
Low Overhead Container Format for Adaptive Streaming

Haakon Riiser1, Pål Halvorsen2,3, Carsten Griwodz2,3, Dag Johansen4

1Netview Technology AS, Norway 2University of Oslo, Norway
3Simula Research Laboratory, Norway 4University of Tromsø, Norway

ABSTRACT

Current segmented HTTP streaming systems provide scal-
able and quality adaptive video delivery services to a huge
number of users. However, while they support a wide range
of bandwidths and enable arbitrary content-based compo-
sition, their current formats have shortcomings like large
overheads, live streaming delays, etc. We have therefore de-
veloped an adaptive media player that works around these
problems while still using standard components like H.264/
AVC for video, and MP3 for audio. The system’s adaptivity
allows the player to pick a quality level that makes good
use of available bandwidth and CPU resources while at the
same time maintaining smooth uninterrupted playback, as
well as offering near instant seek and startup times.

This paper presents an appropriate way of coding the seg-
ments and a simple multimedia container format that is op-
timized for adaptive streaming and video composition over
HTTP. We show that our format is sufficiently advanced to
contain any payload type, while being trivial to parse and
translate to other container formats. Additionally, we show
that our format is second to none in terms of overhead, with-
out incurring any penalties on live streaming.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols—Applications; H.5.1 [Information Interfaces
and Presentation]: Multimedia Information Systems—
Video

General Terms

Experimentation, Measurement, Performance

Keywords

adaptive streaming, container format, file format, http, low
latency, low overhead, multiplexing, video

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys’10, February 22–23, 2010, Phoenix, Arizona, USA.
Copyright 2010 ACM 978-1-60558-914-5/10/02 ...$10.00.

1. INTRODUCTION
Next generation entertainment and streaming systems will

have strong efficiency requirements – they must support a
huge number of concurrent users while at the same time
allowing the users to make and share personalized video
playouts. This is possible even today using video sites like
YouTube, which provides indivisible user-generated video
objects. However, we envision systems where users may
query for video snippets. Upon receiving the results of the
query, small fragments of video from multiple video sources
would be combined dynamically in any order into a seam-
less, personalized video playout. Additionally, the range of
user devices is even today wide, ranging from small mobile
phones and PDAs to large HD-capable home cinema sys-
tems. Thus, the system must be able to combine content
arbitrarily and scale the quality according to end-device and
resource availability. In particular, bandwidth fluctuations
in unstable mobile networks may be large [10] making adap-
tive video streaming a necessity.

In this context, HTTP streaming solutions have many of
the required features, and the current commercial success of
such solutions has several reasons. One reason is that the use
of IP multicast for concurrent delivery to several receivers is
still blocked by most Internet Service Providers. Another is
that the integration of video into social networking sites in-
dividualizes access patterns, which reduces the potential of
IP multicast-based approaches. Given these problems and
the general impression that backbone bandwidth is abun-
dant and free, HTTP streaming as an implicitly TCP- and
firewall-friendly end-to-end streaming solution with minimal
needs for infrastructure deployment has become a very de-
sirable option. In [8], we demonstrated [1] a system using
an HTTP-based protocol that is able to adapt dynamically
to resource availability and supports on-the-fly composition
of content-based videos from multiple sources. This system
achieves high-quality video presentations with a very flexi-
ble bit rate adaptation scheme. Like the systems from Move
Networks [4], Microsoft [5] and Apple [9], we use small seg-
ments downloaded from possibly different locations, even
exploiting web caches, which reduces the need for a dedi-
cated overlay network. However, the requirement of seam-
less video playout of arbitrarily concatenated video objects
and the supported bandwidth range introduce additional re-
quirements with respect to coding and container formats.

An important consideration when deciding on a media en-
coding strategy and container format is how the chosen tech-
nology performs in low-bandwidth scenarios like streaming
over wireless networks to mobile devices. Take, for example,
Apple’s HTTP live streaming system [9]: it uses MPEG-2

Transport Streams [6], a format known for large overheads
due to frequent repetition of metadata. Considering that
it is used for streaming to bandwidth-limited mobile units
(iPhones and iPods), overhead on low-bitrate streams may
affect users’ perception.

To avoid this problem, we demonstrate a working [1] me-
dia player that uses a tailor-made approach for coding and
multiplexing that meets all our system requirements; i.e., it
must:

1. Be able to use standard codecs (e.g., H.264/AVC and
MP3) and regular web servers.

2. Support quality adaption according to end-devices and
oscillating resource availability (see figure 1).

3. Scale to a huge number of simultaneous users.

4. Support fast and easy seeking to specific positions in
the stream.

5. Use a format with minimal multiplexing overhead.

6. Be able to play segments from different clips seamlessly
in any order (see figure 2), without picture artifacts
and noticeable inter clip delays (one smooth playout
from various sources).

The motivation for goals 1–5 needs no explanation; goal 6,
however, is important because it allows for personalized play-
outs without requiring expensive transcoding and redundant
storage of video. Example applications include personalized
video clips returned by search engines, user-generated videos
that can easily be shared on social networks, and much more
powerful video editing in web based content management
systems.

In this paper, we describe the container format we used for
interleaving streams of different types into one. Compared
to the standard MPEG-2 Transport Stream container, we
have drastically reduced the bandwidth overhead for low-
bitrate streams, and unlike MP4, our container format does
not introduce extra latency when streaming live content.

2. SEGMENTED HTTP STREAMING

SYSTEMS
Traditionally, video streaming solutions based on HTTP

make the assumption that a video playout will be linear and
therefore download the entire video stream as one file. For
these solutions, container formats such as MP4/Quicktime
and ASF are used, and media is packaged into a contiguous
multiplexed stream. Essential, but non-changing, informa-
tion required by the decoder (such as sequence and picture
parameter sets in the case of H.264/AVC) is stored once at
the beginning or end of the stream. Such an approach does
however not support the required interaction and free com-
position of video snippets into a continuous playout. Play-
back can still start at random locations, but there is no easy
way to adapt quality, the client must download a metadata
header or trailer before seeking to the intended location in
the stream, and the client does not know the byte position
to which it needs to seek without also downloading an index
that describes the entire stream.

Targeting better scalability, segmented, adaptive HTTP
streaming systems have recently gained a lot of commercial

Figure 1: Video quality and bit rate adaption

Figure 2: Custom playlists with out-of-order play-
back

interest, and have proved very scalable with millions of con-
current users [4]. Their approach is to chop a video object
into segments, where segments are available for a wide range
of qualities, and thus bit rates. Quality can be switched on
segment boundaries by downloading the next segment in a
different quality than the current one, as is illustrated in
figure 1. Such an approach is today widely used by systems
like Move Networks [4], Microsoft’s Smooth Streaming [5]
and Apple’s Live HTTP streaming [9]. However, although
they all support a wide range of bandwidths, and they all
(in theory) support arbitrary combinations of segments (see
figure 2), their current technology still fails in one way or
another:

Microsoft’s Smooth Streaming [5] uses an MP4 exten-
sion called “fragmented MP4” [12] for its wire format.
This streaming technology is included with their Sil-
verlight media player. The system can freely combine
segments, but, according to our tests, the player seems
to need a long reset delay; specifically, there will be a
noticeable latency when switching from one video clip
to another (note that this is most likely an implemen-
tation issue, not a protocol issue). Additionally, the
fragmented MP4 format, although efficient in terms
of overhead, introduces extra delay when used for live
streams. The reason is that every MP4 fragment starts
with a complete index of every frame in the segment.
The index cannot be generated before the size of ev-
ery frame in the segment is known, which means that
a live encoder must completely fill a segment before
it can be shipped. Although live streaming is not the
most obvious application of our system, it is still de-
sirable to support high quality adaptive live streaming
using the universally supported HTTP protocol, and
in some use cases, such as sports and business related
news, every second of delay counts.

Apple’s Live HTTP streaming [9] uses plain MPEG-2
Transport Streams for packaging, which is a very band-
width hungry format (see section 3.2). Segments can
still be played out in arbitrary order, provided that all
segments are coded so that no picture references cross
segment boundaries. (It is interesting to note that the
test clips we found [3] on Apple’s web site were not
coded in this way, causing artifacts when they were
played out-of-order.)

Move Networks [4] is a closed system, and important de-
tails are hard to find, so a comparison of the relevant
parts could not be made. However, because Move is
the most well know provider of adaptive streaming,
we feel it is worthwhile to mention a few of Move’s
drawbacks in other aspects compared to our system.
First, Move typically uses On2’s proprietary VP6 and
VP7 codecs, both of which are inferior to most H.264
implementations in both quality per bit [2], encoding
speed and decoding speed. Comparing On2’s VP7
codec to well-known open source implementations of
H.264 (x264 for encoding and FFmpeg for decoding)
using comparable encoding parameters, we found the
open source H.264 implementations to be more than
twice as fast as the VP7 codec for both encoding and
decoding. Regarding overhead, a thorough analysis
could not be done due to the lack of specifications,
but Move estimates [4] a packaging overhead of 10 %
that probably includes protocol headers. More impor-
tantly, because it is a closed system, it is not possible
to extend the player with customized Javascript in-
terfaces, which limits integration with the search and
personalization services we have built using standard
web languages like HTML, CSS, Javascript and PHP.

Because all of the above technologies have limitations with
respect to multiplexing overhead, arbitrary combination of
segments, live content, or other issues, we have designed and
implemented a similar system that meets every requirement
stated at the end of section 1.

By encoding the video stream so that the number of pic-
tures per group of pictures (GOP) is fixed, we know that, if
we encode the same stream in multiple qualities, GOP n in
quality a will contain exactly the same frames as GOP n in
quality b, only with a different picture quality. This means
that we can switch quality on a GOP boundary without
shifting the playout position, achieving goal 2. Note that
keeping the number of frames/GOP exactly constant is not
a strict requirement for indexless seeking, but it makes it
easier to implement. Using a variable frame rate, one can
still try to keep GOPs approximately the same duration. As
long as GOPs are encoded to avoid drift, that is, a deviation
from the target duration in one GOP is corrected by later
GOPs, GOP indexes will still map closely to presentation
time.

Goal 3 is achieved through the distributed nature of seg-
mented video stored on regular web servers. By using a seg-
ment tracker that provides a client with a list of URLs for
every segment, segments can be hosted redundantly on an
unlimited number of web servers. Additionally, transparent
web caching also helps off-load the servers.

To achieve goals 1 and 4, we store each GOP as a sepa-
rate file on the server. Its file name contains the GOP index
number, and the client can instantly access any part of the

video stream with a simple HTTP GET request on the de-
sired GOP(s). This simple approach means that no index is
required when seeking, neither by the server nor the client.
The GOP index number n easily maps to its presentation
time T in the movie by multiplying n with the fixed GOP
length, enabling fast seeking to specific points in time on
streams hosted on regular web servers. Additionally, the
player starts downloading low quality, low rate segments in
order to achieve a fast startup and seek. Note that this ap-
proach implies that only GOP duration must be fixed, not
its size in bytes. What we do is completely compatible with
variable bitrate coding (VBR).

To achieve support for arbitrary concatenation of seg-
ments and still have a smooth, seamless playout (goal 6),
every GOP must be closed1. This means that GOPs must
be encoded so that no frames in any GOP reference frames
from another GOP.

Finally, goal 5 aims at saving network bandwidth, and
is mainly achieved by ensuring that session-wide codec pa-
rameters are sent only once per session, separate from the
multiplexed stream data. The same approach is used by
the Real Time Streaming Protocol (RTSP) [11], which uses
the Session Description Protocol (SDP) to send this kind
of information. With this method, the only data required
in the multiplex is that which may change from frame to
frame (or segment to segment). The details of the coding
and container format are explained next.

3. A NEW CONTAINER FORMAT
To support smooth playback on a wide range of networks,

it is important to be able to select very low bitrate streams,
and as such, the container format used for interleaving audio
and video should be efficient.

The next subsections describe in detail a container for-
mat we developed for our media player implementation. It
is especially designed for our purpose, and emphasizes low
overhead, simplicity, fast startup and low delay for live con-
tent.

3.1 Metadata stored in the container stream
Since most of the parameters that control the decoding

can be kept fixed for all segments, the only metadata that
needs to be stored in the actual segments is that which can
change from one segment (or frame) to another. Assuming
that every video clip available is encoded with the same
codecs and audio sample rate2, the only parameters that
can change from one payload unit to another are:

• Payload type (audio, video, subtitles, etc). Repre-
sented in the frame header (figure 3) as two bits: au-
dio is 00, video is 01, 10 is currently unassigned, and
the final value (11) indicates that an additional 32-bit
header extension field follows after the frame header,
and guarantees support for future formats.

1For a more coarse-grained segmentation strategy, one can
envision that a segment consists of several GOPs – in that
case, the requirement is only that the segment’s first and last
GOP’s do not have frame references that cross the segment
boundary.
2Audio sample rate is fixed, not because we want to save a
couple of bytes per segment, but because changing sample
rates during playback is hard to do properly without resam-
pling the decoded audio before sending it to the sound card.

• Presentation timestamps (PTS) of the first audio and
video presentation units in the segment. A single bit
in the frame header indicates if this 32-bit value is
present.

• Picture aspect ratio. A single bit in the frame header
indicates if this 32-bit value is present.

• Frames per second (only used to minimize overhead
for segments with a constant frame rate). A single
bit in the frame header indicates if this 32-bit value is
present.

• Number of bytes until the next frame header (or, in
the case of the last header, to the end of the stream).

For variable frame rate video, every picture needs a PTS
value, but the extremely common case of constant frame rate
video and uninterrupted audio makes it possible to discard
all PTSes except the first audio and video PTS in a segment.
The first PTS values in a segment must be present, since au-
dio and video might not start at the same time, so after a
seek, we need these initial PTS values in order to preserve
audio/video synchronization. The following PTS values in
the segment can, however, be generated. For audio, we sim-
ply use the fact that audio plays uninterrupted, so the next
PTS is always given by the current time plus the duration
of the last decoded audio frame. For video, we need to know
the number of frames per second.

The aspect ratio must also be included for every segment
if one wishes to be able to seamlessly play out segments
from different video sources (which may not have the same
picture aspect ratio).

The purpose of the payload type field is obvious, but note
that it is simply a broad categorization; that is, it tells the
client if the payload is audio or video, but not which codec
is used. The specific codec information is located in the
session-wide metadata file.

The last field is the byte offset to the next frame header.
It is included in every frame header, and this number tells us
where one frame ends and another begins. Having this infor-
mation attached to each frame is important, mainly because
it enables video streams to be generated and transmitted
without any segmentation delay. Most container formats
distribute frame size fields in this way, but some, such as
the MP4 format used by Smooth Streaming, keep all frames
fused together in one inseparable chunk, and force the de-
multiplexer to consult an index with byte ranges for every
access unit. The index-based method does not work well
with live video because one does not know the size of each
frame in advance, and thus, segments can not be shipped
until every frame in the segment is encoded). Furthermore,
since we use TCP as the carrier protocol, there is no dan-
ger of loosing critical metadata that would make the rest
of the segment unparseable, so there is really no reason for
structuring the data in such a suboptimal way.

Finally, we note that the byte count is the offset to the
next frame header. This means that it includes not only
the payload bytes, but also the metadata fields. By this
interpretation we improve backwards compatibility. For ex-
ample, if new payload types require additional fields that
an old version of the client does not recognize, it does not
need to understand the contents of that payload, it can sim-
ply ignore it and use the offset to move to the next frame
header.

Figure 3: 32-bit frame header that leads in every
frame in the multiplexed stream

We have done as thorough an analysis on overhead as
possible with the documentation that was available to us.
Our results are illustrated in figure 4 and described in this
section. Figure 4 compares overhead in the case of Apple’s
low-bitrate sample video. This bitrate was chosen because it
represents a realistic lower bound on quality, which is where
overhead matters most (multiplexing overhead is mostly pro-
portional to the stream’s duration, not the stream’s size in
bytes; i.e., overhead becomes unimportant for high bitrates).
Based on our findings in the container format analysis, we
also present a graph (figure 5) that shows how the container
overhead varies as function of the payload bitrate.

We start by noting that Move Networks’ technology lacks
specifications, so it could not be properly analyzed. How-
ever, in their own technical overview [4], we found an es-
timation of 10 % overhead including protocol headers over
the bandwidth that is consumed for audio and video data.
We have thus included Move’s number in figure 4 because
it presents a very low bitrate. I.e., it is a best case scenario
for Move’s 10 % overhead. Move is not included in figure 5
because we do not know how that number would vary as a
function of the payload bitrate.

Apple was easier to analyze, since they recently suggested
a new standard for adaptive streaming based on their use
of MPEG-2 Transport Streams and HTTP [9]. To deter-
mine the overhead of Apple’s approach, we have used low-
bitrate sample streams presented on Apple’s web site [3].
The audio bitrate was 32 kbit/s, and the video bitrate was
136 kbit/s. The segment length was fixed at 10 seconds, and
every segment contained 215 compressed audio frames and
150 compressed video frames.

3.2 Overhead comparison
The layout of the stream is illustrated in figure 6. The

transport stream packet headers occur every 188 bytes, and
their size varies from 4 to 12 bytes. Atypically, overhead
caused by these headers thus increases proportionally with
the segment’s size in bytes, meaning that relative overhead
does not approach zero as the bitrate increases. Because of
fluctuations in the audio/video bitrates, the segment byte
size is not perfectly constant, but for the sample clips an-
alyzed, the bitrates were remarkably stable, so we found a
fairly constant overhead of about 7300 bytes/segment. In
addition, figure 6 shows that the stream contains data other
than audio and video, such as a Program Association Ta-

Figure 4: Overhead as a percentage of the combined
audio/video data in a 168 kbit/s stream

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100 200 300 400 500 600 700 800 900 1000

O
v
e

rh
e

a
d

 (
%

)

Audio/video bitrate (kbit/s)

Our format
Microsoft Smooth Streaming
Apple Live HTTP Streaming

Figure 5: Relative overhead as a function of the au-
dio/video bitrate

ble. The total overhead from non-audio/video streams was
always exactly 37168 bytes/segment. The audio and video
streams are additionally encapsulated in Packetized Elemen-
tary Streams (PES), which, in this sample, incurred an extra
overhead of 14 bytes per audio frame, and 19 bytes per video
frame. This amounts to a total of 215× 14 = 2850 bytes for
audio and 150× 19 = 3010 bytes for video. The grand total
overhead for a segment is the sum of all of the above num-
bers: 7300 + 37168 + 2850 + 3010 ≈ 50 kB/segment. Since
the segment size is fixed at 10 seconds, we have an overhead
of approximately 40 kbit/s. Considering that this is almost
24 % of the combined audio and video bitrates, the overhead
is considerable.

Using our container, all audio and video frames are pre-
ceeded by a 4-byte frame header (shown in figure 3 and
described in section 3.1). In addition, the segment’s first
audio frame has a 4-byte presentation timestamp field, and
the first video frame has 4-byte fields for presentation time,
aspect ratio and frame rate. This means that the first audio
frame has an overhead of 8 bytes, the first video frame has
16 bytes overhead, and all the following audio/video frames
in the segment have 4 bytes overhead. Total overhead for
the case analyzed above (10 second segments, 215 audio

Figure 6: Layout and overhead in a typical MPEG-2
Transport Stream

frames, 150 video frames) is 8 + 16 + (214 + 149) × 4 =
1476 bytes/segment ≈ 1.2 kbit/s.

Smooth Streaming works similarly to our solution. Most
metadata that is required for decoding is stored in an XML
file that is downloaded separately from the media stream’s
data. Its segments are transferred over the network as frag-
mented MP4, which is a low-overhead way to use the stan-
dard MPEG-4 container [7]. Each segment starts with a
fragment header whose size, in the samples we found, was
8 bytes per frame (4 bytes for frame duration, 4 bytes for
frame size) plus a constant contribution that does not de-
pend on segment length. Note that the format allows the
frame duration to be excluded for constant frame rate clips,
making overhead per frame 4 bytes (the same as with our
format), but Microsoft has not used this feature in their
constant frame rate demo clips. Regardless, the overhead
with Smooth is small enough not to matter. The problem
with fragmented MP4 is that the multiplexer requires the
encoding of an entire segment’s data before the frame index
can be created. For live streaming, this mandates a delay
equal to the segment duration (typically two seconds) that
is avoided in our format.

3.3 Discussion
Since there is no standard for adaptive HTTP stream-

ing, there is no reason to use any of the existing container
formats. Existing players would not be able to make use
of adaptive streaming even if we used a standardized for-
mat, since it is the client that makes all choices related to
adaptation. The client must request each segment as the
movie plays, and this is not how traditional HTTP stream-
ing works.

Segmented streams stored in a non-standard container can
still be used in a traditional fashion with old devices; what is
important is that audio and video is encoded using standard
codecs and encoding profiles. Repackaging the compressed
data into a new container is easily handled with a server-side
filter that remultiplexes the stream to a traditional format.
This process is very cheap; disk I/O is the bottleneck, so it

would be as fast as sending the stored stream directly.
It is also possible to go the other way, as Microsoft has

done with Smooth Streaming: A stream encoded for seg-
mentation can be stored on the server as a single file in a
traditional container. Upon receiving a segment request, an
intelligent web server can use the container’s index to locate
the appropriate data and send it back over the wire in a
more bandwidth efficient container. In this case, one trades
the significant benefit of supporting regular web servers for
the questionable benefit of having fewer files on the server’s
file system.

4. CONCLUSION
We have created a segmented HTTP streaming system

where segments are coded as closed GOPs with H.264 video
and MP3 audio, and we have used a custom-made low-
overhead container format. The system enables us to ef-
ficiently stream video to a wide bandwidth range because
the video is composed of small video snippets that can be
combined dynamically, on-the-fly, in any order or quality,
from multiple video sources into a seamless, personalized
video playout.

We have removed all redundancy in the transmission pro-
tocol: Static data is sent once per session, and frame indexes
are not required. This greatly simplifies the multiplexing
format, reduces the overhead compared to many other ex-
isting approaches, and enables low-latency live streaming.
Thus, using our way of segmenting, coding and packaging,
we support next generation entertainment systems, bringing
better quality and more control to the users.

For our future research, we will do a thorough analysis on
the optimal segment duration. With the segment duration
parameter, there is a trade-off between coding efficiency and
granularity of search, seek and quality adaption. We will use
both subjective user tests and traditional signal processing
tools to find the best compromise.

5. REFERENCES
[1] Demo: DAVVI – next generation entertaiment

platform. http://home.ifi.uio.no/paalh/DAVVI.mp4.

[2] Codec shoot-out.
http://www.doom9.org/index.html?/
codecs-main-105-1.htm, 2005.

[3] Live HTTP streaming sample.
http://devimages.apple.com/iphone/samples/
bipbopall.html, 2009.

[4] Move Networks. http://www.movenetworks.com, 2009.

[5] SmoothHD. http://www.smoothhd.com, 2009.

[6] ISO/IEC 13818-1:2000. Generic coding of moving
pictures and associated audio information: Systems.

[7] ISO/IEC 14496-12:2005. Coding of audio-visual
objects: ISO base media file format.

[8] Johansen, D., Johansen, H., Aarflot, T.,

Hurley, J., Kvalnes, Å., Gurrin, C., Sav, S.,
Olstad, B., Aaberg, E., Endestad, T., Riiser,
H., Griwodz, C., and Halvorsen, P. DAVVI: A
prototype for the next generation multimedia
entertainment platform (demo). In Proceedings of
ACM International Multimedia Conference (ACM
MM) (Oct. 2009), pp. 989–990.

[9] R. Pantos (ed). HTTP Live Streaming.
http://tools.ietf.org/html/
draft-pantos-http-live-streaming-01, 2009.

[10] Riiser, H., Halvorsen, P., Griwodz, C., and
Hestnes, B. Performance measurements and
evaluation of video streaming in HSDPA networks
with 16QAM modulation. In Proceedings of the IEEE
International Conference on Multimedia and Expo
(ICME) (June 2008), pp. 489–492.

[11] Schulzrinne, H., Rao, A., and Lanphier, R. Real
time streaming protocol (RTSP). IETF RFC 2326
(1998).

[12] Zambelli, A. IIS smooth streaming technical
overview. http://www.microsoft.com/downloads/,
2009.

