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Abstract- A complete and detailed Design Rationale Documentation (DRD) could support many software development activities, such
as an impact analysis or a major redesign. However, a full DRD is too onerous for systematic industrial use as it is not cost-effective to
write, maintain, or read. The key idea investigated in this paper is that DRD should be adopted only to the extent required to support
activities particularly difficult to enact or in need of significant improvement in a particular context. The aim of this paper is to empirically
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investigate the possibility to customize the DRD by documenting only the information that will probably be required for executing an
activity. This customization strategy relies on the hypothesis that the value of a DRD information item depends on its category (e.g.
Assumptions, Related requirements, etc.) and on the activity it is meant to support. This hypothesis is investigated through two
controlled experiments involving a total of seventy-five post-graduate master students as experimental subjects. The value of DRD
information was shown to significantly depend on its category and, within the same category, on the activity it supports. Furthermore,
our results show that, on average among activities, documenting only the information that has been required at least half of the time
(i.e., the information that will probably be required in the future) generates a customized DRD containing about half the information of a
full documentation. Such a significant reduction of information to document is expected to mitigate the effects of inhibitors that are
currently preventing practitioners from documenting the rationale of their design decisions.

Index Terms— Empirical software engineering, software architecture, design decisions, value-based software engineering, software

maintenance.

1. Introduction

During any software development process, most architectural
design decisions are not explicitly documented with their
rationale, as they are often embedded in the models the
architects build [1]. Consequently, useful knowledge associated
to the decision-making activities is lost forever [2,3]. In cases
where the design erodes, the problem of knowledge
vaporization [4], often due to a lack of Design Rationale
Documentation (DRD), leads to high maintenance cost, as new
design decisions cannot rely on previous ones.

Although the use of design rationale is recognized as one of
the most promising steps for advancing the state of the art of
software architecture design and maintenance [4], its
widespread industrial use has been hindered by socio-technical
inhibitors, in particular the effort to produce and maintain
additional documentation [5]. According to Gorton [6],
“Generating architecture documentation is nearly always a
good idea. The trick is to spend just enough effort to produce
only documentation that will be useful for the project’s various
stakeholders. This takes some upfront planning and thinking.”
In other words, DRD should be tailored to support activities
that are the most in need of improvement in a given context.

The term information item refers to a single piece of rationale
information regarding a design decision. The taxonomy of DRD
information proposed by Tyree and Akerman [1] provides a
categorization of information items for a design decision.
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The key idea we wanted to investigate is that design
rational documentation should only be introduced to the extent
required to support subsequent activities that are particularly
challenging to perform, or in significant need of improvement
in a particular context. The purpose of this paper is to report on
an empirical study of the possibility to customize the design
rational documentation by restricting the documentation to
only the information elements that are highly likely to be
required to perform a subsequent activity.

Our research questions are:

e R.Q. 1: Is the value of an information item significantly
affected by its category and the activity it supports?

e R.Q. 2: How much effort could be saved by adopting a
value-based DRD?

The empirical procedure consists of two controlled
experiments performed in two different geographical locations
and both involving trained, graduate students.
paper combines the data of the first experiment with that of its
replica in order to gain in statistical power and be able to apply
more sophisticated analysis techniques. More specifically, we
make use of Multiple Correspondence Analysis [7], a technique
dedicated to large contingency tables and their interpretation.

The remainder of this paper is structured as follows: Section
2 presents the related work and introduces the concepts used in
this study. Section 3 discusses the costs and benefits of using
design rationale and presents our key idea. Section 4 describes
two experiments (a controlled experiment and an exact replica)
with the goal to assess empirically the feasibility and efficiency
of documenting only the information that is valuable for the
intended use or purpose. Section 5 reports the empirical results
and their discussion. The paper concludes in Section 6.

The current

2. Related Work
2.1 DRD Approaches and Tools

There are many definitions of design rationale [8]; one of the
most comprehensive definitions has been proposed by Jintae
Lee: “Design rationales include not only the reasons behind a
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design decision but also the justification for it, the other
alternatives considered, the tradeoffs evaluated, and the
argumentation that led to the decision.”[5] The rationale can be
classified into several types; most of the times these types are
not mutually exclusive. Burge and Brown in [9] propose the
following types of rationale: argumentation, history, device,
process, and
argumentation-based DRD, design rationale is used to
represent the arguments that characterize a design, such as,
issues raised, alternative responses to these issues, and
arguments for and against each alternative. Prominent
argument-based design rationale techniques are gIBIS [10],
DRL [5], and QOC [11].

Lee states that much of the design rationale is embedded in
design specifications or part of meeting discussions [5].
Addressing all the issues that match the different dimensions of
design rationale is also difficult because different stakeholders

active document. In particular, in the

are interested in different concerns. This interest in different
concerns is similar in principle to our value-based DRD
approach which is based on the premise that “what you
represent depends on what you want to do with it” [5].

Tang et al. evaluated the importance of DRD as perceived
by industrial software architects [12]. Our paper shares with
Tang et al. the concept that “practitioners recognize the
importance of documenting design rationale [...] however they
have indicated barriers to the use and documentation of design
rationale” [12]. In particular, they investigated which type of
information is generally more likely to be used by practitioners.
We have tried to go a step further by investigating the level of
support, provided by each category of information, for specific
activities.

Referring to the knowledge capturing problem, Tyree and
Akerman proposed a framework to document design decision
rationale for system architectures [1]. In the present study, we
use such a documentation template as an example of DRD and
we investigate the level of usefulness of each category of
information item in this template in support of different
software development activities.

Capilla et al. described an approach for modeling and
documenting the evolution of architectural design decisions
that is characterized by sets of mandatory and optional
attributes that can be tailored according to different users’
needs as well as to different organizations [13]. Customized
information is used to adapt part of the information captured
for the design decisions to the specific needs of different
stakeholders and organizations.

Kruchten et al. had suggested a set of different activities
supported by DRD [14]; we investigate some of these (e.g.,
impact analysis) in the present paper.

Van der Ven's et al. describe that different types of
stakeholders adopt DRD to enact specific activities; in
particular they presented a use-case model that arose from
industrial needs [15].

Farenhorst et al. recently investigated by means of a large-
scale survey the behavior of architects in terms of their daily
activities, and how important they consider the various types of
support for sharing architectural knowledge [16]. Their results
indicate that mainly
knowledge, but neglect to document and share such knowledge
themselves. Such a result calls for supporting architectural

architects consume architectural

Falessi et al, The Value of Design Rationale Information

knowledge sharing by effectively balancing the costs and
benefits of design rationale information.

Jansen et al. presented the Architectural Design Decision
Recovery Approach (ADDRA) for recovering architectural
design decisions after the fact [17]. In particular, ADDRA uses
architectural deltas to provide the architect with clues about
these design decisions. This DRD approach has the advantage
of requiring little effort from the DRD producer.

Lee and Kruchten divided the documentation activity into
three steps: flagging information (identification of possible
significant information related to a decision that is being made),
filtering (excluding some of the information selected in the
previous step), and forming (merging the information
produced in the previous step to create a useful and
comprehensive DRD) [18]. Their key idea is that only the
flagging step needs to be enacted near the decision-making
process; so most of the effort required by the DRD can be
postponed according to the decision-maker availability.

2.2 Value-based Approaches

We consider all the above-mentioned DRD approaches as
value-neutral because they do not relate to business context;
rather they aim to maximize the benefits for the knowledge
consumet, by imposing the burden on the knowledge producer
to document all potential useful information. To date, “much of
current software engineering practice and research is done in a
value-neutral setting, in which every requirement, use case,
object, test case, and defect is equally important” [19].
Consequently, “a resulting value-based software engineering
agenda has emerged, with the objective of integrating value
considerations into the full range of existing and emerging
software engineering principles and practices,
developing an overall framework in which they compatibly
reinforce each other” [19]. In the present work, we apply value-
based software engineering principles to documentation, and
we propose a value-based approach to DRD consisting in
prioritizing the information to document according to the
activity to support, i.e., the activities particularly hard to enact
without DRD.

The idea of applying a value-based approach to
requirements traces has been proposed in several studies
including [20,21,22,23]. We share with such past studies the aim
and vision though the object being tailored is different
(requirements trace vs. DRD). Moreover,
traceability is enough?” [24] and “When and How does
Requirements Traceability Deliver More Than it Costs?” [25],
were addressed in panel discussions held at two important
international conferences: COMPSAC06 and RE(6.

More than twenty years ago, Basili and Rombach provided
practical guidelines for a successful reuse strategy [26]. Our
work matches their vision in which the model capturing the
experience (i.e, DRD) should be easily tailored to specific
project characteristics.

The present work perfectly matches the agile modeling
principles [27] and in particular “The TAGRI Principle of
Software Development: They Ain't Gonna Read It” as a way to
cut the documentation effort [28]. While Ambler poses some
relevant questions regarding the different ways stakeholders
use the documentation [29], in this paper we provide
quantitative results to such questions. Moreover, we agree on

and of

“How much
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the view that the goodness of documentation depends from the
situation.

2.3 DRD Benefits

The role of design rationale in software engineering has been
extensively discussed by Burge et al. [30]. DRD can support
several software architecture related activities: architectural
review, review for a specific concern, change impact analysis,
studying the chronology, adding decisions, cleaning up the
system, spotting the stakeholder, cloning
architectural knowledge, detection and interpretation of
patterns [14]. To explain the meaning of such DRD uses, let us
consider, for instance, the activity ‘Impact analysis’, which is
concerned with the management of requirement changes. In
practice, changes in requirements or business goals are very
frequent. Martin Fowler [31] emphasized the unpredictability
of requirements: “What might be a good set of requirements
now, is not a good set in six months time. Even if the customers
can fix their requirements, the business world isn't going to
stop for them.” In the case of a requirements change, it is
crucial to understand which decisions (and eventually which
system artifacts) are still valid and which ones have to be re-
worked (i.e., redesigned and/or re-implemented).

Several researchers assessed the support provided by DRD
on given activities. Karsenty assessed the QOC approach in the
maintenance of a nine-month old software project [32].

Brathall et al. presented a controlled experiment to evaluate
the importance of DRD when predicting change impact on
software architecture evolution [33]. Results show that DRD
clearly improves effectiveness and efficiency.

Zimmermann et al. presented a proactive approach to
modeling and reusing architectural knowledge for enterprise
application development [34]. Their approach has already
shown to be practical for BPM requirement models and the
SOA architectural style: they observed initial effort savings and
quality improvements on an early adoption project.

Falessi et al. analyzed the value of DRD with respect to
effectiveness and efficiency of individual/team decision making
in the presence of requirement changes [35]. The main goal was
to estimate whether the availability of the DRD would improve
the correctness of design decisions. The study was a controlled
experiment in which fifty Master students were the experiment
subjects in a controlled environment. Figure 1 summarizes the
results of the study; we can see how in case of requirement
changes the correctness of the decisions improves when the
DRD is available for decision makers, both for individual
participants and teams. Once assessed that DRD is beneficial,
the present step is to provide realistic means to reduce the
inhibitors for DRD usage.

subversive

3. Balancing the Costs and Benefits of
Design Rationale Information

3.1 DRD Inhibitors

Although several studies empirically demonstrated that the use
of design rationale documentation brings numerous benefits
[32,33,35], such type of documentation is not widely adopted in
practice, as discussed above. Let us highlight the main
inhibitors to the adoption of DRD:
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Bad timing and delayed benefit. The period in which
design decisions are made is often critical for the overall
project success. People involved in design decisions are
usually busy trying to perform, as well as possible, other
more recognized and essential tasks and to meet their
related deadlines. In such circumstances, documenting
rationale is perceived to be less important and is
eventually dismissed. Our experience shows that when we
suggest documenting the design decision rationale in an
appropriate time frame, the most common answer is: “We
are already under pressure to meet the deadline, investing
additional time in documentation would make the
situation worse”.
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Figure 1: Correctness of individual decisions and team decisions with

and without Design Rationale Documentation.

Information predictability. DRD consumers and
producers are often different persons. People who are
responsible for evolving a software project are usually not
the original designers, who meanwhile have moved to
better, greener pastures. Hence, the documentation
producer needs to forecast which information the
consumers will need in the future. As a result, the
producer documents all the information that could be
useful.

Overhead. DRD already
[9,10,17,18]; however, they usually focus on maximizing
the consumer benefits rather than minimizing the
producer effort. Consequently, some people must spend
substantial effort on documentation and maintenance
activities. Supposedly, the overhead required to capture
design rationale information can be regained by assisting
This,
however, is only realistic if we refine the type of
information to be captured in order to minimize the
associated effort. Shum and Hammond in [36] pointed out
that without a good Return On Investment (ROI), the
documentation management system would not be used or
ultimately it would be counterproductive.

Unclear benefits. Decision-makers often do not know

Several techniques exist

future maintenance and evolution activities.

how the DRD will support specific activities.

Lack of motivation. This may arise from the absence of
direct benefits or a lack of personal interest. People in
charge of documenting and maintaining DRD artifacts
(the decision makers) are not very motivated because they
do not directly benefit from DRD. Lee in [5] had already
highlighted the existing problem that DRD producers and
consumers differ. Moreover, experts may not be interested
in making their valuable knowledge explicit as they may
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perceive to be their personal property. In other words,
some experts may see no clear advantage in documenting
design rationale.

e Lack of maturity. Only few tools are currently available to
support DRD and the majority of them are still immature
[9,10,17,18].

e DPotential inconsistencies. DRD and designs should be
kept up to date and aligned to avoid potential
inconsistencies when the design is modified or when
decisions change.

3.2 Key ldea: a Value-Based Customization
To overcome some of the inhibitors previously mentioned, we
present a customization strategy for DRD. We classify the
different types of information items describing design rationale
according to its value; i.e., the level of support to a particular
software engineering activity. Such classification, shown in
Figure 2, is defined as follows:
e  Useless: The information does not provide any support to
the activity.
¢  Optional: The information facilitates the activity but is not
required.
¢ Required: The information is required for performing the
activity.

.DRD Information .

.Us-eless . 'Uéeful I

Opi:ional ' ' Reﬁuired '

Figure 2: The different values of information.

In the past, researchers tried to maximize the DRD consumer’s
benefit by forcing the producer to document all the information
potentially useful for all activities. The DRD is about making
the decision-making process reusable. In the software reuse
area, it is agreed that focusing the investment on the most
valuable asset to reuse is a key factor for a successful reuse
strategy [37,38,39]. Therefore, it is unrealistic to target all
possible elements for reuse, i.e., documenting all the
information items of a DRD. While in past studies we have
evaluated the cost and benefits of DRD [35,40], in the present
study we empirically evaluate the feasibility of a tradeoff
between its costs and benefits. The key idea is to compromise
between the cost to the producer and the benefit to the
consumer by achieving a value-based customization (see Figure
3) which consists in documenting only the information valuable
for the intended use or purpose, i.e., the information that (will
probably) support the readers in a specific activity. We do not
imagine a tailored DRD to be a panacea; on the contrary we
expect to obtain both advantages and disadvantages from it.
The main disadvantage is that the activities to be supported
have to be known when architects make design decisions. Even
thought this is an important issue, given the presence of several
inhibitors, it is reasonable to consider DRD as an economic
investment; thus, DRD needs to be motivated by the presence

Falessi et al, The Value of Design Rationale Information

of a real business case. Therefore, DRD should be introduced to
support activities that are particularly difficult to enact with the
usual procedures and documentation. Moreover, even if a
tailored DRD targets specific activities, it is likely to partially
support other activities as well.

Though potentially interesting, as there has been no study
investigating the value of DRD information for the different
phases of the software development lifecycle or for the different
types of decisions, we defer such investigation to future work.
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Figure 3: value-based customization.

4. Experiment Planning
4.1 Goals

Our research questions are:
R.Q. 1: Is the value of an information item significantly affected by its
category and the activity that it supports?

The empirical evaluation of the practical support of a
method to architectural activities is challenging [24, 28]. Hence,
our strategy is to measure the practical support of a design
rationale information item as the frequency with which it is
required for enacting a given activity. A value-based
customization of design rationale documentation relies on the
following hypothesis: the value of an information item is
affected by its category and the activity it aims to support. If
that is true, architects can reduce the number of information
items to document by selecting the ones expected to support a
given activity of interest.

R.Q. 2: How much effort can be saved by adopting a value-based
DRD?

Once assessed the feasibility of a value-based approach,
then it is important to assess its efficiency in terms of saved
documentation effort. In fact, reducing the effort required to
document design rationale is essential to overcome the DRD
inhibitors. In this study we measured the effort required by a
DRD as the number of information items to document.
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Therefore, the reduced effort is computed as the difference
between the number of information items of a full DRD versus
a customized DRD.

4.2 Research methodology

The research methodology consists of a controlled experiment
and its exact replica.

In general, one classical method for identifying cause-effect
relationships is to conduct controlled experiments where only
independent variables vary [56] and other factors are either
controlled or their effects mitigated. Our decision to adopt an
experiment stems from the many uncontrolled, confounding
factors that could blur the results in an industrial context. Thus,
in order to assess the feasibility and potential benefits of a
value-based DRD we enacted a controlled experiment
involving master-students in computer and electrical
engineering at the University of Rome Tor Vergata (Italy).

In general, the purpose of replication is to acquire
additional observations, possibly under different conditions,
that may lead to increased or weakened confidence in the
results of the original experiment. Its main benefit is to help
mature the software engineering body of knowledge by
addressing both conclusion and external validity problems in
existing experiments. Regarding internal validity, an exact
replica aims to confirm that the variables taken into account
(i.e., the replicated ones) are the ones influencing results [41]. In
fact, an exact replica providing a result different from the
original experiment would suggest the existence of variables
influencing results that are beyond the knowledge of the
researcher. Regarding conclusion validity, an exact replica
increases statistical power by providing further data to analyze,
together with the original experiment.

Therefore, in order to increase statistical power (required by
the high number of treatments) and our confidence in the
results, we enacted an exact replica [41] of the controlled
experiment, at the University of Rey Juan Carlos (UR]JC) in
Madrid (Spain).

Though we did not change the experimental settings, there
are some minor differences among the experiment and its
replica: the subjects’” background was computer engineering,
and computer science in the experiment and replica,
respectively. Moreover the
translated from Italian to Spanish.

experimental material was

4.3 Experimental units
Fifty graduate students belonging to a Master’s course in
computer engineering at the University of Rome TorVergata
(Rome) participated in the experiment. Twenty-five graduate
students belonging to a Master’s course in computer science at
the King Juan Carlos University (URJC) participated in the
replica.

All the students, during previous bachelor and master
courses, attended extensive teaching on different phases of the
software lifecycle, including requirements engineering and
software architecture analysis and design. Some of the students
had industrial experience or worked as private consultants.

Because the use of students as subjects can be considered as
one of the main threats to validity of the present study, we
provide a careful discussion of this issue in Section 5.3.5.
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4.4 Variables

The output and dependent variable is the Value of an information
item of a design rationale documentation; Value represents the
level of support as perceived by the subjects for enacting an
activity. We measure the Value by a 3-point ordinal scale
(Useless, Optional, or Required), for each specific information
item, after having executed an activity.

Among the independent wvariables, we considered the

following two factors:
¢ The activity to enact by subjects (Activity). It comprises the
following five levels:

0 Detecting  wrong  aspect in
characteristics of the chosen decision are wrong?

0 Detecting wrong requirements understanding. Which
characteristics of the problem to address have been
misunderstood?

0  Checking design (verification and evaluation). Do you
approve the decision made?

0  Detecting conflicts between new requirements and an old
decision. Is the old decision still valid for the new set of

decisions.  Which

requirements?

0 Evaluating impact. What is the impact of new

requirements on the system?

e The category of the information item (Category). In the
present study we assigned 13 levels to this factor (Table 1)
as proposed by Tyree and Akerman in [1] for documenting
design decisions. Let us also note that according to Tyree
and Akerman, an information item always belongs to a
single category.

Other variables were controlled to avoid confounding
effects, such as the level of experience of the participating
subjects, experimental materials, and complexity of the
experimental objects.

4.5 Tasks

Subjects received a set of design decisions (five decisions each)

and a set of requirements for a software-intensive system.

Based on this material, each subject enacted a total of twenty-

five activities: all five activities on five decisions. For each of the

five decisions, the subjects had to execute the following steps:

e Understand the activity to enact.

o Write the start time.

¢ Read the DRD related to a specific decision.

o Execute the activity (write the requested answer).

e Write the final time.

e For each DRD category, describe how much support is
provided to the activity: Useless, Optional, or Required.

4.6 Experimental Material

To emulate a realistic situation, we devised an artificial
software system design which is similar to another, realistic
system successfully used in another experimental study [35].
The project is about a public transportation system with
ambient intelligent characteristics [42], such as heterogeneous
sensors. Since we had: (1) twenty-five subjects, (2) up to five
competence types (as required by our experiment object), and
(3) the need to make the design as balanced as possible, we
decided to use five activities. Among all possible relevant
activities [43], we selected the five activities having the lowest
level of (expected) validity threats given the available
experiment time and the subjects” experience.
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Table 1: Categories of information of design decision rationale documentation as proposed in [1].

Issue Describe the architectural design issue you're addressing, leaving no questions about why you're
addressing this issue now. Following a minimalist approach, address and document only the issues that
need addressing at various points in the life cycle.

Decision

Clearly state the architecture’s direction—that is, the position you've selected.

Status

The decision’s status, such as pending, decided, or approved.

alternatives you consider.

Assumptions |Clearly describe the underlying assumptions in the environment in which you're making the
decision—cost, schedule, technology, and so on. Note that environmental constraints might limit the

Constraints _|Capture any additional constraints to the environment that the chosen alternative might pose.

Positions List the positions (viable options or alternatives) you considered. These often require long explanations,
sometimes even models and diagrams. This isn't an exhaustive list. This section also helps ensure that
you heard others’ opinions; explicitly stating other opinions helps enroll their advocates in your decision.

Argument Outline why you selected a position, including items such as implementation cost, total ownership cost,
time to market, and required development resources’ availability.

Implications |A decision comes with many implications. Clearly understanding and stating your decision’s implications
can be very effective in gaining buy-in and creating a roadmap for architecture execution.

Related It's obvious that many decisions are related; you can list them here. However, we've found that in

decisions practice, a traceability matrix, decision trees, or metamodels are more useful. Metamodels are useful for
showing complex relationships diagrammatically.

Related Decisions should be business driven. To show accountability, explicitly map your decisions to the

requirements |objectives or requirements. You can enumerate these related requirements here, but we've found it more
convenient to reference a traceability matrix. You can assess each architecture decision’s contribution
to meeting each requirement, and then assess how well the requirement is met across all decisions.

Related . . . . L

artifacts List the related architecture, design, or scope documents that this decision impacts.

Related If the enterprise has an agreed-upon set of principles, make sure the decision is consistent with one or
principles more of them. This helps ensure alignment along domains or systems.

Notes Because the decision-making process can take weeks, we've found it useful to capture notes and issues
that the team discusses during the socialization process.

Concerning the requirements changes driving the activities,
we selected common change causes such as: (1) variations in
industrial strategic partnerships, (2) changes in customer
requests resulting from experience using the previous version
of the product, and (3) technology advances.

We adopted a total of twenty-five decisions; such a high
number is expected to mitigate the influence of the peculiarities
of the adopted decisions on the empirical results. These twenty-
five decisions are all, in some sense, architectural decisions; for
instance:

e The selection of a communication protocol depends on the
topology of the nodes, the specific communication
mechanism (e.g., publish-subscribe or event-driven) and
architectural style (e.g., blackboard or client-server).

o The selection of a data storage mechanism depends on the
type of DMBS, the communication protocol, and the
architectural pattern (e.g., MVC).

Further drivers for architectural decisions included:
budget,
scalability, and security. Constraints, requirements (new and
old), rationale, and related decisions (and their status) are
described in the provided DRD.

Table 2 shows the form that subjects filled out during the
experiment for a given decision. The first column describes the
activity to execute. The following three columns describe the
initial time, the output of the activity (Answer, column 3), and
the final time when the activity was completed, respectively.
Columns 5 to 17 describe thirteen levels of Value: columns
identify the Category; rows identify the Activity. Thus, each cell
in the columns 5 to 17 describes the Value, as perceived by
subjects (Useless, Optional, or Required), of a given Category
(column), for supporting a given Activity (row).

available desired compatibility, maintainability,

Table 2: Form that subjects filled in during the experiment. Each cell in
the columns 5 to 17 describes the value, as perceived by subjects
(Useless, Optional, or Required), of a given DRD category (column), for
supporting a given activity (row).

Order Answer Value of DRD information
Activity |Initial Answer Final I|D|S|[A|C|P|A|IT|R|R|R|[R|N
Time Time s|lelt|s]|]ojJo|r[m)e|e|efe|o
sfclals|n|s|glp| ]I [I]t
ufi|Jtjufs|ijJull])alalalale
elsfufm|t]tfm|iftft]t]t]s
i|s|[p[r|i]Je]clele]e]e
o t{alo|n|a|d|d|fd]|d
n ifi|n]t]t
o|ln|s ild|r]alp
n|t olelef|r|r
s|s nfclgl|t]i
sliJulifn
s|if|f]c
i|rjafi
ofefc]|p
nfm|t]l
sfefs]e
n s
t
s
1
2
3
4
5
4.7 Design

We designed the experiment to make the best possible use of
the available subjects. In particular, using an artificial project
related to ambient intelligence allowed us to model five
different areas of expertise: authentication, human interface,
operating system, communication protocol, and data storage.
Then, subjects expressed their preferences for each area,
according to their previous experience and level of confidence.
Afterwards, we assigned one area of expertise to each subject
and the same number of subjects per area, by satisfying
subjects’ preferences to the maximum extent possible. This
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procedure aimed at ensuring that subjects had a realistic ability

and level of confidence in the task to perform.

We then prepared five design decisions for each area of
expertise. Finally, we designed the experiment to balance:

e Number of activities: all treatments (i.e., activities) have
been applied the same number of times on all decisions.
This mitigates the influence of activity characteristics and of
decisions’ peculiarities on the empirical results.

e Order of activities: all activities have been applied the same
number of times in all the available orders (i.e., first to fifth).
This mitigates the influence of the order in which the
treatments are applied on the results.

4.8 Execution Preparation

The training phase was performed in three sessions of a total of
five hours. During the training we taught the concepts of
design decisions and design rationale, and the importance of
capturing such knowledge. Then, we described the basis and
the steps of the controlled experiment and how it would be
carried out. We clearly explained almost all the experiment
characteristics hided the
expectations.

We carefully checked for the attendance of the subjects to all
the training sessions. As a result, five out of thirty-two students
were excluded because they did not attend one or more
training sessions. In the end, we had twenty-seven students
that could be considered properly trained for the experiment.
Because the experiment design is balanced only in case of
twenty-five subjects, then we randomly selected two students
as spares, to compensate for possible subject absence in the
experiment.

however we experimenters’

4.9 Execution Deviations

While conducting the experiment and the replica, no particular
deviation from their plan was observed. Regarding the
experiment, on one occasion where a subject was absent, we
replaced him with one of the spare subjects, thus preserving the
experiment balance.

4.10 Data Set Collection and Validation

In the original experiment, 50 subjects performed five activities
(1 activity on 5 decisions) thus yielding 250 activity executions.
Because for each activity execution we had a set of 16 answers
to collect (initial time, answer, the Value of each of 13
information categories, and final time), the experiment
produced around 4,000 data items, 3,250 of which represents
values of DRD information (13 information on 250 activity
executions). Similarly because in the replica we had 25 subjects
enacting 25 activities (5 activities on 5 decisions), the replica
produced 10,000 data items, 8,125 of which represents values of
DRD information. The total amount of data is therefore 14,000;
11,375 of which represent values of DRD information.

To detect and during the data
transcription, we re-dictated and checked the data three times.
Moreover, we applied some sanity checks based on automatic
semantic analysis techniques. For example, for each form, the
“initial time” for enacting an activity is checked to: i) precede
the “final time” of the same activity, and ii) follow the “final
time” of the previous activity. As a result we excluded few
invalid data points from any further analysis.

correct mistakes
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5. Results and Interpretation

5.1 R.Q. 1:Is the Value of an information item
significantly affected by its category and the
activity that it supports?

5.1.1 Analysis Procedure

Because the original experiment and its replica do not differ
much, we merged their data to maximize statistical power.
However, we also investigated the consistency of their results
as discussed in last paragraph of this subsection.

Multiple Correspondence Analysis (MCA) [7] is a standard
and very convenient statistical procedure to visualize in a two-
dimensional space the associations among the levels of three or
more categorical variables; in our case, Activity, Category, and
Value. Though rarely applied in software engineering, MCA is
particularly useful for three or less variables and when
variables show many levels as it can provide a global view of
the data facilitating interpretation. MCA produces a symmetrical
variable plot where each point represents a given level of a
categorical variable. A key principle of MCA is that the distance
among points on that two-dimensional plot is a meaningful
measure of the degree of association of the respective variables’
levels. Therefore, when levels of different variables appear
close in the plot it means that they are strongly associated.
Moreover, when all the levels of the same variable appear close
to each other, this implies there is a small difference among
them and that, as a result, the variable has a low impact. We
meet the conditions [7] under which MCA is an appropriate
and useful technique as we are only considering three discrete
variables but with many levels. Furthermore, we have a
minimum of eight observations in each level combination of
these variables.

In order to analyze interaction effects between Activity and
Category, we applied interactive coding analysis [7], which
consists in creating a new variable having as levels all the
combinations of levels for Value and Activity. Given the high
number of (13x5=65),
visualization, we reported these interaction results across 13
distinct figures (Figure 5), each figure reporting on one
Category level at a time and its combinations with the five
Activity levels. So each figure reports eight points: the three
levels for Value (VR, VU, VO) plus the five levels for Activity
when combined with a particular Category level. The more
spread these five points, the stronger the interaction effect
between Activity and the figure’s specific Category level.

For statistically testing the impact of Activity and Category
on Value we applied logistic regression for ordinal response
variables (Value in our case) with Activity, Category, and their
interaction term as explanatory variables [44]. The significance
of the effect of each explanatory variable is tested using the
standard Likelihood Ratio Chi-square test [44]. We meet the
data requirements as the sample size is considerably large with
11,000 observations.

In order to analyze the difference between the controlled
experiment and its replica results we apply two independent
MCA analyses based on their two respective data sets. We then
plot the results of both analyses in one MCA Symmetric
Variable Plot to assess the variation in positions for all Category
and Activity levels. The higher the distance for each pair of
points corresponding to the same level but a different
experiment, the more inconsistent the results. What we mean to

combinations in order to help
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assess is whether the main conclusions are the same for both Tablle 3: Abbreviations and results of Multiple Correspondence
. Analysis.
experiments. Variable Treatment Abbreviation F1 F2
5.1.2 Results Issue Catls -28.225 3.257
Decision CatD -34.549 46.667
Table 3 describes the results of MCA in a standard form: the Status CatS -4.362| -18.965
coordinates of each level of each variable in the symmetric Assumptions CatAs -8.528| -33.270
variable plot, as depicted in Figure 4. The “Required” Value (;on_f_tramts ga:g igggg 1223?
Do ositions al -15. -12.
level (VR) is in the top-left quadrant and the closer the Category|Argument CatAr 19.953]  -3.181
Category and Activity levels to this point, the stronger their Implications Catlm 8.872| -3.979
statistical association with it. For example, CatRR is strongly Related decisions CatRD -9.133] -5.353
associated with VR, therefore suggesting that “related Related requirements | CatRR -20.438| 15.138
. o . tant i ¢ desi i 1 Related artifacts CatRA 37.141 9.952
requirements” is a very important piece of design rationale Related principles CalRP 22.678] -30.388
information. Similarly, category CatRA is closely associated Notes CatN 52876 31.902
with VU, thus suggesting that “Related artifacts” is not a 1: Wrong solution space |Al -3.973 4.461
relevant piece of information. Figure 4 also shows Activity Activ 2: \éVro_ng problim StPace 25 gggg gggg
. ctivity |3: Decision verification . .
levels to be much closer to the center, thus showing that 4 Conflicts detection A4 .00l 2492
Activity does not explain nearly as much of the variation in 5: Impact evaluation A5 1.064| -16.715
Value as Category does. Required VR -74.422|  41.726
Table 4 reports the results of the Likelihood ratio Chi-square Value Sptllonal xs 822811 Z;g?i
test to assess the significance of the impact of Activity, S - -
Category, and their interaction on Value. Because p-values
related to Category, Activity, and their interaction, are far less
than 0.05, then both their main and interaction effects on Value
are significant at a 95% confidence level.
Symmetric variable plot
2
CatDh ©
1.5 r
o CatN
1 |
CatRRO
05 VR © r oVU
~ ° CatRA
(T8
Catls © A2°oA1 ° A3
0 ' ; " ; o CatC ; ; ;
CatAr © CatRD © o Catlm
o A5
05 CatP © |
CatS ©
-1 L
© CatRP
CatAs ©
VO o
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2 -1.5 1 -0.5 0 0.5 1 1.5 2 25

Figure 4: Graphical results of Multiple Correspondence Analysis.
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Figure 5: Interaction effect analysis through Multiple Correspondence Analysis.

Table 4: Likelihood Ratio Chi-square test results of the effect of
Category, Activity, and their interaction on the Value of an information

item.
Likelihood Ratio Test
Source Nparm DF ChiSquare | P-value
Activity 4 4 45 << 0.001
Category 12 12 4251 << 0.001
Category*Activity 48 48 403 << 0.001
2 -
*  Experiment
CaD & Replica
15F
F— CatN

05¢ 2 Y CatRR

BpVEatrA

F2

F1

Figure 6: Difference between Experiment and Replica through Multiple
Correspondence Analysis.

5.1.3 Discussion

Both Category and Activity have statistical impact on Value. In
Figure 4, the distance between different levels of Category and
Activity and different levels of Value vary significantly. The
statistical analysis in Table 4 confirms statistical significance.

However, according to Figure 4, all the levels of Activity are
close to each other and near the center; this means that
Category is a much stronger predictor than Activity on Value.
This is confirmed by the statistical analysis in Table 4; in fact,
the Chi-Square value of Activity is much lower than that of
Category.

There is a significant interaction effect between Activity and
Category on Value. The statistical analysis in Table 4 shows that

the interaction term between Activity and Category is

statistically significant. In Figure 5, for six of the Category

levels, there is a difference in position for different activities:

Assumptions, Argument, Positions, Related Decisions, Related

Principles, and Status. However, we note that when there is an

interaction effect, Value changes only from Required or Useless

to Optional (or vice versa) and never from Useless to Required

(or vice versa).

This means that, even when present, the interaction effect has a

limited effect on Value.

Categories of design rationale documentation can be
divided in three groups according to the resulting value:

e High and independent from the activity to support.
Categories that are very valuable, independently from the
activity to support, include the description of the chosen
alternative (CatD) and of the related requirements (CatRR).

e High or low according to the activity to support. Some
categories are only relevant for some of the activities to
support. For instance, the category Positions (i.e. the
description of the considered alternatives) provides value
only in case the activity to support is Decision verification
or Wrong solution space. On the contrary, Positions is
irrelevant to support Impact evaluation (Activity 5). This
makes intuitive sense as, given new requirements, it is
irrelevant to know the set of considered alternatives because
what is relevant is only the chosen alternative and whether
it meets the new requirements.

e Low and independent from the activity to support.
Finally, one category shows little usefulness regardless of
the activity to support: Notes. This result shows that the
proposed framework to document DRD is comprehensive
and no further comments need to be added for
documenting a design decision.

Obviously, the experiment results are influenced by the
specific set of activities considered, the type of subjects, and so
on. However, the main aim of the paper is to analyze whether
there is an impact of Category and Activity on Value. In other
words, we want to determine whether DRD consumers require
specific information depending on the activities to be
supported. Therefore, one may want to prioritize the DRD
information to collect according to activities that are the most in
need of improvement.
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There are only minor differences between the results of the
controlled experiment and the exact replica. Based on Figure 6,
the position of the 13 categories did not significantly vary. This
is especially the case for those categories that were most
strongly associated with Value levels and further away from
the center. For example, CatD and CatRR remain close to VR.
Visible variations are for those categories near the center that
have no strong association with any Value level. This result
suggests, for the main associations, that the results are
consistent across the two experiments.

5.2 R.Q. 2: How much effort can be saved by
adopting a value-based DRD?

5.2.1 Analysis and Results

In the absence of evidence showing actual differences of
required effort among information items, we assume that the
number of items of a design rationale documentation to be a
good indicator of the effort entailed. To compute the expected
effort savings in adopting a value-based DRD, we compute the
percentage of information items considered relevant and
valuable for a given activity (value-based DRD).

As explained above, a value-based DRD is composed of
valuable information items only. An information item is
defined as valuable or expensive according to a threshold on
Value; in particular, a threshold on a given frequency of
Required among subjects’” scores. Adopting a medium
threshold (frequency of Required = 50%)
documenting only the information categories that are more
likely than not to support the readers (i.e., the categories of
information that have been perceived at least the half of the
time as required by subjects). Though a medium threshold
makes sense, we also analyze the expected effort savings in
relation to other thresholds. Obviously, the lower the threshold,
the more the number of information items included in the
value-based DRD, the higher the required effort, the less the
probability that a subject would require an information that is
not included in the DRD.

Figure 7 describes the number of information categories in
the value-based DRD according to both the threshold on Value
(Lowest to Highest) and the activity to be supported (e.g.,
Impact evaluation). Figure 7 is composed of a histogram and a
table. In the histogram, columns show, for each supported
activity, the number of DRD information categories associated
with each frequency threshold for Required. The table provides
the exact number of information categories for each percentage
threshold. For instance, a value-based DRD for the Decision
verification activity (third column) with a medium threshold
(frequency of Required = 50%, third row) requires only four
information categories out of 13.

results in

5.2.2 Discussion

According to the third row in Figure 7, the number of
information items included in a value-based DRD, tailored for a
medium threshold, varies from 4 (third and fifth columns) to 8
(first column) depending on the activity to support. Therefore,
the effort the valuable
information (i.e., the ones that is more likely to support the
reader in a given activity) varies from a maximum of 70%
(Decision verification and Impact evaluation) to a minimum of 40%
(Checking wrong solution space).

savings in documenting only

Falessi et al, The Value of Design Rationale Information

On average across activities, a value-based DRD includes
only 6 information items out of 13, which is 46% of a full
documentation.

The significant reduction of information to document is
therefore expected to mitigate the effects of inhibitors that are
currently preventing practitioners from documenting the
rationale of their decisions. Though these results are
generalizable only to the adopted five activities, they have
practical relevance since these activities have a widespread
importance.

5.3 Threats to Validity

It is not possible to eliminate all the threats to validity;
experimenters should prioritize them according to their context
and research question to address [45]. In particular, there is
always a tradeoff between realism and control [46]. Because of
our research questions and the circumstances, we prioritized
control over realism. In fact, our purpose was, to reveal the
magnitude of differences in the values of an information item
according to its category and the activity that it supports and,
not to provide a fine-grained value. In the following
subsections we provide insights regarding the validity of the
aforementioned results based on the possible threats to validity
as suggested in [45,47].

As in our previous study [35], a key choice was to use single
decisions as the empirical objects rather than the whole set of
decisions; this is not contradictory with the current trend to
consider software architecture as a set of design decisions
[48,49]. In fact, breaking down the decision process was a wile
that helped us to face some challenges as described in the
following paragraphs.

5.3.1 Threats in the Application of Empirical
Software Engineering to Software Architecture

We describe here some of the relevant challenges in applying
empirical software engineering to software architecture [47].

Fuzzy boundaries: To avoid misunderstandings regarding
the term software architecture and design we clearly defined
the boundary of our study: single design decisions and specific
areas of expertise (authentication, human interface, operative
system, communication protocol, and data storage).

System complexity: The level of difficulty of the experiment
task was realistic because, as in the real world, several opposite
and interrelated objectives characterized these
decisions [50].

5.3.2 Conclusion Validity

Conclusion validity concerns the reliability of the observed
relations among the experimental variables [45,51].

Random heterogeneity: subjects were rather homogeneous
since they took the same university program. Since the
experiment design is balanced in different aspects, eventual
differences should be balanced across treatments, and hence
did not influence the results.

Fishing: We chose neither the 13 DRDs nor the five
activities; therefore the analysis of variance among the
combinations of categories and activities was not a fishing
expedition.

complex
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Figure 7: Amount of information in a tailored DRD according to different thresholds on Required.

5.3.3 Internal Validity

Internal validity is the degree to which conclusions can be
drawn regarding the causal effect of the independent variables
on the dependent variables [45,51]. In our view, the level of
internal validity related to our experiment should be
considered high since we balanced the order of activity
executions and we randomized the application of treatments.

5.3.4 Construct Validity

Construct validity is the degree to which the independent
variables and dependent variables accurately measure the
concepts they purport to measure [45,51]. This was addressed
in multiple ways.

Mono-operation bias: this was the threat with highest
priority. To prevent experimental results from being too
specific to the experimental objects (decisions), we adopted a
set of twenty-five different objects. Hence, since all the subjects
performed all (five) activities, for each dependent variable we
have a distribution composed of two hundred fifty data points.

Restricted generalizability across constructs: regarding the
proposed value-based DRD, the present study analyzes its
efficiency (i.e, documentation effort reduction) without
considering the effectiveness aspect. In other words, it may be
unclear whether a reduced documentation negatively affects
the output quality of the activity it supports. In general, the
quality of a design decision (i.e., the activity output) is difficult
to measure [47]. In this study, we indirectly and implicitly
estimate effectiveness as the probability that a subject requires
information that is included in the customized
documentation.

not

Hypotheses guessing and experimenter expectancies:
During the training sessions, we did not convey our
expectations and hypotheses to participants.

Evaluation apprehension: We informed the subjects that
they would not be personally evaluated based on their answers.

Low motivation: Subjects were not pressured to participate
in the experiment. We clearly explained that their course grade
would not be related to their presence or performance during
the experiment. This is an approach we have successfully
adopted over several years in other experiments [47,52,53]. We
observed a high level of commitment and concentration, as
visible on the video posted at:
http://eseg.uniroma?2.it/ DDRD-Experiment-December2006.zip.

5.3.5 External Validity

External validity is the degree to which research results can be
generalized to other settings than the experiment one. Since the
use of students as subjects may be interpreted as an important
threat to external validity,
experimental process by following standard guidelines [54] in
order to enable replications in different, possibly more realistic,
contexts. The following list discusses how we addressed
various external validity threats, with an emphasis on the
experimental subjects and objects.

Experimental Subjects: The use of students as experimental
subjects has been largely described, for example in [55]. A
number of studies show that differences between students and
practitioners may not be relevant. This is the case, for example,
of studies in the context of requirements selection [56] and
assessment of lead-time impact [57]. There is no evidence

we

we carefully described the
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supporting the hypothesis that students’ performance differs
from that of practitioners when performing these activities.

About half of the subjects had a significant professional
experience. In addition, most computer science and engineering
courses include practical exercises or projects; therefore,
computer-science master students should be considered not so
far from practitioners as claimed in [58].

In addition, since an information item represents a piece of
knowledge, it is obvious that people with less experience or
knowledge tend to require more information items than more
experienced people. Therefore, more experienced readers
require less documentation, which results in greater effort
savings for documenting only the required information.
Consequently, assuming students have less experience than
practitioners, the effort savings in adopting a value-based DRD
should logically be expected to be higher in industrial contexts
than in our experimental setting.

Experimental objects: Regarding the representativeness of
the experimental objects, we adopted a realistic system
experimental study [35].
Moreover, the adopted decisions were complex since they were
characterized by several, opposite and interrelated objectives,
as is the case in reality. We decided to develop a large number
of decisions (i.e., twenty-five, five per role) in order to study the
impact of activities in a somewhat independent manner from
the specifics of the decisions to be made. In other words, we
defined a large number of varied decisions to achieve better
external validity.

successfully used in another

6. Conclusion and Future Work

Documenting software design rationale is
encouraged practice: recording a designer’s line of reasoning
enables it to be revisited in order to assess it, to approve it, or
more simply to learn from it, regarding either the system being
designed or the decision process itself. But the methods and
tools proposed to document the design rationale have not been
very successful; they all tend to try to maximize the benefits for
the consumer of the rationale, at the expense of the producer—
that is the designer—and they are therefore too onerous for
systematic industrial use. The underlying intuition of our work
is that design rationale documentation can be used in many
activities (e.g., what if analysis, avoiding design erosion) but
not all of them are enacted in every context. Therefore,
documenting all the information that supports all the activities
becomes somehow ineffective from a cost-benefit point of view;
this eventually inhibits practitioners to document the rationale
of their design decisions. The key idea is that design rationale
documentation should be introduced (for adoption) only to
support activities that are particularly hard to perform with the
usual procedures and documentation. A value-based design
rationale documentation contains only the information that will
be required, with a significant probability, to support its
readers in a given activity. Therefore, the aim of the paper was
twofold: 1) validating the feasibility of the customization
strategy, 2) assessing its effectiveness by computing the
expected effort savings.

It is obvious that a complete documentation provides more
benefits but it entails more costs than any customized
documentation. Hence, in this paper we reported a study that
investigates this customization activity by analyzing whether
the decision to document or exclude an information item

a generally
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should rely on its category and the activity it aims to support.

An efficient customization is essential because it provides a

realistic means for mitigating the known inhibitors of

documenting design rationale.

Results from a controlled experiment and its replica show
that:

e The value of an information item is significantly affected by
its category; moreover, different categories have different
values for different activities. Therefore, it is possible to
prioritize the information to document according to the
category and the design rationale
documentation targets.

e On average, across activities, a value-based design rationale
documentation contains 46% of the information in the full
documentation. The maximum effort reduction provided by
a value-based design rationale documentation is obtained
for the “decision verification” activity: only four out of 13
information categories have been shown to be required
more than 50% of the time.

o The exact replica provided similar results to the original
controlled experiment; this suggests that all the important
variables have been taken into account.

In conclusion, our results demonstrate the feasibility
(hypothesis test) and the efficiency (effort reduction) of the
proposed value-based design rationale documentation. The
reduced amount of information to document (54%) is expected
to mitigate the effects of inhibitors that are currently preventing
practitioners from documenting the rationale of their decisions.
A value-based design rationale documentation enables its
practical adoption by focusing and investing documentation
effort where it is most needed.

Because documentation deserves to be treated as an
economic investment, we are currently developing a design
rationale documentation supporting tool that includes an
economic model. According to the level of support provided in
the past by a specific information category for enacting a
specific activity, the economic model would suggest to the
designer which information to document, when it is expected to
be needed and valuable in the future.

activities that
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