 15), Hierarchical (0.66) outperformed Aspect (0.64) and Flat (0). In 

Call, Aspect (0.64) outperformed both Hierarchical (0.63) and Flat (0.31) and similar results were observed for 

DFR_Binary and DFR_Binary_Max for Stop. For Call and Stop taken together, Hierarchical scored 0.65 for 

DFR_Average, outperforming Aspect (0.64) and Flat (0.40). For DFR_Binary, Flat (0.93) outperformed Aspect 

(0.79) and Hierarchical (0.76) respectively, whereas Aspect (0.55) outperformed Hierarchical (0.53) and Flat 

(0.06) for DFR_Binary_Max (Table 15).  

Table 15. Descriptive statistics for various DFR measures 

System 

Measure Crosscutting Behavior 

Approach 

Aspect Hierarchical Flat 

ECS DFR_Average Stop 0.64 0.66 0.49 

DFR_Binary 0.64 0.66 0.93 

DFR_Binary_Max 0.64 0.66 0 

DFR_Average Call 0.64 0.63 0.31 

DFR_Binary 0.94 0.86 0.93 

DFR_Binary_Max 0.47 0.4 0.13 

DFR_Average Call and Stop 0.64 0.65 0.40 

DFR_Binary 0.79 0.76 0.93 

DFR_Binary_Max 0.55 0.53 0.06 

VCS DFR_Average DnD 0.5 0.125 0.16 

DFR_Binary 0.71 0.4 0.26 

DFR_Binary_Max 0.28 0 0 

DFR_Average Standby 0.4 - 0.59 

DIR_Binary 0.4 - 0.85 

DFR_Binary_Max 0.4 - 0.07 

DFR_Average AQ 0.62 0.16 0.43 

DFR_Binary 1 0.5 0.7 

DFR_Binary_Max 0.33 0 0 

DFR_Average DnD, Standby, and AQ 0.52 0.14 0.38 

DFR_Binary 0.74 0.45 0.58 

DFR_Binary_Max 0.33 0 0.02 

 

The one-way ANOVA results presented in Table 16 show that there are significant differences for DFR_Average 

(Call) and DFR_Average (Stop and Call). For these variables, we performed a pair-wise comparison of the 

distributions obtained for the three state machines using Tukey_Kramer HSD [30], reported in Table 17. The 

results of the two-tailed Fisher exact test for binary variables (DFR_Binary and DFR_Binary_Max) are shown in 

Table 18, where p-values are bold when below our selected level of significance. 
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Table 16. Results of One-way ANOVA for DFR_Average at α=0.05 

System Crosscutting behavior p-value 

ECS Stop 0.48 

Call 0.03 

Stop and Call 0.02 

VCS DnD 0.008 

Standby 0.23 

AQ 0.0003 

DnD, Standby, AQ 0.0003 

 

Table 17. Comparisons of all pairs using Tukey_Kramer HSD for DFR_Average 

System Measure Aspect vs Hierarchical Aspect vs Flat 

Mean Difference (Aspect - Hierarchical) p-value Mean Difference (Aspect - Flat) p-value 

ECS DFR_Average (Call) 0.01 0.99 0.33 0.04 

DFR_Average -0.0002 0.99 0.24 0.04 

VCS DFR_Average (DnD) 0.37 0.02 0.34 0.02 

DFR_Average (AQ) 0.46 0.0002 -0.26 0.06 

DFR_Average 0.37 0.0002 0.13 0.18 

 

Table 18. Two tailed Fisher’s exact test for DFR binary measures 

System Measure Aspect vs. Hierarchical Aspect vs. Flat 

Difference in proportion 
(Aspect- Hierarchical) 

p-value Difference in proportion 
(Aspect- Flat) 

p-value 

ECS DFR_Binary (Stop) -0.01 1 -0.28 0.08 

DFR_Binary_Max (Stop) -0.01 1 0.64 0.0001 

DFR_Binary (Call) 0.07 0.58 0.0007 1 

DFR_Binary_Max (Call) 0.07 0.73 0.33 0.06 

DFR_Binary 0.02 1 -0.13 0.15 

DFR_Binary_Max 0.02 1 0.49 0.0001 

VCS DFR_Binary (DnD) 0.31 0.21 0.44 0.02 

DFR_Binary_Max (DnD) 0.28 0.11 0.28 0.04 

DFR_Binary (Standby) - - -0.45 0.03 

DFR_Binary_Max (Standby) - - 0.32 0.12 

DFR_Binary (AQ) 0.50 0.002 0.3 0.05 

DFR_Binary_Max (AQ) 0.33 0.04 0.33 0.06 

DFR_Binary 0.28 0.03 0.15 0.22 

DFR_Binary_Max 0.33 0.001 0.30 0.0005 

 

4.2.2 Results for the VCS system 

For VCS, in case of DnD, Aspect outperformed both Hierarchical and Flat for all three defect fixing measures as 

it can be seen from the means reported in Table 15. For the Standby crosscutting behavior, for DFR_Average and 

DFR_Binary, Flat outperformed Aspect, whereas Aspect outperformed Flat for DFR_Binary_Max. Recall that for 

Standby, we didn‘t have a solution using the Hierarchical approach. For AQ, Aspect outperformed Hierarchical 

and Flat for all three defect fixing measures. For all three crosscutting behaviors together, Aspect outperformed 

Hierarchical and Flat for all three defect fixing dependent variables. 

The results of one-way ANOVA presented in Table 16 show that there are significant differences for 

DFR_Average (DnD), DFR_Average (AQ), and DFR_Average (DnD, Standby, and AQ). For these variables, 

since one-way ANOVA results were significant, we performed a pair-wise comparison of the distributions 

obtained for the three state machines using Tukey_Kramer HSD [30] and the results are given in Table 17. For 
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binary variables DFR_Binary and DFR_Binary_Max, we report the results of the Fisher exact test in Table 18. In 

all these tables, bold p-values highlight statistically significant results and the mean differences between pairs of 

approaches indicate the direction of the effect.  

The results for the matched pairs t-test for DFR_Average are shown in Table 19. For all three crosscutting 

behaviors together, Aspect significantly outperformed Hierarchical; however there is no significant difference 

between Aspect and Flat. For matched pairs analysis of the binary dependent variables, the results of the 

McNemar‘s test are shown in Table 19, where Aspect significantly outperformed Hierarchical and Flat regarding 

DFR_Binary_Max. For DFR_Binary, a significant difference is once again observed between Aspect and Flat but 

not between Aspect and Hierarchical. 

Table 19. Results of matched pairs for VCS for various DFR measures at α=0.05 

Dependent Variable Pair of approaches Mean Difference Test p-value 

DFR_Average Aspect-Hierarchical 0.31 t-test 0.004 

DFR_Average Aspect-Flat 0.14 0.11 

DFR_Binary Aspect-Hierarchical 0.33 McNemar’s 
test 

0.832 

DFR_Binary Aspect-Flat 0.15 0.03 

DFR_Binary_Max Aspect-Hierarchical 0.33 2.98e-08 

DFR_Binary_Max Aspect-Flat 0.31 4.17e-07 

 

4.2.3 Discussion 

In this section, we provide a discussion on DFRs for each crosscutting behavior individually and all crosscutting 

behaviors together. DFRs are measured based on three dependent variables: DFR_Average, DFR_Binary, and 

DFR_Binary_Max. Statistically significant results are summarized in Table 20. The first column lists the 

dependent variables which are used to answer RQ2 (Table 5). The second column denotes pairs of approaches 

being compared and each dependent variable has two rows in this column: A>X and X>A denoting whether 

Aspect (A) is significantly better than Hierarchical or Flat (X), and Hierarchical or Flat (X) are significantly 

better than Aspect (A), respectively. The third column (labeled ―Crosscutting Behavior (X)‖) presents two pieces 

of information: 1) name(s) of the crosscutting behavior(s) for which the results were significant for ECS, 2) name 

of the approach in brackets against which the results were significant, i.e., the approach is either significantly 

better than Aspect if located in row X>A or vice versa if located in row A>X. For example, in case of 

DIR_Average in the row labeled “X>A”, Call (H) means that Hierarchical is significantly better than Aspect for 

the Call crosscutting behavior. If results were significant for all crosscutting behaviors together, for instance in 

the case of ECS, when the observations are combined for Call and Stop for a dependent variable (e.g., 

DIR_Average), we denote it as All in the table. The fourth column is similar to the third column except that it 

presents the results of VCS. The fifth column is similar to the fourth column, but the only difference is that it 

reports the results of the matched pairs t-test, whereas the fourth column shows the results of Tukey-Kramer HSD 

for VCS. In Table 20, a “-” indicates non-significant results.  
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From Table 20, we can see that overall Aspect significantly performed better than Flat in terms of DFR_Average 

and DFR_Binary_Max, but there are no significant differences between Aspect and Hierarchical. When compared 

to the results of DIRs from Round 1, the results are in favor of AspectSM because the students gained experience 

with AspectSM while identifying defects. In addition, due to the lower complexity of aspect state machines 

(Table 1), it was easier for the subjects to fix the defects. For Round 2, in the case of VCS, Aspect is overall 

significantly better than Hierarchical and Flat as it can be seen from the results of Tukey-Kramer HSD for all 

three DFR variables in Table 20. The results of the matched pairs t-test for DFR_Average and the McNemar‘s test 

for the two binary dependent variables yielded consistent results. Similar to defect identification, plausible 

explanation is that, when compared with flat and hierarchical state machines, aspect state machines are much less 

complex in terms of number of states and transitions (Table 1); therefore it is expected to be much easier to fix 

defects in aspect state machines.  

To further investigate non-significant results, we performed power analysis, which results are summarized in 

Table 21. Note that we did so only for those cases where the results are not even significant when observations are 

combined for all crosscutting behaviors. In case of DFR_Average (Call and Stop) regarding three approaches, the 

results of the power analysis shows an estimated minimum effect size of 0.20 (60% of average) to achieve 80% 

power in Table 21. The observed effect size is 0.07, which is much lower than the estimated effect size (0.20) thus 

explaining lack of significance. Given that 60% is a large threshold, this suggests that we need to collect more 

observations to draw conclusions with confidence regarding which approach (Aspect or Flat or Hierarchical) is 

better in terms of DFR_Average for Call and Stop. Similar results are obtained for other dependent variables for 

which the results were not significant in Table 21. 

Table 20. Summary of statistical significant results* 

Dependent 
Variable 

Approach 
pair 

Round 1 Round 2 

ECS VCS (Tukey-Kramer HSD) VCS (Matched Pairs t-test) 

Crosscutting Behavior (X) Crosscutting Behavior (X) Crosscutting Behavior (X) 

DFR_Average A>X Call (F), All (F) DnD (H), DnD (F), AQ (H), All (H) All (H) 

X>A - - - 

DFR_Binary A>X - DnD (F), Standby (F), AQ (H), All (H) All (F) 

X>A - - - 

DFR_Binary_Max A>X Stop (F), All (F) DnD (F), AQ (H), All (H), All (F) All (H), All (F) 

X>A - - - 

* X: Either H (Hierarchical) or F (Flat), A: Aspect, H: Hierarchical, F: Flat, and ‗-‘ indicates non-significant results. 

Table 21. Estimation of the effect size corresponding to 80% power* 

System Measure (Approaches) p-value Observed 
Effect Size 

Minimum 
Effect Size  

Average Minimum Effect 
Size/Average  

ECS DFR_ Average (A vs H vs F) 0.48 0.07 0.20 0.60  0.34 

DFR_ Average (A vs H) 0.99 0.001 0.15 0.65 0.23 

DFR_Binary(A vs H) 1 0.01 0.15 0.78 0.19 

DFR_Binary (A vs F) 0.15 0.06 0.12 0.85 0.14 

DFR_Binary_Max (A vs H) 1 0.01 0.18 0.54 0.33 

VCS DFR_ Average (A vs H vs F) 0.18 0.06 0.12 0.45 0.27 

DFR_Binary (A vs H vs F) 0.22 0.07 0.15 0.66 0.22 

* A: Aspect, H: Hierarchical, F: Flat 
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4.3 Results and Analysis for Comprehensibility (RQ3) 

In this section, we present results for answering comprehension questionnaire (RQ3) based on the SCQ dependent 

variable (Section 3.5).  

4.3.1 Results for the Initial Experiment 

The descriptive statistics for SCQ are presented in Table 22. We observed that Hierarchical yields higher 

correctness than Aspect and Flat. More specifically, Hierarchical performed 21.8% and 40% better than Aspect 

and Flat, respectively. We checked the significance of the results by applying one-way ANOVA to SCQ (Table 

23), which shows significant differences between the approaches as the p-value is 0.002. Since one-way ANOVA 

results are significant, we performed a pair-wise comparison of the distributions obtained for the three state 

machines using Tukey_Kramer HSD. The results showed that differences are not significant between Aspect vs 

Hierarchical and Aspect vs Flat. However, the results are significant between Hierarchical and Flat, but we do 

not report them here since this is not the focus of our study.  

4.3.2 Results for the Replication 

For the replication with ECS, we observed that Hierarchical yields higher comprehensibility (SCQ) than Aspect 

and Flat as it can be seen from the results reported in Table 22. For VCS, we observed that Aspect scored on 

average 6.92, which is higher than Hierarchical (6.6) and Flat (6.4) in Table 22. A one-way ANOVA with SCQ 

for ECS is reported in Table 23 and shows a significant difference. However, the results of a pair-wise 

comparison using Tukey-Kramer HSD shows, once again, significant differences only between Hierarchical and 

Flat. For VCS, the result of one-way ANOVA on SCQ showed no significant differences (Table 23). 

Table 22. Descriptive statistics for SCQ 

Experiment System Crosscutting Behavior 
Approach 

Aspect Hierarchical Flat 

Experiment ECS Call and Stop 6.38 8.56 4.50 

Replication ECS Call and Stop 5.52 7.06 5.33 

VCS DnD, Standby, and AQ 6.92 6.6 6.4 

Table 23. Results of One-way ANOVA for SCQ at α=0.05 

Experiment System Crosscutting Behavior p-value  

Experiment ECS Stop and Call 0.002 

Replication ECS Stop and Call 0.02 

VCS DnD, Standby, and AQ 0.79 

4.3.3 Discussion 

In overall, the differences between Aspect vs Hierarchical and Aspect vs Flat are not significant. One plausible 

explanation is that for Aspect the subjects needed to carefully read and understand Pointcut specifications in the 

Aspect state machines. With more training and practice on AspectSM, subjects would be expected to gain better 
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comprehension of aspect state machines as compared with flat and hierarchical state machines, for which they had 

more prior experience.  

The power analysis results for SCQ for the initial experiment, when comparing Aspect vs Hierarchical and Aspect 

vs Flat, revealed that we need minimum effect sizes of 1.27 (17% of average) and 1.65 (30% of average), 

respectively, to achieve 80% power (Table 24). These effect sizes are larger than the observed effect sizes, i.e., 

1.08 and 0.94, thus explaining lack of significance. For VCS, power analysis revealed similar results, where we 

need minimum effect size of 1.10 (17% of the average) to achieve 80% of power as reported in Table 24. The 

minimum effect size, i.e., 1.10 (score out of 10) is much larger than the observed effect size (0.23). Thus, overall, 

if we want to investigate effects below the minimum thresholds mentioned above, the results of power analysis 

suggest that we need to collect more observations either by increasing the number of subjects and/or adding more 

case studies with crosscutting behaviors. 

Table 24. Estimation of the effect size corresponding to 80% power for SCQ 

Experiment System 
Pair of 

Approaches 

p-
value 

Observed 
Effect Size 

Minimum 
Effect Size 

Average (score 
out of 10) 

Minimum Effect 
Size/Average 

Experiment ECS Aspect vs 
Hierarchical 

0.09 1.08 1.27 7.41 0.17 

Replication ECS Aspect vs Flat 0.15 0.94 1.65 5.5 0.3 

VCS Aspect vs 
Hierarchical vs Flat 

0.79 0.23 1.10 6.64 0.17 

4.4 Results and Analysis for Effort (RQ4) 

In this section, we present results for effort (RQ4) based on the Effort dependent variable (Section 3.5). Recall 

from Section 3.8 that the effort was measured only for the initial experiment and thus in this section we only 

present results and analysis for the initial experiment. 

4.4.1 Results 

From Table 25, we can observe that in Task 1, the subjects took approximately 34 minutes on average for 

Hierarchical to identify defects. However, both Aspect and Flat took the same average time to complete the task: 

32 minutes. Task 2 took three and six minutes less for Aspect than for Hierarchical and Flat to identify defects. 

For answering the comprehension questionnaire (Task 3), the subjects took nine and five minutes more for 

Hierarchical than Aspect and Flat, respectively. In summary, there is no practically significant time difference 

across the three state machines. 

As discussed in Section 3.9.1, we applied the one-way ANOVA test to assess the statistical significance of 

differences for Effort (for each task) distributions across the three approaches. Table 26 shows the results of the 

test, where significant differences were observed for the Effort of Task 3. Since one-way ANOVA results were 

significant, we performed a pair-wise comparison of the distributions obtained for the three state machines using 
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Tukey_Kramer HSD [30]. The results are presented in Table 26, where Hierarchical took significantly more time 

than Aspect (p-value=0.01), whereas Aspect took less time than Flat, though the latter is not significant (p-

value=0.39).  

Table 25. Results for one-way ANOVA test for Effort using Tukey_Kramer HSD 

Measure Effort (Task1) Effort (Task2) Effort (Task3) 

p-value 0.86 0.09 0.02 

Table 26. Comparisons of all pairs for Effort (Task 3) using Tukey_Kramer HSD 

Aspect vs Hierarchical Aspect vs Flat 

Mean Difference (Aspect- Hierarchical) p-value Mean Difference (Aspect- Flat) p-value 

-9.31 0.01 -4.3 0.39 

4.4.2 Discussion 

There were no significant differences in effort between any pair of approaches for defect identification (Task1 and 

Task2). This means that the effort spent for identifying defects across the three state machines is roughly the 

same. Regarding Task 3 (i.e., answering the comprehension questionnaire), we only observed significant 

differences for Effort between the Aspect and Hierarchical groups, where the hierarchical group took significantly 

more time than the Aspect group (Table 26). Between Aspect and Flat, for Task 3, we didn‘t observe significant 

differences in terms of Effort.  

The power analysis in Table 27 shows that the minimum effect size corresponding to 80% power is 3.62 minutes 

(i.e., 16% of the average effort for the combined groups). The observed effect size is 2.14 minutes, thus 

explaining lack of significance. Drawing reliable conclusions for effect sizes below 3.62 minutes would require 

larger sample sizes. However, note that the difference between the two averages, i.e., 2.14 minutes and 3.62 

minutes, is small and therefore practically negligible.  

Table 27. Estimation of the effect size corresponding to 80% power 

Measure p-value Observed 
Effect Size 

Minimum Effect Size Average (Minutes) Minimum Effect 
Size/Average 

Effort (Task 3 for Aspect vs Flat) 0.39 2.13 3.62 22.43 16% 

4.5 Concluding Remarks 

Based on the above results and discussions, we suggest that aspect state machines should be used to model 

crosscutting behavior, but one should always use, when applicable, hierarchical state machines features within 

aspect state machines to further improve their comprehensibility. There are cases in which hierarchical state 

machines (submachines) are not applicable and aspect state machines are then the only option. For example, 

separating out constraints modeling non-functional properties (e.g., video or audio quality) from state invariants is 

not possible using hierarchical state machines without introducing accidental complexity and redundancy as we 

demonstrated in [10]. Easier identification/fixing of defects in aspect state machines also implies that it is easier to 

ensure their conformance to specifications. 
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5. THREAT TO VALIDITY 

Below, we discuss the threats to validity of our controlled experiments based on the guidelines presented in [27]. 

5.1 Conclusion Validity Threats 

Conclusion validity threats are concerned with factors that can influence the conclusion that can be drawn from 

the results of the experiments. As with most controlled experiments in software engineering, our main conclusion 

validity threat is related to the sample size on which we base our analysis. For the initial experiment, we 

performed a two-round experiment to maximize the number of observations within time constraints. However, the 

lack of significance of certain differences (e.g., the difference in SCQ for Aspect vs Hierarchical and Aspect vs 

Flat, effort for answering the comprehension questionnaire (Aspect vs Flat), and DIR_Binary for Aspect vs Flat) 

may be due to low statistical power if actual effect sizes are below a certain threshold (Section 4.5). Studying the 

presence of smaller effect sizes requires replicating the experiment and collecting additional data points. Due to 

this reason, we replicated the experiment with an additional industrial case study including three crosscutting 

behaviors (Section 3.3.1) and with more subjects (Section 3.2) to increase the sample sizes and thereby the power 

of statistical tests. Statistical conclusions were drawn by applying appropriate statistical tests based on a careful 

analysis of their assumptions (Section 3.9).  

5.2 Internal Validity Threats 

Internal validity threats exist when the outcome of results are influenced by external factors and are not 

necessarily due to the application of the treatment being studied. Through our experiment design (between-

subjects design) for the initial experiment and Round 1 of the replication, we have tried to minimize the chances 

of other factors being confounded with our primary independent variable: the use of aspect state machines. We 

avoided any biased assignment of subjects to groups by using blocking based on assignment marks.  

In Round 2 of the replication, regarding identification and fixing defects, we used a within-subjects design and 

matched pairs analysis. The strength of this design is that the variation due to differences in subjects is eliminated 

as each subject acts as its own control. A within-subjects design may however be subject to learning effects, for 

example due to using the same material for various tasks (e.g., defect identification and defect correction) that 

could result into improved performance from one task to the next. To counterbalance such effects, we rotated our 

groups to each crosscutting behavior for each task (e.g., defect identification) as we discussed in Section 3.4.2. In 

the initial experiment, we gave the subjects as much time as they wished to use for each task, though there was a 

time limit by which they had to finish all the tasks. No time differences were observed across modeling 

approaches. In the replication, we gave the subjects a fixed amount of time for each activity. Such an approach 

only enables, however, an investigation of the effect of the modeling approaches in terms of effectiveness.  
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5.3 Construct Validity Threats 

There are possible construct validity threats in our experiments. Regarding readability based on defect 

identification rates, due to time and resource constraints, we couldn‘t seed all types of defects in the defect 

classification (Section 3.3.2). It is also not practically feasible to devise case studies containing all types of defects 

from the defect classification. Nevertheless, we tried to maximize defect classification coverage based on the 

available case studies and seeded defects of types MT, IT, MS, and IS to compute defect identification rates. 

Another threat of construct validity is that we were not able to investigate all features of aspect-orientation (e.g., 

all types of basic advices) due to the nature of the crosscutting behaviors in our case studies.  

In terms of the coverage of UML state machine modeling elements, we cover submachine states, composite states, 

orthogonal states, signal events, call events, change events, time events, entry and exit points, history states, 

effects, and guards. In our experiments, we didn‘t study the impact of interactions between aspect state machines. 

However, it is important to recall that the experiments presented in this paper are, to the best of our knowledge, 

the very first experiments with AOM, which focus only on studying the readability of models. In the future, we 

plan to conduct more experiments to study the impact of interactions between aspect state machines.  

5.4 External Validity Threats 

This is typically the most common threat in controlled experiments. Due to time constraints, case studies and 

tasks are usually small, and this often tends to minimize the differences among treatments. As we see in Table 1 

for ECS, for crosscutting behavior Call, the flat state machine has 15 states and 27 transitions. Similarly, for the 

Stop crosscutting behavior, we have 13 states and 25 transitions. Such numbers are at least representatives of the 

state machines of classes and small components. In addition, we also replicated the experiment on an industrial 

case study with three crosscutting behaviors and more students to further reduce external validity threats. 

However, because crosscutting concerns are expected to have an even higher impact on large models, we expect 

the use of AspectSM to be even more beneficial in such cases. It is worth noting that we replicated the experiment 

in a different geographical area and education system to reduce external validity threats. One may also question 

the use of students as subjects for the experiment. Note that many practitioners have very little knowledge of AOP 

or AOM in general, and hence require significant training and cost to teach them AOM. Due to this reason, we 

chose a group of experienced graduate students with a suitable educational background (Section 3.2). In addition, 

some studies in [34-36] reported on the performance of trained software engineering students for various tasks 

when compared with professional developers. These differences turned out not to be statistically significant when 

compared to junior and intermediate developers, thus suggesting that there is no evidence that students trained for 

the tasks at hand may not be used as subjects in place of professionals.  
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6. RELATED WORK 

Most experimentation in Aspect-Oriented Software Development (AOSD) has been conducted to evaluate aspect-

oriented programming when compared to object-oriented programming in terms of development time, errors in 

development, and performing maintenance tasks. An initial search on the IEEE, ACM, Science Direct, Wiley 

Interscience, and Springer digital libraries yielded 517 papers; however, none of them reported any controlled 

experiment to evaluate AOM approaches. A controlled experiment [37] was performed in industry settings to 

measure effort and errors using aspect-oriented programming for applying different maintenance tasks related to 

the tracing crosscutting concern, i.e., the use of logging to record execution of a program. The results showed that 

aspect-orientation resulted in reducing both development effort and number of errors.  

Another experiment is reported in [38], which compares aspect-orientation (AspectJ) with a more traditional 

approach (Java) in terms of development time for crosscutting concerns. A similar experiment is reported in [39] 

focusing on development time to perform debugging and change activities on object-oriented programs using 

AspectJ. Both of these experiments revealed mixed results, i.e., aspect-orientation has positive impact on 

development time only for certain tasks. For instance, Aspect-oriented Programming (AOP) seems to be more 

beneficial when the crosscutting concern is more separable from the core behavior. 

An exploratory study is reported in [40] to assess if AOP has any impact on software maintenance tasks. Eleven 

software professionals were asked to perform different maintenance tasks using Java and AspectJ. The results of 

the experiment revealed that AOP performed slightly better than Object-oriented Programming (OOP), but there 

were no statistically significant results observed. Another exploratory study is reported in [41] to measure fault-

proneness with AOP. Three evolving AOP programs were used and data about different faults made during their 

development were collected. The experiment revealed two major findings: 1) Most of the faults were due to lack 

of compatibility between aspect and base code, 2) The presence of faults in AOP features such as Pointcuts, 

Advice, and inter-type declarations was as likely as for normal programming features. The results turned out to be 

statistically significant.  

An experiment is reported in [42], where two software development processes based on a same aspect modeling 

approach (i.e., the Theme approach [43]) are compared to determine their impacts on maintenance tasks such as 

adding new functionality or improving existing functionality. The first process (aspectual process) involves 

generating AO code in AspectJ from Theme AO models, whereas the second process (hybrid process) involves 

generating object-oriented code in Java from Theme models. Maintenance tasks are measured based on metrics 

such as size, coupling, cohesion, and separation of concerns. The results showed that on average the aspectual 

process took lesser time than the hybrid process. 

An exploratory study is reported in [44], which aims to assess if aspects can help reducing effort on resolving 

conflicts that can occur during model compositions. To do so, they compared AOM with non-AOM in terms of 
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effort to resolve conflicts and number of conflicts resolved on six releases of a software product line. The results 

of the study showed that aspects improved modularization and hence helped better localize conflicts, which in 

turn resulted in reducing the effort involved in resolving conflicts.  

Our controlled experiments are different from the above experiments from several perspectives. First, our 

controlled experiments focused on the design phase of the software development life cycle and Aspect-Oriented 

Modeling. Most of the experiments in the literature have focused on comparing AOP with OOP. We evaluated the 

―readability‖ (i.e., defect identification, defect fixing, and answering comprehension) of crosscutting behaviors 

modeled as aspect state machines as compared to directly modeling them in UML state machines. We further 

compared the effort for defect identification and answering comprehension for the experiment. Apart from these 

differences, we observed results in our experiments to be consistent to some of the results observed in the 

literature. For instance, similar to the results on development time using AspectJ reported in [41], we didn‘t 

observe any reduced effort in inspecting state machines developed using our AspectSM approach. Also, similar to 

results reported in [38] and [39], where they observed inconsistent results for different measures corresponding to 

different program development and maintenance activities, our results also differed for defect identification/fixing 

rates and responses to the comprehension questionnaire.  

7. CONCLUSION AND FUTURE WORK 

Aspect-oriented Modeling (AOM) is a very active field of research and can potentially yield several benefits 

while modeling systems, including enhanced separation of concerns, improved readability, easier model 

evolution, increased reusability, and reduced modeling effort. However, to authors‘ knowledge, there is no 

reported empirical evidence regarding such benefits. 

This paper reports the results of the first two controlled experiments in the literature to report on the evaluation of 

AOM, and more precisely whether AOM can help improve the ―readability‖ of UML state machines in terms of 

design defect identification, defect fixing, comprehension, and inspection effort. The specific AOM approach 

under evaluation is a recently published UML profile (AspectSM), which was specifically designed to model 

crosscutting behavior (e.g., robustness behavior) using standard UML 2 state machines with a lightweight 

extension for aspect-oriented features. The AspectSM profile has been previously applied to an industrial case 

study for automated, state-based robustness testing. The readability of state machines modeling crosscutting 

behavior using AspectSM (aspect state machines) is compared with standard UML 2 state machines using 

advanced features such as hierarchy and concurrency (hierarchical state machines) and without hierarchical 

features (flat state machines).  

Results show that the defect identification and defect fixing rates of aspect state machines are significantly higher 

than the ones for the hierarchical and flat state machines. For instance, for the industrial case study in the 

replication, aspect state machines show, on average, increases of 28% and 19% in defect identification rates when 
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compared to hierarchical and flat state machines, respectively. This is most likely due to the fact that aspect state 

machines are less complex than hierarchical and flat state machines in terms of modeling elements such as states 

and transitions. But on the other hand, aspect state machines can be potentially difficult to comprehend in terms of 

mentally processing how an aspect is woven into its base state machine. This may explain why, based on subjects‘ 

responses to a comprehension questionnaire, results show that the subjects that were given hierarchical state 

machines outperformed the ones that were assigned aspect state machines, though that difference was not 

statistically significant. No significant difference in effort was observed between any types of state machines in 

both defect identification and comprehension. Based on the results above, our practical recommendation is to 

model crosscutting behaviors using aspect state machines in combination with hierarchical/concurrent features of 

UML state machines, where applicable, in order to improve the overall readability of crosscutting behaviors.  

In the future, we are planning to replicate the experiment to study the readability of aspect state machines in the 

presence of interactions between aspects as well as compare the understandability, modeling effort, and quality of 

aspect state machines with flat and hierarchical state machines. 
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Appendix A: Models for Elevator Control System (ECS) 

In this Appendix, we provide the description and models for one of the case studies that we used in the 

replication: the Elevator Control System (ECS). Note that we provide this information only for one crosscutting 

behavior EmergencyCall (Call) of ECS, to provide an idea of how the models developed using different modeling 

approaches look like and to demonstrate that these models are semantically equivalent. The crosscutting behavior 

EmergencyCall is an important robustness behavior of an elevator. Whenever the elevator is operating, an 

emergency call can be made at any time. When a call is made, it is dialed to the control room and if the call is 

successful, the person in the elevator can talk to a person in the control room. When the person in the elevator is 

done talking, he/she can disconnect the call from the control room. Notice that all these operations related to the 

emergency call are performed concurrently to the operation of the elevator. All the diagrams used in the 

experiments and shown in Figure 3, Figure 4, and Figure 5 were drawn using IBM Rational Software Architect 

(RSA) [45] and therefore the diagrams conform to the RSA graphical notations. In addition, the experiment 

participants were trained to understand these graphical notations. 

The base state machine of ECS is shown in Figure 3, which controls movements of an elevator in a building. The 

specification of the elevator is obtained from [11]. From the Idle state, call the RequestUp trigger (method of the 

ECS class), and then the elevator goes to the DoorClosingToMoveUp state representing the behavior of the 

system when the door is closing and moving up. Similarly, from the Idle state, when the RequestDown trigger is 

fired, the elevator goes to the DoorClosingToMoveDown state. From ElevatorAtFloor, if no trigger is fired within 

5 seconds, the elevator state machine transits to the Idle state (modeled as a time event). Similarly, different states 

and transitions are modeled in the base state machine.  

Aspect state machine for the EmergencyCall aspect is shown in Figure 4. Stereotype <<Aspect>> is applied to 

the EmergencyCall state machine, indicating that it is an aspect state machine. The attributes for <<Aspect>> 

contain the following information: the name of the aspect state machine and the name of the base state machine 

(ElevatorControl in this example). State SelectedStates is stereotyped as <<Pointcut>>, which shows that this 

state selects states from the base state machine. Stereotype <<Pointcut>> contains has two attributes: the name 

of the pointcut (SelectedStates in this case) and its type (SelectionType:All meaning that it selects all states of the 

base state machine). New transitions are added in the base state machine, with trigger named as 

EmergencyCallPressed stereotyped with <<Introduction>>, from all the states of ElevatorControl to a newly 

introduced state named as DialingToControlRoom stereotyped with <<Introduction>>. A new transition with 

trigger DialSuccessful is added from DialingToControlRoom to a newly introduced state Connected. Finally, from 

Connected, a newly introduced transition with trigger DisconnectCall is added to a newly introduced state 

DisconnectingFromControlRoom. Note that in Figure 4, a new region is introduced: EmergencyCall, which is 

orthogonal to the normal operation of ElevatorControl. 
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The EmergencyCall behavior modeled using the Hierarchical approach is shown in Figure 5. The behavior of 

ElevatorControl is modeled in a composite state (i.e., ElevatorControl) in Figure 5. From the boundary of the 

ElevatorControl composite state, a transition with trigger EmergencyCallPressed goes to DialingToControlRoom. 

This means that from any of the states in ElevatorControl, whenever EmergencyCallPressed is pressed, the 

emergency call is made. An equivalent design of EmergencyCall using flat state machines is shown in Figure 6.  

  

 

Figure 3. Base state machine for ECS 
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Figure 4. Aspect state machine for EmergencyCall 
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Figure 5. EmergencyCall modeled with the Hierarchical approach 
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Figure 6. EmergencyCall modeled with the Flat approach 

 


