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Abstract—Fat-trees are a very common communication archi-
tecture in current large-scale parallel computers. The probability
of failure in these systems increases with the number of compo-
nents. We present a routing method for deterministically and
adaptively routed fat-trees, applicable to both distributed and
source routing, that is able to handle several concurrent faults
and that transparently returns to the original routing strategy
once the faulty components have recovered. The method is local
and dynamic, completely masking the fault from the rest of the
system. It only requires a small extra functionality in the switches
to handle misrouting around a fault. The method guarantees
connectedness and deadlock and livelock freedom for up tok−1

arbitrary simultaneous switch and/or link faults where k is half
the number of ports in the switches. Our simulation experiments
show a graceful degradation of performance as more faults occur.
Furthermore, we demonstrate that for most fault combinations,
our method will even be able to handle significantly more faults
beyond thek − 1 limit with high probability.

I. I NTRODUCTION

In order to reduce costs, most clusters, and even supercom-
puters, use commodity components. Now that the required
computing power no longer can be achieved with a single
processor, parallelisation has become the de facto method of
achieving high computational efficiency and huge processing
powers. Large computer systems such as supercomputers
are constructed by interconnecting many smaller computing
devices through a switched interconnection network. The
numerous computing devices usually communicate over the
interconnection network in order to cooperatively solve a large
computational problem, so a critical factor of such systemsis
the ability of the computing devices to communicate. Many
applications require large amounts of data to be transported
between the computing devices. The speed at which this
communication occurs will, to a large extent, dictate the
efficiency of the supercomputer. Therefore, an efficient and
reliable interconnection network is a crucial component of
large-scale computing systems.

As the race for higher computing speeds progresses, existing
technology is pushed to its limits. This also affects the inter-
connection network. Higher speeds leave less margin for error.
Further, the increased power consumption may lead to shorter
expected lifetimes of the network devices and decreased mean
time between failures (MTBF). It becomes vitally important
that the interconnection network is able to operate close to
its nominal capacity even when network elements (typically
switches and their interconnecting links) cease to function
correctly.

The ability of the interconnection network to maintain a
high operational efficiency, or at least to remain operational

without disconnecting any computing nodes, with failing net-
work elements depends strongly on the network topology
and the routing function used to generate paths through the
network. For the system to remainconnectedafter a fault
has occurred, there must exist a path between every pair of
computing nodes that avoids the failed element.

The most simplistic fault tolerance method, and perhaps
the most widely deployed, is to shut down the network that
contains the faulty components and replace them. This method
requires no complex mechanisms, but the time to toleration
may vary from hours to days, depending on the availability of
replacement hardware. However, it might not be necessary to
shut down the entire system to perform the replacement.

An example of a slightly more complex mechanism is the
ability of BlueGene/L to shut down the faulty parts of its
network and continue functioning at reduced capacity. This
example indicates another step on the path to reducing time
to toleration, that of reconfiguring the network automatically
either by halting it or while it remains in operation. Such
methods are known as reconfiguration methods, because the
network is reconfigured once the fault is discovered. A signifi-
cant challenge when using reconfiguration is to guarantee that
there are no dependencies between packets being routed in the
network throughout the reconfiguration that may cause cycles
and deadlock the network. A long-used method of ensuring
this is to halt the network and its applications and drain it of
all traffic before it is reconfigured, thereby guaranteeing that
there is no traffic in the network during the reconfiguration.
This is static reconfiguration. It is very time-consuming and
requires that the network applications are checkpointed at
regular intervals so that they may be restarted once the network
is reconfigured. Much research is therefore being directed
towards reconfiguring the network while it is online without
introducing dependencies that may deadlock it, known as
dynamic reconfiguration.

Reconfiguration takes time, either to run a distributed recon-
figuration algorithm or to gather the information that a central
entity requires to calculate the new routing tables and distribute
them. Furthermore, since faulty networks must generally be
viewed as irregular networks, a generic routing algorithm may
be required to maintain connectivity. This approach will yield
good probabilities of remaining connected despite network
failures, but the use of general-purpose routing algorithms may
have a severe negative effect on network performance.

The remaining approaches fall within the class of rerouting
algorithms. These are inherently dynamic. By configuring the
network with alternative paths from start-up it is possibleto
further reduce the time taken to route packets around network



faults. In the approach that we callendpoint dynamic rerouting,
the network is configured with multiple paths between every
source/destination pair. It requires much less time beforethe
fault is tolerated than the reconfiguration methods, but some
time is still required to inform the sources of the network
faults when they occur. During this time, traffic already in the
network will still encounter the fault and must be discarded.

The most expedient way of handling a fault is to let the
devices that are directly connected to the faulty element take
care of the problem. We call this approachlocal dynamic
rerouting, because the fault is handled locally by the network
elements. For instance, if a switch learns that one of its
neighbouring switches is no longer available, it is responsible
for forwarding packets on alternative paths that avoid the fault.
This requires that there are preconfigured paths around all
single elements that may fail in the network. This creates many
possible paths in the network, and care must be taken to avoid
dependencies and deadlock.

Of the approaches listed here, local dynamic rerouting has
by far the lowest time to toleration and so has the lowest
number of packets lost when a fault occurs. In fact, only
packets that are crossing the failing element at the time of
failure, or packets irreversibly buffered at the failing element,
will be lost. However, due to the local nature of the paths
utilised when tolerating faults, they may be suboptimal.

The large time penalty incurred by static fault tolerance
may prevent the approach from providing high computational
efficiency in the case of frequent fault events. This is usually
the case for large supercomputers, because the probability
of failure increases with the number of components. Further,
the high hardware cost or long turnaround time makes it an
expensive solution. Thus, in systems that have frequent faults,
some of which may be transient, dynamic fault tolerance is the
preferred choice. Therefore, we will adopt the local dynamic
rerouting approach in this paper.

Local dynamic rerouting requires a mechanism for rerouting
packets around faults locally. This can be achieved either by
using an adaptive routing algorithm, or by adding a rerouting
mechanism to the switches in the case of deterministic routing.
We will explore both of these options.

Parallel computer systems often use the following network
topologies: either direct networks such as the k-ary n-cube
and mesh, or Multistage Interconnection Networks (MIN). In
direct networks (e.g. mesh), all switching elements contain a
computing node. On the other hand, MINs are constructed
with multiple switching stages through which the packet must
traverse from one processing node to another. MINs were first
introduced by C. Clos in 1953 as a means of constructing
nonblocking telephone switching networks [4].

A specific MIN topology is the fat-tree. The fat-tree was
proposed by C. Leiserson in 1985 [9]. Most of the commercial
interconnection technologies for SANs and clusters advocate
the use of fat-trees or other bidirectional MINs, for instance
Infiniband [1] and Quadrics [11]. Because of this, the fat-tree
is to be found in many parallel computer systems. Two of
the top 10 supercomputers rely on the fat-tree topology as
their primary interconnection network [24] (November 2009).
A classical example of a supercomputer using fat-trees is

CM [13]. A more recent example is SGI Altix 3700 [29],
which is used in NASA’s Colombia, and the Ranger system at
the Texas Advanced Computing Centre. Due to the widespread
use of the fat-tree, we will constrain our proposal to this
topology.

In this paper we present a dynamic local rerouting method-
ology for fat-trees. It can guarantee connectivity for up toand
including k − 1 arbitrary faults using either deterministic or
adaptive routing, wherek is half the number of ports in the
switches. We implement this methodology as four different
routing algorithms: link fault tolerance and link/switch fault
tolerance for deterministic routing, and link fault tolerance and
link/switch fault tolerance for adaptive routing. We show that
using deterministic routing we require two virtual channels to
guarantee deadlock freedom with more than one link fault and
three virtual channels for more than one switch fault, while
deadlock freedom for the adaptive version of the dynamic local
rerouting algorithm does not require the use of virtual channels
at all, either for link or switch faults. Furthermore, we have
previously shown that the dynamic local rerouting algorithm
also is applicable to source routing for link faults [16].

The rest of the paper is organised as follows. Section
II introduces the k-ary n-tree, the commonly used fat-tree
we consider in this paper. Section III discusses previous
work relevant for dynamic fault tolerance and multistage
interconnection networks. In section IV, we present a set of
definitions that are needed for presenting the fault-tolerant
routing mechanism in section V. We apply this mechanism
to deterministic routing in Section VI, and adaptive routing
in Section VII, and show that the algorithms are connected
and deadlock free. In Section VIII we present a simple
reconfiguration scheme for fat-trees to which we will compare
our dynamic local re-routing algorithms. The algorithms are
evaluated and compared in Section IX. Section X concludes
the paper.

II. BACKGROUND

The basic characteristic of a fat-tree is that the link capacity
at every tier is constant. This is different from an ordinarytree,
in which the aggregate capacity of each tier becomes smaller
as we approach the tree root. The increase in link capacity at
each switch tier compared to ordinary trees may be achieved
by simply increasing the capacity of the links and switches
in a tree with only a single root. However, the most common
approach is to add additional switches and links so that the
number of links and switches at every tier is the same, for
instance as a k-ary n-tree [12].

A typical fat-tree with 4-port switches is depicted in Figure
1. It is a k-ary n-tree (in this case a 2-ary 5-tree) as it is
defined in [12] and Definition 1. The k-ary n-tree is the class
of topology we consider throughout the paper, but it is just as
easy to apply the algorithms we develop here to the m-port
T-tree [15].

Assume a bidirectional MIN in which the top tier is tier
0, and processing nodes are connected to the bottom tier,
tier n − 1. Every switch hask ports in each direction of
the bidirectional MIN. Each of then tiers consists ofkn−1



such switches. Within each switch tier, switches are numbered
sequentially from zero and upwards from left to right.

The following definition states how switches should be
interconnected to switches at their neighbouring tiers to form
a k-ary n-tree. The definition uses a notation for n-tuples,
{0, 1, . . . , k − 1}n, which indicates that the n-tuple may be
viewed as an-digit number where each digit may have one
of the values{0, 1, . . . , k − 1}. An n-tuple w may also be
represented by its individual digits asw0, w1, . . . , wn−1.

Definition 1: A k-ary n-tree is composed of two types of
vertices:N = kn processing nodes andn ∗ kn−1 communica-
tion switches, each withk ports in the upward and downward
directions. Each node is an n-tuple{0, 1, . . . , k − 1}n, while
each switch is defined as an ordered pair< w, l >, where
w is the number of the switch in the sequence from left to
right represented as an n-tuple,w ∈ {0, 1, . . . , k− 1}n−1 and
l ∈ {0, 1, . . . , n− 1} is the tier where it is located.

• Two switches < w0, w1, . . . , wn−2, l > and <

w′

0, w
′

1, . . . , w
′

n−2, l
′ > are connected by an edge if and

only if l′ = l + 1 andwi = w′

i for all i 6= l.
• There is an edge between the switch

< w0, w1, . . . , wn−2, n − 1 > and the
processing nodep0, p1, . . . , pn−1 if and only if
wi = pi∀i ∈ {0, 1, . . . , n− 2}.

Note that the tier numbering is opposite of that of conventional
multistage interconnection networks which usually label the
tier connected to the processing nodes as tier0. In this context
upward and downward is relative to the top and bottom of the
tree, i.e. upwards is towards tier0 and downwards is towards
tier n − 1. An example of this switch labelling is shown in
Figure 1.

Figure 1. Switch labelling in a 2-ary 5-tree. The outline encompasses a
switch group (Definition 10).

Packet routing in a fat-tree is carried out in much the same
way as in an ordinary tree, or any other least common ancestor
network [14]. Packets are routed towards the tree root until
they reach a switch that is the least common ancestor of the
source and destination, i.e., a switch that may reach both
the source and destination in the downward direction, but
through different links. This is called theupwards phase. The
upwards phase is followed by adownwards phasein which

the packet is routed downwards to its destination1. Given that
the fat-tree has multiple roots, there will be multiple paths
between any source/destination pair. This property may be
utilised efficiently in a static/dynamic reconfiguration fault-
tolerance scheme or an endpoint dynamic rerouting fault-
tolerance scheme.

The fat-tree topology allows for fully adaptive routing in the
upward phase. Every switch port that leads further up in the
network is a shortest path towards a least common ancestor
of the source and destination of the packet. However, in the
downward phase, there is only a single shortest path from
any switch to the packet destination. Hence, it is difficult
to implement local dynamic fault tolerance in the downward
phase, because there are no additional minimal paths that may
be supplied by the algorithm for selection. As a result, it
is necessary to develop a new routing algorithm that makes
additional downward paths available in the case of link failure.

III. R ELATED WORK

Much of the work on fault tolerance in multistage inter-
connection networks focuses on providing multiple paths end-
to-end to facilitate either static reconfiguration or endpoint
dynamic rerouting. A frequently used approach to supply
multiple paths is to add hardware to the network, in the form
of additional switch stages or additional links and switches
to the already existing stages [22], [28]. Another approach
relies on every source being connected to more than one
destination and every destination being connected to more than
one source. The result is that it is impossible to isolate a given
set of sources and destinations when there is a network fault;
therefore, it is possible to bypass a fault using the holistic
property of the network. Such a network offersfull dynamic
accessand allows packets to be routed through the network
in several passes by using intermediate destinations [3], [8].
Hybrid approaches have also been suggested, combining mul-
tiple paths with routing in multiple passes to achieve a greater
degree of fault tolerance [21].

Similar work has been performed on types of fat-trees that
do not provide multiple paths in their basic construction.
An orthogonal fat-tree attempts to maximise the number of
leaves connected to a tree for a given switch degree [27].
This approach supplies only a single path between any
source/destination pair. To adapt the approach so that it can
deal with faults, a fault-tolerant orthogonal fat-tree [28] has
been proposed that supplies a number of disjoint paths between
every source/destination pair by increasing the switch degree.
This approach allows endpoint dynamic rerouting or static
reconfiguration. However, it may not be used to achieve local
dynamic rerouting in a straightforward manner.

A comprehensive study of the fault-tolerant properties
of several multistage interconnection networks is performed
in [10]. None of the methods evaluated consider dynamic
fault tolerance, and the authors found that enhancing MIN
topologies with additional hardware may lead to a decrease in
performance compared to the original network.

1Note that relative to the enumeration given in Definition 1, a packet in an
upwards phase will traverse decreasing switch tier numbers,and a packet in
the downward phase will traverse increasing tier numbers.



To provide local dynamic rerouting, Sengupta et al. [20]
propose a modified version of the single path Omega network
to create multiple paths between the source/destination pairs,
which may be used to avoid faults dynamically while the
packet is traversing the network. Furthermore, Sengupta and
Bansal [19] propose another topology, called the Quad Tree,
which consists of two parallel Double Trees. There are links
interconnecting the same stages in the two trees, which allow
packets to be re-routed dynamically. Both topologies are only
able to tolerate a single fault in any stage. Yet another network
topology that supports dynamic rerouting is the modified
MIN presented in [26]. Redundant links are placed between
switches at the same stage. This allows a packet to be
forwarded to another switch at the same stage when a fault
is encountered. The same approach is used in [18], where
crossover links between two parallel fat-trees are used for
local dynamic fault tolerance. This method may, in principle,
be applied to many MIN topologies, but it still only provides
tolerance of a single fault.

FRoots [23] is a topology-agnostic routing algorithm that is
designed to provide both end-to-end and local dynamic fault
tolerance. It is based on the idea that every network node
should be a leaf of a tree, so that if a node fails, no traffic
passes through it other than traffic to and from it. This is
achieved by constructing several Up*/Down* routing graphs
such that each node is a leaf in at least one graph. Each
Up*/Down* graph is implemented in its own virtual layer.
When a packet encounters a faulty network element, it may
be switched to a new layer with a graph in which the faulty
elements are leaves. It will then be forwarded to its destination
along a different path.

Imposing tree topologies on the fat-tree so that every switch
and processing node in the network is a leaf in one of
the trees is difficult, because the fat-tree is already a tree
topology. A large number of Up*/Down* graphs, and thus
virtual layers, will be required to ensure this. In addition, the
complexity would lead to a much longer path when a fault is
encountered. Clearly, such a generic solution is suboptimal
when considering a regular topology such as the fat-tree.
It requires a large number of virtual channels to form the
necessary virtual layers and the path length will be longer,
even when the network is fault-free.

To the best of our knowledge, there exists no previous
method that provides local dynamic rerouting for several
simultaneous network faults without adding additional hard-
ware and without requirement of additional virtual channels.
We argue that with the sizes of the supercomputers that are
currently being built, local dynamic fault tolerance is very
appealing, if not mandatory.

IV. D EFINITIONS

In this section, we present a set of definitions that provide
the necessary framework to show that the fault-tolerant routing
algorithms that we will present in the next sections are actually
fault-tolerant and that they are deadlock free.

We begin by defining adaptive and deterministic routing
algorithms in general.

Definition 2: An adaptive routing functionR* supplies a set
of possible output queues to be used by an incoming packet
on input porti on switchs to reach a destinationd. When a
set of possible output queues for a packet has been given by
a routing function, the actual queue into which the packet is
forwarded is chosen by aselection function.

Definition 3: A deterministic routing functionR* supplies
one output queue to be used by an incoming packet on input
port i on switchs to reach a destinationd. The output queue
is the same for all incomming packets to the same destination.

Note that the incoming porti and the associated virtual
channel may or may not be part of the routing function,
depending on what is required by the algorithm and supported
by the hardware.

Definition 4: A link is a connection between two switches
that are connected by an edge (as defined in Definition 1),
allowing information such as data packets to pass between
them.

A downward link from a switch at tierl is the connection
to a switch at tierl+1. Recall that we assume that queues are
located at the switch outputs. A downward queue is therefore
a queue at a switch output port that is connected to a switch
one tier lower down (from tierl to l+1) by a link. Similarly,
an upward queue is a queue at a switch output port that is
connected to a switch one tier higher up by a link (from tier
l + 1 to l). This combination of queue and link may also be
called achannel.

Let us next define the faults we consider for our routing
algorithms.

Definition 5: A link fault is the total benign perma-
nent/transient failure of a link or either of the switch ports
connecting a switch to the link.

Definition 6: A switch fault is the total benign perma-
nent/transient failure of a switch.

The following definitions help us to name parts of the fat
tree.

Definition 7: The least common ancestors(lca) of a source
s and destinationd are all the switches at tierl where l =
min(j), sj 6= dj , and lcai = si = di∀i < l

Recall that the routing in the fat-tree consists of two phases:
(i) the upward phase from the source up the tree towards one
of the least common ancestors (towards tier0), and then (ii)
the downward phase from the least common ancestor down
the tree (through increasing tier numbers) to the destination.
The length of the path followed by the packet is determined
by the tier at which the least common ancestors of the source
and destination are located.

To demonstrate the fault-tolerance capabilities of the routing
algorithm that we will present, we must know which part of the
network is affected by the fault in that it carries the additional
load of the packet that has to be routed around the fault.

Definition 8: Two switches areneighboursif there is a link
connecting them to each other.

The switches can only be neighbours if they are at neigh-
bouring switch tiersl and l + 1.

Definition 9: Two sets of switches,a andb, arecompletely
interconnectedif every switch in a is a neighbour of all
switches inb (and implicitly vice versa).



Two such interconnected sets make up an integral part of
the dynamic local routing algorithm we will present later. To
identify the possible paths taken by a packet that encounters
link faults, we must know something about the relationship
between the switches in different tiers of the fat-tree. This is
expressed in the next definition.

Definition 10: A switch groupg in a k-ary n-tree is the
union of two completely interconnected sets of switches,a

andb, wherea contains only switches at tierl andb contains
only switches at tierl + 1. a contains all neighbours at tierl
of all switches inb, andb contains all neighbours at tierl+1
of all switches ina, g = a ∪ b.

And now we describe the same switch group in the context
of the k-ary n-tree definition.

Definition 11: A switch groupG in a k-ary n-tree is made
up of all switches at the switch tiersl and l + 1 wherevi =
ui∀i 6= l, andv,u are n-tuples as defined in Definition 1.
More informally, if each switch hask links in the upward
direction, a switch group consists of2k switches. Of these,
k switches are at the lower tier of the group, tierl + 1, and
k are at the upper tier, tierl. Every switch at the lower tier
of the group has a link that connects it to all switches in the
upper tier and vice versa. An example of a switch group is
illustrated in Figure 2.

The concept of the switch group can be extended to en-
compass a two-hop switch group, a switch group that consists
of three tiers of switches instead of two. This is necessary to
tolerate switch faults.

Definition 12: A 2-hop switch groupG2 is made up of all
switches at three neighboring switch tiersl, l+1, l+2 where
vi = ui∀i 6= j, j = [l, l + 1], andv,u are n-tuples as defined
in Definition 1.

Routing in the fat-tree prohibits packet transitions between
certain queues (downward to upward) in order to guarantee
deadlock freedom, a state in which it is impossible for
the network to experience deadlock. However, when faults
are introduced into the network, some of the illegal packet
transitions must be performed in order to keep all processors
connected. The next definitions identify where in the fat-tree
these illegal transitions take place.

Definition 13: A U-turn is a part of a packet’s path where
a downward queue (from tierl to tier l+1) is followed by an
upward queue (from tierl + 1 to tier l).
Thus, the term ’U-turn’ does not apply to the upward to
downward transition that separates the upward and downward
paths in the original routing algorithm.

Definition 14: A U-turn switch is the switch that contains
the upward queue of a U-turn.

The next set of definitions will be used when considering
the deadlock freedom and connectivity of the fault-tolerant
algorithm that we will propose.

Definition 15: A network isdeadlockedif there exists a set
of full queuesQ such that all queues supplied by the routing
function for the first packet in every queue inQ are also in
Q.

More formally, there are many conceivable assignments
of packets to queues in a network, but only some of these

assignments are actually possible, given a particular routing
function.

Definition 16: A legal configurationfor the routing func-
tion R* is an assignment of packets to network queues that
may be reached from an empty network following R*.

Definition 17: A configuration isdeadlockedif the config-
uration is legal and there exists a set of queues Q such that
all possible next-hop queues for the first packet in any queue
∈ Q is also∈ Q.

Definition 18: A routing function R* is connectedif it
establishes a path to the destination for every packet in every
legal configuration.

V. DYNAMIC LOCAL REROUTING

We will start by giving the reasoning behind the dy-
namic local re-routing mechanism that we propose. The basic
mechanism is the same, regardless of whether we consider
adaptive or deterministic routing and link or switch faults. We
show in this section that when using our proposed re-routing
mechanism the network remains connected fork− 1 arbitrary
faults, and is livelock and deadlock free for one arbitrary
fault, regardless of whether adaptive or deterministic routing
is utilised. We show in the following sections how the re-
routing mechanism can be guaranteed livelock and deadlock
free for k − 1 arbitrary faults using both deterministic and
adaptive routing. However, the actual implementations of the
algorithms and the proofs to achieve this differ for the two
routing schemes, so they will be discussed separately.

The fault model we consider is that of permanent or
transient benign faults that totally disables single portsor
entire switches in the networks. Tolerating the failure of the
links and switches that connect processors to the fat-tree will
require multiple network interface cards for each processing
node, and each of these nodes must be connected to multiple
access points in the fat tree. This case must be solved by
introducing additional hardware, rather than by re-routing, as
was done with the Siamese-twin fat-tree topology [18].

Given an arbitrary source and destination, it follows from
Definition 1 that every possible upward queue (from tier
l + 1 to tier l) in the upward phase of the routing algorithm
leads towards a least common ancestor. Fault tolerance in
the upward phase of the routing algorithm is therefore quite
simple to achieve. Whenever the output supplied by the routing
algorithm is faulty, a re-routing mechanism or adaptivety
provides one of the other upward ports, which we know leads
to a least common ancestor.

The downward phase is not as straightforward, because
there are no alternative shortest paths from a switch connected
to a faulty downward link /switch. The packet must therefore
be re-routed on a longer path.

A. Link Faults

It can be seen from the fat-tree topology and Definition 10
that every switch is part of one or two one-hop switch groups,
one in each direction in which it has neighbours. The group
consists of (i) the switch itself andk−1 other switches at the
same tier, and (ii)k switches at one of the two neighbouring



tiers (definition 10). In other words, every switch in a fat-tree
except a bottom-tier switch (tiern−1) is an upper-tier switch
in a switch group. Similarly, every switch in a fat-tree except
a top-tier switch (tier0) is a lower-tier switch (largerl) in a
switch group.

Figure 2. A fat-tree consisting of radix 8 switches with two link faults.
The faulty links are marked as dotted lines, and the bold line describes the
path of a packet from its source to its destination. Note how the packet is
re-routed within the group via the U-turn switch. The numbersrefer to the
corresponding steps of the routing algorithm.

When a packet encounters a faulty link in the downward
phase, the path to the destination that involves only downward
movement is disconnected. We must therefore expand the
routing algorithm in the downward phase to make a larger
number of paths available. Lets denote the next hop switch
that is unreachable fromc because of the link fault (Figure
2). The switch in which the packet currently resides (c) is
an upper-tier switch of a switch group, ands must therefore
be a lower-tier switch in the same group. We now propose
to reachs by re-routing the packet within the group; first to
an arbitrary lower-tier switch in the group, and from there
to an arbitrary upper-tier switch in the group (different from
c). It follows from the definition of a group that there should
be a link from this arbitrary upper-tier switch (marked “u” in
Figure 2) down tos. The lower-tier switch to which the packet
is re-routed becomes a U-turn switch, because a downward to
upward transition takes place (Definition 14). A U-turn switch
recognises a re-routed packet as a packet arriving from an
upward port for which it only has upward output ports in the
forwarding table, i.e. the packet is in the downward phase, but
has no downward path from the switch.

Lemma 1 proves that there arek disjoint paths between any
two switches at the upper tier of a one hop switch group; i.e.
betweenc and any other switch at the same tier within the
group.

Lemma 1:A switch u at the upper tierl in a 1-hop group
G1 at switch tiersl, l+ 1 can reach any other switchv at the
same tier inG1 with a path length of2 hops with fewer than
k − 1 link faults in in the group.

Proof: Any switch c at the upper tier (l) of a switch
group hask neighbours at the lower tier (l+1). Each of these
neighbours are neighbours to all switches in the group at the
same tier asc. Thus, there existk paths fromc to each of
the other switches in the group of the same tier, one through

each of its neighbours in the group. There are no links between
switches at the same tier; hence, these paths will be the shortest
paths, each with a length of two hops.k − 1 link faults are
not sufficient to disconnectk disjoint paths, so there exists a
path of length two hops within the group between any two
switches at the upper tier of the group.

Using this lemma we can show that there exists a path from
any healthy switch in the network to any destination given
k − 1 arbitrary link faults when using the 1-hop re-routing
mechanism presented above.

Lemma 2:Every switch has a path to all destinations with
fewer thank arbitrary link faults when re-routing down one
tier on encountering link faults in the downward phase.

Proof: For all destinations reachable upwards from any
switch there arek links providing this connectivity. With
k − 1 link faults one of these links will always be available,
providing a path to move the packet one hop closer to
the destination. For destinations reachable in the downward
direction from a switch we have the following argument: When
there arek − 1 link faults in the system, at least one of the
k upper tier switches in a group with link faults will not be
connected to any faulty link. We call this switchSt. Let the
upper tier switches of the switch group be at tierl, then the
lower tier switches of the same group are at tierl + 1. From
Lemma 1, there arek disjoint paths between any two switches
at the upper tier in a group.k − 1 link faults are not enough
to disconnect all these paths, and thus, any upper tier switch
connected to a faulty link is able to reachSt, which we know
has a healthy link that moves the packet one hop closer to its
destination. Once the packet has reached a lower tier switch
(tier l+1) in the group with a valid downward path, subsequent
link failures encountered will be tolerated in a different group,
further down in the tree.

B. Switch Faults

For switch-fault tolerance, re-routing down one tier is not
sufficient to avoid the faulty switch, as all paths to a specific
destinationd within the switch group will lead through the
same switchs. However, re-routing down two tiers instead of
just one will avoid the faulty switchs and achieve connectivity.
In this case we say that the faulty switchs is located at the
middle tier of a two-hop switch groupG2 (Figure 3). We do
not need the concept of switch groups to tolerate the failure
of the top tier switches, as the failure of these need only be
considered in the upward routing phase. Note that re-routing
down two tiers to tolerate switch fault also implies toleration of
link faults. However, for link faults between the two bottom
tiers of the fat-tree it is obviously not possible to re-route
down two tiers for packets located at tiern − 2. Therefore,
to guarantee full link fault tolerance, as well a switch fault
tolerance, it is necessary for the bottom tier switches to act
as U-turn switches even though the re-routing mechanism is
configured for two hops. Also, recall that extra hardware is
required to tolerate the failure of the bottom-tier switches. In
order to keep track of the number of tiers the packet has been
re-routed down an extra field in the packet header, which we
call theport field, is required. This field is initially set to -1 to



indicate that the packet is not re-routed. After re-routingdown
the first tier (froml to l+1), it is set to -2 to inform the next
receiving switch that it is the U-turn switch. Upon forwarding
the packet upwards (froml+2 to l+1), the receiving switch
at the tier above the U-turn switch (tierl + 1) records the
incoming port number in the field in the packet header. This
allows a packet that is returning to tierl and that encounters
another switch fault to return to the same U-turn switch from
which it arrived. It will first be forwarded down the same link
to tier l + 1 from which it arrived, and then, using theport
field in the packet header, it can be returned down to the u-turn
switch at tierl + 2. All U-turns performed by that packet to
avoid switch faults at tierl+1 will be through the one U-turn
switch. Lemma 3 demonstrates the same property for two-hop
switch groups as Lemma 1 did for one-hop switch groups.

Lemma 3:A non-faulty switchu at the upper tierl in a
2-hop groupG2 over switch tiersl, l+ 1, l+ 2 can reach any
other non-faulty switchv at the same tier inG2 with a path
length of 4 hops if there are fewer thank switch and link
faults in the group.

Proof: The middle-tier switches in the two-hop switch
group are at switch tierl + 1 in the fat-tree, and they consist
of all possible permutations of thel’th and (l + 1)’th digits
in their n-tuples, with all other digits being equal. A digithas
k possible permutations. Thus, when there arek − 1 switch
faults in the group, there existk switches in the switch group
at tier l+1, each with the same permutation of theirl’th digit,
and a unique permutation of their(l+1)’th digit that are fault
free. We call this set of switchesF . Thus, following from
Definition 1, there is at least one switchT at the lower tier in
G2 that is fault free and connected to all switches inF . T is
consequently able to reach any non-faulty upper-tier switch in
G2 through a switch inF . Any non-faulty upper-tier switch
in G2 can thus reach any other non-faulty upper-tier switch in
G2 throughT .

The case for link faults is identical. As every switch fault
is associated with2 ∗ k failed links, the necessary paths are
still available withk − 1 link faults.

We now continue with proving the same degree of connec-
tivity for k − 1 switch faults assuming we re-route down two
tiers when encountering switch faults in the downward phase.

Lemma 4:Every switch has a path to all destinations with
fewer thank arbitrary link or switch faults (assuming no faults
in the bottom switch tier) when re-routing down two tiers on
encountering switch faults in the downward phase.

Proof: For all destinations reachable upwards from any
switch there arek links to k different switches providing
this connectivity. Withk − 1 link or switch faults one of
these links will always be healthy and connected to a healthy
switch, providing a path to move the packet one hop closer
to the destination. For destinations reachable in the downward
direction from a switch we have the following argument: When
there arek−1 link or switch faults in the system, at least one
of the k2 upper tier switches in a two-hop switch group with
k − 1 switch faults at the middle and lower tier will not be
connected to any faulty switch or link. We call this switchSt.
Let the upper tier switches of the switch group be at tierl, then
the lower tier switches of the same group are at tierl+2. From

Lemma 3, any upper tier switch connected to a faulty switch
is able to reachSt, which we know is connected to a healthy
switch at tierl+1 with no faulty links, one hop closer on the
path to the destination. Once the packet has reached a switch
on the shortest path to the destianation at a lower tier (> l), it
enters a new group, so subsequent switch failures encountered
will be tolerated in a different group, further down in the tree.

With at mostk−1 link faults between the two bottom tiers
of the fat-tree, link fault tolerance is guaranteed since this
reduces to rerouting in a one hop switch group around the
link fault(s).

C. The general algorithm

A generic version of the algorithm for link faults is given
below. The numbers of the points in the algorithm respond to
the numbers in Figure 2.

1) In the upward phase towards the root, a link is provided
by the forwarding table as the packet’s outgoing link. If
the link is faulty, it is disregarded and one of the other
upward links are chosen by the re-routing mechanism,
re-routing the packet.

2) In the downward phase (towards tiern−1), only a single
link is provided by the forwarding table; namely, the
link on the shortest path from the current switch to the
destination. If this link is faulty, the following actions
are performed:

a) If the packet came from the switch tier above (from
l to l + 1), another arbitrary downward link is
selected by the re-routing mechanism, which forces
the packet to be re-routed. This will result in the
packet being forwarded as long as there are fewer
thank link faults.

b) If the packet came from the switch tier below (from
l + 1 to l), the packet is re-routed back down to
the same lower-tier (l + 1) switch again. This is
necessary to avoid livelock.

3) A switch that receives a packet from a link connected
to an upper tier for which it has no downward path is a
U-turn switch.

4) The U-turn switch chooses a different upward port
through which to forward the packet that has not been
previously tested.

5) If all upward ports from the U-turn switch have been
tested, the path is disconnected and the packet must be
discarded.

Which output port is chosen from the U-turn switch in point
4 and how the switch knows that all upward ports have been
tested in point 4 and 5 is specific to the deterministic and
adaptive routing schemes and will be detailed in the next
sections. We have shown that this algorithm is connected
and [17] (or Appendix A) shows that it is deadlock and
livelock free with one link or switch fault without the use
of additional resources.

VI. D ETERMINISTIC ROUTING

We have shown that the re-routing mechanism presented in
the previous section is sufficient to guarantee a connected path



from every switch to every destination. However, we have yet
to consider how we can be guaranteed to find this path in the
presence ofk − 1 faults. We will now give a deterministic
routing algorithm which is able to find the connected path
while remaining livelock and deadlock free.

The basic algorithm consists of regular upward-downward
fat-tree routing combined with re-routing in the downward
phase around the link faults. To ensure that the routing
algorithm is deadlock-free, a strict ordering must be imposed
on the sequence of upward links (ports) to test from a U-turn
switch when a packet is being re-routed. In the rest of this
section, we call this sequenceD.

A. Link Faults

k − 1 link fault tolerance requires the use of an additional
virtual layer, the re-routing layer, in which packets will be
forwarded while they are being re-routed. A virtual layer, VL,
is a set of virtual channels such that every bidirectional link
has a bidirectional virtual channel (VC) in the virtual layer.
For simplicity, we assume that VC1 on all links belongs to
VL1, the normal layer (NL), and VC2 on all links belongs to
VL2, the re-routing layer (ML).

Based on this, the deterministic dynamic fault-tolerant al-
gorithm, Rlink

deterministic, for tolerating up to and including
k−1 link faults is presented below as additions to the generic
algorithm presented in the previous section. The steps of this
algorithm are marked in Figure 2 by numbers corresponding
to the steps in the algorithm.Rlink

deterministic

1) The packet is forwarded in NL.
2) . . . :

a) The packet is forwarded in NL.
b) The packet is forwarded in ML.

3) All subsequent forwarding of this packet through this
U-turn switch will take place in ML.

a) If the packet arrives in NL the U-turn switch
chooses the first upward link in testing sequence
D.

b) The packet arrives in ML the U-turn switch
chooses the next upward link in the testing se-
quenceD after the port through which the packet
arrived and subsequently forwards the packet up
this link in ML. This is always possible withk−1
faults sinceD covers all thek upward ports of the
U-turn switch.

4) A U-turn switch that receives a packet from an upward
link that is the last link in the sequenceD discards the
packet.

After reaching point 5 of the algorithm, the switch may
inform the source node of the failure to prevent it from
transmitting more packets. This can only happen when the
network contains more thank − 1 link faults.

Local dynamic re-routing one-link fault tolerance can be
achieved with a simpler version of the algorithm, given thatwe
know that any path taken by the packet after the U-turn switch
is fault free. Points 4 and 5 inRlink

deterministic can therefore be
ignored in this case. An arbitrary upward link can be used

from the U-turn switch in point 3; there is no need for a test
sequence. In addition, there is no need for additional virtual
channels, because a deadlock requires at least two U-turns in
the network as we proved in [17] (or Appendix A). We can
guarantee the existence of only one U-turn by deterministically
selecting the same downward re-routing link on encountering
the link fault. All re-routed packets will always reach the same
U-turn switch through the same downward link, and thus there
is only one U-turn. Livelock freedom andk − 1 link fault
tolerance forRlink

deterministic has previously been proved in [17]
(or Appendix A), and deadlock freedom will be shown in the
next section.

B. Switch Faults

In order to tolerate switch faults we need to modify the
packet header to include the port field as we have indicated
previously. This is required to be able to efficiently re-route
down two tiers. Furthermore, to guarantee that this will remain
deadlock free we require three virtual channels/layers, one
more than for link faults. The deterministic dynamic switch
fault-tolerant algorithm,Rswitch

deterministic, for tolerating up to
and includingk − 1 switch faults is presented below. The
steps of this algorithm are marked in Figure 3 by numbers
corresponding to the steps in the algorithm.

Figure 3. A fat-tree consisting of radix 8 switches with two switch faults.

The faulty switches and their links are marked as dotted
lines, and the bold line describes the path of a packet from

its source to its destination. Note how the packet is re-routed
within the group via the U-turn switch. The numbers refer to

the corresponding steps of the routing algorithm.

Rswitch
deterministic

1) In the upward phase towards the root, one link is pro-
vided by the forwarding table as the packet’s outgoing
link. If the switch connected to the link is faulty, it is
disregarded and one of the other upward links are chosen
by the re-routing mechanism, re-routing the packet. The
packet is forwarded in NL.

2) In the downward phase (towards tiern−1), only a single
link is provided by the forwarding table; namely, the
link on the shortest path from the current switch to the
destination.



a) If the packet arrives from below in ML2, forward
the packet downwards in ML2.

b) If the packet arrives from above in ML2, forward
the packet downwards in ML1.

c) If the packet arrives in ML1, forward the packet
downwards in NL.

d) If the packet arrives in NL, forward the packet
downwards in NL.

3) If the switch connected to this downward link is faulty,
the following actions are performed:

a) If the packet came from the switch tier above (from
l to l + 1), another arbitrary downward link is
selected, which forces the packet to be re-routed.
This will result in the packet being forwarded as
long as there are fewer thank link faults.
i) If the packet is in ML2, forwarded in ML1.

ii) If the packet is in ML1 or NL, forward it in
NL.

b) If the packet came from the switch tier below
(from l + 1 to l), the packet is re-routed back
down to the same lower-tier (l + 1) switch again.
This is necessary to avoid livelock. The packet is
forwarded in ML2.

4) A switch that receives a packet from a port connected to
a switch at the tier above, for which it has no downward
path takes the following actions:

a) If theport-field equals−1 another arbitrary down-
ward link is selected, which forces the packet to
be re-routed. This will result in the packet being
forwarded as long as there are fewer thank switch
faults. The packet is forwarded in NL.

b) If the port-field equals−2 or theport-field equals
−1 and the switch is a bottom-tier switch (at tier
n− 1) this switch is a U-turn switch.
i) If the packet is in the normal channel, forward

the packet upwards through the first port spec-
ified by the re-routing sequenceD from which
the packet did not arrive. As long as there are
fewer thank switch faults one of these ports
will be connected to a fault free switch.

ii) If the packet is in ML1, forward the packet
through an upward output port in ML1 fol-
lowing the incoming port in the re-routing
sequenceD.

iii) If the incoming port is the final output in the
re-routing sequenceD and the incoming layer
is ML1, discard the packet. All upward links of
the U-turn switch have been tested and there is
no available path to the destination from this
switch. This may only happen when there are
k or more faults.

c) If the port-field does not equal either−1 or −2,
forward the packet down through the port indicated
by theport-field and set theport-field to −2. The
packet is forwarded in ML1.

5) A switch that receives a packet from a port connected to
the lower tier in which theport-field equals−2 stores

the incoming port number in theport-field and forwards
the packet in ML2 through one of its upward links. The
algorithm is then repeated from step 2.

After reaching point 4.b.iii) of the algorithm, the switch
may inform the source node of the failure to prevent it from
transmitting more packets. This may only happen when the
network contains more thank − 1 link and switch faults.

If we consider only one switch fault, it is sufficient that this
field only contains one bit to indicate whether the packet is
re-routing down the first or the second tier (froml to l+1, or
from l+1 to l+2). Furthermore, any packet will be re-routed
only once before it reaches its destination; hence, there can
be no livelock. Thus, no modifications are required in order to
ensure freedom from livelock apart from the re-routing bit in
the packet header, not even a re-route vector in the switches.

Just as for link faults,Rswitch
deterministic allows transparent re-

utilisation of previously failed elements. The proof of connec-
tivity and livelock freedom is available in [17] (or Appendix
A).

C. Deadlock Freedom

In this section we show thatRlink
deterministic is deadlock free.

The method for showing thatRswitch
deterministic is deadlock free is

similar, except that three virtual layers are required. This proof
is available in [17] (or Appendix A). As we have indicated, to
guarantee thatRlink

deterministic is deadlock free with more than
one fault, we require the use of two virtual layers: (i) a normal
virtual layer (NL) where most of the packet forwarding takes
place, and (ii) a re-routing layer (ML) that contains the packets
currently being re-routed. The transition from NL to ML takes
place in the U-turn switches. Each time a packet performs a
U-turn it enters ML. The transition from ML back to NL takes
place in those lower-tier switches in the switch group that are
on the packet’s path to the destination. In other words, the
transition back to NL takes place when the re-routed packet
has reached the switch at the bottom end of the failed link
around which the packet was initially re-routed.

An obvious property of a cyclic dependency chain is that
if each channel in the cycle were to be assigned a number
larger than the previous channel in the cycle, there would,
sooner or later, be a dependency from a channel with a high
sequence number to a channel with a lower sequence number.
Consequently, if it is possible to apply a set of numbers to
all channels in the network in such a way that any packet
traversing the network always moves to a channel with a higher
sequence number than the previous channel, there can never
be any cycle.

In order to show thatRlink
deterministic is deadlock-free we

introduce a numbering scheme which we apply to all channels
in the fat tree. The fat-tree consists of four types of channels:
upward and downward channels in NL, and upward and
downward channels in ML. LetNu

s be the set of upward
channels in NL at link tiers and Nd

s the set of downward
channels in NL at link tiers. Ms is the set of upward and
downward channels at tiers in ML, andMu

s andMd
s are the

subsets of the upwards and downwards channels respectively.
u′ is the sequence number assigned to the channels incident



of that all years five and itu. The assignmentu′ = j where
j is an integer greater than -1 andu ∈ N ∪ M assigns the
numberj to the channelu. The number of link tiers in the
network isn−1, ands is the link-tier number ([0, n−2]). The
tier number of a link is same as the tier number of the switch
connected to its upward end. Hence, the link-tier number of
the links connected to the root switches as tier0 is also0, and
the link-tier number of the links connecting the leaf switches
at tiern− 1 to the swithces at tiern− 2 is n− 2. We number
the channels as follows:

1) u′ = n− 2− s, ∀u ∈ Nu
s , s ∈ {0 . . . n− 2}

All upward channels in NL are assigned the reversed
indexing of the link tiers.

2) u′ = v′ + 1, ∀u ∈ Nd
0 , ∀v ∈ Nu

0 .
All downward channels in NL at the topmost link tier
are assigned a number that is one unit greater than the
topmost upward channels in NL.

3) u′ > v′, ∀u ∈ Nd
s , ∀v ∈ Ms−1 ∪Nd

s−1, s > 0.
Every downward channel at tiers in NL is given a
number that is larger than any downward channel in
NL and any channel in ML of all tiersl higher than
s (l < s).

4) u′ = v′ + 2i+ 1, w′ = v′ + 2i+ 2, ∀u ∈ D ∈ Mu
s , w ∈

D ∈ Md
s , i is the index ofu in the sequenceD, i ∈

{0, . . . , k − 1}, ∀v ∈ Nd
s .

Every re-routing channel is given a number larger than
the normal downward channels at tiers, in an increasing
order fromv′ + 1 corresponding to the index of the re-
routing channel in the re-routing sequenceD from the
u-turn switch. For instance, assuming that the largest
sequence number of all downward channels in NL at
tier s is 10, the first upward re-routing channel in the
sequence to be tested from a U-turn switch at tiers is 11,
the first downward re-routing channel is12, the second
upward re-routing channel is13, and so forth.

We now show that the proposed numbering scheme provides
all channels in the network with a single number.

Lemma 5:Every channel in the fat-tree can be assigned
one and only one number if that satisfies all four points of the
numbering algorithm.

Proof: We consider first the channels in NL. Every
channel in the fat-tree belongs to a single link tier. Rule1
guarantees that all upward channels in NL are assigned a
number. The only requirements on these numbers is that they
be the reverse order of the link tier indexing, which is trivial
to guarantee. There is only one possible assignment for any
link.

For the downward channels in NL, rules2 and3 guarantee
that every channel is assigned a number. All downward chan-
nels at the topmost link tier only have one possible assignment
as per rule2. From point4, the maximum number assigned
to the re-routing channels at a tierl is limited by the number
of channels in the re-routing sequence, which is2 ∗ k. The
maximum number assigned to any channel at a tier above tier
l is n− 2+ l+ l ∗ 2k (the numbers assigned to all channels in
Nu, plus the number assigned to the downward channels at
each tier, plus all the numbers assigned to re-routing channels
at each tier abovel). Any downward channel at tierl in NL

Figure 5. The path followed by packets from source to destination. The link
marked “X” is faulty, and since this is on the deterministic path, the packet
must be re-routed. The dotted links carry packets of the flow upwards in the
network, dashed links carry packets downwards, and the dashed and dotted
link carries packets of the flow both ways. The numbers indicate the number
of the channel that the packet occupies out from the switch according to our
numbering scheme, the underlined numbers being in the re-routelayer. The
packet path is indicated by the arrowed line.

may therefore be assigned a number that satisfies rules2 and
3, which is one greater thann−2+l+l∗2k. There is obviously
only one such number for any link at any link stage.

Similarly, rule4 guarantees that all re-routing channels at all
tiers are assigned a number. Rule2 guarantees that all top-tier
downward channels in NL are assigned the same numbern.
Assigning the numbern+i to consecutive channels with index
i in the re-routing sequenceD, combined with the fact that
any re-routing channel belongs to the re-routing sequence of
one and only one U-turn switch, guarantees that we conform
to rule4 for the top-tier re-routing channels and that every re-
routing channel is assigned exactly one number. For re-routing
channels at subsequent lower link tiers, the same reasoning
applies, except that the number of the downward channels in
NL of each tierl is given by l ∗ 2k + l + n − 2, as shown
previously.

This numbering scheme is illustrated in Figure 4 for a small
2-ary 3-tree. There is one figure for each of the upward and
downward channels in the normal and re-routing layers. Figure
5 illustrates the path followed by a flow of packets from the
node marked ’source’ to the node marked ’destination’. The
dotted links carry packets of the flow upwards in the network,
dashed links carry packets downwards, and the dashed and
dotted link carries packets of the flow both ways. The link
marked “x” is faulty, and since this is on the deterministic
path the packet must be re-routed. Sincek = 2, packets
must therefore backtrack down one tier towards the source
to the U-turn switch, as illustrated by the dashed and dotted
line. The numbers indicate the number of the channel that
the packet occupies out from the switch, according to our
numbering scheme. It is clear that the re-routed packets only
cross channels with increasing numbers, thereby guaranteeing
that the routing algorithm will never deadlock.

Before we proceed with the formal proof of deadlock



(a) Normal upward
channels

(b) Normal downward
channels

(c) Upward channels in
the re-route layer

(d) Downward
channels in the re-
route layer

Figure 4. Channel numbering in a fat-tree for link fault tolerance. Numbering of the different channels in the normal and re-routing layers, assuming that
the ordered sequenceD tests the upward ports from left to right.

freedom, we must consider one final corollary, which shows
that any upper-tier switch in a switch group will have the same
index in the re-routing sequenceD for any U-turn switch in
that group. This means that all upward channels in the re-
routing layer to a given switch will have the same sequence
numberi, and all downward channels in ML from this switch
will have the same sequence numberi+1 (This follows from
rule 4).

Corollary 1: All upward links to an upper-tier switchu in
a switch groupG have the same indexi in the re-routing
sequenceD of all U-turn switches inG.

Proof: Consider a switch groupG with its upper tier at
tier l, and its lower tier at tierl + 1. From Definition 1, all
switches inG are connected to portwl + k of the switches at
tier l + 1, wherewl is the (l)’th tuple of the switch n-tuple.
Any upper-tier switch is therefore connected to the same port
number on all the lower-tier switches, and these will have the
same index in the re-routing sequenceD for all possible u-turn
switches in the group.

We proceed with the proof of deadlock freedom for the
routing algorithm. We consider here the dependencies between
channels in the network. Since every channel in the network
has its own number, it is sufficient to show that the next hop
channel for any packet in any node in the network has a
number that is larger than the sequence number of all channels
that the packet may previously have traversed. When following
such a dependency chain where all channels have a number,
all next-hop channels that could possibly close a cycle will
necessarily be assigned a number that is lower than or equal
to the current channel.

Theorem 1:Rlink
deterministic is deadlock-free.

Proof: We give all channels in the network a sequence
number conforming to the above rules. The routing algorithm
is deadlock-free if we can show that it is impossible to move
to a channel that has a sequence number lower than or equal
to the current channel.

There are four specific situations for any packet forwarded
in the network.

1) The packet is forwarded upwards in NL
According to rule 1, all upward channels at the next
link tier upwards have a larger sequence number than
the current channel.

2) The packet is forwarded downwards in NL

According to rules 2 and 3, all downward channels at
the next link tier downwards have a larger sequence
number than the current channel, regardless of whether
the current channel is a normal channel or a re-routing
channel.

3) The packet is forwarded upwards in ML
This only takes place in the downward routing phase.
According to rule 4, all re-routing channels at the
current link tier have a larger sequence number than
any downward normal channel at the same tier, and all
re-routing channels at the tiers above. In addition, the
next re-routing channel always has a larger sequence
number than the current re-routing channel, following
the ordered sequenceD and rule 4.

4) The packet is forwarded downwards in ML
There are two possibilities. Either the packet must return
to the U-turn switch, or it has a fault-free downward path
towards the destination. We call the current switchz. z
has the same position in the re-routing sequenceD for
all U-turn switches in the switch group. Thus all upward
re-routing channels in the switch group connected to
z will have the same sequence number, as will all
the downward re-routing channels in the switch group
connected toz (rule 4, see Figure 4 for an example). The
sequence number of the downward re-routing channel
from z, whether it runs back to the U-turn switch or
towards the destination, must therefore be larger than
the sequence number of any upward re-routing channel
that may have led a packet toz.

No packet forwarded in the network will ever reach a channel
that has a sequence number that is lower than or equal to that
of any channels it has previously traversed, andRlink

deterministic

is deadlock-free.

It is worth noting that resuming the use of a previously
failed link once it is restored to service is also deadlock-
free, because the numbering scheme that we have utilised here
remains intact.

VII. A DAPTIVE ROUTING

We have given deterministic routing functions capable of
toleratingk− 1 arbitrary faults while remaining both livelock
and deadlock free. The nature of the deterministic routing



algorithm required us to use one/two extra virtual channel(s)
on all links to guarantee deadlock freedom. When we now
consider adaptive routing, the adaptivity gives us an extra
degree of freedom, removing the necessity of using virtual
channels to maintain deadlock freedom.

Whereas deterministic routing required a strict ordering of
the paths to be tested from the U-turn switches, we can use
the greater degree of freedom afforded by adaptive routing to
simply ensure that we test all possible paths once, but in any
order, allowing maximum adaptivity. To facilitate this, a re-
routing vector of lengthk bits is required in the switches, with
one bit for each of the upward links to be tested from the U-
turn switch. By setting the bit in the vector that corresponds to
the link on which a re-routed packet arrives, the U-turn switch
can keep track of which upward links lead to faulty paths and
which are not connected to any faults. A timeout mechanism
is required to reset the rerouting vector after a period of U-turn
inactivity in order to be able to tolerate transient faults.Note
that the use of the re-route vector is only required to guarantee
the tolerance of more than one fault. If only one-fault tolerance
is required, it is sufficient to choose an arbitrary upward link
from the U-turn switch.

A. Link Faults

Using the foregoing reasoning as a basis, the adaptive
dynamic fault-tolerant algorithm,Rlink

adaptive, for tolerating up
to and includingk − 1 link faults is presented below. The
steps of this algorithm are marked in Figure 2 by numbers
corresponding to the steps in the algorithm.
Rlink

adaptive

1) . . .
2) . . .

a) . . .
b) . . .

3) The U-turn switch sets the bit in its re-routing bit
vector that corresponds to the link on which the packet
arrived (it is not necessary to try to use this link for
forwarding the re-routed packet, because we know the
path is broken).

4) The U-turn switch adaptively chooses one of its upward
links that does not have its corresponding bit set in the
bit vector and subsequently forwards the packet up this
link. If there are fewer thank link faults, fewer than
k of the bits will be set. Therefore, the packet will be
forwarded as long as there are fewer thank link faults.
The algorithm is then repeated from step 2.

5) A U-turn switch that receives a packet from an upward
link in which all other bits in the re-routing vector are
set discards the packet.

In the final stage of the algorithm, the U-turn switch may
choose to inform the source node of its inability to find a
correct path in order to prevent it from transmitting more
packets.

One important feature of the above algorithm is that relative
to the original adaptive routing for the fault-free case, only the
re-routing in step 2 and the selection function (steps 1, 3 and
4) need to be modified. The only additional functionality that

is needed for temporary faults is a timer that zeroes out the
re-route vector after a given time interval. Note that this was
not required for the deterministic routing algorithm, since it
did not store any state information in the switches.

Figure 6 shows (i) a more detailed view of re-routing in a
switch group that has multiple faults and (ii) the state of the
re-routing vector. The connectivity, and livelock and deadlock
freedom for the algorithm withk − 1 link faults is shown
in [17] (or Appendix A).

Figure 6. A combination ofk − 1 faults with re-routing in a group in a
k = 4 network.The terms ’ingress’ and ’egress’ refer to the switches where
the packet enters and leaves the switch group, respectively. The numbered
U-turns refer to the corresponding states of the re-route vector (listed next to
the U-turn switch) as the U-turns are performed.

B. Switch Faults

Switch fault tolerance with adaptive routing is more com-
plex than link fault tolerance with adaptive routing because of
the number of possible paths that can be taken by a packet.
Hence, in addition to re-routing down two tiers which fol-
lowing from Lemma 4 guarantees connectivity with less than
k switch faults, we require the port field as for deterministic
routing.

Below we list the routing algorithmRswitch
adaptive to tolerate

k− 1 arbitrary switch faults.Rswitch
adaptive is illustrated in Figure

7.
The fault tolerance fork− 1 switch faults is guaranteed by

the fact that every possible U-turn switchu at the lower tier
in the two-hop switch group has at least one upward link that
leads to a switch in the setF , which again is connected to
the switchT , as defined in the proof of lemma 3.T is not
connected to any faulty switch through its downward links,
and it will therefore never re-route any packet down tou.
Consequently, there will always be one upward port in any
U-turn switch for which the corresponding bit in the re-route
vector will always be zero.
Rswitch

adaptive

1) In the upward phase (towards tier0), all upward links
are supplied by the routing function and one is selected
as the packet’s outgoing link. If any of the links are
faulty, the selection function simply does not choose it.
This will result in the packet being forwarded as long
as there are fewer thank link faults. When the packet
has reached a switch with the packet destination in its
subtree, the upward phase ends and is followed by the
downward phase.



Figure 7. Re-routing in a 2-ary 5-tree

The bold, whole links show the path from the source to the
destination, re-routing around a fault both in the upward and
downward direction. The switches that are denoted as open

circles with their corresponding dashed links have failed,and
the switches and links with the grey outlines belong to a

two-hop switch group. The numbers correspond to the points
in the routing algorithm.

2) In the downward phase (towards tiern − 1), only one
link is supplied by the routing algorithm; namely, the
link on the shortest path from the current switch to the
destination. If this link is faulty, the following actions
are performed:

a) If the packet came from the switch tier above (from
l − 1 to l), another arbitrary downward link is
selected, which forces the packet to be re-routed.
This will result in the packet being forwarded as
long as there are fewer thank link faults.

b) If the packet came from the switch tier below (from
l + 1 to l), the packet is re-routed back down to
the same lower-tier (l+ 1) switch again. This will
make a re-routed packet in a switch group with
more than one fault follow the path illustrated in
Figure 6. This is necessary to avoid livelock.

3) A switch that receives a packet from a port connected to
a switch at the tier below and which has a shortest path
fault-free downward link, ensures that theport-field is
−1 and forwards the packet downwards.

4) A switch that receives a packet from a port connected to
a switch at the tier above, for which it has no downward
path takes the following actions:

a) If the port-field equals−1 it is set to −2 and
another arbitrary downward link is selected, which
forces the packet to be re-routed further down. This
will result in the packet being forwarded as long
as there are fewer thank link faults.

b) If the port-field equals−2 this switch is a U-turn
switch. The switch sets the bit in its re-routing bit
vector that corresponds to the link on which the

packet arrived (it is not necessary to try to use
this link up for forwarding the re-routed packet,
because we know the path is broken).

c) If the switch is a bottom-tier switch (at tiern− 1)
it becomes a U-turn switch and sets the bit in
its re-routing bit vector that corresponds to the
link on which the packet arrived to guarantee link-
fault tolerance. Theport-field is set to−1, and the
switch adaptively chooses one of its upward links
to forward the packet.

d) If the port-field does not equal either−1 or −2,
forward the packet down through the port indicated
by theport-field, which is reset to -2.

5) The U-turn switch adaptively chooses one of its upward
links that does not have its corresponding bit set in the
bit vector and subsequently forwards the packet up this
link. If there are fewer thank link faults, fewer than
k of the bits will be set. Therefore, the packet will be
forwarded as long as there are fewer thank link faults.

6) A switch that receives a packet from a port connected to
the lower tier in which theport-field equals−2 stores the
incoming port number in theport-field and adaptively
chooses one of its upward links. The algorithm is then
repeated from step 2.

7) A U-turn switch that receives a packet from an upward
link in which all other bits in the re-routing vector are set
and theport-field is−2 discards the packet. All upward
links of the U-turn switch have been tested and there
is no available path to the destination from this switch.
This may only happen when there arek or more faults.

The connectivity and deadlock freedom properties of this
algorithm for k − 1 switch faults is presented in [17] (or
Appendix A).

VIII. E NDPOINT DYNAMIC REROUTING

Because of the lack of any other dynamic local rerouting
algorithms to compare with in the evaluation presented in
the next section, we compare our dynamic local rerouting
algorithm for deterministic dynamic local re-routing (DDLR)
and adaptive dynamic local re-routing (ADLR) with a fault-
tolerance algorithm that we call deterministic dynamic recon-
figuration (DDRC). DDRC is one of the more straightforward
ways of tolerating faults dynamically in a deterministically
routed fat-tree. It may be used for both source routing and
distributed routing. For source routing, every network element
that is connected to the element that fails broadcasts informa-
tion about the failure to all processors in the network. Each
processor may then remove all paths that involve the faulty
element from their routing table, or remove the faulty element
from its network graph and compute new routing tables using
standard fat-tree routing, thus avoiding the fault. Distributed
routing tables in interconnection networks are usually setup by
a management unit. In this case, the nodes that are connected
to the failure send information to the management unit, which
calculates new tables without the faulty elements and uploads
these to the switches.



A. Hybrid Dynamic Rerouting

Since dynamic local re-routing (DLR) and DDRC have
two distinctly different methods of operation, it is possible to
combine the two into a hybrid approach. When both methods
are used simultaneously, DLR may re-route packets while the
processing nodes or a management unit is being informed of
the fault event. This will reduce the number of packets lost per
fault. However, the probability that the routing algorithmwill
keep the network connected is dictated by DDRC. The reason
is that all paths that contain faults will be removed by the
algorithm. Therefore, DLR will only operate in the interval
between (i) the faults being discovered and (ii) the routing
table of the switches being updated by the management unit
and all packets that followed the old routes being drained from
the network. For this hybrid approach, all performance metrics
that we evaluate in the next section are the same as for DDRC,
except for packets sunk per link fault, which will be the same
as for DLR. Therefore, it will not be evaluated through any
specific simulations.

IX. EVALUATION

In this section, we evaluate the performance of the proposed
dynamic local re-routingmethod (DLR) with both determin-
istic routing (DDLR) based onRlink

deterministic and adaptive
routing (ADLR) based onRlink

adaptive. The most prominent
feature of the DLR mechanisms is the speed of their response
to failures, which results in very few packets being lost.
However, the price of this almost instantaneous fault tolerance
is paths in the network that are less optimal, and thus reduced
performance. We compare the DLR mechanisms against the
deterministic dynamic reconfiguratonmethod (DDRC) that we
presented in Section VIII. We will use an implementation of
DDRC close to that which can be achieved in Infiniband. Upon
discovering a faulty port, the switch that makes the discovery
sends a message to the Infiniband subnet manager to inform it
of the failure. The subnet manager then generates new routing
tables and distributes these to all switches in the network.

We evaluate the effects that the two paradigms have on
performance, to illustrate the difference between using optimal
paths (DDRC) and suboptimal paths combined with deter-
ministic (DDLR) or adaptive routing (ADLR). We compare
the three methods with respect to performance degradation
with link faults; hence, DDRC is configured with only one
virtual channel, even though DDLR in fact requires two. In
this manner we may use the performance degradation as a
measure of the cost of the fast failover of ADLR and DDLR
compared to DDRC. We also compare the probabilities that
the three algorithms will keep the network connected beyond
their guaranteed connectivity limit ofk − 1 faults. For this
comparison the probability will be the same for DDLR and
ADLR as they both rely on the same re-routing mechanism to
maintain connectivity.

We have only included the evaluation for link faults in
this paper. Switch faults will have a more severe performance
degradation than link faults because more paths are taken out
of commission by a single fault, and the re-route path is longer
than for link faults. However, the general conclusions we draw
at the end of the evaluation are valid for both types of faults.

A. Simulation Environment

We have conducted a series of network simulations in
which the experiments were run with an increasing number
of link faults, (from 0-10) in order to examine how the
methods perform as the network degrades. The simulations
were performed in an event driven simulator developed in-
house at Simula Research Laboratory. It is based upon the
J-sim framework [25]. In our evaluation, the link bandwidth
was 2.5 Gb/s. However, the links used the 8b/10b encoding
scheme; hence, the maximum effective bandwidth for data
traffic was limited to 2 Gb/s. The size of a virtual output queue
for a VC is 512 bytes, which is sufficient to allow buffering of
up to two 256 byte packets, which in turn is close to the packet
size/buffer space ratio that is often found in real hardware. The
send queue of the processing nodes was set at 1.3 MB, which
is sufficiently large to inject the required traffic into a variably
loaded network.

Two topologies were simulated: the 4-ary 3-tree and the 2-
ary 6-tree. These topologies consist of 48 (64) and 192 (64)
switches (computing nodes), respectively. They have a mod-
erate number of network elements, which allows the required
quantity of simulations to be run within a reasonable time.
Furthermore, the effects of faults in these small-scale networks
represent upper bounds on the impact on performance in larger
networks, because the impact of any single fault in a large
network will be smaller than in a small network. Regarding the
traffic pattern, both uniform and hotspot traffic was validated,
but only the results were uniform traffic have been included
as this clearly illustrates the performance of the algorithms.
Packet generation was governed by a normal approximation
of the Poisson distribution. Further, the packet size was 256
bytes. The link-transfer rate was 128 bytes per cycle. With
an effective link bandwidth of 2 Gb/s, this gives 1 second=
1953125 simulation cycles.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Offered packetrate (packets/cycle)

La
te

nc
y 

(c
yc

le
)

Latency 0 faults

Adaptive 4−ary 3−tree
Adaptive 2−ary 6−tree
Deterministic 4−ary 3−tree
Deterministic 2−ary 6−tree
Saturated
Unsaturated

Figure 8. Saturated and unsaturated loads with uniform traffic.

Two load cases were evaluated for increasing numbers
of link faults. The exact loads chosen for the evaluations
are marked by the vertical lines in Figure 8 for uniform
traffic: i) saturated, which was slightly above the saturation



point (relative to the fault-free network), and ii) unsaturated,
where the load was 30% below the saturation point. The
figure shows the throughput and latency for an increasing
network load for the two traffic distributions, with adaptive
and deterministic routing for both tested topologies. The figure
clearly shows when the networks saturate, and the vertical
lines mark the selected unsaturated and saturated loads we
use in the following experiments.

Each data point in the performance figures is the average
of 500 independent simulation experiments. For each experi-
ment, we let the simulation run until the average latency had
stabilized, before the measurements were started. Thereafter,
the simulation was run for another 10000 simulation cycles.

B. Evaluation Results

We start the evaluation by considering the degree of network
utilisation the various routing algorithms are able to maintain
as more and more link faults are introduced into the networks.
The throughput obtained by the three methods, DDLR, DDRC,
and ADLR, in a 4-ary 3-tree and a 2-ary 6-tree fat-tree
topology for saturated and unsaturated loads is presented in
Figure 9. The x-axis in these figures represents the number of
link faults introduced into the network, and the y-axis is the
average number of packets per cycle accepted by the network
injected by the end nodes. The vertical line at the points 3 and
1 on the x-axis depict thek − 1 fault tolerance limits in all
three evaluated algorithms.

If we consider the case for the 4-ary 3-tree with uniform
traffic in Figure 9(a), we notice that for zero faults ADLR
achieves a slightly lower saturated throughput than the DDLR
and DDRC methods. Recall that without faults DDLR and
DDRC are in essence the same routing algorithm. This is
because for a uniform traffic pattern, a well-balanced determin-
istic routing algorithm will outperform adaptive routing [7].
However, as the number of link faults increases, we see that
the saturated throughput for DDLR quite rapidly decreases;
already for one link fault, ADLR displays higher throughput
than DDLR. Furthermore, we see that the saturated throughput
of DDRC is higher than for the two other algorithms for
any number of faults (except for zero faults where it is
identical to DDLR). Of the DLR methods, ADLR is in other
words better at maintaining high throughput with link faults,
showing only a slightly higher decrease in throughput as the
number of faults increases than DDRC. The reason for this
is that the path used for re-routing around the link faults
quickly becomes a bottleneck in the network. This severely
impacts the performance of DDLR, while ADLR benefits
from its adaptivity in being able to redirect traffic to other
healthy paths. This view is further strengthened if we consider
the unsaturated loads for the three methods. In this case
all algorithms are able to maintain the same throughput as
without link faults, except for DDLR which also here shows
a throughput reduction as we pass three link faults.

Moving on to the 2-ary 6-tree in Figure 9(b) the situation is
somewhat different. First, note that sincek = 2 the algorithms
can only guarantee toleration of one link fault. We see that for
saturated throughput without link faults all three algorithms

all attain almost equal performance. The 2-ary 6-tree consists
of switches with a significantly lower number of ports than
the 4-ary 3-tree, limiting the number of available paths for
utilisation by ADLR. The difference between deterministicand
adaptive routing will therefore be less noticeable, although the
adaptive throughput is slightly lower. However, as the number
of faults increases, we again see that the throughput of DDLR
is more dramatically affected by link faults than both ADLR
and DDRC. Another interesting point is that as we pass nine
link faults the throughput of ADLR slips below the throughput
of DDLR. With this large number of link faults there is a high
probability of encountering a number of link faults on either
of the available paths in the network. As a consequence of
this, the relative performance difference between the various
paths becomes smaller as in the case without link faults, and
the performance of ADLR will be lower than DDLR. The
method with the best performance is still DDRC which simply
removes the faulty paths from the routes without having to re-
route traffic. However, as we will see later in the evaluation,
the involvement of a central entity, the subnet manager, causes
a severe time penalty to this operation. This will greatly reduce
the effectiveness of DDRC, especially for short-lived faults.

It is evident from Figure 8 that the 2-ary 6-tree has a greater
forwarding capacity with uniform traffic than the 4-ary 3-tree
for the same number of endpoints. For unsaturated throughput
the number of link faults we have introduced is not sufficient
to cause network congestion, and thus throughput reduction.
However, careful examination will reveal the same behaviour
as for the 4-ary 3-tree, for 10 link faults the throughput of
DDLR shows a slight decrease.

Let us next consider the number of packets discarded by the
network from the time that the fault occurs until it is tolerated,
which is the strongest point in favour of the DLR methods. For
DDLR and ADLR, this is plotted in Figure 10. The number
of packets lost per link fault is plotted along the y-axis, while
the increasing number of link faults is plotted along the x-axis.
Note that interconnection networks do not discard packets,so
the packet loss accounted here is exclusively caused by the
link failures.

We see that for any number of faults, the number of packets
sunk because of each link fault for the saturated case is about
1.5 and2.5−3 in the 4-ary 3-tree with uniform traffic (Figure
10(a)) for DDLR and ADLR respectively. For the unsaturated
case it increases from 0.4 to 0.6 for one through ten faults
for both DDLR and ADLR. Recall that the DLR methods
only loose packets that are either currently in transit overthe
failing link or queued for the failing link.

We found that the simulation time we used was insuffi-
cient to encompass the reconfiguration of the DDRC method.
Hence, we were forced to resort to calculating analyticallythe
number of packets lost during the reconfiguration. To achieve
this, we first approximate the time it takes to discover a fault,
compute new forwarding tables, and distribute them. Using
as a basis the work done by Bermudez et al. [2], which
evaluates the time it takes for the Infiniband subnet manager
to perform these tasks, we find that the time taken to distribute
the new forwarding tables is about 0.03 seconds in a 32-switch
network. The full time taken to reconfigure the network is
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Figure 9. Throughput for a 4-ary 3-tree and 2-ary 6-tree. Both uniform and hot-spot traffic is depicted, for the three methods: DDLR, DDRC, and ADLR.
The faults range from 0 to 10.
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Figure 10. Packets discarded for a 4-ary 3-tree and 2-ary 6-tree. Both uniform and hot-spot traffic is depicted, for two ofthe three methods: DDLR, and
ADLR. The faults range from 0 to 10.

about 0.5 seconds, most of which is used for routing table
calculation. In the calculations we assume that this calculation
is instantaneous, because the fat-tree routing algorithm is easy
to set up. In addition, the subnet manager expends no time on
discovering the topology change, because it is informed of the
fault by the switches. For the sake of simplicity we assume
the information is transmitted instantaneously. Therefore, 0.03
seconds is a lower bound on the time it will take to reconfigure
a 32-switch network.

First, the 0.03 seconds required for updating all forwarding
tables from the subnet manager corresponds to approximately
58593 simulation cycles. Second, to calculate the number of
packets lost in the presence of one link fault, it is necessary to
determine the packet rate over a single link in the fat-tree.This
depends on (a) whether the link is at the bottom or top link
tiers of the fat-tree, and (b) the total accepted packet rateof
the network, which can be seen from Figure 9 for the saturated
case with zero faults at approximately 18 packets per cycle.
Based on this we can calculate that the bottom tier link has a

packet rate of 0.56 packets per cycle, and an upper tier link
carries 0.42 packets per cycle.

Multiplying this by the number of cycles in 0.03 seconds
yields a total of 32812 and 24704 packets lost per link fault
located at the lower or upper link tiers respectively; about
20000 times as many packets as DDLR and 10000 times as
many as ADLR. Keep in mind that the reconfiguration time
of 0.03 seconds was based on a 32-switch network, which is
smaller than the one considered here, and it was assumed that
it would take zero time to inform the subnet manager of the
failure and to calculate new tables. Hence, the actual packet
loss for DDRC may be significantly larger than that calculated
here, given the packet size. In that respect, the calculation is
optimistic compared to a real case.

For the 2-ary 6-tree the situation is much the same, with
ADLR losing more than twice as many packets per link fault as
DDLR with saturated traffic. For unsaturated traffic the packet
discard count is quite low since an unsaturated network has
minimal queuing time, and thus fewer packets are likely to be



stuck in disconnected queues.
The reason for the increased packet loss of ADLR compared

to DDLR is that ADLR through its adaptivity distributes traffic
more evenly in the network, thus forcing more buffers to be
occupied. Hence, there is a higher probability of there being
a large number of packets in the buffers that are connected to
the link that fails. The average packet loss will therefore be
somewhat higher.

The fundamental property of any fault tolerant routing
algorithm is the ability of the algorithm to keep the endpoints
connected when there are faults present in the network. In
Figure 11 we have plotted the probability (y-axis) of the
routing algorithm keeping the network connected after the
occurrence of a given number of faults (x-axis) for the 4-ary
3-tree (Figure 11(a)) and the 2-ary 6-tree (Figure 11(b)) for
the three algorithms. Note that the probability of maintaining
connectivity is the same for the two DLR methods, ADLR and
DDLR, as they both use the same re-routing mechanism to
forward the packets, and that this probability is differentfrom
the probability of the network being physically connected.
The difference that can be observed between the two methods
in the figures is therefore a result of statistical variationfor
the 500 samples we have simulated. Recall that the 4-ary 3-
tree is able to guarantee a connected network when there is
less than four link faults. The figure shows that for the 4-
ary 3-tree, all algorithms managed to maintain connectivity
for all 500 tested combinations of 4 link faults. Although
such connectivity cannot be guaranteed, the probability offour
link faults disconnecting a 4-ary 3-tree is very low. As the
number of link faults increases towards 10, the probabilityfor
all three algorithms decreases by roughly the same amount
down towards 97%. For the 2-ary 6-tree, on the other hand, the
algorithms can only guarantee the toleration of one link fault.
We see from the figure that already at two link faults none of
the algorithms maintain a 100% probability of connectivity.
Furthermore, we see that the probability of connectivity for
DDRC stands out by decreasing more rapidly than for the two
DLR algorithms. Local re-routing is in other words capable of
tolerating a larger number of fault combinations for a given
number of faults than reconfiguring the network to avoid the
faulty paths in fat-trees.

Finally, we will consider the probability of the networks be-
coming deadlocked when operating outside the limit specified
by the theory in the previous sections. For ADLR this is any
number of faults eyondk−1. Recall that the deadlock freedom
theory forRlink

adaptive only has validity when there are less than
k faults. Rlink

deterministic, on the other hand, is guaranteed to
be deadlock free for any number of faults as long as one/two
additional virtual channels are used when re-routing. However,
without these virtual channels, deadlock freedom can only be
guaranteed with one fault. Any number of faults larger than
this carries the risk of deadlocking the network.

To generate these figures we have run 500 simulations for
each of 4,7, and 10 link faults for the 4-ary 3-tree. We have
let each simulation run for 200 000 simulation cycles and
recorded the time at which the network became deadlocked,
if at all. The resulting plots will asymtothically approachthe
probability of deadlock for the given number of faults as the
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Figure 12. Probability of deadlock beyondk−1 faults with adaptive routing.
For a 4-ary 3-tree was four, seven, and 10 faults.

time approaches infinity. We have obviously not be able to let
time approach infinity, but it is still possible to get a general
idea of the probability from the figures presented. For the 4-ary
3-tree (Figure IX-B) we see that for four link faults, the lowest
number of link faults for which we do not guarantee deadlock
freedom, the probability of deadlock slowly approaches 1%.
For seven link faults the probability approaches 7%, and for10
faults the probability of deadlock has climbed to about 20%.
Comparing this to the probability of connectivity discussed
previously, we see that even though the 4-ary 3-tree remained
connected for all combinations of four link faults we tested,
there is a 1% probability of the network becoming deadlocked.
Similarly, for 10 link faults the probability of maintaining
connectivity was about 97%, but the probability of deadlock
for this case is 20%.

X. CONCLUSION

The size and complexity of modern high-performance com-
puter systems exacerbates the need for efficient fault-tolerant
mechanisms to guarantee high system performance. In this
paper we have presented a fault-tolerance mechanism based
on dynamic local rerouting, aimed at the much utilised fat-
tree topology. The fault tolerance algorithm can transparently
tolerate up to and includingk − 1 arbitrary link faults, where
k is number of ports in one direction of a switch in the fat-
tree. Depending on whether adaptive or deterministic routing
is utilised, deadlock freedom can be guaranteed without using
additional resources, or with one extra virtual channel, respec-
tively.

Simulation experiments show a graceful degradation in per-
formance as the number of link faults in the system increases.
For larger fat-trees with higher radix switches the effect of
any link fault in using dynamic local rerouting is believed to
be significantly smaller. For the relatively small topologies we
tested, the degradation is higher than for a simple reconfigura-
tion mechanism to which we compare the results. However, the
speed and transparency of the mechanism has a significantly
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Figure 11. Probability of connectivity for a 4-ary 3-tree and 2-ary 6-tree. For the three methods: DDLR, DDRC, and ADLR. The faults range from 0 to 10.

lower impact on network traffic. A high-speed reconfiguration
mechanism may lose up to 20,000 times more packets than our
dynamic local rerouting mechanism. Finally, the probability
of maintaining network connectivity for all end nodes is
slightly higher using dynamic local rerouting compared to
reconfiguring the fat-tree. Therefore, a careful combination of
dynamic local rerouting with reconfiguration as in the hybrid
approach will yield a fault tolerance mechanism with high-
performance, virtually no packet loss, and high probability of
connectivity beyond the guaranteed connectivity region.

APPENDIX A

A. Deadlock and Livelock Freedom with One Fault

We have shown that every switch has a connected path
to every destination when re-routing down one switch tier
with k − 1 arbitrary link faults. How we may configure
the routing algorithms to find these paths while guaranteeing
livelock and deadlock freedom is the topic of the next sections.
There are separate sections for deterministic distributedand
source routing, and adaptive routing, since there are significant
differences between how the routing algorithms must be set up
for the different cases. Before we proceed with this, however,
we will show that adding the re-routing mechanism in the
downward phase is deadlock and livelock free if there is just
one link fault in the network, regardless of whether we have
adaptive or deterministic routing.

It is well-known that a network may deadlock if there exists
a chain of channel dependencies that form a cycle [5], so that
it is possible to follow the dependency chain from one specific
channel and subsequently arrive at the same channel (although
this is not necessarily the case for adaptive routing). If there
is no such cyclic dependency chain, there is no deadlock.

Theorem 2:Re-routing around a single link fault will never
deadlock or livelock when there are no packets in the network
that have been re-routed around any prior fault.

Proof: Suppose the link between upper-tier switchSu

at tier l and lower-tier switchSv at tier l + 1 in group G1

has failed. In the upward phase, simply selecting a different

upward link to avoid the fault will not cause additional de-
pendencies to those already present from the up/down routing.
For the downward phase, at least one of the other lower-tier
switches (exceptSv) of G1 may be a U-turn switch,Suturn.
Next, suppose the network is deadlocked, so there is a cycle
in the channel dependency graph of the network. This cycle
must involve a dependency from the channel fromSu to the
u-turn switchSuturn to the channel fromSuturn to an upper-
tier switch ofG1, Sup, and a chain of dependencies back to
Su. There can be no dependency cycles withinG1 because
no packets are re-routed toSu soSu 6= Sup. OutsideG1, the
only possible dependency chain fromSup to Su is upwards
through a switchSr higher up in the tree, and then downwards.
This downward portion of the dependency chain will never go
throughG1; otherwise,Sr would be able to reach the same
destination through two downward links, which is impossible.
Hence, this dependency chain must involve another U-turn
for it to be able to return back toSu andSuturn. However,
given that there is only one fault in the network and no packets
following paths created by previous faults, there are no U-turns
outsideG1 and thus there can be no cycle.

Livelock freedom is guaranteed since from any switch
connected to a fault in the downward direction all other
downward links leads to a U-turn switch. Similarly, all upward
links from a U-turn switch (except the link from which the
re-routed packets arrive) have connected up/down paths to
the destination. Any re-routed packet will therefore never
encounter the same fault twice, and is always forwarded on
the shortest connected path to the destination.

B. An algorithm for calculating forwarding tables for
Rlink

deterministic

Algorithm 1 presents the pseudocode of the function to fill
the routing tables of a switch for a destination in the fat tree.
It requires that the routing function is able to take both input
port and input VC as parameters in addition to the destination
address, and returning output port and output VC. Recall that
any VC belongs to either NL or ML. The only additional



mechanism required in the switches is the ability to select
(i) an arbitrary output port in the correct direction when a
faulty link is encountered and the packet is in NL, and (ii)
the incoming ports as the output port when a faulty link is
encountered and the packet is in ML.

Algorithm 1 Rlink
deterministic − table

1: global array sequence[k]
2: global array route[][][]
3: sequence[incomming port p]=next upward port to test
4: sequence[0]=first port in the sequence
5: VC1 belongs to normal VL
6: VC2 belongs to re-routing VL
7: route[destination][incomming port][incomming

VC]=outgoing port, outgoing VC
8: function ROUTEDESTINATION(Switch s,Destination d)
9: if d not reachable downwardsthen

10: select upward portdp ⊲ should be balanced in
some way

11: for all downward portsp in s do
12: s− > route[d][p][V C1] = dp, V C1 ⊲ set up

regular routes for all downward ports
13: end for
14: for all upward portsp in s do ⊲ u-turns⊲ for the

first u-turn
15: s− > route[d][p][V C1] = sequence[0], V C2

⊲ for subsequent u-turns through the same switch
16: s− > route[d][p][V C2] = sequence[p], V C2
17: end for
18: else
19: dp=downward port tod
20: for all portsp in s exceptdp do ⊲ set up regular

routes for all incomming ports
21: s− > route[d][p][V C1] = dp, V C1
22: if p is downward port then ⊲ Route

downwards after the u-turn
23: s− > route[d][p][V C2] = dp, V C2
24: end if
25: if p is upward portthen ⊲

Continue downwards below the tier of the fault and return
to normal layer

26: s− > route[d][p][V C2] = dp, V C1
27: end if
28: end for
29: end if
30: end function

C. Livelock freedom and connectivity forRlink
deterministic

We now prove livelock freedom and thek−1 fault tolerance
of Rlink

deterministic.
Lemma 6:Rlink

deterministic is connected and livelock free
with k − 1 arbitrary link faults.

Proof: Lemma 2 guarantees a path from every switch to
every destination using the re-routing function implemented in
Rlink

deterministic. It is therefore sufficient to show that the routing
algorithm is livelock free. The number of links is finite; hence,

a livelock requires that a packet is forwarded in a loop. There
must therefore exist a set of switches that the packet may
traverse an unlimited number of times. There are obviously
no such loops in the upward phase. The only possible cause
of a loop is the U-turn performed when re-routing around a
fault. However, the ordered sequenceD utilised in point 4 of
Rlink

deterministic and the re-routing in point 2b ofRlink
deterministic

guarantees that all the upper-tier switches in the switch group
containing the faults are used as next hops at most once; hence,
none of these can be involved in a livelock. Given that there
are fewer thank link faults, it is guaranteed that there is a
path that moves the packet out of the switch group and one
tier lower down towards the destination. Consequently, every
time a packet is re-routed, it will find a path that brings it one
tier closer to its destination, and the algorithm is livelock free.

D. Livelock freedom and connectivity forRswitch
deterministic

Lemma 7:Rswitch
deterministic is connected and livelock free

with k − 1 arbitrary link or switch faults.
Proof: Lemma 4 guarantees a path from every switch

to every destination. It is therefore sufficient to show thatthe
routing algorithm is livelock free. The number of links is finite;
hence, a livelock requires that a packet is forwarded in a loop.
There must therefore exist a set of switches that the packet may
traverse an unlimited number of times. There are obviously no
such loops in the upward phase. The only possible cause of a
loop is the U-turn performed when re-routing around a fault.
However, the ordered sequenceD utilised in point 4 of the
algorithm, the port field that guarantees in points 4c and 5
that a packet always returns to the same u-turn switch, and
the re-routing in point 2b, guarantees that all the upper-tier
switches in the switch group containing the faults are used as
next hops at most once; hence, none of these can be involved
in a livelock. Given that there are fewer thank switch faults,
it is guaranteed that there is a path that moves the packet
out of the switch group and one tier lower down towards the
destination. Consequently, every time a packet is re-routed, it
will find a path that brings it one stage closer to its destination,
and the algorithm is livelock free.

E. Deadlock Freedom forRswitch
deterministic

To achieve deadlock freedom with deterministic routing and
the fault tolerance algorithm presented above, we require the
use of three virtual layers: (i) a normal virtual layer where
most of the packet forwarding takes place, (ii) a re-routing
layer (ML1) that contains the packets currently being re-routed
in the lower half of the two-hop switch group, and iii) a second
re-routing layer (ML2) containing all packets being re-routed
in the upper half of the two-hop switch group.

The transition from the normal layer to ML1 takes place in
the U-turn switches. Each time a packet performs a U-turn it
enters ML1. The transition from ML1 to ML2 takes place in
the switch at the tier above the U-turn switch when re-routing
upwards, and the transition from ML2 to ML1 takes place
in a switch at the same tier when re-routing downwards. The
transition from ML1 back to NL takes place in any switch



at the lower tier that is not the u-turn switch. This will only
occur after the fault leading to the u-turn has been negotiated.

In order to show thatRswitch
deterministic is deadlock-free we

will use the same technique as we used forRlink
deterministic. We

introduce a numbering scheme which we apply to all channels
in the fat tree. Because of the complexity of the algorithm, the
numbering scheme will also be more complex.

The fat-tree configured for switch fault tolerance consists
of six types of channels: upward and downward channels in
NL, upward and downward channels in ML1, and upward and
downward channels in ML2. LetNu

s be the set of upward
channels in NL at link tiers and Nd

s the set of downward
channels in NL at link tiers. M1us andM1ds are the set of
upward and downward channels at tiers in the first re-routing
layer, andM2us andM2ds is the set of upward and downward
channels at tiers in the second re-routing layer.u′ is the
sequence number assigned to the channelu. The assignment
u′ = j where j is an integer greater than -1 andu ∈ N ∪
M1∪M2 assigns the numberj to the channelu. The link tier
numbering is almost the same as we used for link faults. We
number the channels as follows:

1) u′ = n− 2− s, ∀u ∈ Nu
s , s ∈ 0 . . . n− 2

All upward channels in NL are assigned the reversed
indexing of the link tiers.

2) u′ = v′ + 1∀u ∈ Nd
0 , ∀v ∈ Nu

0 .
All downward channels in NL at the topmost link tier
are assigned a number that is1 greater than the upmost
upward channels in NL.

3) u′ > v′∀u ∈ Nd
s , ∀v ∈ M1ds−1 ∪Nd

s−1, s > 0.
Every downward channel at tiers in NL is given a
number that is larger than the downward channels in
NL and all channels in the ML1 for all tiers higher than
s.

4) u′ = v′ + (i ∗ 4) + 1, w′ = v′ + (i ∗ 4) + 4∀u ∈ D ∈
M1us , w ∈ D ∈ M1ds , i is the index ofu in the sequence
D, ∀v ∈ Nd

s , u andw are part of the same link.
Every ML1 channel is given a number larger than the
normal downward channels at tiers, in an increasing
order fromv′ + 1 corresponding to the index of the re-
routing channel in the re-routing sequenceD from the
u-turn switch. For instance, assuming that the largest
sequence number of all downward channels in NL at tier
s is 10, the first upward M1 channel in the sequence to
be tested from a U-turn switch at tiers is 11, the first
downward M1 channel is14, the second upward M1
channel is15, the second downward M1 channel is18,
and so forth.

5) Let u, v, w be connected to the same switch at tier
s. u and w are the upward and downward channels
of the same link connected to an upward port, andv

is an upward channel connected to a downward port.
u′ = v′ + 1, w′ = v′ + 2∀u ∈ M2us , w ∈ M2ds , v ∈
M1us+1, u, v, w are connected to the same switch at tier
s, s >= 0.
Every upward channel in M2 connected to an upward
port of a given switch at tiers is given an index that
is one higher than the index of all the M1 channels
connected to the downward ports of the same switch.

We will show later that all the M1 channels will have
the same index. Every downward channel in M2 for all
links connected to the upward ports of the same switch is
given an index one higher than the upward M2 channels
on the same link.

Before we proceed with the formal proof of the validity
of the numbering scheme and deadlock freedom, we must
consider one final corollary, which shows that any upper-tier
switch in a 2-hop switch group is connected through downward
links only to switches that have the same index in the re-
routing sequenceD for any U-turn switch in that group. This
means that all upward channels in M2 to the switch will have
the same sequence numberi, and all downward channels in
M2 from the switch will have the same sequence numberi+1
(This follows from rule5).

Corollary 2: An upper-tier switchu in a 2-hop switch
group G2 is connected through downward links only to
switches that have the same indexi in the re-routing sequence
D for all U-turn switches inG.

Proof: Consider a 2-hop switch groupG2 with its upper
tier at tierl, and its lower tier at tierl+2. From Definition 1 ,
all switches at tierl+1 in G2 are connected to portwl+1+k

of the switches at tierl+2, wherewl+1 is the(l+1)’th tuple
of the switch number. For any given ordering sequenceD, all
switches at tierl+ 1 in G2 with the same value inwl+1 will
have the same index in the sequenceD. Further, any switch
at tier l in G2 wherew(l+1) = a for anya is only connected
to switches at tierl + 1 that also havewl+1 = a. Thus, any
switch at tierl in G2 is connected only to downward switches
with the same index inD.

We now show that the proposed numbering scheme provides
all channels in the network with a single number.

Lemma 8:Every channel in the fat-tree can be assigned
a number that satisfies all five points of the numbering
algorithm.

Proof: We will first consider the channels in NL. Every
channel in the fat-tree belongs to a single link tier. Rule1
guarantees that all upward channels in NL are assigned a
number. The only requirement on these numbers is that they
be the reverse order of the link tier indexing, which is trivial
to guarantee.

For the downward channels in NL, rules2 and3 guarantee
that every channel is assigned a number. From rule4, the
maximum number assigned to M1 channels at a tierl is limited
by the number of channels in the re-routing sequence which
is 4k, so the maximum number assigned to any channel at a
tier above tierl is n − 2 + l + l ∗ 4k (the numbers assigned
to all upward channels in NL, plus the number assigned to all
downward channels at each tier, plus all the numbers assigned
to re-routing channels at each tier). Any downward channel in
NL at tier l may therefore be assigned a number that satisfies
rules2 and3, which is on greater thann− 2 + l + l ∗ 4k.

Similarly, rule4 guarantees that all M1 channels at all tiers
are assigned a number. Rule2 guarantees that all top-tier
downward channels in NL are assigned the same numbern.
Assigning the numbern + i ∗ 4 + 1 to consecutive upward
channels with indexi in the re-routing sequenceD, and



(a) Normal upward channels (b) Normal downward channels

(c) Upward channels in M1 (d) Downward channels in M1

(e) Upward channels in M2 (f) Downward channels in M2

Figure 13. Channel numbering in a fat-tree for switch faults

Numbering of the different channels in the normal and re-routing layers, assuming that the ordered sequenceD consists the
upward ports from left to right.



assigningn + i ∗ 4 + 4 to consecutive downward channels,
combined with the fact that any M1 channel belongs to
the re-routing sequence of one and only one U-turn switch,
guarantees that we conform to rule4 for the top-tier re-
routing channels. For re-routing channels at subsequent lower
link tiers, the same reasoning applies, except that the number
of the downward channels in NL of each tierl is given by
n− 2 + l + l ∗ 4k, as shown previously.

Finally, rule 5 guarantees that all M2 channels at all tiers
are assigned a number. It follows from Corollary 2 that all
up/down channels in M2 that are connected to the same upper-
tier tier switch inG2 will be connected to middle-tier switches
in G2 that are connected only to downward links with the same
index inD and therefore the same channel number. Assigning
a sequence number to the upward M2 channels connected to
the upward ports of a switch that is one larger than an arbitrary
upward M1 channel connected to the downward ports of the
same switch will therefore yield the samme number regardless
of which of the upward channels in M1 are chosen. The same
is the case for the downward M2 channels connected to the
same switch.

This numbering scheme is illustrated in Figure 13 for a
small 2-ary 3-tree. There is one figure for each of the upward
and downward channels in the normal and the two re-routing
layers.

We will now proceed with the proof of deadlock freedom
for the routing algorithmRswitch

deterministic. The proof follows
the same method as for link faults, we show that there are no
transitions from any link to another link with a lower sequence
number.

Theorem 3:Rswitch
deterministic is deadlock-free.

Proof: All channels in the network are given a sequence
number according to the above rules. The routing algorithm
is deadlock-free if we can show that it is impossible to move
to a channel that has a sequence number lower than or equal
to the current channel.

There are six specific situations for any packet forwarded
in the network.

1) The packet is forwarded upwards in NL
According to rule 1, all upward channels at the next
link tier upwards have a larger sequence number than
the current channel.

2) The packet is forwarded downwards in NL
According to rules 2 and 3, all downward channels at
the next link tier downwards have a larger sequence
number than the current channel, regardless of whether
the current channel is a normal channel or a M1 channel.

3) The packet is forwarded upwards in M1
This only takes place in the downward routing phase.
According to rule 4, all upward ML1 channels at the
current link tier have a larger sequence number than
any downward normal channel at the same tier, and all
re-routing channels at the tiers above. In addition, the
next re-routing channel always has a larger sequence
number than the current re-routing channel, following
the ordered sequenceD and rule 4.

4) The packet is forwarded downwards in M1
There are three possibilities. Either the packet is return-

ing to the U-turn switch, it is on a fault-free downward
path towards the destination, or it must be re-routed
again because the shortest downward path contains
another fault. We call the current switchz. z has the
same position in the re-routing sequenceD for all U-
turn switches in the switch group. Thus all upward M1
channels in the switch group connected toz will have
the same sequence number, as will all the downward M1
channels in the switch group connected toz (rule 4, see
Figure 13 for an example). The sequence number of the
downward M1 channel fromz, whether it returns back
to the U-turn switch, proceeds towards the destination,
or is re-routed again, must therefore be larger than the
sequence number of any upward M1 channel that may
have led a packet toz and any downward M2 channel
that may have led a packet toz, since a downward M1
channel has a sequence number that is 3 larger than the
same upward M1 channel (rule 4), and any M2 channel
at the tier above connected to the same switch has a
sequence number at most two larger than the upward
M1 channel (rule 5).

5) The packet is forwarded upwards in M2
This only takes place after an upward M1 channel.
Following from Corollary 1all upward M1 channels
connected to the downward ports of the same switch
have the same sequence number. Hence, following rule
5, the upward M2 channel from this switch will have
a sequence number one larger than any upward M1
channel leading to it.

6) The packet is forwarded downwards in M2
There are two possibilities. Either the packet must return
to the U-turn switch, or it has a fault-free downward
path towards the destination. We call the current switch
z. Following from Corollary 2z is connected through
downward links only to switches with the same sequence
number inD. Consequently, following rule 5, all upward
M2 channels toz have the same sequence number, which
is one larger than any upward M1 channel that may have
preceded it, and all downward M2 channels fromz have
the same sequence number, which is one larger than any
upward M2 channel that may have preceded it.

No packet forwarded in the network will ever reach a channel
that has a sequence number that is lower than or equal to that
of any channels it has previously traversed, andRswitch

deterministic

is deadlock-free.
As is the case for link faults, resuming the use of a

previously failed switch once it is restored to service is also
deadlock-free, because the numbering scheme that we have
utilised here remains intact.

F. Livelock freedom and connectivity forRlink
adaptive

We now prove the connectedness ofRlink
adaptive.

Lemma 9:Rlink
adaptive is connected and livelock free when

there are fewer thank link faults in every switch group.
Proof: Lemma 2 guarantees that there exists a path from

every switch to every destination with less thank−1 arbitrary
link faults. It is therefore sufficient to show that the algorithm



is livelock free. The number of links is finite; hence, a livelock
requires that a packet is forwarded in a loop. There must
therefore exist a set of switches that the packet may traverse an
unlimited number of times. There are obviously no such loops
in the upward phase. The only possible cause of a loop is the
U-turn performed when re-routing around a fault. However,
the re-routing vector in point 4 of the algorithm and the re-
routing in point 2b guarantee that all the upper-tier switches
in the switch group containing the faults are used as next
hops at most once; hence, none of these can be involved in
a livelock. Given that there are fewer thank link faults, it is
guaranteed that there is a path that moves the packet out of the
switch group and one tier lower down towards the destination.
Consequently, every time a packet is re-routed, it will find a
path that brings it one stage closer to its destination, and the
algorithm is livelock free.

1) Livelock freedom and connectivity forRswitch
adaptive : The

proof of connectivity and livelock freedom forRswitch
adaptive is

quite similar to that forRlink
adaptive.

Lemma 10:Rswitch
adaptive is connected and livelock free with

less thank − 1 arbitrary link and switch faults.
Proof: Lemma 4 guarantees that there exists a path from

every switch to every destination with less thank−1 arbitrary
link and switch faults. It is therefore sufficient to show that the
algorithm is livelock free. The number of links is finite; hence,
a livelock requires that a packet is forwarded in a loop. There
must therefore exist a set of switches that the packet may
traverse an unlimited number of times. There are obviously
no such loops in the upward phase. The only possible cause
of a loop is the U-turn performed when re-routing around
a fault. However, theport-field utilised in points 3 and 5
guarantees that the re-routed packet always returns to the same
U-turn switch until it has progressed one tier closer to the
destination. Furthermore, the re-routing vector in point 4of
the algorithm, the port field utilised in points 4 and 5, and
the re-routing in point 2b guarantees that all the upper-tier
switches in the switch group containing the faults are used as
next hops at most once; hence, none of these can be involved
in a livelock. Given that there are fewer thank switch faults,
it is guaranteed that there is a path that moves the packet
out of the switch group and one tier lower down towards the
destination. Consequently, every time a packet is re-routed, it
will find a path that brings it one tier closer to its destination,
and the algorithm is livelock free.

We have shown above thatRlink
adaptive and Rswitch

adaptive is
connected when there are fewer thank link faults in the fat-
tree. We now show that freedom from deadlock only can be
guaranteed within the same number of link faults.

G. Deadlock Freedom forRlink/switch
adaptive

Definition 19: The subtree rooted at switch sconsists of
all the links and switches reachable in the downward direction
from s. Thesubtree leavesare the processing nodes connected
to the bottom tier switches of the subtree.

The fat-tree is made up of multiple subtrees at every level
of the fat-tree. Every switch at a tierl above the bottom tier

(l < n− 1) is the root of a subtree. Forwarding in a fault-free
fat-tree takes place in the subtree of the least common ancestor
chosen in the upward phase.

Every switch is a member of a specific set of subtrees, i.e.
one for each switch that can be reached in the upward direction
from that switch. Atop-rooted subtreeis a subtree of a top
tier switch. An example of a top-rooted subtree is shown in
Figure 14 on page 26.

Definition 20: Two switches aremembers of the same set
of top-rooted subtreesif they have all top-tier subtree roots in
common.

Definition 21: A subtree that is fault-free above tierl is a
subtree whose root is at the top tier of the fat-tree (tier 0),
and whose leaves are the processing nodes. All the links and
switches above tierl in the tree are fault-free.

In a subtree that is fault-free above tierl, all switches in the
top-rooted subtree at tiers{0, . . . , l − 1}, and all links going
downwards from the switches, are fault free.

Definition 22: A subset of leavesconsists of all the leaves
reachable through a single downward link from a subtree root.

The numerous U-turns caused by packets being re-routed
around faults may close cycles in the dependency graph, and
thus potentially cause deadlock. We now show that the cycles
do not cause deadlocks, provided that the number of link faults
does not exceed a certain threshold. We assume the use of
virtual cut-through switches and we focus on the dependencies
between the switch queues where the packets are buffered.

In a deterministically routed network, a necessary and
sufficient condition for deadlock freedom is that the channel
dependency graph is free from cycles. However, in an adaptive
network, each packet may have several alternative next-hop
queues. Which of these queues is chosen is determined by a
selection function, which may depend on several factors, such
as queue length and mean queuing time. As long as one of
the alternative next-hop queues has available space, the packet
may be forwarded to this queue. It follows that an adaptive
network is not necessarily deadlocked even if there exists a
cycle in the dependency graph. Even if there is a set of queues
that form a dependency cycle, packets in the queues that form
the cycle may have additional next-hop queues that are not
part of the cycle, because of the adaptivity.

In [6] there is a comprehensive theory of deadlocks in
adaptive cut-through networks. For completeness, we rephrase
the part of this theory that is necessary for proving that our
method provides freedom from deadlock.

Definition 23: A routing subfunction R1 of the routing
function R* is a routing function that is defined on the same
domain as R* but that provides a subset of the queues provided
by R*.

R1 may thus be viewed as a limited version of R*, where
some of the network queues supplied by R* for a destination
are not supplied for that destination by R1. There may exist
many routing subfunctions of R*. However, when we later
apply the theory to our routing method, we will concentrate
on one particular carefully chosen one.

For a network to be deadlocked, the network must have
reached a state in which there is an assignment of packets to
queues that prohibits the network from functioning. Now we



turn our attention to the precise nature of deadlock:
Packets that occupy space in one queue and request access

to another form a relationship between the two queues in
which the blocking of one may lead to the blocking of the
other. We call this relationship a dependency.

Definition 24: There exists adependencyfrom one queue,
a, to another,b, for the routing function R when there exists
a legal configuration relative to R where packets ina may
requestb as the next hop according to R.

Definition 25: Let R1 be a routing subfunction of R*. There
exists across dependencyfrom queuea to queueb if there
exists a legal configuration relative to R*, in which a packet
in a may requestb according to R1.

The difference between a dependency and a cross depen-
dency is subtle, but important for our proof. If R1 is a routing
subfunction of R*, then R1 has its own set of dependencies
according to Definition 24. However, because R1 is a routing
subfunction, an additional set of dependencies emerges from
the interplay between R* and R1. In particular, R* may route
some packets to destinations where R1 would not have routed
them. Still, R1 may (and actually should, as becomes clear
later) provide routing alternatives for these packets. These
routing alternatives that R1 provides for packets that are
“misplaced” relative to R1 give rise to cross dependencies.

Definition 26: Let R1 be a routing subfunction of R*. The
extended dependency graphof R1 is a directed graph whose
vertices are queues supplied by R1, and there is an arc from
queue a to queue b if there is either a dependency or a cross
dependency from a to b.

Definition 27: A routing function R is connected if R
establishes a path to the packet destination for every packet in
every queue in every legal configuration.

An important special case of the above definition is the
case in which R1 is a routing subfunction of R*, and R* is
the routing function that is operative in the network. In that
case, for the routing subfunction R1 to be connected, it must
establish paths for every configuration that is legal relative to
R*. Finally, we present the main theorem of the theory in
[6]. We make use of this theorem to show that our routing
algorithm is free from deadlock:

Theorem 4:A routing algorithm R* is deadlock-free iff
there exists a connected routing subfunction R1 of R* that
has no cycles in its extended dependency graph.

To use Theorem 4, we must construct a routing subfunction
that is connected and cycle-free in its extended dependency
graph. In order to do this, we must first make some observa-
tions concerning the structure of the fat-tree.

Observation 1:For any top-tier switch (tier0), there is only
a single downward path between it and an arbitrary switch
within its subtree.

Lemma 11:All upward links from a switch belong to
disjoint sets of subtrees.

Proof: Assume that two of the upward links of a switch
s have at least one subtree in common. In that case, there are
at least two different paths from the root of the subtree down
to s, and we have a contradiction with observation 1.

Lemma 12:When there are fewer thank faults in the
network, every possible U-turn switch is connected to at least

one subtree that is fault-free above its own tier.
Proof: The set of possible U-turn switches contains all

switches in the fat-tree except the switches at tier zero. From
lemma 11, we know that every possible U-turn switch is
connected tok disjoint sets of subtrees, one set through each
of its k upward links. As the sets are disjoint, a single fault
may be in at most one of the sets. Therefore,k − 1 is an
insufficient number of faults to place one fault in each of the
disjoint subtree sets. Thus, at least one of the upward links
from any U-turn switch is connected to at least one fault-free
subtree above its own tier.

These are the foundations necessary to construct our rout-
ing subfunction. Recall that this routing subfunction is not
supposed to be implemented. It is defined only for proof
purposes, because its mere existence proves that the fault-
tolerant routing algorithmRlink/switch

adaptive is deadlock-free. The

steps of the routing subfunctionR′

adaptive of R
link/switch
adaptive

are listed below. We can use the same routing subfunction
R′

adaptive for both link and switch faults, the only difference
is whether we re-route down one or two tiers.

• Choose a fault-free subtree above every U-turn switch.
• Do the following in the upwards direction until a least

common ancestor of the source and destination has been
reached:

– Outside the chosen fault-free subtrees, adaptively
forward the packet upwards.

– Within a chosen fault-free subtree above a U-turn
switch, route the packet upwards within this tree.
If there is a conflict because a switch is part of
two different chosen fault-free subtrees (above two
different U-turn switches), route within the chosen
subtree above a U-turn switch at the lowest level in
the fat-tree.

• In the downwards direction, do the following:
– Route the packet deterministically downwards to-

wards its destination.
– If a fault is encountered in the downward direction,

re-route the packet one or two steps downwards for
link or switch fault tolerance.

– Forward the packet back up the chosen subtree that
is fault-free.

The only limitation onR′

adaptive relative toR
link/switch
adaptive

is which upward path may be taken for packets residing in
a chosen subtree that is fault-free above a U-turn switch.
The path of a packet following this routing subfunction is
illustrated in Figure 14. One of the original paths from source
to destination wasSource → A → B → E → Destination.
Once the linkB → E fails, packets are forwarded in two tiers.
First, a fault-free subtree at tier 1 that encompasses the three
possible U-turn switchesA, F , andG comes into existence.
Second, all packets in A and B are forwarded towards the
faulty link, and as they encounter it they are re-routed to one
of the U-turn switches. From here on the packet enters the fault
free subtree and follows this all the way to the destination via
D and E. All subsequent packets from the source via A will
have entered the fault-free subtree and are therefore required
to continue following the tree to the destination from tier 1



and upwards (to tier0). The path for all subsequent packets
is thereforeSource → A → D → E → Destination. Note
that there are two more fault-free subtrees that have not been
marked in the figure.

The U-turn switch will only be traversed by the first
few packets encountering the link fault. This is because all
subsequent packets will have to enter the fault-free subtree
in the upward phase in order to reach the fault, but they
will never encounter it because the packets are not allowed
to leave the fault-free subtree. This obviously eliminatesany
possible cycles, because all packets that would otherwise have
encountered the link fault follow the fault-free subtree.
Before we proceed with the main theorem, we prove a lemma
on the nature of the dependencies ofR′

adaptive.
Lemma 13:Let s be a U-turn switch at levell. In the

extended dependency graph ofR′

adaptive, there are no depen-
dencies at or above levell that go out of the chosen fault-free
subtree aboves.

Proof:
Assume that the lemma does not hold. This means that there

must be a possible situation in which a packet that resides ator
above levell in the chosen fault-free subtree aboves may be
routed out of the subtree byR′

adaptive. This may be a packet
routed there byR′

adaptive (which will give rise to a dependency

out of the subtree), or one routed there byR
link/switch
adaptive (which

will give rise to a cross dependency out of the subtree).
It is impossible to route out of a subtree in the downwards

direction. Furthermore, since the subtree is fault-free down to
level l, there are no U-turn switches at or above levell within
the subtree. Therefore, our packet must be in its upwards
phase. It is easy to observe thatR′

adaptive in the upward phase
will route any packet within the fault-free subtree aboves.
Thus, the assumed situation cannot occur and the lemma holds.

We are now in a position to state our main theorem:
Theorem 5:When there are fewer thank faults in the

network, the routing subfunctionR′

adaptive is connected and
has no cycles in its extended dependency graph.

Proof: Assume there is a cycle of dependencies and cross
dependencies in the extended dependency graph ofR′

adaptive.
Consider one of the U-turns in the cycle that is located closest
to the bottom of the tree i.e. a U-turn that is such that there
is no U-turn switch in the cycle at a switch at a lower tier.
Let this U-turn be in switchs at tier l. Following the chain
of (cross) dependencies that start from this U-turn, there is no
(cross) dependency out of the subtree that is fault-free above
tier l, according to lemma 13. The dependency chain will
therefore remain within the fault-free subtree until it reaches
tier l in the downward direction. For there to be a cycle,
there must be another U-turn that takes the cycle back in the
upward direction. The next U-turn in the cycle must, because
of Lemma 12, be at a tier belowl, which contradicts the way
in which the first U-turn was chosen. Therefore, there cannot
be any cycle. See Figure 14 to see how a re-routed packet
cannot encounter any U-turns at any tier at or above tierl.

Finally, we show thatR′

adaptive is connected. In the upward
phase, any packet is guaranteed to be able reach a top-tier
switch (tier 0), and therefore also a least common ancestor.

In the downward phase, connectedness is trivial when there
are no faults. If the packet reaches a fault, the packet will be
able to reach a U-turn switch as long as there are fewer than
k faults. Let l be the tier of this U-turn switch. The packet
will now be forwarded within the fault-free subtree abovel,
and thereby not reach another fault before it has reached level
l on its way down again. But then the next U-turn switch
will be at a level belowl. Since there are not infinitely many
levels, connectedness is proven by well-founded inductionon
the number of U-turn switches that the packet has to traverse.

SinceR′

adaptive is a routing subfunction ofRlink/switch
adaptive and

we have shown thatR′

adaptive has no cycles in its extended
dependency graph, we refer to Theorem 4 and conclude that
R

link/switch
adaptive is deadlock-free when there are fewer thank

arbitrary link and switch faults respectively.
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