
1

Evaluating Ginnungagap: a middleware for migration of
partial game-state utilizing core-selection for latency reduction

Paul B. Beskow, Geir A. Erikstad, Pål Halvorsen, Carsten Griwodz
Simula Research Laboratory, Norway Department of Informatics, University of Oslo, Norway

{paulbb, geirerik, paalh, griff}@ifi.uio.no

Abstract—Massively multi-player online games (MMOGs) have strin-
gent latency requirements and must support large numbers of concurrent
players. To handle these conflicting requirements, it is common to divide
the virtual environment into virtual regions, and spawn multiple instances
of isolated game areas (known as dungeons or instances) to serve multiple
distinct groups of players. As MMOGs attract players from all around
the world, it is plausible to disperse these regions and instances on
geographically distributed servers. Core selection algorithms can then
be applied to locate an optimal server for placing a region or instance,
based on player latencies. Functionality for migrating objects supports
this objective, with a distributed name server ensuring that references to
the moved objects are efficiently maintained. As a result, we anticipate a
decrease in aggregate latency for the affected players. With Ginnungagap
we present the implementation and evaluation of a middleware that
combines these ideas and present its feasibility.

I. INTRODUCTION

In online games, some latency is tolerable [11] as long as it does
not exceed the threshold for playability from 100ms to 1000ms
depending on the type of game [13], but high pair-wise latency
remains a primary obstacle for the quality of perceived game-play
in a number of online games. For example, Massively Multi-Player
Online Games (MMOGs) often rely on a client-server model for
event distribution, where the events are collected at the server, and
distributed to the interacting players. Players with high latency will
inadvertently have a negative effect on the perceived quality of
game play [11]. This occurs if one or more player’s connections are
comparatively slower, because any added delay is not isolated to the
player alone. Due to a centralized server, the delay will propagate to
the interacting parties and potentially result in inconsistencies, which
the server must then recover from. While having minor effects on
the outcome of the game, it results in a perceived deterioration to the
quality of interaction [14]. As such, low latency for all interacting
players is a prevalent goal.

This goal, however, contrasts other observations of online games,
such that the game traffic varies strongly with time and the attractive-
ness of the individual game [8], [9] and that geographical dispersion
of players in an online game depends heavily on the time of day [10].
Thus, in large games like Anarchy Online and EVE Online, there
are always players all around the world interacting in the same game
instance, although the geographical location of the large bulk of users
shifts dynamically.

In [4], we proposed the initial design of a middleware support-
ing migration of partial game-state (where the level of game-state
granularity can range from entire virtual regions, to instances, or
single objects) to servers which are dynamically selected according
to players locations. With GINNUNGAGAP1, we present an imple-
mentation of this middleware. This middleware selects servers based

1The source code of the middleware, and logs from
the PlanetLab experiments are available for download at
http://simula.no/research/networks/software/

on maximum latencies between all the players in a region and
potential servers, and if the potential gain in terms of reduced latency
exceeds a given threshold, the game state is migrated to this server.
GINNUNGAGAP could also be applied in peer-to-peer scenarios,
allowing all interacting parties to act as a server, which would mean
a greater distribution of potential servers. We have not explored such
a scenario in this paper, as we have focused on MMOGs that use
a client-server approach, though we consider it a viable approach.
Thus, we present results from experiments using this middleware
running a simple game both in a lab environment and on PlanetLab. In
summary, we show that the dynamic selection of servers is beneficial
and that the overhead of migration and method invocation does not
exceed the limits of a good perceived game play.

II. BACKGROUND AND RELATED WORK

Migration techniques: Migration provides functionality to move
entities of varying form and size (e.g., virtual machines, processes,
data, code, etc.) between servers/proxies/clients in a distributed sys-
tem. In [17], a virtual machine is transparently migrated with minimal
impact on the user. Sprite and Mosix are *NIX based operating
systems that allow for processes and their associated state to be
migrated. Code migration makes it possible to defer the execution
of code to an interacting party. Interpreted languages are typical for
this, such as JavaScript in modern browsers and SQL in database
management systems. Emerald and Chorus/COOL enable migration
of objects (e.g., their code and state) during run-time execution of a
program (per the object-oriented paradigm). Finally, we have eXternal
Data Representation (XDR) and Boost::Serialization that provide
functionality to migrate data. This is achieved by serialization, i.e.,
creating a binary representation of data in an application (e.g., ints,
floats, chars, etc.), which is moved between instances of applications.
Migration, at its various granularity levels, serves several purposes,
such as dynamic load distribution, fault resilience, increasing resource
locality or to facilitate system administration. We wish to achieve a
combination of load distribution and increased resource locality by
migrating game state to an optimal location (relative to the interacting
users). Finding the correct level of granularity is important, and in
online games there are two essential characteristics, 1) all code is
shared, and 2) not all state related to an object needs to be migrated.
Thus, we can eliminate some overhead by serializing only parts of
an object. To this end, data migration accommodates both of these
characteristics.

Server selection: Game server selection is an important facet of
the playability for several types of online games. This is particu-
larly true for games that are highly sensitive to latency, such as
first person shooter (FPS) games. As such, the player’s selection
process is commonly guided by measuring dimensions that affect
playability, such as latency and packet loss. This sensitivity to latency
is commonly alleviated by distributing servers widely. With respect to
this, Chambers et al. [7] have looked at how server selection can be

978-1-4244-5604-8/09/$26.00 ©2009 IEEE

2

optimized for a single client, when given a set of available servers. In
a further study, Claypool [12] notes that we regularly find groups of
players that wish to play together on a server, such as friends or clans
(organized players). As such, he has investigated how server selection
can be optimized from the perspective of a group of players. In two
related studies by Armitage [1], [2], efficient ways of ranking servers
in the discovery process itself are examined. These papers have in
common that they consider server selection from the perspective of
the player(s), and additionally assume a certain availability of servers
(it is common for geographically coupled players, such as real life
friends, to play against each other). For a world spanning game,
however, where all users interact in the same game instance, such
as an MMOG, the number of available servers often limited. In [16],
Lee et al. present their heuristic for selecting a minimum number
of servers satisfying given delay constraints (from the perspective of
large scale interactive online games, such as MMOGs). Their aim,
however, is to have well provisioned network paths in a centralized
architecture. Thus, they do not consider the aspect of geographical
dispersion of players. In a similar study, Brun et al [6] investigate
how a server’s location can influence the fairness of a game, and
how selecting an appropriate server impacts this fairness. They use
an objective function, which they call critical response time to rank
the servers.

III. IMPLEMENTATION OF GINNUNGAGAP

The development of GINNUNGAGAP has been driven by the
motivation of lowering the aggregate latency for groups of interacting
players in interactive online games, such as MMOGs. To achieve this,
three components were necessary, 1) a way of locating a server or
proxy closer to the center of the players through core-selection, 2) a
means of facilitating the migration of game-state, i.e., re-locating the
players and the objects they were interacting with, and 3) allow for
continuous interaction with the virtual environment, through remote
method invocations (RMI), even during migration. GINNUNGAGAP

supports all three components.
At its core GINNUNGAGAP runs three threads, send, which is

responsible for transmitting middleware messages, labeled either
RMI or MIG (method invocation and migration, respectively, see
tables I and II); receive, which accepts new connections and receives
transmitted messages; and process, which processes the messages,
and activates core-selection at given intervals in the servers and
proxies. In addition, all clients run a ping thread, which is responsible
for gathering and transmitting its latency information to the proxies
and servers, which is used as input to the core-selection algorithm
(explained in section III-A).

All objects that support migration and RMI inherit from a base
class that provides a minimal interface of methods and data that,
correspondingly, must be implemented and present in all inheriting
classes. The essential data in an object consists of the objects state and
its identifier. The state of the object can be either MIGRATING, which
implies that the object is in transit, and RMIs must be buffered until
they can be forwarded and processed, or NORMAL, which implies that
an RMI can be processed immediately. As an alternative to buffering
messages it could be more beneficial to utilize related ideas, such as
transparent migration of virtual machines [17], where one variation
utilizes a two-stage approach, with an initial push-phase, where data
is pushed to the receiving node, data modified during this stage is
marked as dirty and is retransmitted during the stop-and-copy phase,
where, in our case, the object is again made available for interaction.
The unique identifier of an object follows it throughout its life-time
and throughout the distributed system, and is used to uniquely locate
that object at any node. A name service is necessary, however, to

Message type Object id Object type Attribute Attribute
MIG 7e2...31f CLASS_PLAYER Odin 98

Table I
MIGRATION MESSAGE

maintain knowledge of which node the object is currently residing
at.

Instrumental to the name service is an efficient way of maintaining
references to the objects as they are migrated. To accomplish this we
have implemented a distributed name service. A name service can be
implemented in several ways. Discussed in the context of MMOGs,
in [3]. The conclusion is that a distributed name service is an efficient
way of handling references as there is a minimal overhead in binding
an object with the name service, because each node has its own name
service, to which objects are bound initially. Communication between
nodes (and thus the name services) only becomes necessary when an
object is migrated. Given that servers in the system are geographically
distributed, binding objects locally becomes quite beneficial. Other
advantages are that there is no single point of failure, so large parts
of the application can continue running if a server fails. Look ups are
also efficient, as we can directly query the node our name service
has registered as current caretaker of the object. This access time,
however, will depend on the number of times an object has been
migrated (after its point of creation) and at which point in this chain
the invocation is performed. We partially alleviate this situation by
embedding the calling nodes’ information with a message that passes
through such a chain, such that the reply is sent directly back to the
calling node.

A. Core selection

In [18], Knut-Helge Vik identified k-Median (see algorithm 1) as
the heuristic algorithm for the graph-theoretical problem of locating
an optimal proxy for a set of interacting clients, and this is the
algorithm we use in the core-selection component. However, any of
the node selection algorithms presented by Vik can be used instead
of the k-Median algorithm in our middleware.

The k-Median core-node selection algorithm finds k core-nodes
that are the k nodes with the lowest average pair-wise distances to the
nodes in the member-node set. The algorithm solves the k-minimum-
pairwise problem, which when given a weighted graph G = (V, E, c)
and an integer 0 < k < |V |, finds a set C ⊂ V of size k, such that
the sum of the distances from the vertices’s u ∈ C to all nodes v ∈ V
is minimal. The k-Median algorithm has a time-complexity of O(n2)
on any graph.

Algorithm 1 k-MEDIAN(G):
1: Input: An integer k > 0, a graph G = (V, E, c). Sets Z ⊂ V and X ⊂ V .
2: Output: A set C ∈ X of core-nodes.
3: map<x-id, pair-wise> mapIdPairwise
4: for each x ∈ X do
5: pairwise = getPairwiseDistances(x, Z)
6: mapIdPairwise.insert(x-id, pairwise)
7: end for
8: C = kLowestPairwise(mapIdPairwise)

B. Migration

Migration (see figure 1 for an overview) targets are found by
core-selection (1), though migration is only performed when latency
increases above a predefined threshold. The migration is performed
by the MigrationService (2), which first sets the state of the
migrating object to MIGRATING (3). Thus, all incoming RMIs are

3

Sending node MigrationService Object

2) Migration

3) Change state

4) Serialize

6) MIG message

5) MIG Message

7) Transmit MIG

Receiving node

1) Core-selection

8) Recreate

9) Transmit MIGACK

10) Forward RMIs

Figure 1. Sequence of a migration

Message type Object id Object type Method Parameter Parameter
RMI 5c1...13c CLASS_PLAYER METH_MOVE North 50

Table II
RMI MESSAGE

temporarily buffered locally, until they are forwarded and processed
by the object at its new location. The buffered RMIs are marked as
chained invocations, and as such, contain information about the node
from which the call originated.

After the state update, the object is serialized (4). The serialization
results in the creation of a MIG message (see table I) in the binary
XDR format (5). Not all attributes of an object are necessarily
serialized, but only those marked for serialization by the programmer.
Once the message has been packed it is transmitted to the receiving
node (7).

At the receiving node, the message is processed (8). The mid-
dleware reads the type of the message that it has received (MIG)
and invokes the appropriate handler. It passes the remainder of the
message to the MIG-handler, which reads the object type and requests
that a new object instance of that type is created. The instance is
created by calling the object constructor, which initializes the object
with the attributes deserialized from the message.

Once the object has been created and initialized the MIG-handler
creates a MIGACK message with the id of the object and transmits
this message to the sending node (9). Upon receiving this message,
the sending node knows that the migration has been completed and
forwards any waiting RMI-messages in its buffer (10).

This same process is used to migrate groups of objects, though
with a slight modification. In the case of groups, all the objects
are serialized into one large message, instead of being sent in small
individual ones.

C. Remote Method Invocation

An RMI is the invocation of a method on an object that doesn’t
reside in local memory (see figure 2 for an overview). To accomplish
this goal, a number of components need to be present in the middle-
ware. In this example, we detail the interaction of these components,
starting with a player logging in to a remote server:
dist_ptr<Player> plyr = Startup::login(‘‘Odin’’);

This login(...) invocation is in itself an RMI, but is possible
because the server and Startup object have a well-known location
and identifier. With this invocation, the server creates a player object
and returns its corresponding universally unique identifier (UUID),
which is guaranteed unique for this object throughout its lifetime. The
UUID is entered into the name service of the local node. Together

Client NameServiceDistributed pointer

1) Invocation

2) Get proxy

4) Proxy

3) Create proxy

Proxy

5) Invocation

Server

7) Process RMI

6) Transmit RMI

8) Return message

9) Return value

10) Return value

Figure 2. Sequence of a RMI

with network information about the sending node, this ensures that
we have a way of contacting the remote node and identifying that
instance of the object class. The UUID is also stored in the distributed
pointer plyr. After input from the player, a request to move is
issued:
plyr->move(Direction, Distance);

As plyr is a distributed pointer, the move method invocation
is intercepted by the smart pointer dist_ptr (1), which contains the
UUID of the object it points to and is used to query the name service
for a pointer to the object corresponding to that UUID. The name
service does a look up in its records and performs one of two actions,
1) returns a pointer to the local object, or 2) returns a pointer to a
proxy object if it is remote (2). At the first request for a remote object
a proxy is created (3), and is reused for subsequent requests.

As the object we have invoked is not local, the distributed pointer
redirects the call to the move-method through the proxy object with
the parameters passed to the method (5). Methods in an object that
support RMI are implemented as virtual methods and have their own
implementation in the proxy object.

At this point the proxy object takes over the processing, and creates
a message of type RMI (see table II). This identifies the class type of
the object, the specific object (UUID) and the function that is being
invoked, and its corresponding parameters. All this information is
serialized using XDR. With knowledge that the object is remote, the
proxy object then transmits the message to its destination (6).

At the receiving node the message is processed by the middleware
(7). It determines the message type (RMI), and invokes its corre-
sponding handler. This RMI-handler determines if the object is local
or remote, and in the latter case passes the message on (with the
information of the emanating node embedded in the message). Thus,
the reply, once the RMI is processed, can be sent directly to the
original caller. Minimizing extraneous messages in the network. If
the object is local, the corresponding skeleton method is invoked,
which deserializes the parameters of the object, and invokes the
method of the local object. Once the invoked method returns, the
RMI has completed successfully at the remote node, and a potential
return value from the function itself is serialized and returned.
The middleware itself generates a reply to the calling node with
information of the successful completion (8). Finally, this return value
is processed by the calling node (10).

IV. EVALUATION

To evaluate GINNUNGAGAP, we have performed several exper-
iments and present the vital results of our testing, with micro
benchmarks of the RMI and migration functionality and live tests
on PlanetLab (see [15] for further results and details).

4

v
o
id

 f
()

v
o
id

 f
(i

n
t)

in
t

f(
)

in
t

f(
in

t)

in
t

f(
in

t,
 i
n
t)

in
t

f(
in

t,
 i
n
t,

 i
n
t)

in
t

f(
v
e
ct

o
r[

1
0

])

in
t

f(
v
e
ct

o
r[

1
0

0
])

in
t

f(
v
e
ct

o
r[

1
0

0
0

])

Method

0

500

1000

1500

2000

2500

3000

3500

4000

4500
M

ic
ro

se
co

n
d
s

Remote method invocation

Local method invocation

Local method invocation through middleware

Figure 3. Average time of method invocation with stdev

1 10 100 1000
Number of integers in each object

0

200

400

600

800

1000

1200

1400

M
e
a
n
 t

im
e
 o

f
m

ig
ra

ti
o
n
 i
n
 m

ic
ro

se
co

n
d
s

Figure 4. Ave. single object migration time with stdev

A. Micro benchmarks

The micro benchmarks were performed using a local network.
The test machines ran Ubuntu 9.04, and had identical hardware
configurations, with an Intel Core 2 Duo E6750 2.66GHz CPU and
2 GB of RAM.

Remote Method Invocation: To test the RMI functionality and
overhead we invoked methods with a number of different combina-
tions of return values and parameters. The results of these tests are
shown in figure 3, and each method was invoked 10000 times. As
expected, there is an overhead introduced by a RMI, when compared
to a local invocation, partially due to the overhead of (de)serializing
parameters (not necessary for local invocations), and also the latency
introduced by the network. We see a gradual increase in the RMI
invocations of vectors of integers, but this is mainly due to the
increased transmission time of the data. Apart from this, the mean
difference in a remote and local invocation remains quite stable.
We can also see that the standard deviation is relatively low. In
conclusion, there is some overhead associated with an RMI compared
to a local invocation, but this is to be expected. The primary obstacle
is the latency introduced by the network, and the size of data being
transmitted.

Migration: In the migration tests, we have performed two sets of
tests, one where we migrate single objects of varying size, and one
set where we vary the size of the object groups and their size.

The results of migrating a single object are shown in figure 4.
As expected, the time to complete a migration of a single object
gradually increases with the size of the object.

The results of migrating groups of objects are shown in figure 5.
Here we see much of the same pattern as migration of single objects,
with the gradual increase in completion time being mainly affected

10 100 1000
Number of objects in each group

0

10

20

30

40

50

60

70

80

90

100

110

120

M
e
a
n
 t

im
e
 o

f
m

ig
ra

ti
o
n
 i
n
 m

ill
is

e
co

n
d
s

One int

Ten ints

Hundred ints

Figure 5. Ave. group migration time with stdev

All
RM

Is

Buf
fe

re
d/

ch
ai
ne

d
RM

Is

Reg
ul

ar
 R

M
Is

10000

0

10000

20000

30000

40000

50000

60000

70000

M
e
a
n
 t

im
e
 o

f
R

M
Is

 i
n
 m

ic
ro

se
co

n
d
s

Hundred objects

Thousand objects

Figure 6. Average time of RMI during migration with stdev

by the size of the objects and the number of groups. There is,
however, more overhead introduced by the migration of groups, as the
middleware has to perform additional work; it combines the objects
into a single large message.

RMI during migration: We have also looked at the overhead
introduced while performing RMI on an object while it is being
migrated, the results of this test are presented in figure 6. We
continuously performed RMI to a group of objects that were being
migrated back and forth between two servers at regular intervals.
As we can see, it is clear that performing an RMI during migration
adds overhead. This overhead is introduced because the name service
has not been updated yet, and as such RMIs are buffered until they
can be forwarded. Currently, we do not forward messages as they
arrive, instead we wait for a MIGACK before forwarding the messages.
It is reasonable to assume that this overhead could be reduced by
changing this to an on-the-fly forwarding of the incoming messages.
The messages could then be ready to be processed as soon as the
migration was completed at the receiving node, thus not having
to wait for the sending node to receive the MIGACK message and
forward the messages, effectively removing some of the overhead of
the latency between the sender and receiver.

B. Planetlab tests

PlanetLab (PL) is a distributed research network consisting of
nodes across the world. We ran several different tests, primarily to
test the usability of the core node selection algorithm and middleware
itself. Also, the PL nodes that we selected as a server and proxies
were those with little or no load in the PL network.

To test the core node selection algorithm, we ran a test where
clients, approximately 120 of them, were initially connected to a

5

Figure 7. Geographical locations PL nodes

0 20 40 60 80 100 120 140
Clients sorted by mean RMI time

0

200

400

600

800

1000

M
e
a
n
 R

M
I
ti

m
e
 i
n
 m

ill
is

e
co

n
d
s

1 server

3 servers

6 servers

Figure 8. Aggregate mean of RMI

0 20 40 60 80 100
Clients sorted by mean RMI time

1000

2000

3000

4000

5000

6000

7000

R
M

I
ti

m
e
 i
n
 m

ill
is

e
co

n
d
s

Figure 9. RMI time per client with varying numbers of proxies

main server. As more proxies were gradually added, the core node
selection algorithm was activated (see figure 7 for an overview of
the PL nodes included in the experiment). The results of this test are
summarized in figure 8 and 9. As we can see in figure 8, adding
additional proxies made it possible to reduce the aggregate mean
latency of the interacting clients. Moving up to four proxies further
decreased the aggregate mean latency, but the gain was not as great.
It is to be expected that the reduction does not necessarily improve
greatly with a large number of added proxies, as there is always
variance in the latencies of the connected clients, but it is clear that
the gaming experience can be improved by the introduction of a small
number of proxies.

In figure 9, we see the completion time of RMIs issued, as proxies
are being added. We can see that most of the invocations are well
below the 1000ms mark, but that there are at least a couple of
invocations that take longer time. These are caused by migrations,
as we noted during our micro benchmarks of RMI during migration,
as seen in figure 6.

In figure 10, we see the results of a test simulating a small

0 200 400 600 800 1000 1200
Sessions sorted by mean RMI time

0
1000
2500

5000

10000

15000

20000

25000

30000

R
M

I
ti

m
e
 i
n
 m

ill
is

e
co

n
d
s

Figure 10. Mean RMI time of sessions

region in a virtual environment with players entering and exiting the
region continuously. The setup consisted of 1 server, 5 proxies and
approximately 120 clients. The session time of the clients follows an
exponential distribution with a scale of 60 seconds. The core-selection
algorithm was activated every 30 seconds, with a migration occurring
only if the minimum gain of each client was 2ms. This resulted in
a total of 23 migrations, where all, except the first (from the server
to a proxy) were between two of the proxies in the setup. The mean
migration time was 813ms, excluding one exception, which was on
28868ms, and we can see the resulting spikes in the RMI times of
the sessions in figure 10. PL uses virtualization to schedule slices
for run-time on the PL nodes. We believe this spike is a result of
such virtualization, where the slice running our application has been
unscheduled. We did not see such spikes in our earlier PL tests, but
these ran for shorter periods of time. This is one of the problems
with running latency sensitive experiments in PL. A ping between
the two proxies involved did not reveal any problems latency wise,
but is not affected by such virtualization. We ran the test several
times with different configurations, but experienced similar spikes
each time. We did not experience these in our micro benchmarks of
the migration functionality either. Apart from these spikes, most of
the invocations during this test were well within the 1000ms mark.
As such, it should be possible to perform migrations on regions with
heavy traffic quite frequently, without adverse side-effects.

V. DISCUSSION

Due to the distributed name service resolving references to remote
objects, migration can become a time consuming task. An object
that is frequently migrated will create trails of object references at
the nodes it visits. We partially handle this scenario by embedding
information about the emanating node in a message that is forward,
so the reply can be sent directly to the calling node.

Another concern is related to the side-effects of migrating game-
state. If migration is not performed transparently, we might adversely
affect interacting players. In [17], Nelson et al demonstrate how an
active application is moved from one virtual machine to another,
with minimal perceived impact to the user’s interaction with the
application.

Partial failures occur when a node in a distributed system becomes
unavailable, effectively rendering the objects managed by it inac-
cessible. The current framework does not accommodate for partial
failures, but there are ways to minimize the repercussions of these
incidents. One possibility is to distribute multiple copies of an object
in the system, and utilize a peer-to-peer based look-up system such
as Chord or Tapestry, to locate the object. Though this introduces the
overhead of having to keep multiple objects up-to-date.

6

Core selection and migration require resources in the form of
processing power and network messages when activated, as such,
policies should govern their activation. Core-selection can be per-
formed on the basis of churn (in the form of players joining/leaving),
time of day, player arrival rate, history based (a preemptive approach,
where known situations, such as battles, trigger the activation) and
server-load. Migration can be performed on the basis of threshold of
aggregate latency, number of players, packet loss, and server load.

Core selection is dependent on full knowledge of the network,
but obtaining latency measurements through active probing is not a
scalable solution. Latency estimation techniques provide an alterna-
tive, and in [5], [19], we examined the feasibility of using estimated
latencies for situations when real-time measurements are unable to
scale to the number of interacting players. We have not applied these
techniques in this paper, as we were able to gather live measurements
during our tests.

The proposed framework is tested in a client-server setting, but
in general, the framework should also be useful in a peer-to-peer
scenario trying to dynamically select a server among the peers. Thus,
as the peers join and leave the game, the selection of peers controlling
the game could be performed using our middleware.

VI. CONCLUSION

High latency may be devastating for the game play experience. An
important factor for world-spanning games, such as MMOGs, lies in
the diversity of its user base where there will, at any point in time,
be a number of players connected from different physical locations.
The large challenge is that the group of players in the game or in the
game region is dynamic, and using a statically selected server may
therefore give good results in one moment but poor in the next.

In [4], we proposed a middleware providing dynamic server
selection and migration of game state to the new server. Here, we
have described the implementation of this middleware and presented
experimental results showing the performance gains from in-house
lab experiments and running a simple game on PlanetLab.

REFERENCES

[1] G. Armitage. Client-Side Adaptive Search Optimisation for Online
Game Server Discovery. Lecture notes in computer science, 4982:494,
2008.

[2] G. Armitage. Optimising online fps game server discovery through
clustering servers by origin autonomous system. In Proceedings of the
International Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV), May 2008.

[3] P. Beskow. Migration of objects in a middleware for distributed real-time
interatctive applications. Master’s thesis, Department of Informatics,
University of Oslo, Norway, May 2007.

[4] P. Beskow, K.-H. Vik, C. Griwodz, and P. Halvorsen. Latency reduction
by dynamic core selection and partial migration of game state. Proceed-
ings of NetGames’08, Worcester, MA, USA, oct 2008.

[5] P. Beskow, K.-H. Vik, P. Halvorsen, and C. Griwodz. The partial
migration of game state and dynamic server selection to reduce latency.
Springer’s Multimedia Tools and Applications Specia l Issue on Mas-
sively Multiuser Online Gaming Systems and Applications, 2009.

[6] J. Brun, F. Safaei, and P. Boustead. Server topology considerations in
online games. In NetGames ’06: Proceedings of 5th ACM SIGCOMM
workshop on Network and system support for games, page 26, New
York, NY, USA, 2006. ACM.

[7] C. Chambers, W. chang Feng, W. chi Feng, and D. Saha. A geographic
redirection service for on-line games. In Proceedings of the eleventh
ACM international conference on Multimedia, Berkeley, CA, USA, pages
227–230, November 2003.

[8] C. Chambers, W. chang Feng, S. Sahu, and D. Saha. Measurement-based
characterization of a collection of on-line games. In the Proceedings of
the 5th ACM SIGCOMM Workshop on Internet measurement, Berkeley,
CA, USA, pages 1–14, October 2005.

[9] W. chang Feng, F. Chang, W. chi Feng, and J. Walpole. Provisioning
on-line games: a traffic analysis of a busy Counter-strike server. In
the Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurement, Marseille, France, pages 151–156, November 2002.

[10] W. chang Feng and W. chi Feng. On the geographic distribution of
on-line game servers and players. In the Proceedings of NetGames’03,
Redwood City, California, USA, pages 173–179, May 2003.

[11] M. Claypool. The effect of latency on user performance in real-time
strategy games. Elsevier Computer Networks, 49(1):52–70, Sept. 2005.

[12] M. Claypool. Network characteristics for server selection in online
games. In Proceedings of the fifteenth Annual Multimedia Computing
and Networking (MMCN’08), San Jose, CA, USA, 6818:681808, January
2008.

[13] M. Claypool and K. Claypool. Latency and player actions in online
games. Communications of the ACM, 49(11):40–45, Nov. 2005.

[14] M. Dick, O. Wellnitz, and L. Wolf. Analysis of factors affecting players’
performance and perception in multiplayer games. In the Proceedings
of NetGames’05, Hawthorne, NY, USA, pages 1–7, October 2005.

[15] G. A. Erikstad. Latency reduction in distributed interactive applications
by core node selection and migration. Master’s thesis, Department of
Informatics, University of Oslo, Norway, Aug. 2009.

[16] K. Lee, B. Ko, and S. Calo. Adaptive server selection for large scale
interactive online games. Computer Networks, 49(1):84–102, 2005.

[17] M. Nelson, B. Lim, and G. Hutchins. Fast transparent migration
for virtual machines. Proceedings of the USENIX Annual Technical
Conference 2005 on USENIX Annual Technical Conference table of
contents, pages 25–25, 2005.

[18] K.-H. Vik. Group Communication Techniques in Overlay Networks
(submitted). PhD thesis, Department of Informatics, University of Oslo,
Norway, Dec. 2008.

[19] K.-H. Vik, C. Griwodz, and P. Halvorsen. On the influence of latency
estimation on dynamic group communication using overlays. In Multi-
media Computing and Networking (MMCN), San Jose, CA, USA, January
2009.

