Pull-Patching: A Combination of Multicast and Adaptive
Segmented HTTP Streaming

Espen Jacobsen, Carsten Griwodz, Pal Halvorsen
Department of Informatics, University of Oslo & Simula Research Laboratory

{espenjac, griff, paalh}@ifi.uio.no

ABSTRACT

Multicast delivery for video streaming gains credibility with
the introduction of commercial IPTV. We therefore revisit
patching, a video-on-demand idea from the 1990s. We have
built PULL-PATCHING, an approach that combines the patch-
ing ideas with adaptive segmented HTTP streaming, a uni-
cast technique that is used by most commercial providers
of large-scale, true video-on-demand in the Internet today.
The prototype is tested in a combined Internet and lab en-
vironment where we show the influence of practical factors
like packet loss, delay and limited resource availability, and
identify several details that require further study.

Categories and Subject Descriptors

H.5.1 [Multimedia Information Systems]: Video
General Terms

Design, Experimentation, Performance

Keywords

Multicast streaming, Patching, Segmented HT'TP streaming

1. INTRODUCTION

Video streaming services over the Internet, both live and
on-demand, are rapidly increasing in numbers. Today, many
providers use either a combination of CDNs (like Akamai
and L3) and adaptive segmented HTTP-based technology
provided by companies like Move Networks, Microsoft and
Apple or P2P-based solutions like PPLive, TVU player and
Sopcast. In addition to this, ISPs use IP multicast to provide
live TV to customers in their own networks under labels like
IPTV, triple play or quadruple play.

The introduction of multicast for commercial streaming
services means that the potential of well-researched multicast-
based stream scheduling solutions can now be realized. Tech-
niques like patching [6] (stream tapping [2]) and hierarchical
multicast stream merging (HMSM [4]) offer true video-on-
demand capabilities in ways that only reduce resource con-
sumption. We have therefore implemented PULL-PATCHING,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MM’ 10, October 25-29, 2010, Firenze, Italy.

Copyright 2010 ACM 978-1-60558-933-6/10/10 ...$10.00.

which targets dissemination of popular video content both
in live and on-demand scenarios, to demonstrate that this
can be achieved by backward-compatible extensions of the
HTTP-streaming solutions that are in commercial use today.

PULL-PATCHING overcomes the weaknesses that all these
early multicast streaming solutions (with the partial excep-
tion of receiver-driven layered multicast (RLM) [9]) have in
common. They assume the channel model of TV broadcast,
rely on making all decisions at the sending side and deliver
all data in a push-based manner. Even the segmented patch-
ing techniques [3, 8] that adapt to bandwidth limitations of
the patch server assume perfect channels. In contrast, PULL-
ParcHING, like the HTTP streaming systems that are used
commercially today, is built for imperfect network condi-
tions. The design acknowledges that clients have the best
information about current network conditions, and therefore
lets the client react to challenges like delay, jitter, packet
loss, and limited and oscillating bandwidth. Thus, the con-
trol of choosing video quality based on resource availability
(adaptation) all the way out to the receiving device, the de-
cision to terminate patch streams, and the ability to repair
lost packets is managed by the client.

PULL-PATCHING combines the adaptive segmented HTTP-
based streaming solution presented in [7] with patching and
simulcast. Multicast is used to stream highly popular con-
tent at several bit rates (and qualities). Clients join multi-
cast streams and add video segments that they retrieve us-
ing HT'TP. These pulled segments comprise the initial patch
stream as well as all data that is required to repair packet
loss and corruption in the multicast stream. The multicast
server is informed about client arrivals when the client re-
trieves the information that is required to join a multicast
stream. Incidentally, this still gives the server the required
information to estimate stream popularity that is needed to
optimize the time between restarts of multicast streams in
patching (e.g., A-patching [5]). For content that is too un-
popular to warrant multicast streaming, clients fall transpar-
ently back to HTTP streaming. The same applies to clients
whose multicast reception is denied for other reasons, such
as outdated DSLAMs or cable modems, and older clients.

In our experiments, using HT'TP streaming from multiple
sites in the Internet and delivering the multicast streams
from a lab environment, we show that our initial prototype
works. We also present how the system reacts to rate limi-
tations, packet loss, delays and jitter.

2. PULL-PATCHING

Segmented HTTP streaming solutions have been claimed

to be scalable and able to support millions of concurrent
users [1]. However, this is paid with far from perfect video
quality and a huge resource consumption. PULL-PATCHING
combines our adaptive segmented HTTP streaming solu-
tion [7] with patching. Highly popular content is streamed
from dedicated multicast servers, which use clients’ RTSP
SETUP requests to optimize the time between multicast
stream restarts. HTTP streaming is used for delivering
patch streams, repair packet loss and corruption in multicast
streams, and serving clients that do not request multicast.
Thus, as shown in figure 1, there are three main components:
the HT'TP-based servers, the multicast server and the client.

2. Request video

<
<
> L 3 F
3. Receive multicast stream
-

B. Client

A. Multicast Server

4. Get patch stream

Web Servers

N L 1. Get video location and video meta data

Tracker

C. Patch Server System
Figure 1: PULL-PATCHING system overview.

The HTTP streaming solution is based on the idea of
downloading (2-second long') segments of the video in a
torrent-like manner. The client retrieves every segment’s lo-
cation from an index server (tracker) and downloads the seg-
ments from plain web-servers in playout order using HTTP
GET requests (over TCP). For backward compatibility with
the existing HTTP streaming systems, we code every video

in several qualities using H.264 advanced video coding (AVC).

The advantages of scalable video coding (SVC) are discussed
in section 4. Each segment is coded independently of other
segments. They can be combined arbitrarily and allow qual-
ity adaptation at every segment boundary, i.e., every 2 sec-
onds. There are indications that quality decisions every 2
seconds achieve a better visual quality than more frequent
changes [10]. During playout, the client chooses qualities
according to resource availability.

The multicast server is implemented using the Live555
streaming framework. It starts multicast streams based on
popularity. The video segments are pushed out to the net-
work in a simulcast manner, using one channel for each qual-
ity. For each channel, the 2-second video segments are split
into M'T'U sized packets, encapsulated using RTP and trans-
mitted at playout speed.

In contrast to the original patching schemes where the
servers had full control of amount and times of data sent,
our clients control data retrieval except for the frequency of
multicast re-starts. A client joins one multicast stream at
a time and switches between multicast streams for quality
adaption according to resource availability. If the client joins
after the start of the multicast, the multicast data is stored
in a cyclic buffer, and the initial missing data is retrieved

!This is a size used by commercial systems [1] and is a
tradeoff between coding efficiency, file size, search accuracy
(see [7]) and video quality adaption granularity [10].

as a patch stream using the HTTP patching servers. Simi-
larly, if a packet is lost or damaged during the delivery of the
multicast stream, a patch is used for repair of this segment.
The client decides whether to download the complete seg-
ment using traditional HTTP GET requests, or only parts
using HTTP GET RANGE requests.

A major challenge is to schedule and prioritize between
the multicast and patch streams according to video quality.
There are a lot of different properties to take into account
and many possible parameters to tune. Finding the opti-
mal scheduling scheme is out of the scope of this paper.
For this proof-of-concept, we have used a straight-forward
approach. Clients that notice congestion divide the avail-
able bandwidth equally between the multicast and unicast
streams depending on streaming rate of multicast stream
and download time of patching segments.

3. EXPERIMENTS AND RESULTS

The video data is coded in independent, 2-second video
segments in 4 different qualities with average bit rates of
738 Kbps, 1301 Kbps, 2171 Kbps and 3194 Kbps. The
multicast server is located in a lab environment and the
HTTP patch servers are distributed in the Internet (Oslo
and Tromsg). To add network delay, jitter (and out-of-order
delivery), loss, and to limit the available bandwidth, we used
the network emulator netem. In the plotted results, the
client arrives 100 segments (200 seconds) into the multicast
stream and must use patching for the initial part of the video
and for multicast repair. The system can adapt at every 2-
second segment boundary, but to better show the quality
development in these tests, we only check resource avail-
ability every 20th segment. Finally, in the current system
configuration, we request patch segments as late as possible
to reduce the bandwidth competition between streams.

In a perfect scenario with unlimited resources and no
packet loss, jitter and delay, the PULL-PATCHING approach
behaves just like the initial patching ideas. The multicast
stream is stored without loss in the cyclic buffer, and the
client starts viewing the patch stream retrieved over HTTP
— both in full quality. A similar scenario can be observed
in figure 2 where the available bandwidth is far more than
requested for one multicast and one patch stream. Here,
we see the typical patching pattern, i.e., the client starts
receiving the multicast stream upon arrival (segment 100)
and downloads the patch segments simultaneously. Fig-
ure 2(c) shows a lower quality right after segments 0 and
100. This is due to the policy of starting at a low quality for
a quick start and adapt later as the client observes available
resources. This decision is made independently for the mul-
ticast stream, resulting in the low quality around segments
100, and the patch stream, resulting in the low quality after
segment 0. This can be improved as discussed in section 4.

When bandwidth is limited, we do not have resources to
retrieve both the multicast and patch streams at full quality
simultaneously. Figures 3 and 4 show this for 4 and 2 Mbps,
respectively. This makes the scheduler choose a lower qual-
ity as shown in figures 3(b) and 4(c). The bandwidth sharing
between multicast and patch streams also results in dropped
multicast packets that are visible as holes in the multicast
line (“multicast segment received”) and the corresponding
repair stream to fill the gaps (“partially patched segment
received”) in figure 4(a). The 2 Mbps experiment supports
only the lowest quality of 738 Kbps, and remaining resources

Segments

multicast segment received ¢
patched segment received ~ x
partially patched segment received =
Iplaytime

50 -

1 1 1 1
0 100 200 300 400 500 600
Time in seconds

(a) Received segments

Seconds
10 T T T T
8 N segment received + o
6 % R L e e | playback deadline -
4 - S T b end patch stream —— -
2 b i
0
2k i
4 1 1 1 1 |
0 50 100 150 200 250 300
Segments
(b) Patch delivery time according to playback deadline
Quality
T T T T
4
3
2
l

0 50 100 150 200 250

300
Segments

(c) Playout quality

Figure 2: Available bandwidth: 8 Mbps.

Seconds
50

T T
40 segment received + o

playback deadline

end patch stream ——

0 E:_mammwmwmwwmmmw + = * + + T

10 L¥ i 4
20 | 4 1 1 L L 1
4] 50 100 150 200 250 300
Segments
(a) Patch delivery time according to playback deadline
Quality
T T T
4
3
2
gl
0 50 100 150 200 250 300
Segments

(b) Playout quality
Figure 3: Available bandwidth: 4 Mbps.

are used for repair or to try a higher quality. Furthermore,
as shown in figure 4(b), this competition for resources can
sometimes delay segments until they are too late for playout,
which results in an incomplete segment which is displayed
with artifacts (see the missing pulses in figure 4(c)). This
also means that when the initial patch stream is finished, and
only the repair streams remain as competition for the mul-
ticast stream, the system increases the quality (figure 3(b)
and 4(c)).

The system can also handle loss that occurs for other rea-
sons than congestion caused by the system’s own streams.
Loss can influence the video playout directly. Figure 5 shows
an 8 Mbps-bandwidth scenario with 1% packet loss. Again,
figure 5(a) presents the segment delivery time according to

300 . . . -
Ve ~
250 / i

Segments
AN
N
N
-

100 #

multicast segment received ¢

50 B
patched segment received ~ »
partially patched segment received =
ol L L | L Iplaytlme |
0 100 200 300 400 500 600
Time in seconds
(a) Received segments
Seconds
T T T
a0 segment received + |

playback deadline

20 |- end patch stream —— 7]
Py La—__L L P . A T
20| F - * N R
i
-40 [1 I 1 I 4
o 50 100 150 200 250 300
Segments
(b) Patch delivery time according to playback deadline
Quality
T T T
4l
3l
ol \
‘I I
o] 50 100 150 200 250 300
Segments

(c) Playout quality

Figure 4: Available bandwidth: 2 Mbps.

Seconds

20 |- ' ‘received segn"\ents + 4
15 b playback deadline
10| end patch stream —— |
b g i it Hi Mt -t o al
g +*+!5;"‘ %m ﬁ%ﬁ+++t+ s +++-H-++ ot +*-3- + + 7
-5 M L _ + 1 1 1
4] 50 100 150 200 250 300
Segments
(a) Patch delivery time according to playback deadline
Quality
T T T T
4
5 I
) I
0 50 100 150 200 250 300
Segments

(b) Playout quality
Figure 5: Packet loss: 1%.

the playout deadline where segments before the “end patch
stream” line show the initial patch stream and segments af-
ter it are used for multicast repair. We see that quite a
few segments are affected and must be repaired, and that
this has a direct effect on the chosen video quality. We see
also that even a small loss introduces some deadline misses
(points below the “playback deadline” line in figure 5(a) and
missing pulses in figure 5(b)). Loss also affects the down-
load time of patch streams (TCP retransmissions), making
it harder for the current scheduler to choose an appropriate
quality according to available bandwidth. The client often
retrieves a lower quality to have a higher probability of a
continuous playback.

In our scenario, network delays do not noticeably influence
the multicast stream, but as delays directly influence TCP

congestion control and recovery mechanisms, we see the re-
sults in higher patch delivery times. Similarly, network jitter
and out-of-order delivery have large negative effects on in-
teractive and live streaming systems. In our system with
minimal playout delays, this leads the segment downloader
to choose low quality segments, while higher qualities are
chosen for the multicast stream.

4. DISCUSSION AND OPEN ISSUES

One of the goals of this work was to show that the effi-
ciency of existing HT'TP streaming systems can be increased
easily by combining them with multicast schemes like Patch-
ing, and that incremental deployment would be possible. We
consider this goal reached.

The paper is also addressing early stream scheduling pro-
posals’ assumption of a perfect network with enough band-
width to receive several concurrent streams. We have in-
troduced the choice of stream duration and between several
video qualities and repair capabilities into clients to handle
this flaw. These options should be explored further to de-
termine better policies for bandwidth sharing between mul-
ticast and unicast, explore acceptable playout delays, and
increase the stability of video quality.

We have also seen that some multicast packets are lost un-
der nearly all conditions. This implies that the client should
be given at least one round trip time (RTT) to try fixing
this. It would then never be necessary to start a multicast
stream from the very start of a video.

The available bandwidth can be used to repair packet loss
and enhance the quality. Our “as-late-as-possible” repair ap-
proach is too optimistic and results in some deadline misses.
Repair should be considered in the client’s bandwidth bud-
get. A global budget can also be used to re-transmit seg-
ments received from a multicast stream at a higher quality
using unicast, especially the first segments that are always
received at a low quality. This budget can be enforced on the
HTTP stream by TCP flow control. A precondition would
be the replacement of libcurl with a more flexible HTTP
client implementation.

In the current prototype, we use AVC-coded segments in
several qualities to support quality adaption according to re-
source availability. This is a reasonable choice for a unicast
system designed for HT'TP streaming that is not bounded by
server disk I/O, and our system is meant to be backwards-
compatible. However, a layered codec such as SVC save re-
sources in a system that supports multicast, and wastes less
resources when quality decisions can be revised between mul-
ticast reception or loss repair and video playout. It would
also enable multicast reception according to RLM [9] and
PALS-inspired [11] HTTP streaming schemes.

In previous patching schemes, the servers had full con-
trol and managed load balancing. Our system is client con-
trolled. Here, the variable loads introduced by the patch
streams are managed by separate web servers, i.e., not in-
fluencing the multicast, and servers and video quality are
selected based on observed load using the tracker. Further-
more, a more P2P-like variant of PULL-PATCHING could also
be imagined, where patches are delivered from peers rather
than dedicated web servers. Technically, the tracker would
be allowed to received registrations for clients’ segments.

Another question that should be explored is how close
one could get to the same flexibility by applying sub-stream
ideas of HMSM [4] to every AVC stream, where subsets of

segments are assigned to several multicast streams, where
each transmits at less than playout speed.

S. CONCLUSION AND FUTURE WORK

PULL-PATCHING is a streaming technique that combines
patching [6] with segmented HTTP streaming [7] to provide
a quality-adaptive, scalable video service. PULL-PATCHING
overcomes drawbacks of earlier patching-based approaches
that make server-side decisions only and that suffer from
bandwidth limitations, packet loss and delay, as well as
patch server scalability issues. Experiments show that our
prototype combines patching, segmented HTTP streaming
and quality adaptation quite efficiently and handles the men-
tioned problems. It is an early prototype, however, and sev-
eral open challenges for increasing performance are discussed.

6. REFERENCES

[1] Move Networks. http://www.movenetworks.com/.

[2] S. W. Carter and D. D. Long. Video-on-demand server
efficiency through stream tapping. In Proceedings of
the International Conference on Computer
Communications and Networks (IC3N), 1997.

[3] S. Chand, B. Kumar, and H. Om. Segmented patching
broadcasting protocol for video data. Elsevier
Computer Communications, 32(4):679-684, 2009.

[4] D. Eager, M. Vernon, and J. Zahorjan. Minimizing
bandwidth requirements for on-demand data delivery.
In Proceedings of the International Workshop on
Multimedia Information Systems (MIS), Oct. 1999.

[5] C. Griwodz, M. Liepert, M. Zink, and R. Steinmetz.
Tune to lambda patching. ACM Performance
Evaluation Review, 27(4):202-206, Mar. 2000.

[6] K. A. Hua, Y. Cai, and S. Sheu. Patching: A
multicast technique for true video-on-demand services.
In Proceedings of the ACM International Multimedia
Conference (ACM MM), Sept. 1998.

[7] D. Johansen, H. Johansen, T. Aarflot, J. Hurley,

A. Kvalnes, C. Gurrin, S. Sav, B. Olstad, E. Aaberg,
T. Endestad, H. Riiser, C. Griwodz, and P. Halvorsen.
DAVVI: A prototype for the next generation
multimedia entertainment platform (demo). In
Proceedings of the ACM International Multimedia
Conference (ACM MM), Oct. 2009.

[8] Y. Liu, S. Yua, and J. Zhou. Adaptive segment-based
patching scheme for video streaming delivery system.
Elsevier Computer Communications,
29(11):1889-1895, 2006.

[9] S. McCanne, V. Jacobson, and M. Vetterli.
Receiver-driven layered multicast. ACM Computer
Communication Review, 26(4):117-130, Aug. 1996.

[10] P. Ni, A. Eichhorn, C. Griwodz, and P. Halvorsen.
Fine-grained scalable streaming from coarse-grained
videos. In Proceedings of the International Workshop
on Network and Operating System Support for Digital
Audio and Video (NOSSDAV), June 2009.

[11] R. Rejaie and A. Ortega. PALS: peer-to-peer adaptive
layered streaming. In Proceedings of the International
Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV), June 2003.

