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Abstract: Massively multi-player online games (MMOGs)

stringent latency requirements and handle large numbers of concurrent
players. To support these conflicting requirements, it is common
to divide the virtual environment into virtual regions, and spawn
multiple instances of isolated game areas; to serve multiple distinct
groups of players. As MMOGs attract players across the world,
dispersing these regions and instances on geographically distributed
servers is plausible. With Ginnungagap, we present the prototype
implementation and evaluation of functionality for migrating objects
to support dynamic re-distribution of game state; with a distributed
name server efficiently maintaining references to migrated objects.
Core selection algorithms, using players latencies, can then locate an
optimal placement for a given region or instance. The variance of
the measured latencies (and core selection algorithm) are reduced by
enabling our TCP modifications for latency reduction for non-greedy
streams. Correspondingly, we anticipate a decrease in aggregate latency

for the affected players.
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1 Introduction

In online games, some latency is tolerable (Claypool, 2005) as long as it does
not exceed the threshold for playability that ranges from 100ms to 1000ms
depending on the type of game (Claypool et al., 2006), but high pair-wise latency
remains a primary obstacle for the quality of perceived game-play in a number
of online games. For example, Massively Multi-Player Online Games (MMOGs)
often rely on a client-server model for event distribution, where the events are
collected at the server, and distributed to the interacting players. Players with
high latency will inadvertently have a negative effect on the perceived quality of
game play (Claypool, 2005). This occurs if one or more players connections are
comparatively slow, because any added delay is not isolated to the player alone.
Due to a centralized server, the delay will propagate to the interacting parties
and potentially result in inconsistencies, from which the server must then recover.
While having minor effects on the outcome of the game, it results in a perceived
deterioration to the quality of interaction (Dick et al., 2005). As such, low latency
for all interacting players is a prevalent goal.

This goal, however, contradicts other observations of online games, such that
the game traffic varies strongly with time and the attractiveness of the individual
game (Feng et al., 2002; Chambers et al., 2005) and that geographical dispersion
of players in an online game depends heavily on the time of day (Feng et al.,
2003). Thus, in large games like Anarchy Online and EVE Online, there are always
players all around the world interacting in the same game instance, although the
geographical location of the large bulk of users shifts dynamically.

In Beskow et al. (2008), we proposed the initial design of a middleware
supporting migration of partial game-state to servers that are dynamically selected
according to the majority of the players locations. The level of game-state
granularity can range from entire virtual regions, to instances, or single objects in
the virtual world. With GINNUNGAGAP (in Norse mythology GINNUNGAGAP refers
to the vast, primordial void that existed prior to the creation of the universe)
(Beskow et al., 2009a), we present an implementation of this middleware (the
source code of the middleware, and logs from the PlanetLab experiments are
available for download at http://simula.no/research/networks/software/ ). This
middleware selects servers based on maximum latencies between all the players in
a region and potential servers, and if the potential gain in terms of reduced latency
exceeds a given threshold, the game state is migrated to this server. In this paper,
we have focused on MMOGs that use a client-server model, though GINNUNGAGAP
could easily be adapted for use in peer-to-peer scenarios. In which case, all
interacting parties could potentially contribute as a server, greatly increasing the
probability of locating an optimal node. It is nonetheless vital that the variance of
the measured latencies, provided as input for the core selection algorithm, are as
low as possible; one way to ensure this is to perform a number of probes, which
can be costly and time-consuming (considering the number of potential clients).
Another option is to increase the resilience of single measurements by applying
our thin-stream TCP modifications (Petlund et al., 2008). Thus, we present results
from experiments using this middleware running a simple game both in a lab
environment and on PlanetLab. In summary, we show that the dynamic selection
of servers is beneficial and can benefit from our TCP modifications, and that the
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overhead of migration and method invocation does not exceed the limits of a good
perceived game play.

2 Background and Related Work

Migration techniques: Migration provides functionality to move entities of
varying form and size (e.g., virtual machines, processes, data, code, etc.) between
servers/proxies/clients in a distributed system. In Nelson et al. (2005), a virtual
machine is transparently migrated with minimal impact on the user. Sprite and
Mosix are *NIX based operating systems that allow for processes and their
associated state to be migrated. Code migration makes it possible to defer the
execution of code to an interacting party. Interpreted languages are typical for this,
such as JavaScript in modern browsers and SQL in database management systems.
Emerald and Chorus/COOL enable migration of objects (e.g., their code and
state) during run-time execution of a program (per the object-oriented paradigm).
Finally, we have eXternal Data Representation (XDR) and Boost::Serialization
that provide functionality to migrate data. This is achieved by serialization, i.e.,
creating a binary representation of data in an application (e.g., ints, floats, chars,
etc.), which is moved between instances of applications. Migration, at its various
granularity levels, serves several purposes, such as dynamic load distribution, fault
resilience, increasing resource locality or to facilitate system administration. We
wish to achieve a combination of load distribution and increased resource locality
by migrating game state to an optimal location (relative to the interacting users).
Finding the correct level of granularity is important, and in online games there are
two essential characteristics, 1) all code is shared, and 2) not all state related to an
object needs to be migrated. Thus, we can eliminate some overhead by serializing
only parts of an object. To this end, data migration accommodates both of these
characteristics.

Server selection: Game server selection is an important facet of the playability
for several types of online games. This is particularly true for games that are
highly sensitive to latency, such as first person shooter (FPS) games. As such, the
player’s selection process is commonly guided by measuring dimensions that affect
playability, such as latency and packet loss. This sensitivity to latency is commonly
alleviated by distributing servers widely. With respect to this, Chambers et al.
(2003) have looked at how server selection can be optimized for a single client,
when given a set of available servers. In a further study, Claypool (2008) notes
that we regularly find groups of players that wish to play together on a server,
such as friends or clans (organized players). As such, he has investigated how
server selection can be optimized from the perspective of a group of players. In
two related studies by Armitage (2008b,a), efficient ways of ranking servers in the
discovery process itself are examined. These papers have in common that they
consider server selection from the perspective of the player(s), and additionally
assume a certain availability of servers (it is common for geographically coupled
players, such as real life friends, to play against each other). For a world spanning
game, however, where all users interact in the same game instance, such as an
MMOG, the number of available servers is often limited. Lee et al. (2005) present
their heuristic for selecting a minimum number of servers satisfying given delay
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constraints (from the perspective of large scale interactive online games, such as
MMOGSs). Their aim, however, is to have well provisioned network paths in a
centralized architecture. Thus, they do not consider the aspect of geographical
dispersion of players. In a similar study, Brun et al. (2006) investigate how
a server’s location can influence the fairness of a game, and how selecting an
appropriate server impacts this fairness. They use an objective function, which
they call critical response time to rank the servers.

3 Implementation of Ginnungagap

The development of GINNUNGAGAP has been driven by the motivation of lowering
the aggregate latency for groups of interacting players in interactive online games,
such as MMOGs. To achieve this, three components were necessary, 1) a way of
locating a server or proxy closer to the center of the players through core-selection,
2) a means of facilitating the migration of game-state, i.e., re-locating the players
and the objects they interact with, and 3) allow for continuous interaction with
the virtual environment, through remote method invocations (RMI), even during
migration. GINNUNGAGAP supports all three components.

At its core GINNUNGAGAP runs three threads, send, which is responsible for
transmitting middleware messages, labeled either RMI or MIG (method invocation
and migration, respectively, see tables 1 and 2); receive, which accepts new
connections and receives transmitted messages; and process, which processes the
messages, and activates core-selection at given intervals in the servers and proxies.
In addition, all clients run a (application level) ping thread, which is responsible
for gathering and transmitting its latency information to the proxies and servers,
which is used as input to the core-selection algorithm (explained in section 3.1).

All objects that support migration and RMI inherit from a base class that
provides a minimal interface of methods and data that, correspondingly, must be
implemented and present in all inheriting classes. The essential data in an object
consists of the object’s mode and its identifier. The mode of the object can be
either MIGRATING, which implies that the object is in transit, and RMIs must be
buffered until they can be forwarded and processed, or NORMAL, which implies that
an RMI can be processed immediately. As an alternative to buffering messages
it could be more beneficial to utilize related ideas, such as transparent migration
of virtual machines (Nelson et al., 2005), where one variation utilizes a two-stage
approach, with an initial push-phase, where data is pushed to the receiving node,
data modified during this stage is marked as dirty and is retransmitted during the
stop-and-copy phase, where, in our case, the object is again made available for
interaction. The unique identifier of an object follows it throughout its life-time
and throughout the distributed system, and is used to uniquely locate that object
at any node. A name service is necessary, however, to maintain knowledge of which
node the object is currently residing at.

Instrumental to the name service is an efficient way of maintaining references to
the objects as they migrate. To accomplish this we have implemented a distributed
name service. A name service can be implemented in several ways, which we
discuss in the context of MMOGs in Beskow (2007). The conclusion is that a
distributed name service is an efficient way of handling references as there is a
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minimal overhead in binding an object with the name service, because each node
has its own name service, where the objects are bound initially. Communication
between nodes (and thus the name services) only becomes necessary when an
object is migrated. Given that servers in the system are geographically distributed,
binding objects locally becomes quite beneficial. One other advantage is that there
is no single point of failure, so large parts of the application can continue running
if a server fails. Look-ups are also efficient, as we can directly query the node our
name service has registered as current caretaker of the object. This access time,
however, depends on the number of times an object has been migrated (after its
point of creation) and at which point in this chain the invocation is performed.
We partially alleviate this situation by embedding the calling nodes’ information
in a message that passes through such a chain, such that the reply is sent directly
back to the calling node.

3.1 Core selection

Vik (2009) identified k-Median (see algorithm 1) as the heuristic algorithm for
the graph-theoretical problem of locating an optimal proxy for a set of interacting
clients, and this is the algorithm we use in the core-selection component. However,
any of the node selection algorithms presented by Vik can be used instead of the
k-Median algorithm in our middleware.

Algorithm 1 k-MEDIAN(G):

: Input: An integer k > 0, a graph G = (V,E,¢). Sets ZCV and X C V.
: Output: A set C' € X of core-nodes.
map<z-id, pair-wise> mapldPairwise
for each x € X do
pairwise = getPairwiseDistances(z, Z)
mapldPairwise.insert(z-id, pairwise)
end for
C = kLowestPairwise(mapldPairwise)

IR

The k-Median core-node selection algorithm finds & core-nodes that are the k
nodes with the lowest average pair-wise distances to the nodes in the member-node
set. The algorithm solves the k-minimum-pairwise problem, which when given a
weighted graph G = (V, E, ¢) and an integer 0 < k < |V, finds a set C C V of size
k, such that the sum of the distances from the vertices’s u € C to all nodes v € V'
is minimal. The k-Median algorithm has a time-complexity of O(n?) on any graph.

3.2 Migration

Migration (see figure 1 for an overview of the process) targets are found by
core-selection (1), though migration is only performed when the latency gain
increases above a predefined threshold. The migration is performed by the
MigrationService (2), which first sets the mode of the migrating object to
MIGRATING (8). Thus, all incoming RMIs are temporarily buffered locally, until
they are forwarded and processed by the object at its new location. The buffered
RMIs are marked as chained invocations, and as such, contain information about
the node from which the call originated.
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Figure 1 Sequence of a migration

After the mode update, the object is serialized (4). The serialization results in
the creation of a MIG message (see table 1) in the binary XDR format (5). Not all
attributes of an object are necessarily serialized; only those marked for serialization
by the programmer. Once the message has been packed it is transmitted to the
receiving node (7).

Message type | Object id Object type Attribute | Attribute
MIG 7e2..31f | CLASS_PLAYER Odin 98

Table 1 Migration message

At the receiving node, the message is processed (8). The middleware reads the
type of the message that it has received (MIG) and invokes the appropriate handler.
It passes the remainder of the message to the MIG-handler, which reads the object
type and requests that a new object instance of that type is created. The instance
is created by calling the object constructor, which initializes the object with the
attributes deserialized from the message.

Once the object has been created and initialized, the MIG-handler creates a
MIGACK message with the id of the object and transmits this message to the
sending node (9). Upon receiving this message, the sending node knows that
the migration has been completed and forwards any waiting RMI-messages in its
buffer (10).

This same process is used to migrate groups of objects, though with a slight
modification. In the case of groups, all the objects are serialized into one large
message, instead of being sent in small individual ones.

3.8 Remote method invocation

An RMI is the invocation of a method on an object that is not residing in local
memory (see figure 2 for an overview). To accomplish this goal, a number of
components need to be present in the middleware. In this example, we detail
the interaction of these components, starting with a player logging into a remote
server:

dist_ptr<Player> plyr = Startup::login(‘‘0din’’);
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Figure 2 Sequence of a RMI

This login(...) invocation is in itself an RMI, but is possible because
the server and Startup object have a well-known location and identifier. With
this invocation, the server creates a player object and returns its corresponding
universally unique identifier (UUID), which is guaranteed unique for this object
throughout its lifetime. The UUID is entered into the name service of the local
node. Together with network information about the sending node, this ensures that
we have a way of contacting the remote node and identifying that instance of the
object class. The UUID is also stored in the distributed pointer plyr. After input
from the player, a request to move is issued:

plyr->move( Direction, Distance );

As plyr is a distributed pointer, the move method invocation is intercepted by
the smart pointer (1), which contains the UUID of the object it points to and is
used to query the name service for a pointer to the object corresponding to that
UUID. The name service looks it up in its records and performs one of two actions,
1) returns a pointer to the local object, or 2) returns a pointer to a proxy object
if it is remote (2). At the first request for a remote object, a proxy is created (3),
and is reused for subsequent requests.

As the object we have invoked is not local, the distributed pointer redirects
the call to the move-method through the proxy object with the parameters passed
to the method (5). Methods in an object that support RMI are implemented as
virtual methods and have their own implementation in the proxy object.

At this point the proxy object assumes control, and creates a message of type
RMI (see table 2). This identifies the class type of the object, the specific object
(UUID) and the function that is being invoked, and its corresponding parameters.
All this information is serialized using XDR. With knowledge that the object is
remote, the proxy object then transmits the message to its destination (6).

‘ Message type ‘ Object id ‘ Object type ‘ Method ‘ Parameter ‘ Parameter ‘
‘ RMI ‘ 5cl...13c ‘ CLASS_PLAYER ‘ METH_-MOVE ‘ North ‘ 50 ‘

Table 2 RMI message

At the receiving node the message is processed by the middleware (7). It
determines the message type (RMI), and invokes its corresponding handler. This
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RMI-handler determines if the object is local or remote, and in the latter case
passes the message on (with the information of the emanating node embedded in
the message). Thus, the reply, once the RMI is processed, can be sent directly to
the original caller, effectively minimizing extraneous messages in the network. If
the object is local, the corresponding skeleton method is invoked, which deserializes
the parameters of the object, and invokes the method of the local object. Once the
invoked method returns, the RMI has completed successfully at the remote node,
and a potential return value from the function itself is serialized and returned.
The middleware itself generates a reply to the calling node with information of
the successful completion (8). Finally, this return value is processed by the calling
node (10).

4 TCP enhancements for thin streams

TCP is used as the primary transport protocol in a number of existing online
games (including MMOGsS), because it inherently provides reliability and simplifies
firewall traversal. Though using TCP in this scenario comes at a cost due to TCP’s
inherent retransmission mechanisms, which are optimized for TCP’s targeted
audience; bulk transfer scenarios. This is in contrast to the network traffic patterns
exhibited by a number of online games, which send small packets with high
inter-arrival times (thin streams). As a result, supporting MMOGs with reliable,
low-rate, interactive streams using TCP on the Internet poses huge challenges
due to packet loss. To reduce the loss-recovery delays, especially the infrequent
but worst-case scenarios that have devastating impact on QoE, and to minimize
the variance in the latency estimates for server selection, we have implemented
enhancements to TCP’s retransmission policies to reduce the latencies for thin
streams (Petlund et al., 2008; Petlund, 2009). These modifications only need to be
present at the sender (though the benefit is greater if both sides of the connection
have them), and, as such, we support unmodified receivers running commodity
operating systems (Linux, *BSD, OS X, Windows, etc.). These modifications are
backwards compatible and only triggered when the system detects the described
thin stream properties. In particular, we have changed the exponential back-off and
fast retransmit algorithms, and added a bundling mechanism that uses available
TCP segments to resend unacknowledged application data. It is important to
acknowledge that these modifications are only enabled by the kernel for thin-
streams, since enabling these mechanisms on greedy streams would violate TCP
fairness principles.

4.1 Modified exponential back-off

TCP retransmissions are triggered by timeouts when a segment is not
acknowledged in time and no fast retransmit occurs. To avoid congestion in a
scenario with multiple consecutive losses, the retransmission timer is doubled
each time (exponential back-off in figure 3). This leads to retransmission
delays that increase exponentially when multiple consecutive packet losses occur.
However, in the MMOG scenario, it is not necessary to use exponential back-
off to prevent aggressive probing for bandwidth, because the stream is thin.
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retransmissions occur seldom. In most

cases, a retransmission by timeout is triggered before the three (S)ACKs required
to trigger a fast retransmission are received (figure 4(a)). To deal with this
problem, we allow a fast retransmission to be triggered by the first indication that
a packet is lost (figure 4(b)). This is because retransmissions triggered by causes
other than timeouts are usually preferable with respect to latency (Petlund, 2009).

Sender Receiver Sender Receiver

1\ 1\
KL e | o1 fe— |
— 2
3 I
3\ 3\
Ak | WA [ |
4 Fast retransmit 2
Timeout retransmission \, \.
I |
5\
dupACK 1 |
Fast retransmit 2 \

(a) Timeout and fast retransmission (b) Modified fast retransmission

Figure 4 Fast retransmissions
4.8 Redundant data bundling

To avoid retransmissions, we redundantly copy (bundle) data from
unacknowledged messages in the send queue into the new packet as long as
the combined packet size is less than the maximum segment size (MSS) (to
avoid IP fragmentation). If a retransmission occurs, as many of the remaining
unacknowledged packets as possible are bundled with the retransmission. This
increases the probability that a lost segment is recovered faster. Figure 5 shows
how a previously transmitted data segment is bundled with the next packet.
The sequence number stays the same while the packet length is increased. If
packet A is lost, the ACK from packet B acknowledges both segments, making a
retransmission unnecessary. In contrast to the modified retransmission mechanisms
of exponential back-off and fast retransmit, which are triggered when fewer than
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Figure 5 Bundling unacknowledged data

four packets are in transit, redundant data bundling (RDB) is enabled by small
packet sizes, and limited by the packet inter-arrival times (IATSs) of the stream. If
the segment is filled up to MTU size, either due to large writes from user space
or due to sufficient data in the TCP send queue, which is typical for bulk data
transfer, bundling is not performed.

5 Evaluation

To evaluate GINNUNGAGAP, we have performed several experiments and present
the vital results of our testing, with micro benchmarks of the RMI and migration
functionality and live tests on PlanetLab (see (Erikstad, 2009) for further results
and details).

5.1 Micro benchmarks

The micro benchmarks were performed using a local 100 Mbps network and ran
on two machines with identical hardware (Intel Core 2 Duo E6750, 2.66GHz CPU,
2 GB of RAM) with Ubuntu 9.04 installed.

Remote Method Invocation: To test the RMI functionality and overhead,
we invoked methods with several different combinations of return values and
parameters. The results of these tests are shown in figure 6. Each method was
invoked 10000 times. As expected, an overhead compared to a local invocation is
introduced by an RMI, partially due to the overhead of (de)serializing parameters
(not mnecessary for local invocations), and also the latency introduced by the
network. We see a gradual increase in the time to complete RMI invocations of
vectors of integers (as the vectors grow in size), but this is mainly due to the
increased transmission time of the data. Apart from this, the mean difference
in a remote and local invocation remains quite stable. We can also see that the
standard deviation is relatively low. In summary, there is some overhead associated
with an RMI compared to a local invocation, but this is to be expected. The
primary obstacle is the latency introduced by the network, and the size of data
being transmitted.

Migration: In the migration tests, we have performed two sets of tests, one
where we migrate single objects of varying size, and one set where we vary the size
of the object groups and their size. The results of migrating a single object are
shown in figure 7. As expected, the time to complete a migration of a single object
gradually increases with the size of the object.

The results of migrating groups of objects are shown in figure 8. Here we see
much of the same pattern as migration of single objects, with the gradual increase
in completion time being mainly affected by the size of the objects and the number
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of groups. There is, however, more overhead introduced by the migration of groups,
as the middleware has to perform additional work; it combines the objects into a
single large message.

RMI during migration: We have also looked at the overhead introduced
while performing RMI on an object while it is being migrated, and the results
of this test are presented in figure 9. We continuously performed RMI to a
group of objects that were being migrated back and forth between two servers
at regular intervals. As we can see, it is clear that performing an RMI during
migration adds overhead. This overhead is introduced because the name service
has not been updated yet, and as such, RMIs are buffered until they can be
forwarded. This buffering effect is witnessed in the greater variance displayed in the
completion time for buffered/chained RMIs. Currently, we do not forward messages
as they arrive, instead we wait for a MIGACK before forwarding the messages. It
is reasonable to assume that this overhead could be reduced by changing this to
an on-the-fly forwarding of the incoming messages. The messages would then be
ready for processing as soon as the migration was finalized, effectively removing
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some of the overhead (latency) introduced by having to wait for the forwarding of
messages, thus reducing the variance in completion time for an RMI.

5.2 PlanetLab tests

We ran several different tests on the open world-wide research platform PlanetLab,
primarily to test the usability of the core node selection algorithm and middleware
itself. Also, the PlanetLab nodes that we selected as a server and proxies were
those with little or no load in the PlanetLab network.

To test the core node selection algorithm, we ran a test where clients,
approximately 120 of them, were initially connected to a main server. As more
proxies were gradually added, the core node selection algorithm was activated (see
figure 10 for an overview of the PlanetLab nodes included in the experiment).
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The results of this test are summarized in figure 11 and 12. As we can see in
figure 11, adding two additional proxies made it possible to reduce the aggregate
mean latency of the interacting clients. Adding an additional three proxies further
decreased the aggregate mean latency, but the gain was not as great. It is to
be expected that the reduction does not necessarily improve greatly with a large
number of added proxies, as there is always variance in the latencies of the
connected clients, but it is clear that the gaming experience can be improved by
the introduction of a small number of proxies. The crossover at the far left of
figure 11 shows how a small number of connections benefit (when only a single
server is available), while many suffer. By introducing a small number of proxies,
performing a core-selection and migrating the state and interacting players to this
proxy (if it is able to improve the aggregate latency of the players) the number of
connections that benefit is reduced, but correspondingly the number of connections
that suffer is also reduced.
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Figure 12 RMI time per client with varying numbers of proxies

In figure 12, we see the completion time of RMIs issued, as proxies are being
added. We can see that most of the invocations are well below the 1000ms mark,
but that there are at least a couple of invocations that take longer time. These are
caused by migrations, as we noted during our micro benchmarks of RMI during
migration, as seen in figure 9.

In figure 13, we see the results of a test simulating a small region in a
virtual environment with players entering and exiting the region continuously. The
setup consisted of 1 server, 5 proxies and approximately 120 clients. The session
time of the clients follows an exponential distribution with an average scale of
60 seconds. The core-selection algorithm was activated every 30 seconds, with
a migration occurring only if the minimum gain of each client was 2ms. This
resulted in a total of 23 migrations, where all, except the first (from the server
to a proxy) were between two of the proxies in the setup. The mean migration
time was 813ms, excluding one exception, which was 28868ms, and we can see
the resulting spikes in the RMI times of the sessions in figure 13. PlanetLab
uses virtualization to schedule slices for run-time on the PlanetLab nodes. We
believe this spike is a result of such virtualization, where the slice running our
application was scheduled out. We did not see such spikes in our earlier PlanetLab
tests, but these ran for shorter periods of time. This is one of the problems
with running latency sensitive experiments in PlanetLab. An ICMP ping between
the two proxies involved did not reveal any latency-related problems, but ICMP
ping is not affected by the virtualization (because we use application layer ping,
we are affected by virtualization). We ran the test several times with different
configurations, but experienced similar spikes each time. We did not experience
these in our micro benchmarks of the migration functionality. Apart from these
spikes, most of the invocations during this test were well within the 1000ms mark.
As such, it should be possible to perform migrations on regions with heavy traffic
quite frequently, without adverse side-effects.
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5.8 Latency effect of the TCP thin stream modifications

The modifications to TCP described in section 4 influence both the network
monitoring, used for server selection, and the application data delivery. As our
TCP modifications are implemented in the Linux kernel, we cannot use PlanetLab
as a testbed (as we did in our previous experiments), because we are not permitted
to modify the kernel on machines hosted in this network. As such, we had to use
machines controlled by us instead.

5.3.1 Application data delivery

To observe the effects of latency at the application layer in a real-world Internet
scenario, we replayed packet traces from Anarchy Online (approximately 1 hour
of game play from Funcom’s servers) between a machine located in Worcester,
Massachusetts (USA) and a machine in Oslo (Norway). Both machines were
connected to commercial access networks. In figure 14, the results are summarized.
The observed path RTT was 116 ms, and the observed loss rate during this test
was surprisingly high, 8.86% on average for the TCP New Reno stream. For the
transport layer delivery latency (figure 14(a)), 9% of the traffic shows improved
latency (0.91 on the y-axis), which is a reflection of the observed 8.86% loss rate,
which comes as a result of the aggressive retransmission mechanisms. We also
see that 99% of the data at the transport layer level is delivered within 1000 ms
(the latency threshold where MMOG users start to get annoyed (Claypool et al.,
2006)), while TCP New Reno delivers 97% within 1000 ms. On the application
layer (figure 14(b)), where TCP’s in-order delivery is accounted for, about 17% of
the data is delivered faster using the modifications. With the modifications, about
99% was delivered within 1000 ms, while for TCP New Reno the corresponding
percentage was 95%. Finally, the worst-case latencies were also greatly reduced, to
about 1/3 of the New Reno results (39.2s versus 12.8s). The plots show that all
mechanisms improve data delivery time when loss occurs, but RDB, being more
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Figure 14 Anarchy Online packet trace replayed (Massachusetts - Oslo).

aggressive, is most efficient. Thus, our TCP modifications reduce the loss recovery
experienced at the application level greatly, i.e., directly influencing the users’
game experiences.

5.3.2 Server selection

Server selection is an important facet of GINNUNGAGAP. To make the best possible
decision of whether to migrate game state (and the corresponding players) or
not, it is important to have minimal variance in the gathered latencies. As such,
we ran a test to determine the effect our TCP thin stream modifications would
have on the variance of the gathered latencies, and subsequently the accuracy
of the core selection algorithm. The results of this test are summarized in
figure 15 (the source code of the test application is available for download at
http://simula.no/research/networks/software/).
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Figure 15 CDF of pair-wise latencies after core selection

For this test, we connected 20 clients to a server, where the clients measured
their latencies using an application layer ping. For realistic results, we used netem
to induce additional packet loss and latency on the client and server connections.
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As reflected in section 5.3.1, we can experience peak loss rates of 9%. Thus, we
used 1 and 4 percent (average) packet loss respectively for the server and client,
and a latency of 70-120ms (randomized per connection and test). In our tests, the
clients reported the average from 10 application layer measurements (see figure 15).
The server then performed core selection using these measurements as input, and
as such, the figure reflects the lowest pair-wise latency of the clients to the server
(see section 3.1 for further details). The test ran in two iterations, one with TCP
thin stream modifications enabled, and one where they were disabled.

From figure 15, we observe that the thin-stream modifications improve the
decision of the core selection algorithm, because a greater percentage of the
measurements are affected less by the presence of packet loss. This is so, because
inaccuracies can only take the form of overestimated latency, which occurs when
the retransmission mechanisms of unmodified TCP fail to recover lost packets
quickly because packets rates are too low. The resilience to packet loss observed
when the TCP modifications are enabled is thus a result of the aggressive
retransmission strategies of the TCP thin stream modifications.

Basing a core selection decision on measurements gathered over time is
preferential to single measurements, as multiple measurements converge towards
the player’s “real” latency. However, the scalability of such an approach is
uncertain. One possibility is to have the server read the RTT value from TCP,
based on in-game communication (state updates etc.), though in cases where no
communication channel is open to (potential) proxies this problem has to be
resolved in another way, such as active application layer probing.

6 Discussion

Due to the distributed name service resolving references to remote objects,
migration can become a time-consuming task. An object that is frequently
migrated creates trails of object references at the nodes it visits. We handle
this scenario partially by embedding information about the emanating node in a
message that is forwarded, so the reply can be sent directly to the calling node.

Another concern is related to the side-effects of migrating game-state. If
migration is not performed transparently, we might adversely affect interacting
players. In Nelson et al. (2005), it is demonstrated how an active application is
moved from one virtual machine to another, with minimal perceived impact to the
user’s interaction with the application.

Partial failures occur when a node in a distributed system becomes unavailable,
effectively rendering the objects managed by it inaccessible. The current
framework does not accommodate for partial failures, but there are ways to
minimize the repercussions of these incidents. One possibility is to distribute
multiple copies of an object in the system, and utilize a peer-to-peer based look-up
system such as Chord or Tapestry, to locate the object. However, the drawback
of utilizing such an approach is the overhead introduced by having to keep the
multiple instances of an object synchronized.

Core selection and migration require resources in the form of processing
power and network messages when activated, as such, policies should govern their
activation. Core-selection can be performed on the basis of churn (in the form



18 Beskow et. al.

of players joining/leaving), time of day, player arrival rate, history (a preemptive
approach, where known situations, such as battles, trigger the activation) and
server-load. Migration can be performed on the basis of threshold of aggregate
latency, number of players, packet loss, and server load. In addition to activation
policies, it might also be useful to define cool-down periods for core-selection and
migration, to avoid thrashing in the system.

To this effect, accurate measurements of the player latencies to the available
servers and proxies are instrumental for making correct decisions. These
measurements can, for instance, be retrieved from packets containing game state,
but typically a client interacts with only one server at a time. And even in this
case, the player may be vulnerable to the packet loss present in the Internet, and
the inherent weaknesses of TCP as a transport protocol for thin streams. One
possibility is to send a train of packets, and measure the mean of these. This,
however, is costly, and the scalability of such a solution for a large number of
players, such as we commonly witness in MMOGs, is uncertain. As such, there is
much to be gained by utilizing thin stream modifications to TCP, which are able
to accommodate for the packet loss in the Internet for thin streams.

Core selection depends on full knowledge of the network, which we can obtain
by observing TCP latency. Latency estimation techniques provide an alternative,
and in (Beskow et al., 2009b; Vik et al., 2009), we examined the feasibility of using
estimated latencies for situations when real-time measurements are unable to scale
to the number of interacting players. These active probing techniques generate an
amount of traffic that has roughly the same intensity as a modern game’s traffic
itself. Since the TCP thinstream modifications minimize the variance in the RTT
measurements available from the TCP connection structs we have considered using
such a passive probing approach, based on the TCP connections.

The proposed framework is tested in a client-server setting, but in general, the
framework should also be useful in a peer-to-peer scenario trying to dynamically
select a server among the peers. Thus, as the peers join and leave the game, the
selection of peers controlling the game could be performed using our middleware.

The implemented thin stream TCP modifications may increase the number of
spurious transmissions (Petlund, 2009). However, the reduction in latency, both
for application data delivery and latency monitoring for core selection, justifies the
need to suppress occasional spurious retransmissions.

7 Conclusion

High latency may be devastating for the game play experience. An important
factor for world-spanning games, such as MMOGs, lies in the diversity of its user
base where there will, at any point in time, be a number of players connected from
different physical locations. The large challenge is that the group of players in the
game or in the game region is dynamic, and using a statically selected server may
therefore give good results in one moment but poor in the next.

Beskow et al. (2009a) describe the implementation of this middleware and
presented experimental results showing the performance gains from in-house lab
experiments and running a simple game on PlanetLab. Here, we have expanded
on these ideas and tested the effects of our TCP thin stream modifications
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for improving the resilience of latency measurements and for improving the
throughput of game state in the network. As a result, players receive data sooner,
and the core selection algorithm is able to make a better decision with regard to
the optimal placement of game state.

As future work, we would like to review the possibility of optimizing the
placement for smaller, highly coupled groups of interacting players within a
region. This can be achieved by applying graph partitioning algorithms or similar
techniques for isolating these groups.
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