The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

The Nornir run-time system for parallel programs using
Kahn process networks on multi-core machines —
A flexible alternative to MapReduce

Zeljko Vrba - Pal Halvorsen -
Carsten Griwodz - Paul Beskow -
Havard Espeland - Dag Johansen

Received: date / Accepted: date

Abstract Even though shared-memory concurrency is a paradigm frequently
used for developing parallel applications on small- and middle-sized machines,
experience has shown that it is hard to use. This is largely caused by synchro-
nization primitives which are low-level, inherently nondeterministic, and, con-
sequently, non-intuitive to use. In this paper, we present the Nornir run-time
system. Nornir is comparable to well-known frameworks such as MapReduce
and Dryad that are recognized for their efficiency and simplicity. Unlike these
frameworks, Nornir also supports process structures containing branches and
cycles. Nornir is based on the formalism of Kahn process networks, which is
a shared-nothing, message-passing model of concurrency. We deem this model
a simple and deterministic alternative to shared-memory concurrency. Exper-
iments with real and synthetic benchmarks on up to 8 CPUs show that per-
formance in most cases scales almost linearly with the number of CPUs, when
not limited by data dependencies. We also show that the modeling flexibility
allows Nornir to outperform its MapReduce counter-parts using well-known
benchmarks.

Keywords Parallel processing - Kahn process networks

1 Introduction

The introduction of commodity multi-core processors has spawned a wide in-
terest in parallel programming. It is, however, widely recognized that devel-

Zeljko Vrba, Pal Halvorsen, Carsten Griwodz, Paul Beskow, Havard Espeland
Simula Research Laboratory, Oslo, Norway

Department of Informatics, University of Oslo, Norway

E-mail: {zvrba,paalh,griff,paulbb,haavares}@ifi.uio.no

Dag Johansen
Department of Computer Science, University of Tromsg, Norway
E-mail: dag@cs.uit.no

oping parallel and distributed programs is inherently more challenging than
developing sequential programs. As a consequence, several frameworks that
aim to make such development easier have emerged, such as Google’s MapRe-
duce [16], Yahoo’s PigLatin [30], which uses Hadoop [2] as the back-end,
Phoenix [32] and Microsoft’s Dryad [24]. All of these frameworks are gaining
popularity, but they lack a feature that is critical to our application domains:
the ability to model branching and iterative algorithms, i.e., algorithms con-
taining feedback loops in their data-path.

Much of our research focuses on the execution of complex parallel pro-
grams, such as real-time encoding of 3-D video streams, where cycles are more
the rule than the exception (see figure 6 for an example). Thus, we cannot use
any of the existing frameworks, so we have turned towards the flexible formal-
ism of Kahn process networks (KPN) [25]. KPNs retain the nice properties of
MapReduce and Dryad, but in addition support cycles. Even though KPNs
are an inherently distributed model of computation, their implementation for
shared-memory machines and its performance is worth studying for many rea-
sons, the main ones being determinism and composability. Determinism guar-
antees that a program, given the same input, will behave identically on each
run. This significantly eases debugging, which is otherwise a notoriously hard
problem with parallel and distributed computations. Composability guaran-
tees that assembling independently developed components yields the expected
results.

In an earlier paper [38], we evaluated implementation options for KPNs
on shared-memory architectures. In a follow-up paper [40], we presented case
studies of problem modeling with KPNs and compared the resulting KPN
models with MapReduce models. We showed that KPNs allow more natural
problem modeling than MapReduce, and that implementations of real-world
tasks on top of Nornir outperform the corresponding MapReduce implemen-
tations optimized for multi-core machines. This paper expands our previous
paper [41] with more detailed descriptions and further performance experi-
ments. The implementation details of Nornir, which we describe in this paper,
are somewhat different than the implementations of our previous KPN run-
times described in [38,40]. Most notably, we have added support for pluggable
scheduling policies to allow easy experimentation. We also investigate the per-
formance and scalability characteristics of Nornir using a set of benchmarks on
a workstation-class machine with 8 cores. The experiments reveal some weak-
nesses of our current implementation, but indicate nevertheless that KPNs
are a viable programming model for parallel applications on shared-memory
architectures.

The rest of this paper is organized as follows. In the next section, we
present a brief overview of related work. In section 3, we present the properties
and basic ideas behind KPNs, and follow up with the description of Nornir
implementation details in section 4. In section 5, we describe the benchmarks
we designed and report our performance results. We summarize the paper and
present concluding remarks in section 6.

2 Background and Related work

A lot of research has been dedicated to addressing the challenge of parallel and
distributed programming, which has led to the development of many tools,
programming languages and frameworks. Here, we give a short overview of
this work — for a more detailed summary, please refer to [37].

2.1 Low-Level Tool Support

Low-level tools can be roughly categorized into those enabling shared-state
concurrency and those enabling message-passing concurrency. Shared-state
concurrency has traditionally been most easily accessible from imperative pro-
gramming languages such as C, C++ and FORTRAN. These languages have
little built-in support for concurrency, so the developers must use the operating
system’s threading facilities or 3rd-party libraries, such as threading building
blocks [23], which encapsulate common concurrency patterns. Another choice
is OpenMP [4], which is an extension of C, C++ and FORTRAN oriented
mostly towards loop-level parallelism. pC++ [9] is another extension of the
C++ programming language, which introduces a number of concurrent pro-
gramming concepts, such as cooperatively-scheduled co-routines [26] and tasks
that run in parallel and are scheduled preemptively.

Message-passing concurrency has traditionally been used for implement-
ing programs running in different address spaces or on different machines.
Erlang [6] is an example of a pure functional programming language with
built-in support for message-passing concurrency. In Erlang, processes (actors)
communicate by sending messages via mailboxes, and the run-time provides
extensive support for failure detection and recovery.

In most other languages, message-passing concurrency is delegated to li-
brary support, the most prominent examples of which are parallel virtual ma-
chine (PVM) and message passing interface (MPI). PVM [1] aims at support
for heterogeneous concurrent computing, creating an illusion of a distributed
virtual machine. It thus provides means for process and resource control and
fault-tolerance along with communication primitives. MPI [3], on the other
hand, is somewhat narrower in scope than PVM. Its main task is to support ef-
ficient point-to-point communication and some complex collective operations.
Data types may be automatically serialized for network transport, and newer
MPI versions have added many new features like dynamic process management
and parallel I/0.

The tools described above provide sufficient mechanisms for building dis-
tributed and parallel applications, but they leave the definition of higher-level
abstractions and policies to developers. For example, PVM and MPI enable
inter-task communication, but do not endorse any particular application struc-
ture or concurrency model. In this respect, large players (Google and Microsoft
in particular) have identified common patterns of distributed computations

and packaged them in easier-to-user frameworks, which we describe in the
next section.

2.2 High-Level Frameworks

Industrial actors have developed solutions for simplified distributed process-
ing of large data quantities. Examples are Google’s MapReduce [16], Yahoo’s
PigLatin programming language [30], Microsoft’s Dryad [24] and Cosmos sys-
tems as well as the programming language Scope [11], and IBM’s System S and
programming language SPADE [17]. Dryad, Cosmos and System S have many
properties in common: all use directed graphs to model computations and ex-
ecute them on a cluster of machines. In addition, System S supports cycles in
graphs, while Dryad supports non-deterministic constructs. Thus, the deter-
ministic subset of the Dryad system is also a subset of the KPN framework,
while the expressiveness of System S is equivalent to that of KPNs. However,
not much is known about these systems and their availability is limited.

MapReduce [16] has become one of the most cited paradigms for express-
ing parallel computations. Unlike the above systems, which define task-parallel
models, MapReduce defines a data-parallel model based on keys and values.
While the original MapReduce paper specifies the programming model rather
informally, Lammel [27] has used the Haskell [22] programming language to
rigorously define the semantics of the MapReduce model and Sawzall program-
ming language [31]; there he also discusses parallellization issues. Google’s
MapReduce implementation supports fault-tolerant distributed execution in
clusters. Others have reimplemented MapReduce for clusters (Hadoop [2], an
open-source implementation in Java), multi-core machines [32], the Cell BE
architecture [14] and even for GPUs [21], all of which bear witness of its pop-
ularity. Map-Reduce-Merge [12], adds a merge step to efficiently process data
relationships among heterogeneous datasets, and to be able to execute in par-
allel join algorithms of relational algebra, operations not directly supported by
the plain MapReduce model. The same issues are also addressed by Oivos [35],
which in addition provides a more expressive, declarative programming model.
Finally, reducing the added overhead of layering software on top of MapRe-
duce is the goal of Cogset [36] where the processing architecture is changed to
increase performance.

In our work, however, we are generally interested in real-time processing of
multimedia content. This requires high performance and repeated non-trivial
sequences of processing steps, but the above frameworks are mostly targeted
towards off-line batch processing of data. MapReduce, Dryad and Cosmos
are not able to model iterative algorithms; in addition the rigid MapReduce
semantics are not a good fit for all problems [12,37], which may lead to unnat-
urally expressed solutions and decreased performance [40]. Finally, Google’s
recent patent on MapReduce [15] may prompt commercial actors to look for
an alternative framework.

In this respect, the KPN framework is a viable alternative, but, in prac-
tice, very few general-purpose KPN run-time implementations exist. Known
examples include the Sesame project [34], the process network framework [5,
29], YAPI [13] and Ptolemy II [8]. PNRunner, a part of the Sesame project,
is an event-driven simulator of embedded systems that employs KPNs for ap-
plication modeling and simulation. However, since an event-driven simulation
significantly slows down execution, Sesame is not suitable for executing KPNs
where performance is important. The process network framework supports dis-
tributed execution and deadlock detection in KPNs, but only a 1:1 scheduling
model. It would require substantial extensions to introduce support for m:n
scheduling. YAPT is not a pure KPN implementation, as it extends the seman-
tics and thus introduces the possibility of non-determinism. In addition, it is
unclear whether the implementation can use multiple-CPUs.! Ptolemy II is
a Java-based prototyping platform for experimenting with various models of
computation, and it spawns one thread for each Kahn process. The amount of
code that comprises the JVM would make it prohibitively difficult to experi-
ment with low-level mechanisms, such as context-switches.

Another framework based on the process network paradigm is StreamIt [20].
It is a language and a run-time system for simplifying implementation of
stream programs described by a graph consisting of computational blocks (fil-
ters) having a single input and output. Filters can be combined in fork-join
patterns and loops, but must provide bounds on the number of produced and
consumed messages, so a Streamlt graph is actually a synchronous data-flow
process network [28]. The compiler produces code that can exploit multiple
machines or CPUs, but their number is specified at compile-time, i.e., a com-
piled application cannot adapt to resource availability.

Thus, all of the existing frameworks have some short-comings that are
difficult to address, which has motivated us to implement a new KPN run-
time from scratch. Before describing the implementation details of Nornir, we
shall first describe the basic KPN semantics in the next section.

3 Kahn process networks

KPNs, MapReduce and Dryad have two important features in common, both
of which significantly simplify development of parallel applications: 1) commu-
nication and parallelism are explicitly expressed in the application graph; 2)
individual processes do not have access to each other’s state and can be written
in the usual sequential manner. In addition, KPNs have a unique combination
of other desireable properties:

1 Inspection of source code indicates that some support for multiple CPUs is built into
YAPI. Experiments on Solaris, however, have revealed that YAPI never actually uses more
than a single CPU.

— Determinism. KPNs are deterministic, i.e., each execution of a network
produces the same output given the same input,? regardless of scheduling
strategy.

— Reproducible faults. One consequence of determinism is that faults are con-
sistently reproducible, which is otherwise a notoriously difficult problem
with parallel and distributed systems. Reproducibility of faults greatly
eases debugging.

— Composability. Another consequence of determinism is that processes can
be composed: connecting the output of a process computing f(x) to the
input of a process computing g(z) is guaranteed to compute g(f(x)). There-
fore, small KPNs can be developed and tested individually and later put
together to perform more complex tasks.

— Deterministic synchronization. Synchronization is embodied in the block-
ing receive operation. Thus, developers need not use other, low-level and
non-deterministic synchronization mechanisms such as mutexes and con-
dition variables.?

— Arbitrary communication graphs. Whereas MapReduce and Dryad restrict
developers to a parallel pipeline structure [37] and directed acyclic graphs
(DAGs), KPNs allow cycles in the graphs. Because of this, they can di-
rectly model iterative algorithms. With MapReduce and Dryad this is only
possible by manual iteration, which incurs high setup costs before each
iteration [32].

— No prescribed programming model. Unlike MapReduce, KPNs do not re-
quire that the problem be modeled in terms of processing over key-value
pairs. Consequently, transforming a sequential algorithm into a Kahn pro-
cess often requires minimal modifications to the code, consisting mostly of
inserting communication statements at appropriate places.

A KPN [25] has a simple representation in the form of a directed graph with
processes as nodes and channels as edges, as exemplified by figure 1. A pro-
cess encapsulates data and a single, sequential control flow, independent of any
other process. Processes are only allowed to share data by sending messages
over channels. Channels are infinite FIFO queues that store discrete messages.
Channels have ezactly one sender and one receiver process on each end (1:1
communication), and every process can have multiple input and output chan-
nels. Sending a message to the channel always succeeds (from the KPN model
point of view), but trying to receive a message from an empty channel blocks
the process until a message becomes available. Testing for available messages
is not permitted. These properties define the operational semantics of KPNs
and make the Kahn model deterministic, i.e., the history of messages pro-
duced on the channels does not depend on the process execution order. Every
model that relaxes one of these conditions, e.g. allowing non-blocking reads or
polling, results in non-deterministic behaviour.

2 Provided that processes themselves are deterministic.

3 Inexperienced developers expect that mutexes and condition variables wake up waiting
threads in FIFO order, whereas the wake-up order is in reality imlementation-dependent
and often non-deterministic.

(51 .,
)
/2'

Fig. 1 An example KPN. i1 and i are external input channels to the network (assumed
to be numbers), o is the external output channel, and 7/ is an internal channel. The inputs
and the output are related by the formula o = 2i; + i2

The theoretical model of KPNs described so far is idealized in two ways: 1)
it places few constraints on process behavior, and 2) it assumes that channels
have infinite capacities. These assumptions are somewhat problematic because
they allow the construction of KPNs that need unbounded space for their
execution. However, any real implementation is constrained to run in finite
memory. A common (partial) solution to this is to assign capacities to channels
and redefine the semantics of send to block the sending process if the delivery
would cause the channel to exceed its capacity. Under such send semantics,
an artificial deadlock may occur, i.e., a situation where a cyclically dependent
subset of processes blocks on send, although they would continue running in
the theoretical model. The algorithm of Geilen and Basten [18] resolves the
deadlock by traversing the cycle to find the channel of least capacity and
enlarges it by one message, thus resolving the deadlock.

It also is worth noting that KPNs are not a universal solution for the in-
herently difficult problem of developing parallel and distributed applications.
Even though determinism is a desirable property from the standpoint of pro-
gram development, it limits the application areas for KPNs. For example, a
disk scheduler is a simple use-case that cannot be appropriately modeled with
KPNs. The scheduler must periodically serve all clients in some order, say
round-robin, to preserve fairness. However, since read is blocking, absence of
requests from one client can indefinitely postpone serving of requests from
other clients. Such use-cases mandate use of other frameworks, or relaxing the
KPN formalism by introducing non-deterministic construct(s) such as m : n
channels and/or polling, which would reduce its conceptual value.

4 Nornir

The Nornir run-time system is implemented in C++, and runs on Windows
and POSIX operating systems (Solaris, Linux, etc.). The implementation?
consists of a Kahn process (KP) scheduler, message transport and deadlock
detection and resolution algorithms.

4 Code is available at http://simula.no/research/networks/software

processes

application

RTE E/ \E

runner 1
=
@
Q
<
funner n

user

kernel

. run queues

Fig. 2 KP scheduling: each runner has its own private run queue (small circles) containing
ready KPs (small black squares), and is executing at most one KP at any given time. Runners
in Nornir are bound to different CPUs, so they never compete with each other, but they
compete with other threads and processes on the machine.

4.1 Process scheduler

Nornir implements both preemptive 1:1 and cooperative m:n scheduling mod-
els. In the 1:1 model, one OS thread is used for each KP, blocking mutexes
are used to protect the channels, and condition variables are used as the
sleep/wakeup mechanism. We have investigated this approach in an earlier
paper [38] and showed that the m:n scheduling model is considerably more
efficient. Because of this, we focus here on the m:n scheduling model, which
we have also used for our performance evaluations.

With an m:n model, many KPs are time-multiplexed onto one OS thread,
which we call runner. Since the m:n scheduler is cooperative, a KP runs unin-
terrupted until it exits or encounters a blocking point. In our implementation,
KPs yield implicitly only in message send and receive operations. However,
since KPs may use all UNIX system calls, they can perform I/O in the usual
way. In that case, I/O operations may block without causing the calling KP
to block or yield. The runner executing the KP will be blocked und unable to
dispatch another KP. This can be avoided by using either asynchronous I/0O
or dedicated runners for KPs that perform I/0.

The m:n scheduler uses user-mode code to switch contexts between a KP
and the scheduler core. On Solaris and Linux running on AMD64, we em-
ploy optimized, hand-crafted assembly code for context-switch; on other plat-
forms we use OS-provided facilities: fibers on windows, and swapcontext () on
POSIX. The latter is inefficient because each context switch requires a system
call to save and restore the signal mask.

steal

CPU i CPU j

dispatch

unblock

Fig. 3 Queue operations in work stealing. CPU 4 accesses its own queue only at the front,
while it steals tasks from other CPUs only from the back.

4.2 Scheduling policies

Since KPNs are deterministic, they provide great freedom in implementing the
process scheduler: any fair scheduler results in a KPN execution that generates
the full output.? In this context, fairness means that the execution of a ready
process will not be indefinitely postponed.

We have thus made Nornir configurable with different scheduling policies.
In addition to the classical work-stealing [7] algorithm, we have also imple-
mented and evaluated a modified work-stealing algorithm and a scheduling
algorithm based on graph-partitioning [10]. The latter tries to balance the
computational load evenly while reducing the amount of inter-CPU synchro-
nization and communication.

The work-stealing algorithm [7] is illustrated in figure 3. When the KPN is
started on a system with m CPUs, m runner threads (“runners”) are created
and pinned to different CPUs. Each runner has a private run queue of ready
KPs and executes the KP at the front of its queue (dispatch). If this queue is
empty, it tries to steal a KP from the back of the queue of a randomly chosen
runner. KPs that become ready (unblock) are added at the front of a queue.
We use two algorithms for determining this queue. The original algorithm
always prepends a newly unblocked KP to the queue of the CPU that exe-
cutes that currently running KP which triggered the unblocking (WS-CUR).
This algorithm causes performance problems for some workloads, including
the scatter-gather kind of load. They are caused by high contention over run-
queues when stealing. We have therefore modified the work-stealing algorithm
so that an unblocked KP is placed on the last CPU that executed it [39]
(WS-LAST). We do not use the non-blocking queue described in [7]; instead
we use an ordinary mutex per run queue. This not only simplifies the imple-
mentation, but is also required for implementing our WS-LAST modification
since the non-blocking queue does not support all of the operations needed to
support the modified algorithm. This might become problematic on machines

5 If the scheduler is not fair, the output will be correct, but possibly shorter than it would
be under a fair scheduler.

10

with many cores, but we deemed that introducing the additional complexity
of a non-blocking queue was unnecessary at this stage of our research.

The graph-partitioning algorithm assigns weights to the nodes and edges
in the process graphs. The weight of a node is proportional to the processing
power required by the KP and the weight of an edge is proportional to the
communication volume between the two processes incident to that edge. The
algorithm tries to partition the graph into disjoint sets of nodes so that all
node subsets have approximately equal total node weights. In addition, the
algorithm tries to minimize the cut cost, i.e., the total weight of edges crossing
partitions. Graph partitioning is an NP-hard problem, so we have implemented
a heuristic based on the work presented by Devine et al. [10].

4.3 Message transport

In KPNs, channels have a two-fold role: 1) to interact with the scheduler, i.e.,
block and unblock processes on either side of the channel, and 2) to transport
messages. The initial capacity of the channel may be specified when the channel
is first created; if omitted, a default capacity is used.

Interaction with the scheduler is needed particularly for the cases of a full or
empty channel. Receiving from an empty channel or sending to a full channel
blocks the acting process. Similarly, receiving from a full channel or sending
to an empty channel unblocks the process on the other side of the channel.

Message transport over channels is protected by mutexes that are essen-
tially implemented by busy-waiting, but yield to the scheduler for every failed
locking attempt. Combined with the user-space work stealing scheduler, this is
less wasteful than a spinlock and much faster than a full-fledged sleep/wakeup
mechanism. Furthermore, since channels are 1:1, at most two processes com-
pete for access to any given channel, so the expected number of spins in the
case of contention on a channel is very small.

Since KPs are executing in a shared address space in our implementation,
it is still possible that they modify each other’s state® and thus ruin the KPN
semantics. There are at least two ways of implementing a channel transport
mechanism that lessens the possibility of such occurrence:

— A message can be dynamically allocated and a pointer to it sent in a class
that implements move semantics (e.g., auto_ptr from the C++ standard
library).

— A message can be physically copied to/from channel buffers which is, in
our case, done by invoking the copy-constructor.

We initially implemented the first approach, which requires dynamic memory
(de-)allocation for every message creation and destruction, but is essentially
zero-copy. Our current implementation uses the second approach because mea-
surements on Solaris have shown that memory (de)allocation, despite having
been optimized by using Solaris’s umem allocator, has larger overhead than

6 C++ is an inherently unsafe language, so there is no way of preventing this.

11

copying as long as the message size is less than ~ 256 bytes. We have not
tested suballocators separately; the performance would likely be very similar
to message copying with a small constant message size.

Since C++ is a statically-typed language, our channels are also strongly-
typed, i.e., they carry messages of only a single type. Since communication ports
(endpoints of a channel; used by processes to send and receive messages) and
channels are parametrized with the type of message that is being transmitted,
compile-time mechanisms prevent sending messages of wrong types. Further-
more, the run-time overhead of dynamic dispatch based on message type is
eliminated. Nevertheless, if dynamic typing is desired, it can be implemented
by sending byte arrays over channels, or in a more structured and safe manner
by using a standard solution such as or C++ with run-time type information
or Boost.Variant (see http://wuw.boost.org).

As KPs have only blocking read at their disposal, it is useful to provide
an indication when no more messages arrive on the channel (EOF). One way
of doing this is to send a message with specific value that indicates EOF.
However, all values of a type (e.g., int) might be meaningful in a certain
context, so no value is available to encode the EOF indication. In such cases,
one would be forced to use solutions that are more cumbersome and that
impose additional overhead (for example, dynamic memory allocation with
NULL pointer value representing EOF). We have therefore extended channels by
introducing support for EOF indication: the sender can set the EOF status on
the channel when it has no more messages to send. After EOF on the channel
has been set, the receiver is able to read the remaining buffered messages.
After all messages have been read, the next call to the port’s recv method
returns false immediately (without changing the target message buffer), and
the next recv call block the process permanently.

4.4 Deadlock detection and resolution

Deadlock detection and resolution make it possible to execute many’ KPNs
in finite space. Each time a process would block, either on read or on write,
a deadlock detection routine is invoked. Since communication is 1:1, read and
write are blocking and polling is forbidden, it is straight-forward to notice when
a ring of blocked processes is closed. The deadlock detection and resolution
algorithm in our current implementation uses a centralized data-structure (the
blocking graph) and thus must run while holding a single global mutex. If no
cycle is found, the KP is blocked and this fact is recorded in the blocking graph.
Otherwise, the capacity of the smallest channel in the cycle is increased by one,
as suggested by [18]. Similarly, when a process receives from a full channel,
the upstream KP is unblocked and the blocking graph updated.

7 As demonstrated in [37], it is possible to construct KPNs that are under no circumstances
executable in finite space.

12

4.5 Accounting

We have implemented a detailed accounting system that enables us to monitor
many different aspects of Nornir’s run-time performance, such as CPU time
used by each process, number of context-switches, number of loop iterations
in waiting on spinlocks, number of process thefts, number of messages sent
to processes on the same or a different CPU. We have measured (see [38] for
methodology) that a single transaction, consisting of [send — context switch
— receive| operations, takes 1.4us with accounting enabled. When accounting
is disabled, this time drops to ~ 0.68us. The largest overhead in our accounting
mechanism stems from the measurement of per-KP CPU time, which requires
a system call immediately before a KP is run and immediately after a KP
returns to scheduler.

5 Performance evaluation

We have evaluated performance aspects of Nornir in particular, but also of the
KPN modeling paradigm in general:

— Effects of scheduling policies on performance.

— Scalability of Nornir with respect to KPN size and parallelism granularity.

— Performance consequences of using MapReduce or KPNs for modeling par-
allel applications.

To investigate these issues, we have designed and implemented four synthetic
workloads: an H.264-encoding process graph, an Advanced Encryption Stan-
dard (AES) encryption algorithm, a random process network and a pipeline.
In addition, we have implemented the canonical MapReduce example, word-
frequency program, on top of Nornir in two ways: 1) by implementing the exact
MapReduce semantics within the KPN framework and using it to solve the
word-frequency problem, and 2) by designing and implementing a KPN that is
best suited for the problem. Lastly, we have compared the performance of both
of our solutions to the solution implemented on top of Phoenix [32], which is
a MapReduce implementation designed specifically for multi-core machines.

In the following subsections, we first describe our experimental setup and
methodology and proceed to present results in the order outlined above. Work-
loads are described in detail as they are encountered.

5.1 Methodology

The test programs have been compiled as 64-bit with GCC 4.3.2 and maximum
optimizations (-m64 -03 -march=opteron). Nornir has been compiled with
accounting turned on, since this is necessary to study performance effects of
deadlock detection. We have run them on an otherwise idle 2.6 GHz AMD
Opteron machine with 4 dual-core CPUs, 64 GB of RAM running Linux kernel

13

2.6.27.3. Each data point is median® of 9 consecutive measurements of the total
real (wall-clock) running time. This metric is most representative because it
accurately reflects the real time needed for task completion, which is what the
end-users are most interested in.

All benchmarks, except those of section 5.2, have been configured to use our
modified work-stealing algorithm and initial channel capacity of 64 messages,
with deadlock detection enabled.

5.2 Choice of Scheduler

As stated in section 4.1, a KPN yields identical results when run by any
fair scheduling algorithm, but the running time may be highly dependent on
the chosen algorithm. In this section, we investigate the relative merits of
the original work-stealing algorithm (WS-CUR), our modified version (WS-
LAST) and the method based on graph partitioning (GP). In order to separate
performance effects of scheduling and deadlock detection, the latter has been
turned off for this series of experiments. Nevertheless, all benchmarks did finish
without any artificial deadlock problems.

5.2.1 Original vs. modified work-stealing

We have performed extensive comparison of application running times under
WS-CUR and WS-LAST policies. We have found that both algorithms lead
to very similar application performance®, except on a specific type of workload
where WS-LAST is clearly superior.

The KPN for this workload, which we have named scatter-gather, is shown
in figure 4. This structure is typical for embarrassingly-parallel problems, i.e.,
problems that can be split into parts that can be processed independently of
each other. The AES encryption benchmark described later is an example of
such a problem. There are also workloads that proceed in stages, where all
sub-problems of one stage must be finished before starting work on the next
stage; in such cases KP Py acts as a barrier. An example of such a situation
is the synchronization between Map and Reduce stages of a MapReduce com-
putation. The scatter-gather benchmark executes in m rounds. In each round,
Py first sends a single message to each of the n workers, and then waits to
receive the same number of replies from each worker. The workers are obliv-
ious to the round-based execution: a worker just receives a message, uses a
fixed amount of CPU time ¢ and sends a reply to Py. For the results shown in

8 We have investigated also correlation with other quantities, such as rate of steal at-
tempts. Using median allowed us to use the values of other measured variables as is. Mean
value would not correspond to any particular measurement, and it would be unclear how
the values of other measured quantities could be interpolated. The observed variation in
running times is small, so the difference between using median and mean is negligible.

9 We have used also the other workloads described later in this paper for our comparisons.
On all of our measurements, the difference between mean running times under WS-CUR
and WS-LAST was within 2%, most often in favor of WS-LAST.

14

0
=

Fig. 4 Scatter-gather topology.

Scatter/gather speedup Scatter/gather steal rate

a \‘\\‘\o—*_«

7.0= 4e+05 =

o 3e+05 -

6.0 - Policy Policy

® ws.cur ® ws.cur

A ws.last 2e+05 - A wslast

Steal rate (1/s

1le+05 =

| | | |
© © © o

=) S S 0 =)
&

128 =
192 =
256 —

Number of workers Number of workers

Fig. 5 Scatter/gather on 8 CPUs: speedup and steal rate vs. number of workers.

figure 5, we have used m = 12500, t = 10~* seconds, and varied n over the set
n € {8,16,32,64,128,192,256}. Thus, the total useful work performed by all
workers is W = nmt = 1.25n CPU seconds.

Compared to running the whole workload on a single core, we can observe
that speedup increases with the number of workers. For example, using 256
workers, WS-CUR achieves a speedup of 5.7 whereas WS-LAST achieves a
speedup of 7.6. As can be observed in figure 5, the speedup is directly related
to the reduction in the number of steal attempts per second. The number
of steal attempts is reduced because WS-LAST actively distributes the load
over all CPUs, thus significantly reducing contention over the run-queues. WS-
CUR, on the other hand, always wakes up all workers to the same CPU, i.e.,
the one on which Py is running. This creates significant contention over a single
run-queue at the beginning of each round, which leads to significant loss of
performance. This contention-reducing property will be even more important
for future applications as the number of cores in computer systems is steadily
increasing.

15

Fig. 6 H.264 block-diagram, adapted from the H.264 whitepaper [33] where the inputs to
the codec are the current (F,) and reference (F,,—1) frames. Here, each square block assumes
the role of Py in figure 4 and has attached n workers.

5.2.2 Modified work-stealing vs. graph partitioning

Scheduling based on GP needs a mechanism that can detect load-imbalance
and trigger repartitioning when the load-imbalance has become intolerably
high. For that purpose, we measure the idle time accumulated by all runners
and trigger repartitioning when it exceeds a preset constant threshold 7.

GP has complex performance characteristics which required running an ex-
tensive set of benchmarks across different parameter sets. Due to the complex-
ity of accurately characterizing GP behavior, we only list our main conclusions
and refer the reader to [37] for full details.

Application running time. Compared to GP, WS-LAST yields in general best
performance on all workloads. Provided that there is enough parallelism in the
program and that a process performs a sufficient amount of work each time it
is scheduled, WS-LAST always achieves speedup almost proportional to the
number of CPUs. Speedup using GP, however, is always significantly lower
— in some pathological cases, programs running under GP on multiple CPUs
takes longer to execute than when running on a single CPU.

To illustrate this, we used the H.264 benchmark'® that simulates the data
flow in an H.264 codec. Figure 6 shows our H.264 KPN, which is only a slight
adaptation of the encoder block diagram found in [33]. The functional blocks
of the H.264 encoding process are implemented as KPs using synthetic loops
to spend the same amount of time for each “encoded” frame that would be
used by a real codec. We have obtained these timings by profiling x264, which
is an open-source H.264 encoder implementation, and mapping the results to
the shown process graph. Since the P, MC and ME stages together use more
than 50% of the total CPU time, we have parallelized each of these stages
in the same way as shown in figure 4. The input video consists of a series
of discrete frames, and the encoder operates on small parts of the frame,
called macroblocks, typically 16 x 16 pixels in size. The encoder consists of

10 This example demonstrates that feedback loops are not only a matter of convenience,
but actually essential. The H.264 benchmark is a synthetic workload for the expressive
power of a programming framework. Thus, as already argued in the introduction, neither
MapReduce nor Dryad can be used to implement the H.264 encoder.

16

H.264

@
S
|

~
[

IS
S
|

@ 60—

GE> Policy

= 50 o GP

=

e A WS-LAST
c

S

o

w
)
[

N
S
|

o

| 1 |
© © o ®
& re ; ; &

5 =

256 —
512 =

| 1 | | 1
© © o~ © o
& re = & e}
= LY e} = K9

512 =

— N ¥

5
Number of workers

128 =
256 =

Fig. 7 Median running times for WS-LAST and GP on 1,2,4,6 and 8 CPUs.

“forward” and “reconstruction” data paths which meet at the prediction block
(P). The role of the prediction block is to decide whether the macroblock
is encoded by using intra-prediction (relative to macroblocks in the current
frame F,,) or inter-prediction (relative to macroblocks in the reference frame(s)
F,—_1). The encoded macroblock goes through the forward path and ends at
the entropy coder (EC), which is the final output of the encoder. The decision
on whether to apply intra- or inter-prediction is based on factors such as the
desired bandwidth and quality. To be able to estimate quality, the codec needs
to apply transformations inverse to those of the forward path, and determine
whether the decoded frame satisfies the quality constraints.

In figure 7, we plot the performance results for both GP and WS-LAST
running the H.264 benchmark. The main reason of performance degradation
with increasing number of workers is the limited parallelism available in the
H.264 network. Under GP, runners accumulate idle time faster than our simple
heuristics for deciding when to rebalance the load is able to catch up. This
means frequent repartitioning, which is protected by a single mutex, and pro-
cess migration. These operations are performed hundreds of times per second,
leading to severe performance degradation.

Variance of application running times. Our experiments have confirmed that
GP indeed fulfils its design goal of reducing traffic between processes on differ-
ent CPUs. However, we have also observed that its load-balancing properties
are rather poor. This is illustrated using a random network that is a directed
graph consisting of a source KP, a number of intermediate KPs arranged in n;
layers (user specified) and a sink KP (see figure 8 for an example). The num-
ber of KPs in each layer is randomly selected between 1 and the user-specified
maximum number m. The intention of this construction is to mimic, with fine
granularity, network protocol graphs or parallelism in algorithms. The net-
work may have additional back-edges that create cycles, with each node being
constrained to have at most one back-edge, be it outgoing or incoming. The

17

Fig. 8 A random graph with 212 nodes, 333 edges and 13 cycles with the source node on
bottom and sink node on top.

workload is generated by sending and receiving messages that contain plain
integers; each integer denotes the amount of CPU time that the receiving KP
spends on processing, using a synthetic loop, before sending a reply or receiv-
ing another message. More specifically, the source KP sends n messages, each
containing a fixed amount of work corresponding to w seconds of CPU time. A
KP reads a single message from each of its n; inputs and adds them together
to compute the total amount ¢t of CPU-time that is to be consumed. Then, the
KP runs a synthetic loop to use the number of CPU seconds proportional with
t, and then it distributes ¢ to its n, forward out-edges. A message represent-
ing [t/no] seconds of CPU time is sent to each of the n, forward out-edges;
if ¢ is not divisible by n, then the remainder is added to the last outgoing
edge. Lastly, if a KP has a back-edge, a message is sent/received (depending
on the edge direction) along that channel. As such, the workload w in a sin-
gle message sent from the source KP equals the workload w collected by the
sink KP. Messages sent along back-edges do not contribute to the network’s
workload; their purpose is solely to generate more complex synchronization
patterns. The total CPU load W generated by the network is determined by
the formula W = nT/d, with each single message representing a CPU load
of w = T/d CPU seconds. Here, T is the number of iterations of our syn-
thetic loop that uses 1 second of CPU time on the benchmark machine, and
d is a quantity that we have named work division factor. For example, when
d = 10000, each message by the source represents 10~% seconds (100us) of

18

Random: distribution of running times Random: distribution of no. of repartitionings

20—

Running time (s)
1
Number of repartitionings

Fig. 9 Illustration of GP variance in running time for the Random workload on 8 CPUs
and d = 1000, which is one step past the WS peak speedup. x-axis is the value of the idle
time parameter 7 for the GP policy, and 7 = 0 shows the results for WS.

CPU time. This allows us to control the granularity of chunks into which the
total workload W is divided.!!

Figure 9 shows a box-and-whiskers plot of the distribution of running times
and number of repartitionings for different values of the 7 parameter; 7 = 0
corresponds to WS-LAST. As expected, larger 7 causes fewer repartitionings.
However, it has very little influence on the running time. When 7 > 72, the
minimal measured running times are approximately constant, and around ~5s
(WS-LAST achieves running time of ~2.5s), while the mazimal running times
vary widely. In general, the variance of running times for any given 7 is large,
i.e., the running time of any given experiment run is very unpredictable and un-
correlated with the repartitioning frequency. We deem that this is the biggest
drawback of GP-based scheduling and therefore recommend that users perform
extensive performance tests with their particular workloads before employing
GP-based scheduling in production.

Traffic patterns. As explained earlier, the GP algorithm is designed to satisfy
two mutually incompatible constraints: balance the load across multiple CPUs
and minimize the traffic between processes on different CPUs. We have ob-
served that there is much more local traffic under GP scheduling. For example,
on the random graph benchmark under GP on 8 CPUs, at least 70% of all
messages are communicated between KPs on the same CPU for all values of
work division factor. On the same benchmark under WS-LAST, at most 20%
of all messages constitute local traffic, and this ratio decreases as work division
increases.

11 Note that T'/d equals the mazimum work performed by any single KP. The lower bound
on the amount of work performed by any KP is T'/md where m is the maximal number of
KPs in any layer.

19

No. of CPUs
o 1

ENEN)

o

Running time (s)
i

A
L]
=3 = =3
1

©

16—

| | |
“ o~ < c© o < © © N
™ © N re} bl
— 59 0

Number of workers

Fig. 10 H.264: performance of “encoding” 30 frames at ~ 1 fps.

Based on these results, we use WS-LAST for the rest of the experiments eval-
uating different application scenarios. Note, however, that we are running on
a single, multi-core machine. When the communication cost increases, for ex-
ample by extending the investigation to a compute cluster, the benefit of using
graph partitioning will increase (but this is subject to further experiments).

5.3 Scalability of Nornir

We have used several different benchmarks to evaluate scalability of Nornir
as well as the overheads of centralized deadlock detection. To this end, we
present results from H.264, AES, random graph and pipeline benchmarks. We
are generally interested in speedup over one CPU and in factors that cause
the speedup to be less than the ideal.

5.8.1 H.264

In the first experiment, we have used the artificial H.264 encoding workload
described in section 5.2.2 (see block diagram in figure 6). We have configured
the benchmark to encode 30 video frames at rate of 1 frame per second (fps),
with the number of workers varying from 1 to 512 in steps of powers of two.
From the results in figure 10, we can observe that the performance gets slightly
better as the number of workers per stage increases up to the number of CPUs,
and remains constant afterwards. The best achieved speedup on 8 CPUs is only
~ 2.8; this limitation is caused by data dependencies in the algorithm.

5.8.2 AES

The AES encryption is performed in ECB mode, resulting in a typical example
of an embarrassingly parallel workload, i.e., a task that can be divided into

20

80—

60 -

© No. of CPUs
g >
40- .
= A 2
2 =4
S + 6
& 20~ — =1 @ 8
\ i —
0-
| | | | | | | | | | | |
— ~N < [ee} © [<t @« © N < oo}
S &8 3 8 8 o & %
& & B g 3

Number of workers

Fig. 11 AES encryption benchmark.

subtasks that can execute completely independently of each other.!'? The AES
KPN is the same as the KPN shown in figure 4; this topology is in fact common
for all embarrassingly parallel algorithms. The source Py hands out equally-
sized memory chunks to n workers where the exchanged messages are carrying
only pointer-length pairs (16 bytes in total). When a worker receives a message,
it encrypts the chunk in-place with the 128-bit AES algorithm using several
passes and sends the reply message back to the source KP.

In this benchmark, we have set the total block size to 22 bytes (256 MB),
and the total number of workers has been varied from 1 to 2048. Py (refer to
figure 4) partitions the memory block into as many non-overlapping chunks
as there are workers and sends each chunk to a worker for encryption. The
number of encryption passes has been set to 40 so that the total running time
is sufficiently high. The results, shown in figure 11, show perfect linear speedup
with the number of CPUs (running times of 80 and 10s on 1 and 8 CPUs) ,
as soon as the number of workers becomes greater or equal to the number
of CPUs. When w < 8 the speedup is limited only by the lack of work to
be assigned to all available CPUs; in particular, for w = 1, the speedup is 1
because there is only a single worker process encrypting the whole block.

5.3.8 Random network

The scalability of Nornir using the Random benchmark described in sec-
tion 5.2.2 is shown in figure 12(a). This plot shows the absolute running times
of a random graph with cycles at different values of d, whereas figure 12(b)
shows speedup over running time on 1 CPU. In our experiments, we have
set n = d. As d increases to 100, the available parallelism in the network in-
creases, and the running time decreases; in figure 12(b) we see that d = 100

12 ECB mode should never be used in practice; CTR mode is far more secure and also
yields embarrassingly parallel workload.

21

200 -

No. of CPUs
150 - . 1
—~
"
K R)
[
£ 100-
k=1
2 LR
c
€ 50-
3
o + 6
| | | | | | | | | | | | | ® 8
- o o o o o o o o o o o o
- o o o o o o o o o o o
- o o o o o o (=] o o o
— o o [=] o o o o o o
— N (3] < wn © ~ [e5] (o2}
Work division
(a) Running time.
8-
No. of CPUs
6-
. 2
Q 4
3 A 4
o}
)
joN
w oo- n 6
0- St 8
| |
- o

1

100 -
1000 -
10000 -
20000 -
30000 -
40000 =
50000 =
60000 —
70000 -
80000 —
90000 =

Work division

(b) Speedup over 1 CPU.

Fig. 12 Benchmark results of a the random directed graph shown in figure 8 in 50 layers.

The x-axis is not uniform.

achieves perfect speedup on multiple CPUs. At d = 1000, running time starts
increasing linearly with d, and grows faster on more CPUs. This is caused by
frequent deadlock detections, as witnessed by figure 13, which shows the num-
ber of started deadlock detections per second of running time. Since deadlock
detection uses a global lock to protect the blocking graph, this limits Nornir’s
scalability on this benchmark. A possible way of avoiding this problem, in
our current implementation, is to increase default channel capacity to a larger
value. A long-term solution is implementing a distributed deadlock detection

and resolution algorithm [5].

22

300000 - No. of CPUs
250000 - L4 1
—~ 200000-
£ A 2
=
~ 150000 -
]
g 100000 " 4
[a)
[a)
50000 - + 6
|] 8

100 -
1000 -
10000 -
20000 -
30000 -
40000 =
50000 =
60000 —
70000 =
80000 —
90000 =

Work division

Fig. 13 Deadlock detection rate on the random graph benchmark.

5.3.4 Pipeline

A pipeline does the same kind of processing as the random network, except
that each layer has exactly one process and each process takes its only input
from the preceding process in the pipeline. In all previous benchmarks, the
communicated messages have been rather small (less than 32 bytes). We have
used a pipeline consisting of 50 stages to study the impact of message size
on performance. As previously, d messages have been generated by the source
process, each containing 1/d seconds of CPU time. A noticeable slow-down
(see figure 14) happens regardless of message size and only at d = 10°, which
is equivalent to 10 us of work per message, which is only 7 times greater
than the time needed for a single transaction (defined in section 4.5). The
drop in performance is proportional to message size and the number of CPUs.
Copying larger messages consumes more time and causes greater contention
over channel locks with increasing number of CPUs.

5.4 Comparison with MapReduce

KPNs are generally more flexible than MapReduce in that more general pro-
cess graphs, e.g., with branches and cycles, can be processed. However, an
interesting issue is how these two models perform for applications they both
can execute. To evaluate whether the KPN model has any performance ad-
vantages over the MapReduce model, we have therefore implemented the word
count application, which is the canonical MapReduce example (more exam-
ples is given in [37]). We used Nornir to process a MapReduce-version of Word
Count (KPN-MR) by constructing a MapReduce topology. In figure 15, KPN-
MR is compared with Nornir and its more flexible process topology tailored to
the problem (KPN-FLEX). We processed a data-set that is distributed with
Phoenix and used for Phoenix MapReduce benchmarks [32], where the files

23

8 128 512 2048

By ~ T~ T no.ofcpus

6- b—b—p A A, A o 2

o

§4—e—e—e o—e—0p o—e—p o—e—o o 4

)

o

wae—e—g —a—8 —8—8 —e—=a A 6
0- + 8

1000 -
10000 =
100000 -
1000 -
10000 =
100000 -
1000 -
10000 -
100000 =
1000 -
10000 =
100000 =

Work division

Fig. 14 Pipeline speedup for message sizes of 8,...,2048 bytes and three different work
divisions (d).

had the sizes 10, 50 and 100 MB. We can observe that the running time de-
creases as more CPUs are used and that the KPN-FLEX version has several
times better performance than the KPN-MR version. Our results indicate that
both the KPN-MR and KPN-FLEX implementations scale approximately log-
arithmically with the number of CPUs: the program running time decreases
approximately linearly with each doubling of the number of runners. We be-
lieve that the speedup is sub-linear because of two factors: algorithmic com-
plexity of sorting, which is O(nlogn), and the effects of deadlock detection.
We also observe that KPN-FLEX is consistently faster than KPN-MR, by a
factor of 3 — 6.7, and the speedup is proportional with the problem size.

We have also compared the performance of our KPN-FLEX and KPN-MR,
implementations with Phoenix [32], which is a MapReduce implementation
designed specifically for multi-core machines. We have run Phoenix with its
default settings, which means that it uses as many threads in each of the Map
and Reduce stages as there are CPUs on the machine. Table 1 compares the
Word Count results of Phoenix, KPN-MR and KPN-FLEX. The KPN-MR
program is consistently slower than Phoenix, by a factor of 1.06 on the 10MB
file, and by a factor of about 2 on 50MB and 100MB files. This result is not
very surprising since Phoenix is optimized for running MapReduce programs,
while our KPN run-time includes supports for arbitrary directed graphs of
communicating processes. However, the KPN-FLEX program, by having the
ability to use data structures that are more suited to the given task (hash
tables) and avoiding unnecessary work that MapReduce semantics requires
(extra sort), achieves about 2.7 times better performance than Phoenix.

24

KPN-FLEX KPN-MR
25-

20-

15-

g 0T

10-

20-

No. of CPUs
— 1

e 2
K_ s 4
-- 8

H
o
1

4aN 05

Running time (s)
5
1

25-

20-

15-

4N 00T

10-

80—
88 —
96 —

56—
64—
72 -

[R I I |
® © ¥ N O ®
RIS

96 —

[|
¥ N 9 @
S N ® ®

[
© ©
)

24—
32—

o & o TSR s NS @
. = g=8¢d gz 8
Number of workers in each stage

Fig. 15 Running times of the word frequency program on 10, 50 and 100 MB data-sets,
using KPN-FLEX and KPN-MR solutions.

25

Size Phoenix KPN-MR KPN-FLEX
t t speedup t speedup
10 0.30 0.32 0.94 0.11 2.73
50 0.98 1.86 0.53 0.37 2.65
100 2.04 4.23 0.48 0.74 2.76

Table 1 Mean running times in seconds (t) of the word frequency programs for Phoenix,
KPN-MR and KPN-FLEX. Speedup is the speedup factor over Phoenix.

5.5 Summary

We have evaluated several aspects of Nornir: scalability of the scheduler with
the number of processes and CPUs, overhead of message-copying and over-
head of centralized deadlock-detection and resolution. Our findings can be
summarized as follows:

— Nornir can efficiently handle a large number of processes. Indeed, in the em-
barrassingly parallel AES benchmark, it achieved an almost perfect linear
speedup of 7.5 on 8 CPUs with 2048 processes.

— Message sizes up to 512 bytes have negligible impact on performance. The
cost of message copying starts to be noticeable at message sizes of 2048
bytes. Protecting channels with mutexes has negligible performance impact
on 8 CPUs.

— As shown by the pipeline benchmark, context-switch and message-passing
overhead starts to have a noticeable impact on the overall performance
when the amount of work per message is less than ~ 7 times the transaction
time (see section 4.5).

— The centralized deadlock detection and resolution algorithm can cause seri-
ous scalability and performance problems for certain classes of applications.
In our evaluation, this was the case only for the random graph benchmark.

— Again, as shown by the random graph benchmark, the default channel
capacity of 64 bytes, which we have used in our benchmark, can be too
small in certain cases. Increasing it would mitigate overheads of deadlock
detection, but it would also increase memory consumption.

— Performance can be further increased by turning off detailed accounting in
cases where it is not needed.

— We have not noticed any scalability problems using mutexes for protecting
the scheduler’s queues instead of using non-blocking queues proposed by
Arora et al. [7], except in the scatter-gather benchmark. There, our WS-
LAST variant largely mitigates the problem.

— Compared to MapReduce models, Nornir using KPNs is more flexible, and
outperforms both applications running in Nornir following the MapReduce
model and the Phoenix implementation of MapReduce [32] for multi-core
machines.

Although there is room for improvement in Nornir (especially in deadlock
detection), our results indicate that message-passing and KPNs in particular

26

are a viable programming model for high-performance parallel applications on
shared-memory architectures.

6 Conclusion and future work

In this paper, we have described the implementation details of Nornir, our
run-time environment for executing parallel applications specified in the high-
level framework of Kahn process networks. KPNs allow branches and cycles in
the communication graph of the program, a feature crucial for implementing
iterative algorithms such as H.264 encoding. Nornir thus complements existing
frameworks such as MapReduce and Dryad. We have shown that even for
problems without branches and cycles, the flexibility of KPNs makes it possible
to design solutions that outperform the solutions cast into the MapReduce
framework.

We have evaluated Nornir’s efficiency with several synthetic applications
(H.264 encoding, random KPN, pipeline, AES) on an 8-core machine. Our
results indicate that Nornir can scale well, but that in certain cases (random
KPN) the centralized deadlock detection is detrimental for performance, and
that a default channel capacity of 64 bytes is too small for some applications.
We have also experienced that copying semantics of message-passing have a
slight, but noticeable impact on performance at message sizes of ~ 2048 bytes.
Furthermore, Nornir can support parallelism at fine granularity: its overhead
becomes noticeable at processing time of 10us per message, which is ~ 7 times
greater than the combined overhead of scheduling and message-passing.

Our study of scheduling policies has lead to two results that are signifi-
cant also outside the context of KPNs. First, we have developed a simple im-
provement of the work-stealing algorithm that performs as well as the original
algorithm, but does not exhibit pathologically bad performance with scatter-
gather types of workloads. Second, we were the first to evaluate performance
of unstructured workloads on multi-core machines when scheduled by a sched-
uler based on graph-partitioning. We have shown that graph partitioning not
only performs worse than work-stealing, but also has very unpredictable run-
ning times, an aspect not discussed by Devine et al [10]. The latter finding
is relevant also in the context of resource provisioning in distributed systems
where the same types of algorithms are used.

The first, and most important, step in our future work is increasing Nornir’s
scalability by replacing a centralized deadlock detection algorithm with a dis-
tributed one [5]. This will also be the first step towards a distributed version of
Nornir, executing on a cluster of machines. For building a distributed version
of Nornir, we plan to use MPI to implement message-passing between KPs
running on different machines. Further performance increases can be gained
by using non-blocking data structures. In the scheduler, we might need to use
the non-blocking queue presented in [7] instead of mutexes in order to sup-
port scalability beyond 8 CPUs. We might also use a single-producer, single-
consumer FIFO queue [19] to avoid yielding between en-/dequeue attempts.

27

Since yielding implies switching to a new control flow and a new stack, we
expect that this improvement will further increase performance by reducing
pressure on data and instruction caches.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. PVM (Parallel Virtual Machine), Accessed August 2010. http://www.csm.ornl.gov/

pvm/.

Apache Hadoop, Accessed July 2009. http://hadoop.apache.org/.

Message passing interface forum, Accessed July 2009. http://www.mpi-forum.org/.
The OpenMP API specification for parallel programming, Accessed July 2009. http:
//openmp.org/wp/.

. ALLEN, G., ZUCKNICK, P., AND EvaNs, B. A distributed deadlock detection and res-

olution algorithm for process networks. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) 2 (April 2007), 11-33-11-36.

ARMSTRONG, J. A history of Erlang. In HOPL III: Proceedings of the third ACM
SIGPLAN conference on History of programming languages (New York, NY, USA,
2007), ACM, pp. 6-1-6-26.

ARORA, N. S., BLUMOFE, R. D., AND PLAXTON, C. G. Thread scheduling for multipro-
grammed multiprocessors. In Proceedings of ACM symposium on Parallel algorithms
and architectures (SPAA) (New York, NY, USA, 1998), ACM, pp. 119-129.

Brooks, C., LEE, E. A., Liu, X., NEUENDORFFER, S., ZHAO, Y., AND ZHENG, H. Hetero-
geneous concurrent modeling and design in Java (volume 1: Introduction to Ptolemy II).
Tech. Rep. UCB/EECS-2008-28, EECS Department, University of California, Berkeley,
Apr 2008.

BUHR, P. A.; AND STROOBOSSCHER, R. A. The p system: Providing light-weight concur-
rency on shared-memory multiprocessor computers running UNIX. Software — Practice
and Ezperience 20, 9 (1990), 929-964.

CATALYUREK, U., BoMAN, E., DEVINE, K., Bozpac, D., HEAPHY, R., AND RIESEN,
L. Hypergraph-based dynamic load balancing for adaptive scientific computations. In
Proc. of 21st International Parallel and Distributed Processing Symposium (IPDPS’07)
(2007), IEEE. Also available as Sandia National Labs Tech Report SAND2006-6450C.
CHAIKEN, R., JENKINS, B., LARSON, P.-A., RAMSEY, B., SHAKIB, D., WEAVER, S., AND
ZHou, J. Scope: easy and efficient parallel processing of massive data sets. Proc. VLDB
Endow. 1, 2 (2008), 1265-1276.

CHIH YANG, H., DASDAN, A., Hsiao, R.-L., AND PARKER, D. S. Map-Reduce-Merge:
simplified relational data processing on large clusters. In Proceedings of ACM interna-
tional conference on Management of data (SIGMOD) (2007), pp. 1029-1040.

DE Kock, E., EssINK, G., SmITs, W. J. M., VAN DER WOLF, R., BRUNEL, J.-Y., KRUI-
JTZER, W., LIEVERSE, P., AND K.A. VisseErs, K. Yapi: application modeling for signal
processing systems. Proceedings of Design Automation Conference (2000), 402-405.
DE KRULJF, M., AND SANKARALINGAM, K. MapReduce for the Cell BE architecture. Uni-
versity of Wisconsin Computer Sciences Technical Report CS-TR-2007 1625 (2007).
DEAN, J., AND GHEMAWAT, S. System and method for efficient large-scale data process-
ing. US Patent no. 7650331, Jan 2010.

DEAN, J., AND GHEMAWAT, S. MapReduce: simplified data processing on large clusters.
In Proceedings of Symposium on Opearting Systems Design & Implementation (OSDI)
(Berkeley, CA, USA, 2004), USENIX Association, pp. 10-10.

GEDIK, B., ANDRADE, H., Wu, K.-L., Yu, P. S.; AND Doo, M. Spade: the system s
declarative stream processing engine. In SIGMOD ’08: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data (New York, NY, USA,
2008), ACM, pp. 1123-1134.

GEILEN, M., AND BASTEN, T. Requirements on the execution of Kahn process net-
works. In Programming Languages and Systems, European Symposium on Programming
(ESOP) (2003), Springer Berlin/Heidelberg, pp. 319-334.

28

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

GIACOMONI, J., MOSELEY, T., AND VACHHARAJANI, M. FastForward for efficient pipeline
parallelism: a cache-optimized concurrent lock-free queue. In PPoPP: Proceedings of
the ACM SIGPLAN Symposium on Principles and practice of parallel programming
(New York, NY, USA, 2008), ACM, pp. 43-52.

GORDON, M. I., THIES, W., AND AMARASINGHE, S. Exploiting coarse-grained task,
data, and pipeline parallelism in stream programs. In ASPLOS-XII: Proceedings of the
12th international conference on Architectural support for programming languages and
operating systems (New York, NY, USA, 2006), ACM, pp. 151-162.

HEe, B., FanGg, W., Luo, Q., GOVINDARAJU, N. K., AND WANG, T. Mars: a MapReduce
framework on graphics processors. In PACT ’08: Proceedings of the 17th international
conference on Parallel architectures and compilation techniques (New York, NY, USA,
2008), ACM, pp. 260-269.

Hupak, P., HUuGHES, J., JONES, S. P., AND WADLER, P. A history of Haskell: being
lazy with class. In HOPL III: Proceedings of the third ACM SIGPLAN conference on
History of programming languages (New York, NY, USA, 2007), ACM, pp. 12-1-12-55.
INTEL ~ CORPORATION. Threading building blocks. http://www.
threadingbuildingblocks.org.

Isarp, M., Bupwu, M., Yu, Y., BIRRELL, A., AND FETTERLY, D. Dryad: dis-
tributed data-parallel programs from sequential building blocks. In Proc. of the ACM
SIGOPS/EuroSys European Conference on Computer Systems (New York, NY, USA,
2007), ACM, pp. 59-72.

KAHN, G. The semantics of a simple language for parallel programming. Information
Processing 74 (1974).

KNuUTH, D. E. The Art of Computer Programming, Volume 1: Fundamental Algorithms.
Addison-Wesley Professional, 1997.

LAMMEL, R. Google’s MapReduce programming model — revisited. Sci. Comput.
Program. 68, 3 (2007), 208-237.

LEE, E.A.; PARKS, T. Dataflow process networks. Proceedings of the IEEE 83, 5 (May
1995), 773-801.

OLsON, A., AND EvANs, B. Deadlock detection for distributed process networks. In
ICASSP: Proc. of IEEE IEEE International Conference on Acoustics, Speech, and
Signal Processing (March 2005), vol. 5, pp. 73-76.

OvLsTON, C., REED, B., SRivasTava, U., KUMAR, R., AND TOMKINS, A. Pig latin: a
not-so-foreign language for data processing. In SIGMOD ’08: Proceedings of the 2008
ACM SIGMOD international conference on Management of data (New York, NY, USA,
2008), ACM, pp. 1099-1110.

PikE, R., DORWARD, S., GRIESEMER, R., AND QUINLAN, S. Interpreting the data: Par-
allel analysis with Sawzall. Sci. Program. 13, 4 (2005), 277-298.

RANGER, C., RAGHURAMAN, R., PENMETSA, A., BRADSKI, G., AND KozYRAKIS, C. Eval-
uating MapReduce for multi-core and multiprocessor systems. In Proceedings of the
IEEE International Symposium on High Performance Computer Architecture (HPCA)
(Washington, DC, USA, 2007), IEEE Computer Society, pp. 13-24.

RICHARDSON, I. E. G. H.264/MPEG-4 part 10 white paper. Available online. http:
//wuw.vcodex.com/files/h264_overview_orig.pdf.

THOMPSON, M., AND PIMENTEL, A. Towards multi-application workload modeling in
sesame for system-level design space exploration. In Embedded Computer Systems:
Architectures, Modeling, and Simulation (2007), vol. 4599/2007, pp. 222-232.
VALVAG, S. V., AND JOHANSEN, D. Oivos: Simple and efficient distributed data process-
ing. In Proceeedings of IEEE International Conference on High Performance Comput-
ing and Communications (HPCC) (2008), pp. 113-122.

VALVAG, S. V., AND JOHANSEN, D. Cogset: A unified engine for reliable storage and
parallel processing. In Proceedings of IFIP International Conference on Network and
Parallel Computing Workshops (NPC) (2009), pp. 174-181.

7. VRBA. Implementation and performance aspects of Kahn process networks. PhD
thesis, Department of Informatics, University of Oslo, Norway, Dec. 2009. Dissertation
no. 903.

7. VRBA, HALVORSEN, P., AND GRiwoDZ, C. Evaluating the run-time performance of
Kahn process network implementation techniques on shared-memory multiprocessors.

29

39.

40.

41.

International Conference on Complez, Intelligent and Software Intensive Systems (CI-
SIS) - International Workshop on Multi-Core Computing Systems (MuCoCoS) (2009),
639—-644.

7. VRBA, HALVORSEN, P., AND GRiwoDzZ, C. A simple improvement of the work-stealing
scheduling algorithm. International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS) - International Workshop on Multi-Core Computing Sys-
tems (MuCoCoS) (2010), 925-930.

7. VRBA, HALVORSEN, P., GRiwopz, C., AND BEskow, P. Kahn process networks are
a flexible alternative to MapReduce. IEEE International Conference on High Perfor-
mance Computing and Communications (HPCC) (2009), 154-162.

7. VRBA, HALVORSEN, P., GRiwopz, C., BESKOW, P., AND JOHANSEN, D. The Nornir
run-time system for parallel programs using Kahn process networks. In 6th Interna-
tional Conference on Network and Parallel Computing (NPC) (October 2009), IEEE
Computer Society, pp. 1-8.

