
Tips, Tricks and Troubles: Optimizing for Cell and GPU

Håkon Kvale Stensland, Håvard Espeland, Carsten Griwodz, Pål Halvorsen
Simula Research Laboratory, Norway

Department of Informatics, University of Oslo, Norway
{haakonks, haavares, griff, paalh}@simula.no

ABSTRACT

When used efficiently, modern multicore architectures, such
as Cell and GPUs, provide the processing power required by
resource demanding multimedia workloads. However, the
diversity of resources exposed to the programmers, intrinsi-
cally requires specific mindsets for efficiently utilizing these
resources - not only compared to an x86 architecture, but
also between the Cell and the GPUs. In this context, our
analysis of 14 different Motion-JPEG implementations indi-
cates that there exists a large potential for optimizing per-
formance, but there are also many pitfalls to avoid. By ex-
perimentally evaluating algorithmic choices, inter-core data
communication (memory transfers) and architecture-specific
capabilities, such as instruction sets, we present tips, tricks
and troubles with respect to efficient utilization of the avail-
able resources.

Categories and Subject Descriptors

D.1.3 [PROGRAMMING TECHNIQUE]: Concurrent
Programming—Parallel programming

General Terms

Measurement, Performance

1. INTRODUCTION
Heterogeneous systems like the STI Cell Broadband En-

gine (Cell) and PCs with Nvidia graphical processing units
(GPUs) have recently received a lot of attention. They pro-
vide more computing power than traditional single-core sys-
tems, but it is a challenge to use the available resources
efficiently. Processing cores have different strengths and
weaknesses than desktop processors, the use of several dif-
ferent types and sizes of memory is exposed to the devel-
oper, and limited architectual resources require considera-
tions concerning data and code granularity.

We want to learn how to think when the multicore system
at our disposal is a Cell or a GPU. We aim to understand

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’10, June 2–4, 2010, Amsterdam, The Netherlands.
Copyright 2010 ACM 978-1-4503-0043-8/10/06 ...$10.00.

(a) Cell on PS3 (6 SPEs) (b) GPU on GTX 280

Figure 1: Runtime for MJPEG implementations.

how to use the resources efficiently, and point out tips, tricks
and troubles, as a small step towards a programming frame-
work and a scheduler that parallelizes the same code effi-
ciently on several architectures. Specifically, we have looked
at effective programming for the workload-intensive yet rel-
atively straight-forward Motion-JPEG (MJPEG) video en-
coding task. Here, a lot of CPU cycles are consumed in the
sequential discrete cosine transformation (DCT), quantiza-
tion and compression stages. On single core systems, it is
almost impossible to process a 1080p high definition video in
real-time, so it is reasonable to apply multicore computing
in this scenario.

Our comparison of 14 different implementations on both
Cell and GPU gives a good indication that the two consid-
ered architectures are complex to use, and that achieving
high performance is not trivial. Derived from a sequential
codebase, these multicore implementations differ in terms of
algorithms used, resource utilization and coding efficiency.
Figure 1 shows performance results for encoding the “trac-
tor” video clip1 in 4:2:0 HD. The differences between the
fastest and slowest solution are 1869 ms and 362 ms per
frame on Cell and GPU, respectively, and it is worth not-
ing that the fastest solutions were disk I/O-bound. To gain
experience of what works and what does not, we have exam-
ined these solutions. We have not considered coding style,
but revisited algorithmic choices, inter-core data communi-
cation (memory transfers) and use of architecture-specific
capabilities.

In general, we found that these architectures have large
potentials, but also many possible pitfalls, both when choos-
ing specific algorithms and for implementation-specific de-
cisions. The way of thinking cross-platform is substantially
different, making it an art to use them efficiently.

1Available at ftp://ftp.ldv.e-technik.tu-muenchen.de/
dist/test sequences/1080p/tractor.yuv

2. BACKGROUND

2.1 SIMD and SIMT
Multimedia applications frequently perform identical op-

erations on large data sets. This has been exploited by bring-
ing the concept of SIMD (single instruction, multiple data)
to desktop CPUs, as well as the Cell, where a SIMD in-
struction operates on a short vector of data, e.g., 128-bits
for the Cell SPE. Although SIMD instructions have become
mainstream with the earliest Pentium processors and the
adoption of PowerPC for MacOS, it has remained an art to
use them. On the Cell, SIMD instructions are used explic-
itly through the vector extensions to C/C++, which allow
basic arithmetic operations on vector data types of intrinsic
values. It means that the programmer can apply a sequen-
tial programming model, but needs to adapt memory layout
and algorithms to the use of SIMD vectors and operations.

Nvidia uses an abstraction called SIMT (single-instruction,
multiple thread). SIMT enables code that uses only well-
known intrinsic types but that can be massively threaded.
The runtime system of the GPU schedules these threads
in groups (called warps) whose optimal size is hardware-
specific. The control flow of such threads can diverge like
in an arbitrary program, but this will essentially serialize all
threads of the block. If it does not diverge and all threads
in a group execute the same operation or no operation at
all in a step, then this operation is performed as a vector
operation containing the data of all threads in the block.

The functionality that is provided by SIMD and SIMT
is very similar. In SIMD programming, vectors are used
explicitly by the programmer, who may think in terms of
sequential operations on very large operands. In SIMT pro-
gramming, the programmer can think in terms of threaded
operations on intrinsic data types.

2.2 STI Cell Broadband Engine
The Cell Broadband Engine is developed by Sony Com-

puter Entertainment, Toshiba and IBM. As shown in Fig-
ure 2, the central components are a Power Processing Ele-
ment (PPE) and 8 Synergistic Processing Elements (SPE)
connected by the Element Interconnect Bus (EIB). The PPE
contains a general purpose 64-bit PowerPC RISC core, ca-
pable of executing two simultaneous hardware threads. The
main purpose of the PPE is to control the SPEs, run an
operating system and manage system resources. It also in-
cludes a standard Altivec-compatible SIMD unit. An SPE
contains a Synergistic Processing Unit and a Memory Flow
controller. It works on a small (256KB) very fast memory,
known as the local storage, which is used both for code and
data without any segmentation. The Memory Flow Con-
troller is used to transfer data between the system memory
and local storage using explicit DMA transfers, which can
be issued both from the SPE and PPE.

Figure 2: Cell Broadband Engine Architecture

Figure 3: Nvidia GT200 Architecture

2.3 Nvidia Graphics Processing Units
A GPU is a dedicated graphics rendering device, and

modern GPUs have a parallel structure, making them ef-
fective for doing general-purpose processing. Previously,
shaders were used for programming, but specialized lan-
guages are now available. In this context, Nvidia has re-
leased the CUDA framework with a programming language
similar to ANSI C. In CUDA, the SIMT abstraction is used
for handling thousands of threads.

The latest generation available from Nvidia (GT200) is
shown in Figure 3. The GT200 chip is presented to the
programmer as a highly parallel, multi-threaded, multi-core
processor - connected to the host computer by a PCI Express
bus. The GT200 architecture contains 10 texture process-
ing clusters (TPC) with 3 streaming multiprocessors (SM).
A single SM contains 8 stream processors (SP) which are
the basic ALUs for doing calculations. GPUs have other
memory hierarchies than an x86 processor. Several types of
memory with different properties are available. An applica-
tion (kernel) has exclusive control over the memory. Each
thread has a private local memory, and the threads running
on the same stream multiprocessor (SM) have access to a
shared memory. Two additional read-only memory spaces
called constant and texture are available to all threads. Fi-
nally, there is the global memory that can be accessed by all
threads. Global memory is not cached, and it is important
that the programmer ensures that running threads perform
coalesced memory accesses. Such a coalesced memory access
requires that the threads’ accesses occur in a regular pattern
and creates one large access from several small ones. Mem-
ory accesses that cannot be combined are called uncoalesced.

3. EXPERIMENTS
By learning from the design choices of the implementa-

tions in Figure 1, we designed experiments to investigate
how performance improvements were achieved on both Cell
and GPU. We wanted to quantify the impact of design de-
cisions on these architectures.

All experiments encode HD video (1920x1080, 4:2:0) from
raw YUV frames found in the tractor test sequence. How-
ever, we used only the first frame of the sequence and encode
it 1000 times in each experiment to overcome the disk I/O
bottleneck limit. This becomes apparent at the highest level
of encoding performance since we did not have a high band-
width video source available. All programs have been com-
piled with the highest level of compiler optimizations using
gcc and nvcc, respectively, for Cell and GPU. The Cell ex-
periments have been tested on a QS22 bladeserver (8 SPEs,
the results from Figure 1 were on a PS3 with 6 SPEs) and
the GPU experiments on a GeForce GTX 280 card.

Figure 4: Overview of the MJPEG encoding process

3.1 Motion JPEG Encoding
The MJPEG format is widely used by webcams and other

embedded systems. It is similar to videocodecs such as Ap-
ple ProRes and VC-3, used for video editing and postpro-
cessing due to their flexibilty and speed, hence the lack of
inter-prediction between frames. As shown in Figure 4, the
encoding process of MJPEG comprises splitting the video
frames in 8x8 macroblocks, each of which must be indi-
vidually transformed to the frequency domain by forward
discrete cosine transform (DCT) and quantized before the
output is entropy coded using variable-length coding (VLC).
JPEG supports both arithmetic coding and Huffman com-
pression for VLC, our encoder uses predefined Huffman ta-
bles for compression of the DCT coefficients of each mac-
roblock. The VLC step is not context adaptative, and mac-
roblocks can thus be compressed independently. The length
of the resulting bitstream, however, is probably not a multi-
ple of eight, and most such blocks must be bit-shifted com-
pletely when the final bitstream is created.

The MJPEG format provides many layers of parallelism;
Starting with the many independent operations of calulating
DCT, the macroblocks can be transformed and quantized in
arbitrary order, also frames and color components can be en-
coded separately. In addition, every frame is entropy-coded
separately. Thus, many frames can be encoded in parallel
before merging the resulting frame output bitstreams. This
gives a very fine-level granularity of parallel tasks, provid-
ing great flexibility in how to implement the encoder. It is
worth noting that many problems have much tighter data
dependencies than we observe in the MJPEG case, but the
general ideas for optimizing individual parts pointed out in
this paper stand regardless of whether the problem is limited
by dependencies or not.

The forward 2D DCT function for a macroblock is defined
in the JPEG standard for image component sy,x to output
DCT coefficients Sv,u as

Sv,u =
1

4
CuCv

7
X

x=0

7
X

y=0

sy,xcos
(2x + 1)uπ

16
cos

(2y + 1)vπ

16

where Cu, Cv = 1
√

2
for u, v = 0 and Cu, Cv = 1 otherwise.

The equation can be directly implemented in an MJPEG
encoder and is referred to as 2D-plain. The algorithm can
be sped up considerably by removing redundant calcula-
tions. One improved version that we label 1D-plain uses
two consecutive 1D transformations with a transpose opera-
tion in between and after. This avoids symmetries, and the
1D transformation can be optimized further. One optimiza-
tion uses the AAN algorithm, originally proposed by Arai
et al. [1] and further refined by Kovac and Ranganathan [5].
Another uses a precomputed 8x8 transformation matrix that
is multiplied with the block together with the transposed
transformation matrix. The matrix includes the postscale
operation, and the full DCT operation can therefore be com-
pleted with just two matrix multiplications, as explained by
Kabeen and Gent [2].

More algorithms for calculating DCT exist, but they are

not covered here. We have implemented the different DCT
algorithms as scalar single-threaded versions on x86 (Intel
Core i5 750). The performance details for encoding HD
video were captured using oprofile and can be seen in Figure
5. The plot shows that the 1D-AAN algorithm using two
transpose operations was the fastest in this scenario, with
the 2D-matrix version as number two. The average encoding
time for a single frame using 2D-plain is more than 9 times
that of a frame encoded using 1D-AAN. For all algorithms,
the DCT step consumed most CPU cycles.

3.2 Cell Broadband Engine Experiments
Considering the embarrassingly parallel parts of MJPEG

video encoding, a number of different layouts is available
for mapping the different steps of the encoding process to
the Cell. Because of the amount of work, the DCT and
quantization steps should be executed on SPEs, but also the
entropy coding step can run in parallel between complete
frames. Thus, given that a few frames of encoding delay
are acceptable, the approach we consider best is to process
full frames on each SPE with every SPE running DCT and
quantization of a full frame. This minimizes synchronization
between cores, and allows us to perform VLC on the SPEs.

Regardless of the placement of the encoding steps, it is
important to avoid idle cores. We solved this by adding a
frame queue between the frame reader and the DCT step,
and another queue between the DCT and VLC steps. Since
a frame is processed in full by a single processor, the AAN
algorithm is well suited for the Cell. It can be implemented
in a straight-forward manner for running on SPEs, with VLC
coding placed on the PPE. We tested the same algorithm
optimized with SPE intrinsics for vector processing (SIMD)
resulting in double encoding throughput, which can be seen
in Figure 6 (Scalar- and Vector/PPE).

Another experiment involved moving the VLC step to the
SPEs, offloading the PPE. This approach left the PPE with
only the task of reading and writing files to disk in addition
to dispatching jobs to SPEs. To be able to do this, the luma
and chroma blocks of the frames had to be transformed and
quantized in interleaved order, i.e., two rows of luma and a
single row of both chroma channels. The results show that

0 200 400 600 800 1000 1200 1400 1600

Average frame encode time (ms)

2D-Plain

2D-Matrix

1D-Plain

1D-AAN Other

Quantize

VLC

DCT

Figure 5: MJPEG encode time on single thread x86

0 10 20 30 40 50 60 70

Average frame encode time (ms)

AAN Vector/SPE

AAN Scalar/SPE

AAN Vector/PPE

AAN Scalar/PPE

Figure 6: Encoding performance on Cell with differ-

ent implementations of AAN and VLC placement

the previous encoding speed was limited by the VLC as can
be seen in Figure 6 (Scalar- and Vector/SPE).

To get some insight into SPE utilization, we collected a
trace (using pdtr, part of IBM SDK for Cell) showing how
much time is spent on the encoding parts. Figure 7 shows
the SPE utilization when encoding HD frames for the Scalar-
and Vector/SPE from Figure 6. This distinction is necessary
because the compiler does not generate SIMD code, requir-
ing the programmer to hand-code SIMD intrinsics to obtain
high throughput. The scalar version uses about four times
more SPE time to perform the DCT and quantization steps
for a frame than the vector version, and additionally 30% of
the total SPE time to pack and unpack scalar data into vec-
tors for SIMD operations. Our vectorized AAN implemen-
tation is nearly eight times faster than the scalar version.

With the vector version of DCT and quantization, the
VLC coding uses about 80 % of each SPE. This can possibly
be optimized further, but we did not find time to pursue this.

The Cell experiments demonstrate the necessary level of
fine-grained tuning to get high performance on this archi-
tecture. In particular, correctly implementing an algorithm
using vector intrinsics is imperative. Of the 14 implemen-
tations for Cell in Figure 1, only one offloaded VLC to the
SPEs, but this was the second fastest implementation. The
fastest implementation vectorized the DCT and quantiza-
tion, and the Vector/SPE implementation in Figure 6 is a
combination of these two. One reason why only one imple-
mentation offloaded the VLC may be that it is unintuitive.
An additional communication and shift step is required in
parallelizing VLC because the lack of arbitrary bit-shifting
of large fields on Cell as well as GPU prevents a direct port
from the sequential codes. Another reason may stem from
the dominance of the DCT step in early profiles, as seen
in Figure 5, and the awkward process of gathering profil-
ing data on multicore systems later on. The hard part is
to know what is best in advance, especially because mov-
ing an optimized piece of code from one system to another
can be significant work, and may even require rewriting the
program entirely. It is therefore good practice to structure
programs in such a way that parts are coupled loosely. In
that way, they can both be replaced and moved to other
processors with minimal effort.

When comparing the 14 Cell implementations of the en-
coder shown in Figure 1 to find out what differentiates the
fastest from the medium speed implementations, we found
some distinguising features: The most prominent one be-
ing not exploiting the SPE’s SIMD capabilities, but also in
the areas of memory transfers and job distribution. Uneven
workload distribution and lack of proper frame queuing re-
sulted in idle cores. Additionally, some implementations suf-
fered from small, often unconcealed, DMA operations that
left SPEs in a stalled state waiting for the memory trans-
fer to complete. It is evident that many pitfalls need to be
avoided when writing programs for the Cell architecture, and
we have only touched upon a few of them. Some of these are

0% 20% 40% 60% 80% 100%

AAN Scalar

AAN Vector

Other VLC Vector-packing DCT/Quant

Figure 7: SPE utilization using scalar or vector DCT

0 5 10 15 20 25 30 35

Time (ms)

Global coalesced

Constant caching

Texture coalesced

Global uncoalesced

Constant uncoalesced

Texture uncoalesced

Figure 8: Optimization of GPU memory accesses

obvious, but not all, and to get acceptable performance out
of a program running on the Cell architecture may require
multiple iterations, restructuring and even rewrites.

3.3 GPU Experiments
As for the Cell, several layouts are available for GPUs.

However, because of the large number of small cores, it is
not feasible to assign one frame to each core. The most time-
consuming parts of the MJPEG encoding process, the DCT
and quantization steps, are well suited for GPU acceleration.
In addition, the VLC step can also be partly adapted.

Coalesced memory accesses are known to have large per-
formance impacts. However, few quantified results exist,
and efficient usage of memory types, alignment and access
patterns remains an art. Weimer et al. [11] experimented
with bank conflicts in shared memory, but to shed light on
the penalties of inefficient memory type usage, further in-
vestigation is needed. We therefore performed experiments
that read and write data to and from memory with both
uncoalesced and coalesced access patterns [7], and used the
Nvidia CUDA Visual Profiler to isolate the GPU-time for
the different kernels.

Figure 8 shows that an uncoalesced access pattern de-
creases throughput in the order of four times due to the
increased number of memory transactions. Constant and
texture memory are cached, and the performance for un-
coalesced accesses to them is improved compared to global
memory, but there is still a three-time penalty. Furthermore,
the cached memory types support only read-only operations
and are restricted in size. When used correctly, the per-
formance of global memory is equal to the performance of
the cached memory types. The experiment also shows that
correct memory usage is imperative even when cached mem-
ory types are used. It is also important to make sure the
memory accesses are correct according to the specifications
of particular GPUs because the optimal access patterns vary
between GPU generations.

To find out how memory accesses and other optimiza-
tions affect programs like a MJPEG encoder, we experi-
mented with different DCT implementations. Our baseline
DCT algorithm is the 2D-plain algorithm. The only opti-
mizations in this implementation are that the input frames
are read into cached texture memory and that the quan-
tization tables are read into cached constant memory. As
we observed in Figure 8, cached memory spaces improve
performance compared to global memory, especially when
memory accesses are uncoalesced. The second implemen-
tation, referred to as 2D-plain optimized, is tuned to run
efficiently using principles from the CUDA Best Practices
Guide [6]. These optimizations include the use of shared
memory as a buffer for pixel values when processing a mac-
roblock, branch avoidance by using boolean arithmetics and
manual loop unrolling. Our third implementation, the 1D-
AAN algorithm, is based upon the scalar implementation

0 1 2 3 4 5 6 7 8 9

Average DCT GPU time per frame (ms)

2D-Plain

2D-Plain Opimized

1D-AAN

2D-Matrix

Figure 9: DCT performance on GPU

used on the Cell. Every macroblock is processed with eight
threads, one thread per row of eight pixels. The input im-
age is stored in cached texture memory, shared memory is
used for temporarily storing data during processing. Finally,
the 2D-matrix DCT using matrix multiplications where each
matrix element is computed by a thread. The input image
is stored in cached texture memory, and shared memory is
used for storing data during calculations.

We know from existing work that to achieve high instruc-
tion throughput, branch prevention and the correct use of
flow control instructions are important. If threads on the
same SM diverge, the paths are serialized which decreases
performance. Loop unrolling is beneficial on GPU kernels
and can be done automatically by the compiler using pragma
directives. To optimize frame exchange, asynchronous trans-
fers between the host and GPU were used. Transferring data
over the PCI Express bus is expensive, and asynchronous
transfers help us reuse the kernels and hides some of the PCI
Express latency by transferring data in the background.

To isolate the DCT performance, we used the CUDA Vi-
sual Profiler. The profiling results of the different imple-
mentations can be seen in Figure 9, and we can observe that
the 2D-plain optimized algorithm is faster than AAN. The
2D-plain algorithm requires significantly more computations
than the others, but by correctly implementing it, we get al-
most as good performance as with the 2D-matrix. The AAN
algorithm, which does the least amount of computations,
suffers from the low number of threads per macroblock. A
low number of threads per SM can result in stalling, where
all the threads are waiting for data from memory, which
should be avoided.

This experiment shows that for architectures with vast
computational capabilities, writing a good implementation
of an algorithm adapted for the underlying hardware can be
as important as the theoretical complexity of an algorithm.

0 2 4 6 8 10 12 14 16 18 20 22

Average frame encode time (ms)

VLC GPU

VLC CPU

Figure 10: Effect of offloading VLC to the GPU

The last GPU experiment considers entropy coding on the
GPU. As for the Cell, VLC can be offloaded to the GPU by
assigning a thread to each macroblock in a frame to com-
press the coefficients and then store the bitstream of each
macroblock and its length in global memory. The output of
each macroblock’s bitstream can then be merged either on
the host, or by using atomic OR on the GPU. For the experi-
ments here, we chose the former since the host is responsible
for the I/O and must traverse the bitstream anyway. Fig-
ure 10 shows the results of an experiment that compares

MJPEG with AAN DCT with VLC performed on the host
and on the GPU, respectively. We achieved a doubling of
the encoding performance when running VLC on the GPU.
In this particular case offloading VLC was faster than run-
ning on the host. It is worth noting that by running VLC on
the GPU, the entropy coding scales together with the rest of
the encoder with the resources available on the GPU. This
means than if the encoder runs on a machine with a slower
host CPU or faster GPU, the encoder will still scale.

4. DISCUSSION
Heterogeneous architectures like Cell and GPU provide

large amounts of processing power, and achieving encoding
throughputs of 480 MB/s and 465 MB/s, respectively, real-
time MJPEG HD encoding may be no problem. However, an
analysis of the many implementations of MJPEG available
and our additional testing show that it is important to use
the right concepts and abstractions, and that there may be
large differences in the way a programmer must think.

The architectures of GPU and Cell are very different, and
in this respect, some algorithms may be more suited than
others. This can be seen in the experiments, where the
AAN algorithm for DCT calculation performed best on both
x86 and Cell, but did not achieve the highest throughput
on GPU. This was because of the relatively low number of
threads per macroblock for the AAN algorithm, which must
perform the 1D DCT operation (one row of pixels within a
macroblock) as a single thread. This is only one example
of achieving a shorter computation time through increased
parallelity at the price of a higher, sub-optimal total number
of operations.

The programming models used on Cell and GPU mandate
two different ways of thinking parallel. The approach of
Cell is very similar to multi-threaded programming on x86,
with the exception of shared memory. The SPEs are used
as regular cores with explicit caches, and the vector units
on the SPEs require careful data structure consideration to
achieve peak performance. The GPU model of programming
is much more rigid, with a static grid used for blocks of
threads, and only synchronization through barriers. This
hides the architecture complexity, and is therefore a simpler
concept to grasp for some programmers. This notion is also
strengthened by the better average GPU throughput of the
implementations in Figure 1. However, to get the highest
possible performance, the programmer must also understand
the nitty details of the architecture to avoid pitfalls like warp
divergence and uncoalesced memory accesses.

Deciding at which granularity the data should be parti-
tioned is very hard to do correct a priori. The best granular-
ity for a given problem differs with the architecture and even
different models of the same architecture. One approach to-
wards accomplishing this is to try to design the programs
in such a way that the cores are seldom idle or stall. In
practice, however, multiple iterations may be necessary to
determine the best approach.

Similar to data partitioning, code partitioning is hard to
do correctly in advance. In general, a rule of thumb is to
write modular code to allow moving the parts to other cores.
Also, a fine granularity is beneficial, since small modules
can be merged again, and also be executed repeatedly with
small overhead. Offloading is by itself advantageous as re-
sources on the main processor become available for other
tasks. It also improves scalability of the program with new

generations of hardware. In our MJPEG implementations,
we found that offloading DCT/quantization and VLC cod-
ing was advantageous in terms of performance on both Cell
and GPU, but it may not always be the case that offloading
provides higher throughput.

The encoding throughput achieved on the two architec-
tures was surprisingly similar. Although, the engineering
effort for accomplishing this throughput was much higher
on the Cell. This was mainly caused by the tedious pro-
cess of writing a SIMD version of the encoder. Porting the
encoder to the GPU in a straight-forward manner without
significant optimizations for the architecture yielded a very
good offloading performance compared to native x86. This
indicates that the GPU is easier to use, but to reap the full
potential of the architecture, one must have the same deep
level of understanding as with the Cell architecture.

5. RELATEDWORK
Heterogeneous multi-core platforms like the Cell and GPUs

have attracted a considerable amount of research that aims
at optimizing specific applications for the different architec-
tures such as [9] and [4]. However, little work has been done
to compare general optimization details of different hetero-
geneous architectures. Amesfoort et al. [10] have evaluated
different multicore platforms for data-intensive kernels. The
platforms are evaluated in terms of application performance,
programming effort and cost. Colic et al. [3] look at the
application of optimizing motion estimation on GPUs and
quantify impact of design choices. The workload investi-
gated in this paper is different from the workload we bench-
mark in our experiments, but they show a similar trend as
our GPU experiments. They also conclude that elegant solu-
tions are not easily achievable, and that it takes time, prac-
tice and experience to reap the full potential of the architec-
ture. Petrini et al. [8] implement a communication-heavy ra-
diation transport problem on Cell. They conclude that it is
a good approach to think about problems in terms of five di-
mensions and partitioning them into: process parallelism at
a very large scale, thread-level parallelism that handles inner
loops, data-streaming parallelism that double-buffers data
for each loop, vector parallelism that uses SIMD functions
within a loop, and pipeline parallelism that overlaps data
access with computations by threading. From our MJPEG
implementations we observed that programmers had diffi-
culties thinking parallel in two dimensions. This level of
multi-dimensional considerations strengthens our statement
that intrinsic knowledge of the system is essential to reap
full performance of heterogeneous architectures.

6. CONCLUSION
Heterogeneous, multicore architectures like Cell and GPUs

may provide the resources required for real-time multimedia
processing. However, achieving high performance is not triv-
ial, and in order to learn how to think and use the resources
efficiently, we have experimentally evaluated several issues
to find the tricks and troubles.

In general, there are some similarities, but the way of
thinking must be substantially different - not only compared
to an x86 architecture, but also between the Cell and the
GPUs. The different architectures have different capabili-
ties that must be taken into account both when choosing a
specific algorithm and making implementation-specific deci-

sions. A lot of trust is put on the compilers of development
frameworks and new languages like Open CL, which are sup-
posed to be a “recompile-only” solution. However, to tune
performance, the application must still be hand-optimized
for different versions of the GPUs and Cells available.

Acknowledgements

The authors acknowledge Georgia Institute of Technology,
its Sony-Toshiba-IBM Center of Competence, and National
Science Foundation, for the use of Cell Broadband Engine
resources. We also acknowledge Alexander Ottesen, St̊ale
Kristoffersen, Øystein Gyland, Kristoffer Egil Bonarjee, Kjetil
Endal and Kristian Evensen for their contributions.

7. REFERENCES
[1] Arai, Y., Agui, T., and Nakajima, M. A fast

dct-sq scheme for images. Transactions of IEICE E71,
11 (1988).

[2] Cabeen, K., and Gent, P. Image compression and
the discrete cosine transform. In Math 45, College of
the Redwoods.

[3] Colic, A., Kalva, H., and Furht, B. Exploring
nvidia-cuda for video coding. In ACM SIGMM
conference on Multimedia systems (MMSys) (2010),
ACM, pp. 13–22.

[4] Curry, M., Skjellum, A., Ward, H., and

Brightwell, R. Accelerating reed-solomon coding in
raid systems with gpus. In International Parallel and
Distributed Processing Symposium (IPDPS) (April
2008), IEEE, pp. 1–6.

[5] Kovac, M., and Ranganathan, N. JAGUAR: A
fully pipelined VLSI architecture for JPEG image
compression standard. Proceedings of the IEEE 83, 2
(1995).

[6] Nvidia. Nvidia cuda c programming best practices
guide 2.3, 2009.

[7] Ottesen, A. Efficient parallelisation techniques for
applications running on gpus using the cuda
framework. Master’s thesis, Department of
Informatics, University of Oslo, Norway, May 2009.

[8] Petrini, F., Fossuma, G., Fernandez, J.,

Varbanescu, A. L., Kistler, M., and Perrone,

M. Multicore surprises: Lessons learned from
optimizing Sweep3D on the Cell Broadband Engine.
In International Parallel and Distributed Processing
Symposium (IPDPS) (March 2007), IEEE, pp. 1–10.

[9] Sachdeva, V., Kistler, M., Speight, E., and

Tzeng, T.-H. K. Exploring the viability of the Cell
Broadband Engine for bioinformatics applications.
Parallel Computing 34, 11, 616–626.

[10] van Amsesfoort, A., Varbanescu, A., Sips, H. J.,

and van Nieuwpoort, R. Evaluating multi-core
platforms for hpc data-intensive kernels. In ACM
Conference on Computing Frontiers (ICCF) (2009).

[11] Weimer, W., Boyer, M., and Skadron, K.

Automated dynamic analysis of cuda programs. In
Third Workshop on software Tools for MultiCore
Systems (STMCS) (2008).

