
Improving latency for interactive, thin-stream

applications over reliable transport

by

Andreas Petlund

Doctoral Dissertation submitted to

the Faculty of Mathematics and Natural Sciences

at the University of Oslo

in partial fulfilment of the requirements for

the degree of Philosophiae Doctor

October 2009

Dedicated to Bertha-Helene Solberg

Abstract

A large number of network services use IP and reliable transport protocols. For applications

with constant pressure of data, loss is handled satisfactorily, even if the application is latency-

sensitive [110]. For applications with data streams consisting of intermittently sent small

packets, users experience extreme latencies more frequently [50]. Due to the fact that such

thin-stream applications are commonly interactive and time-dependent, increased delay may

severely reduce the experienced quality of the application. When TCP is used for thin-stream

applications, events of highly increased latency are common, caused by the way retransmis-

sions are handled [50]. Other transport protocols that are deployed in the Internet, like SCTP,

model their congestion control and reliability on TCP, as do many frameworks that provide re-

liability on top of unreliable transport. We have tested several application- and transport layer

solutions, and based on our findings, we propose sender-side enhancements that reduce the

application-layer latency in a manner that is compatible with unmodified receivers. We have

implemented the mechanisms as modifications to the Linux kernel, both for TCP and SCTP.

The mechanisms are dynamically triggered so that they are only active when the kernel identi-

fies the stream as thin. To evaluate the performance of our modifications, we have conducted

a wide range of experiments using replayed thin-stream traces captured from real applications

as well as artificially generated thin-stream data patterns. From the experiments, effects on

latency, redundancy and fairness were evaluated. The analysis of the performed experiments

shows great improvements in latency for thin streams when applying the modifications. Sur-

veys where users evaluate their experience of several applications’ quality using the modified

transport mechanisms confirmed the improvements seen in the statistical analysis. The positive

effects of our modifications were shown to be possible without notable effects on fairness for

competing streams. We therefore conclude that it is advisable to handle thin streams separately,

using our modifications, when transmitting over reliable protocols to reduce retransmission la-

tency.

iii

Acknowledgements

I would like to thank Dr. Carsten Griwodz and Dr. Pål Halvorsen for encouragement, ideas,

feedback and enthusiasm in abundance. Their dedication and passion rubs off, making good

days delightful and bad days endurable. I would also like to thank Espen Søgård Paaby, Jon

Pedersen and Kristian Riktor Evensen for their important contributions to the work that has

been done.

The working environment at Simula Research Laboratory is one of collaboration, support

and friendly competition, which I find inspiring. I want to thank all colleagues and friends

at Simula for input, feedback and discussions over the Friday cake. During the work on this

thesis, I have worked with two of the most excellent companions one could wish for: Knut-

Helge Vik has taught me the meaning of hard work as well as lightened the days with brilliantly

dry humour. Håvard Espeland always has some interesting information to share, especially

about Linux, FOSS and whisky.

Thanks to my fiancee, Anne, for love, patience, support. When I get too focused on comput-

ers, she puts my life back into perspective. Finally, I want to thank my parents for supporting

me in all I decide to do.

v

Contents

Abstract iii

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Background and motivation . 1

1.2 Thesis context . 3

1.3 Problem statement . 4

1.4 Contributions . 6

1.5 Outline . 7

2 Thin-stream applications 9

2.1 Games . 9

2.2 Other thin-stream applications . 12

2.2.1 Remote operation systems . 12

2.2.2 Sensor networks . 13

2.2.3 Audio conferences . 13

2.3 Greedy streams vs. thin streams . 14

2.4 Latency-analysis for an interactive thin-stream scenario 14

2.5 Summary . 16

3 Transport 17

3.1 TCP . 18

3.1.1 TCP developments culminating in TCP “New Reno” 19

3.1.2 Retransmission timeout calculation . 22

vii

3.1.3 Delayed acknowledgements . 24

3.1.4 TCP Vegas . 25

3.1.5 Selective Acknowledgements . 26

3.1.6 Duplicate SACK . 27

3.1.7 Forward acknowledgements . 27

3.1.8 Congestion control for high-speed links 27

3.1.9 Summary . 30

3.2 Evaluation of TCP retransmission delays . 30

3.3 SCTP . 33

3.3.1 SCTP chunks and bundling . 34

3.3.2 Acknowledgements in SCTP . 35

3.3.3 SCTP RTO calculation . 35

3.3.4 SCTP retransmission strategies . 36

3.3.5 Other SCTP options . 36

3.4 Evaluation of SCTP retransmission delays . 37

3.5 UDP with application layer reliability . 40

3.6 Analysis of retransmission delays for UDP and application layer reliability . . . 42

3.7 DCCP . 43

3.8 Related transport protocol mechanisms . 44

3.8.1 Timer calculation . 44

3.8.2 Exponential backoff . 44

3.8.3 Fast retransmit modifications . 45

3.8.4 RTT estimation and congestion detection 46

3.8.5 RTOmin and delayed SACKs . 46

3.8.6 Unreliable and partially reliable transport 46

3.8.7 Latency-sensitive streams . 47

3.9 Thin-stream challenges . 47

4 Thin-stream modifications 49

4.1 TCP modifications and implementation . 50

4.1.1 TCP thin stream detection . 50

4.1.2 Switches for enabling the thin-stream modifications 52

4.1.3 Linear retransmission time-outs . 54

4.1.4 Modified fast retransmit . 56

4.1.5 Redundant Data Bundling . 58

4.2 SCTP modifications and implementation . 62

4.2.1 Thin stream detection . 62

4.2.2 Implementation of switches to enable thin-stream modifications 66

4.2.3 Modified minimum retransmission timeout 67

4.2.4 Correcting the RTO timer reset . 68

4.2.5 Linear retransmission timeouts . 70

4.2.6 Modified fast retransmit . 72

4.2.7 Bundling on fast retransmit . 73

4.2.8 Other possible avenues of investigation . 74

4.3 Applicability of modifications . 75

5 Analysis and evaluation 77

5.1 Test environment, evaluation setup, tools and metrics 77

5.1.1 Alternative evaluation methods . 78

5.1.2 Laboratory tests with artificial loss . 78

5.1.3 Laboratory tests with cross-traffic induced loss 79

5.1.4 Internet tests . 80

5.1.5 Test data . 81

5.1.6 Metrics . 81

5.1.7 Loss estimation . 82

5.1.8 Calculation of transmission overhead . 83

5.1.9 Calculation of delivery delay . 83

5.2 Evaluation of TCP modifications . 84

5.2.1 Artificial, uniform loss in an emulated network 85

5.2.2 Congestion-Caused, variable loss in an emulated network 94

5.2.3 Bundle-limit tests . 100

5.2.4 Internet tests . 103

5.2.5 Fairness . 109

5.2.6 Comparison of thin stream performance in different operating systems . 111

5.2.7 Summary . 114

5.3 Evaluation of SCTP modifications . 115

5.3.1 RTO calculation . 115

5.3.2 Artificial, uniform loss in an emulated network 116

5.3.3 Congestion-caused, variable loss in an emulated network 118

5.3.4 Analysis of which mechanisms triggers retransmissions 120

5.3.5 Internet tests . 122

5.3.6 Fairness . 125

5.3.7 Summary . 128

5.4 UDP and application layer approaches . 129

5.4.1 Latency comparison . 130

5.4.2 Bandwidth consumption . 130

5.5 Summary . 133

6 Experienced effect for the users 135

6.1 Skype user tests . 135

6.2 Secure shell user test . 138

6.3 BZFlag hit probability evaluation . 140

6.4 An interactive demonstration . 144

6.5 Summary . 145

7 Conclusions 147

7.1 Summary . 147

7.2 Contributions . 147

7.3 Critical assessment of the results . 149

7.4 Future work . 153

Bibliography 155

A List of abbreviations 165

B Tools 167

C Complete set of boxplots from TCP laboratory experiments 169

C.1 Uniform loss . 169

C.2 Cross-traffic loss - high loss rate . 181

C.3 Cross-traffic loss - low loss rate . 192

D Complete set of CDFs from TCP laboratory experiments 203

D.1 Uniform loss . 203

D.2 Cross-traffic loss - high loss rate . 215

D.3 Cross-traffic loss - low loss rate . 227

E TCP-patch for Linux 2.6.23 kernel 239

F SCTP-patch for Linux 2.6.16 kernel 255

List of Figures

2.1 Estimated subscription development for MMOG games [113] 10

2.2 Packets per second for World of Warcraft . 11

2.3 Statistics from analysis of Anarchy Online server side dump [50]. 15

3.1 TCP header structure. 19

3.2 Developments in TCP congestion control up to “New Reno” that are relevant to

thin streams. 19

3.3 Example of “go back N” behaviour. 20

3.4 Example of packet transmission with and without Nagle’s algorithm. A premise

for the example is that there are unacknowledged data on the connection. 20

3.5 AIMD, slow-start and fast recovery example. 21

3.6 Example of how a fast retransmission is triggered after receiving three dupACKs. 22

3.7 The Linux kernel (2.6.23.8) code for calculating the RTO timer. 24

3.8 Examples with and without delayed ACKs. 25

3.9 Average retransmission delay, simplex streams, 100ms delay [50]. 31

3.10 Test setup with an emulated network. 32

3.11 Analysis of changes in number of retransmissions for TCP New Reno when

varying network and stream parameters. Packet size for all tests are 120 bytes [39]. 33

3.12 SCTP data packet structure. 34

3.13 SCTP SACK chunk structure. 35

3.14 SCTP retransmissions by timeout [86]. 38

3.15 UDP header structure. 40

3.16 Perceived application layer latency. 42

3.17 Fast retransmit with thin streams. 48

4.1 Determining whether to use thin-stream modifications. 51

4.2 Test for determining whether there are less than 4 packets in flight, located in

include/net/tcp.h. 52

4.3 Examples of how to enable the LT thin-stream modification. 53

xi

4.4 Example of the use of a syscontrol to limit RDB bundling to 600 bytes. 54

4.5 Example of the use of a IOcontrol to enable the LT thin-stream modification. . . 54

4.6 Difference between linear timeouts and exponential backoff. 55

4.7 Code that enables linear timeouts if the stream is thin. Located in net/ipv4/-

tcp_timer.c. 56

4.8 Difference between standard and modified fast retransmission for thin streams. 57

4.9 Code that adds a rule for thin-stream fast retransmission on first indication of

loss. Located in net/ipv4/tcp_input.c. 58

4.10 The minimum size of a Gigabit Ethernet frame when transporting a 100 byte

packet [39]. 58

4.11 Method of bundling unacknowledged data [89]. 59

4.12 Flow-diagram: Outgoing TCP-packets. The functions we have implemented or

modified are marked in bold. Alternative (new) call paths are shown with dotted

lines [39]. 61

4.13 SKB structure. Linear memory must all come at the start of the SKB. 62

4.14 Flow-diagram: Incoming TCP-packets. The functions we have implemented or

modified are marked in bold [39]. 63

4.15 Structure for keeping the information necessary to monitor loss rate and packets

in transit. Located in include/net/sctp/structs.h. 65

4.16 Code for tagging the payload of packets with the reason for retransmission.

Only used for the purpose of analysis as it will overwrite the chunk payload.

Located in include/net/sctp/outqueue.c. 66

4.17 Examples of how to enable the modified RTOmin thin-stream modification. . . . 67

4.18 Code to reset RTOmin to 200 ms if the stream is identified as thin. Located in

include/net/sctp/transport.c. 68

4.19 Example of how resetting the RTO can increase retransmission delay for thin

streams [85]. 69

4.20 Code to avoid restarting the retransmission timer when a SACK arrives. Lo-

cated in include/net/sctp/outqueue.c. 70

4.21 Code to use linear timeouts if the stream is identified as thin. Located in in-

clude/net/sctp/sm_sideeffect.c. 71

4.22 Code to modify the fast retransmit threshold if the stream is identified as thin.

Located in include/net/sctp/outqueue.c. 73

4.23 Code to allow bundling of unacknowledged chunks on fast retransmit if the

stream is identified as thin. Located in include/net/sctp/outqueue.c. 74

4.24 Applicability of the thin-stream mechanisms for TCP. 75

5.1 Test setup where a network emulator is used to create loss and delay. 79

5.2 Test setup where a network emulator is used to create delay and limit bandwidth.

Loss is created by competing HTTP-like cross-traffic. 80

5.3 Test setup for Internet tests. Loss and delay are determined by path and com-

peting traffic. 81

5.4 Relationship between transmission overhead and goodput in the statistics from

the laboratory tests. 83

5.5 Calculating delivery delay (φi) by using timestamps at sender and receiver. . . . 84

5.6 Legend for the boxplots used to describe the ACK latency for our TCP experi-

ments. 86

5.7 Latency statistics: RTT 100 ms, IAT 200 ms, packet size 100 bytes, uniform

loss 5%. 87

5.8 Latency statistics: RTT 150 ms, IAT 100 ms, packet size 100 bytes, uniform

loss 5%. 89

5.9 Latency statistics: RTT 250 ms, IAT 200 ms, packet size 100 bytes, uniform

loss 5%. 91

5.10 Latency statistics: RTT 50 ms, IAT 50 ms, packet size 100 bytes, uniform loss

5%. 93

5.11 Latency statistics: RTT 100 ms, IAT 100 ms, packet size 100 bytes, cross-traffic

loss. High loss rate. 95

5.12 Latency statistics: RTT 250 ms, IAT 200 ms, packet size 100 bytes, cross-traffic

loss. High loss rate. 97

5.13 Latency statistics: RTT 200 ms, IAT 500 ms, packet size 100 bytes, cross-traffic

loss. Low loss rate. 99

5.14 Latency statistics: RTT 150 ms, IAT 50 ms, packet size 100 bytes, cross-traffic

loss. Low loss rate. 101

5.15 Varied RDB bundle limit - uniform loss - RTT 150, IAT 100, PS 250 Loss 5%. 103

5.16 Varied RDB bundle limit - uniform loss - RTT 50, IAT 100, PS 250 Loss 5%. . 104

5.17 SSH trace replayed Massachusetts - Oslo. 105

5.18 Anarchy Online trace replayed Massachusetts - Oslo. 107

5.19 BZFlag trace replayed Massachusetts - Oslo . 108

5.20 Aggregated throughput of n greedy unmodified TCP streams when compet-

ing with thin streams with different configurations/modifications. Thin-stream

properties: Packet size: 120 B, Interarrival-time: 85 ms. Link properties: Bot-

tleneck bandwidth: 1000 kbps, RTT: 100 ms. 110

5.21 Test setup where a network emulator is used to create loss and delay. A separate

machine is dedicated to create the packet trace. 112

5.22 ACK latency for OS comparison. RTT= 150 ms, packet IAT=180 ms, loss=2%. 113

5.23 RTO calculated by SCTP with reduced RTOmin for thin streams. 116

5.24 ACK latency. RTT=100 ms, packet IAT=250 ms. Uniform loss (5%). 117

5.25 ACK latency. RTT= 100 ms, packet IAT=250 ms. Cross-traffic induced loss (5%).119

5.26 Cause for retransmissions. RTT=100 ms, IAT=250 ms, loss=5%. The bar de-

noted TO represents timeouts, FR represents fast retransmissions, and B are

bundled chunks. 121

5.27 CDF of transport-layer delivery latency for replayed Anarchy Online game traffic.123

5.28 CDF for transport-layer delivery latency for replayed Anarchy Online game

traffic between UMass and three different commercial access networks in Oslo

(Norway). 125

5.29 CDF of throughput on 100 ms intervals (connection RTT) for lksctp vs. lksctp

and lksctp vs. modified SCTP. 126

5.30 Comparison of throughput as an indication of fairness. 127

5.31 ACK latency. 131

5.32 Measured bandwidth - IAT=100 ms, loss=0.5%. 132

5.33 Number of packets sent - IAT=100 ms, loss=0.5%. 133

6.1 Skype latency - loss=2%, RTT=130 ms. 136

6.2 A 20 second “audio spectrum” of a representative Skype session played over a

link with 2% loss and an RTT of 130 ms. 137

6.3 Preferred sound clips from Skype user tests. 138

6.4 SSH latency - loss=2%, RTT=130 ms. 139

6.5 SSH user test: Preferred connection. 139

6.6 BZFlag delivery latency - loss=2%, RTT=130 ms. 141

6.7 Difference angle calculation. 141

6.8 CDF of difference. 142

6.9 Hit limit calculation. 142

6.10 BZFlag hit limits for “perfect shot”. 143

6.11 Screen shot of the interactive, thin-stream, game demonstration 144

List of Tables

2.1 Examples of thin (greedy) stream packet statistics based on analysis of packet

traces. All traces are one-way (no ACKs are recorded) packet traffic. 10

3.1 SCTP cumulative retransmission statistics for thin streams, first retransmis-

sion [86]. 37

3.2 TCP New Reno retransmission delays [86]. 39

4.1 Mechanisms implemented for triggering the modifications. 53

4.2 Mechanisms implemented for triggering the modifications in SCTP. 66

5.1 Laboratory test parameters for tests performed with uniform loss. 85

5.2 Laboratory test parameters for tests performed with cross-traffic loss. 94

5.3 Parameters for RDB limit laboratory experiments. 102

5.4 Laboratory test parameters for tests performed on SCTP with uniform loss. . . . 117

5.5 Laboratory test parameters for tests performed on SCTP with congestion in-

duced loss. 118

5.6 Relative arrival time statistics for ∼ 2.65× 106 packets. 124

5.7 Mechanisms that were tested and compared. 129

5.8 Parameters for experiments performed on UDP and application-layer reliability

frameworks. 129

xv

Chapter 1

Introduction

The communicating citizen of today is present on Twitter, Facebook and the blogosphere. From

the most remote location, she can stay connected to the pulsating world community. As a partic-

ipant in conference calls and online games, she can work, play and interact. The infrastructure to

support this connectivity is provided by the Internet. As the available bandwidth has multiplied

in the last decades, the number of services provided over the Internet has exploded. Despite

the rate of development, the Internet is still only providing a best-effort service, and loss and

delay are frequently experienced. For interactive applications, such delays affect the quality

of the service provided. We have studied a class of such distributed, interactive applications,

focusing on identifying the reasons for the high experienced latencies that often occur. Using

what we have learnt from this analysis, we have set out to reduce the latency for our target class

of applications.

1.1 Background and motivation

Internet technology has undergone radical developments since its early ARPANET days. In the

beginning, there were large challenges related to bandwidth and capacity. This led to research

being focused on bandwidth sharing (fairness) and congestion avoidance. In the last couple of

decades, we have seen tremendous developments in networking technology, resulting in much

higher bandwidths. This development is accompanied by a tendency among Internet users in

general to consume much more bandwidth, both for uploading and downloading. The increase

in bandwidth consumption is accelerated by peer-to-peer technology like BitTorrent [33] and

Spotify [96].

Parallel to the trend of increased bandwidth usage on the Internet, real-time communication

applications have also evolved and gained ground. Presently, the Internet is used as medium for

a wide range of interactive services like chat, remote desktop, stock trade systems, IP telephony

and networked games. The element of interactivity, however, leads to latency requirements;

1

2 Chapter 1. Introduction

users become dissatisfied when they must wait for the system to respond. This is often prob-

lematic as the basic architecture of internetworking is based on best-effort services. Research

has been performed, looking into ways of assuring a fixed quality of service (QoS) for data

transport, but as the most successful approaches need support along the path of the connec-

tion [24, 21], such approaches have not yet gained ground. A consequence of the lack of QoS

mechanisms is that we still have to rely on end-to-end approaches in order to provide data

delivery across the Internet.

The most common end-to-end transport protocols today are the Transmission Control Pro-

tocol (TCP) [93,17,84] and the User Datagram Protocol (UDP) [92]. Other protocols that seek

to extend the range of services and versatility are under development, like the Stream Con-

trol Transmission Protocol (SCTP) [97]. TCP is the prime choice for applications that need

reliability and in-order delivery of data. It also provides congestion control, enabling the shar-

ing of network capacity between concurrent streams. UDP is unreliable, but allows the send-

ing application to determine the transmission timing. This makes UDP a common choice for

time-dependent applications with no need for reliability. Even though UDP provides control of

transmission timing, many interactive applications need reliability, at least occasionally, which

then has to be implemented on the application layer (examples of frameworks that provide such

services are the adaptive communication environment (ACE) [3], ENet [37] and UDP-based

data transfer (UDT) [52,14]). However, because of the lack of congestion control, and to avoid

broadcast messages, UDP is frequently blocked by Internet Service Provider (ISP) firewalls.

Consequently, many current time-dependent and interactive distributed applications are imple-

mented using reliable transport protocols, such as TCP. In addition, many applications that

use UDP despite its shortcomings, use a reliable transport protocol as fallback when UDP is

blocked.

Many of the interactive applications commonly used today display patterns of transmission

that deviate from the much researched greedy stream scenario where the application consumes

as much bandwidth as possible. The data sent by such interactive applications are often small

messages, and the timing is determined by the users’ actions. A high-quality experience in,

for example, a gaming scenario requires responses within 100-1000 ms depending on the game

type [32]. The data patterns resulting from such event-based interaction are distinguished from

greedy streams by high packet interarrival times (IATs) (i.e., a low packet rate) and small packet

sizes. We call streams with such data patterns thin streams.

As the focus for reliable protocols has been on achieving higher throughput, mechanisms

for recovering lost segments assume a steady supply of data from the application. Such steady

supply is not provided by thin-stream applications, and because recovery relies on this, thin

streams in an interactive scenario may therefore experience devastating delays. The inability

of the currently used mechanisms of reliability and congestion control to provide low latency

1.2. Thesis context 3

for thin-stream applications, and the development of solutions to lower the latency for the thin-

stream scenario, are the focus of this thesis. Experimental protocols have been developed that

may help to address thin-stream latency issues. We have, however, chosen to use the already

deployed protocols (TCP and SCTP) as the basis for our investigations. By applying sender-

side, standards compliant modifications to these widely used protocols, we aim to reduce thin-

stream latency for endpoints that already support the said protocols.

1.2 Thesis context

This thesis is a part of the “Middleware Services for Management of Shared State in Large-

Scale Distributed Interactive Applications” (MiSMoSS) project1. The aim of the MiSMoSS

project was to improve support for distributed, interactive applications by abstracting systems

requirements like group communication, latency hiding and network adaptation. The final goal

was to create a set of services that could be presented to developers of distributed, interactive

applications in order to improve the quality of their application. The MiSMoSS project had a

three-part focus:

1. Latency-hiding for interactive applications: Strategies have been developed to make the

observed effect of network latency as low as possible. This was done by employing

techniques adapted to each application [81, 80, 82].

2. The effective construction of overlay networks for group communication: A wide range

of algorithms was evaluated by simulation and experiments to find effective methods for

group communication infrastructure [103, 104, 51, 105, 109, 107, 108, 106].

3. Latency reduction by well-adapted network techniques: To minimise the experienced

delay by investigating network mechanisms that can provide an improved level of ser-

vice [71, 86, 50, 54, 88, 89, 38, 87].

This thesis is part of item 3), and focuses on the latency-challenges that interactive appli-

cations experience when using reliable transport protocol. In our earlier work on this topic,

we have experimented with QoS approaches, stream aggregation and transport protocol adap-

tation [71, 50]. Given the current state of Internet architecture, the QoS approach showed little

promise. Stream aggregation, multiplexing many small game events destined to multiple users

in the same stream to benefit from the greedy stream mechanisms in the intermediate hops of

the data path, indicated great potential, but is reliant on an extended network of proxies. To

1This project was funded by the Norwegian Research Council under contract number 159992/V30. Parts of the
work performed in this project has also been in the context of the information Access Disruptions (iAD) project
under contract number 174867.

4 Chapter 1. Introduction

achieve a reduced latency for all participating hosts in a distributed, interactive scenario, the

most promising approach was to focus on end-to-end transport.

1.3 Problem statement

Distributed, interactive, thin-stream applications that communicate over the Internet are com-

mon today. The data patterns they produce are a result of the actions or events that trigger each

message. Such data streams have sporadic transmissions with relatively high packet IAT and

often small packet sizes. This is in stark contrast to the transmission patterns of greedy streams,

which try to move as much data as possible across the connection. Many time-dependent ap-

plications use reliable protocols either because they need the provided services or as a fallback

when unreliable options are blocked for some reason. The effects of thin streams over reliable

transfer, however, has not been thoroughly investigated. Based on the observations that we

have made about thin streams, and with a focus on reliable transport, we have formulated the

following hypotheses:

• Hypothesis 1: Thin streams are very often a product of time-dependent and/or interactive

applications.

Examples of human interactions that produce thin streams are remote desktop connections,

voice over IP (VoIP) and online games. Examples of other applications that can be time-

dependent and produce thin streams can be stock-exchange systems and sensor networks. We do

not assume that all thin streams are time-dependent, nor do we believe that all time-dependent

applications produce thin streams. Our assumption is that a large share of thin streams represent

interactive applications where timeliness is crucial to the users’ experience.

• Hypothesis 2: Retransmission mechanisms and congestion control mechanisms have

been developed to maximise throughput, and may therefore cause higher retransmission

latency when the transported stream is thin.

The main rationale behind this statement is that retransmission mechanisms that can recover

lost data segments quickly depend on frequent feedback from the receiver. This is a side effect

of delaying retransmissions as long as possible in order to avoid retransmitting spuriously. In

a scenario where transmissions are sporadic and far between, a minimal amount of feedback is

generated to trigger such speedy recovery.

• Hypothesis 3: It is possible to adapt existing retransmission and congestion control

mechanisms to achieve lower latency for thin streams without jeopardising performance

for greedy streams.

1.3. Problem statement 5

If hypotheses 1 and 2 are true, there is a large potential for improving the latency for thin

streams. We believe that this can be done by adapting the existing transport protocol mecha-

nisms in such a way that there will be no performance-reduction for the well-proven solutions

that are optimised for greedy streams.

• Hypothesis 4: We can take advantage of the thin stream properties to achieve lower

delivery latencies for the thin-stream applications or services.

In addition to modifying the existing mechanisms, we think that alternative ways of improving

thin-stream latency can be devised. This may be realised by taking advantage of characteristic

traits observed in thin streams.

• Hypothesis 5: Modifications to improve thin-stream latency can be implemented in such

a way that unmodified receivers may benefit from them.

The Internet consists of a huge amount of heterogeneous endpoints (devices with different op-

erating systems). To update them all with modifications or new protocols is a difficult task.

By making the modifications sender-side only, an unmodified endpoint can get benefits from a

modified sender that provides a service known to produce thin streams.

As our focus was on the latency-challenges for thin streams in reliable protocols, there are

avenues of investigation that have not been followed. The following approaches have been

deemed outside the scope of this thesis:

• We have performed some investigations into unreliable transport protocols with application-

layer reliability. There is, however, an inexhaustible supply of different application-layer

approaches. We have therefore chosen to focus on the reliable transport protocols that are

widely used for interactive applications.

• We have chosen to focus on modifications that can enhance the performance of existing,

widespread systems. Experimental protocols that needs to be supported on all nodes in

order to be deployed have therefore not been considered.

• The focus of our work has been on end-to-end approaches. Network-layer mechanisms

that may reduce latency for interactive applications have therefore not been considered.

• QoS solutions that needs to be supported along the path of the connection have been

considered [71]. We chose, however, to concentrate our efforts on the common transport

protocols since this approach showed great potential for improvement.

6 Chapter 1. Introduction

1.4 Contributions

To prove the hypotheses formulated above, we have performed work consisting of analysis,

implementation and evaluation. The main contributions are listed here:

Investigation of thin-stream properties: The investigation ofHypothesis 1 demanded that we

performed in-depth analysis of data patterns from a wide range of interactive applications.

The analysis we performed confirms that a wide range of the time-dependent applications

show thin-stream properties. The variation in packet IAT and sizes for the thin streams

was analysed with respect to their effects on delivery latency. Typical packet sizes ranged

from 100 to 400 bytes and IATs ranged from 30-600 ms.

Thin-stream latency analysis: To address Hypothesis 2, extensive analyses of latency for

typical thin-stream scenarios were performed. From these analyses, we were able to

determine that thin streams suffer from extreme latencies. In a trace from the massively

multiplayer online game (MMOG) Anarchy Online [44], for example, we found acknowl-

edgement latencies of up to 67 seconds. By studying the analysed traces in detail, we

were able to determine the main reasons for the increased latencies. Furthermore, we

performed experiments to determine whether some reliable transport protocol variations

reduce delivery latency for thin streams. We identified TCP New Reno as the best al-

ternative for reliable thin-stream transport, but we concluded also that none of the tested

variations provides satisfactory latencies for thin streams.

Adaptation of retransmission mechanisms to reduce latency for thin streams: We im-

plemented modifications to the existing retransmission mechanisms (in the Linux kernel)

that reduce latency for thin streams. The mechanisms include timer reset corrections and

a new RTOmin value for SCTP, fast retransmission after one dupACK as well as linear

timeouts for both TCP and SCTP and a bundling mechanism for TCP. The mechanisms

are dynamically switched on and off so that traditional mechanisms are used for greedy

streams. The modifications were evaluated thoroughly through a series of experiments.

In answer to the questions posed by Hypothesis 3, we found that the modifications are

able to provide lowered delivery latency for thin streams.

Implementation of a bundling mechanism that takes advantage of small packet sizes in

thin streams to reduce latency: We implemented a new mechanism that takes advantage

of the fact that many thin streams have very small packet sizes. The bundling mechanism

sends unacknowledged data segments with new packets, so as to avoid retransmissions.

In many cases (like for Gigabit Ethernet), the minimum frame size is much larger than the

packet sizes produced by thin-stream applications, making bundling possible with very

1.5. Outline 7

little actual overhead. In answer to Hypothesis 4, the mechanism was evaluated through

extensive experiments, and was found to significantly reduce delivery latency for thin

streams.

Evaluation of transport protocols and our thin-stream modifications: We evaluated the

described approaches for TCP, SCTP and UDP with application-layer reliability. All our

modifications were designed to be transparent to the receiver in answer to Hypothesis

5; any unmodified (standards compliant) receiver can receive the benefit of a modified

sender. Our findings show that we are able to reduce delivery latency for all the thin-

stream scenarios we evaluated, especially the worst-case latencies that ruin the user expe-

rience are significantly reduced. In addition to the experiments performed to measure the

latency of thin streams when using reliable transport, we performed surveys where users

evaluated the effect of our mechanisms. All our results show that latency can be reduced

significantly for thin-stream interactive applications by applying our mechanisms.

Evaluation of the impact of our modifications on per-stream fairness: As the implemented

modifications apply more aggressive retransmission strategies when thin streams are de-

tected, we evaluated also the effect of our modifications on competing streams (fairness).

This evaluation showed that the modifications to the retransmission mechanisms do not

affect fairness because the thin stream’s congestion window stays below the minimum

congestion window size. The bundling mechanism leads to increased packet sizes in cer-

tain scenarios, and therefore needs more resources. The number of sent packets, though,

is not much higher since the bundling mechanism does not trigger extra transmissions.

The subject matter of this thesis has resulted in five publications in peer-reviewed journals and

conferences [54, 88, 89, 38, 87]. Additionally, the interactive demonstration was exhibited at

NOSSDAV 2008 [91] and the thin-stream mechanisms and the Linux implementation were

presented at the Linux Kongress 2008 in Hamburg [90].

In general, we conclude that thin streams needs special handling when transmitted over

reliable protocols to provide a satisfactory user experience. Our developed mechanisms greatly

reduce latency for such thin streams in the target scenarios.

1.5 Outline

The thesis describes our thin-stream investigations from analysis of traces from interactive ap-

plications via implementation and experimentation to end-user evaluations. Here, we introduce

each chapter and give a short description of the topics discussed.

8 Chapter 1. Introduction

• Chapter 2 introduces the properties of thin-stream applications. A range of different

time-dependent thin-stream applications is presented and analysed. We also present an

analysis of latencies from a typical thin-stream application.

• Chapter 3 describes reliable transport protocols, with a focus on mechanisms that affect

latency for thin streams. We also evaluate different transport protocols to determine their

performance for thin-stream latency.

• Chapter 4 describes our modifications to reduce latency for thin streams. Both the basic

principles behind the mechanisms and their implementation are described.

• Chapter 5 presents the experiments we have performed to evaluate the effects of our

thin-stream modifications. Laboratory tests were performed with different loss patterns,

as well as Internet evaluations.

• Chapter 6 presents the user-surveys that we conducted to evaluate the subjective effects

of our thin-stream modifications. We also present an analysis of the hit-probability in

a first-person shooter game with and without our mechanisms. Finally an interactive

demonstration of the effects of our mechanisms is described.

• Chapter 7 concludes this thesis by summarising our findings. We present a critical as-

sessment of our work and discuss the most relevant tradeoffs and choices pertaining to

this work. Finally, we outline topics for extending our work in the future.

Chapter 2

Thin-stream applications

Much networked data traffic today represents aspects of real life. We interact in virtual environ-

ments, chat, control remote computers and hold VoIP conferences. The data streams generated

by such interactive applications are different from what we call greedy streams. While greedy

streams try to move a given amount of data between two nodes as quickly as possible, many

interactive streams generates sporadic packets that contain information pertaining to the user’s

actions. This kind of streams with small packets and relatively high interarrival time between

each packet, we call thin streams.

Table 2.1 shows a selection of applications whose network traffic has been analysed. The

identifying element for the thin-stream applications, in contrast to greedy streams, is that they

all have small packet sizes and high interarrival time between the packets, and the stream often

keeps those properties throughout its lifetime. In the following sections, we discuss the statistics

gathered from the different scenarios presented in table 2.1.

2.1 Games

Massively multi-player online games (MMOGs) allow thousands of users to interact concur-

rently in a persistent virtual environment. For this to work, there are stringent latency require-

ments whose exact nature depends on the model of interaction, which again typically differs

between game genres. In 2006, MMOGs constituted one of the largest entertainment indus-

tries, with a steady annual growth reaching 44 percent of gamers [102], exceeding 13 million

online users [113]. Figure 2.1 shows the development of the estimated number of MMOG sub-

scribers since the first games were launched. The growth of MMOGs has shown a steady rate

and shows no signs of slowing down. Hence, we chose data traffic from networked games as

a core example of thin-stream application classes. With respect to user satisfaction, games re-

quire tight timeliness, with latency thresholds at approximately 100 ms for first-person shooter

(FPS) games, 500 ms for role-playing games (RPG) and 1000 ms for real-time strategy games

9

10 Chapter 2. Thin-stream applications

payload size packet interarrival time (ms) avg bandwidth
application (bytes) percentiles used

avg min max avg med min max 1% 99% (pps) (bps)
Casa (sensor network) 175 93 572 7287 307 305 29898 305 29898 0.137 269
Windows remote desktop 111 8 1417 318 159 1 12254 2 3892 3.145 4497
VNC (from client) 8 1 106 34 8 < 1 5451 < 1 517 29.412 17K
VNC (from server) 827 2 1448 38 < 1 < 1 3557 < 1 571 26.316 187K
Skype (2 users) (UDP) 111 11 316 30 24 < 1 20015 18 44 33.333 37K
Skype (2 users) (TCP) 236 14 1267 34 40 < 1 1671 4 80 29.412 69K
SSH text session 48 16 752 323 159 < 1 76610 32 3616 3.096 2825
Anarchy Online 98 8 1333 632 449 7 17032 83 4195 1.582 2168
World of Warcraft 26 6 1228 314 133 < 1 14855 < 1 3785 3.185 2046
Age of Conan 80 5 1460 86 57 < 1 1375 24 386 11.628 12K
BZFlag 30 4 1448 24 < 1 < 1 540 < 1 151 41.667 31K
Halo 3 - high intensity (UDP) 247 32 1264 36 33 < 1 1403 32 182 27.778 60K
Halo 3 - mod. intensity (UDP) 270 32 280 67 66 32 716 64 69 14.925 36K
World in Conflict (from server) 365 4 1361 104 100 < 1 315 < 1 300 9.615 31K
World in Conflict (from client) 4 4 113 105 100 16 1022 44 299 9.524 4443
YouTube stream 1446 112 1448 9 < 1 < 1 1335 < 1 127 111.111 1278K
HTTP download 1447 64 1448 < 1 < 1 < 1 186 < 1 8 > 1000 14M
FTP download 1447 40 1448 < 1 < 1 < 1 339 < 1 < 1 > 1000 82M

Table 2.1: Examples of thin (greedy) stream packet statistics based on analysis of packet traces. All
traces are one-way (no ACKs are recorded) packet traffic.

Figure 2.1: Estimated subscription development for MMOG games [113]

(RTS) [32]. With this in mind, supporting these kinds of games is challenging. The task is made

even more difficult by the fact that a significant characteristic of this type of application is its

lack of resilience towards network transmission delays [31].

We analysed packet traces from several games with regard to packet sizes and rates. Statis-

2.1. Games 11

 0

 10

 20

 30

 40

 50

 600 700 800 900 1000 1100 1200

p
a
c
k
e
ts

seconds

number of packets sent each second

Figure 2.2: Packets per second for World of Warcraft

tics from the traces are presented in table 2.1. The first is Funcom’s popular role-playing

MMOG Anarchy Online (AO) [44]. The trace contains all packets from one of a few hun-

dred game regions for about one hour. Less than one packet is sent per RTT on average, which

means that the packet interarrival time is large (the average IAT is 632 ms). In addition, each

packet contains only small game events, such as position updates. Thus, each packet is small

(about 98 bytes payload on average). Since MMOGs are the paramount of networked gaming,

we have analysed two more games, to illustrate the similarities of transmission patterns. World

of Warcraft (WoW) [22] is the market-leading MMOG today with as much as 10 million active

subscriptions in 2008 [113]. WoW traffic shows the smallest average payload size of all our ex-

amples. The packet interarrival time is lower than for Anarchy Online, but still high, leaving the

throughput for the two games very close to each other. Figure 2.2 shows the number of packets

per seconds for a selection of the trace (one stream). The plot shows how the stream keeps its

low packet rate over time with the exception of a few events where the packet number increases

somewhat. We have also analysed traces from a new MMOG, released in 2008: “Age of Co-

nan” (AoC) from Funcom [43]. This trace shows slightly higher packet interarrival times, but

still very small packets (80 bytes on average). The statistics from all three analysed MMOGs

strengthens the impression that such interactive communication produces thin streams.

We have also included statistics for two games in the FPS genre: BZFlag [4] and Halo

3 [27]. Such games have higher intensity, and consequently more information that needs to be

disseminated to the players. This results in relatively low interarrival-times between packets.

The interarrival-times also vary with the intensity of gameplay within the given game (as the two

12 Chapter 2. Thin-stream applications

Halo traces show). The packet sizes are small for both applications (very small for BZFlag).

FPS games have very strict requirements for timeliness, and players of FPS games will very

quickly feel that latency degrades the quality of experience (QoE).

Finally, World in Conflict is analysed as an example of an RTS game. The traffic both to

and from the server seems to be driven by an internal clock in the application, producing data

with intervals of 100 ms. The payloads are very small in the client-server direction (4 bytes per

packet on average), and somewhat larger in the server-client direction. This reflects the need to

transmit the positions and actions of all the players to each client. World in Conflict can, based

on this analysis, be categorised as a thin-stream interactive application.

2.2 Other thin-stream applications

Networked games are typical examples of thin-stream applications, but a wide range of other

applications also displays the same network properties. The identifying factor is that transmis-

sion rate is limited by the application’s production of data, not congestion control. We now

present examples of thin-stream applications from a range of different areas where latency is an

important factor.

2.2.1 Remote operation systems

When functions are to be remote-controlled, the operator issues commands, and responds to

system feedback. This very often results in thin-stream data patterns. A characteristic of such

control systems is that small packets with instructions are sent to the system being controlled,

either periodically or in an event-based manner. Many of these systems operate in real time

and require the system to react quickly to the control signals, i.e., a rapid packet delivery is a

necessity.

Windows Remote Desktop using the remote desktop protocol (RDP) is an application used

by thin client solutions or for remote control of computers. The analysed trace was from a ses-

sion where mixed tasks like document editing and drawing of figures was performed. Analysis

of packet traces indicates that this traffic clearly show thin-stream properties. The packet IAT

averages 318 ms, and the packet size is 111 bytes on average. If second-long delays occur due to

retransmissions, this results in visual delay for the user while performing actions on the remote

computer.

Virtual network computing (VNC) is another common system for remote control of comput-

ers. In the analysed VNC session, a selection of tasks is performed including graphical editing

and text editing. As more of the graphical content is transmitted using this system than for RDP,

the difference in stream properties between client-server and server-client is large. The client-

2.2. Other thin-stream applications 13

server traffic is very thin, while server-client has larger packets on average, but still relatively

high interarrival times between packets.

Another way of working on a remote computer is by using the secure shell (SSH) protocol.

This is used to create an encrypted connection to a remote computer and control it, either using

text console, or by forwarding graphical content. The analysed dump presented in table 2.1 is

from a session where a text document was edited on the remote computer. We can observe that

this stream also displays the thin-stream properties. The interarrival times are very similar to

the RDP session (323 ms on average), while the packet sizes are even smaller than for RDP.

2.2.2 Sensor networks

As an example of sensor networks we have analysed traffic from the real-time radar system

in the Casa project [6], which performs research on weather forecasting and warning systems.

Here, low-cost networks of Doppler radars are used that operate at short range with the goal

of detecting a tornado within 60 seconds [116]. Control data between the server and a radar

is typically small and sent in bursts. A packet trace (see statistics in table 2.1) shows that the

average packet size from the server is 241 bytes, and a burst of four packets with an interarrival

time of about 305 ms is sent every 30 seconds (the heartbeat interval of the system). To be able

to detect a tornado in time, they rely on fast delivery of the radar measurement data.

Sensor networks monitoring other aspects of weather, traffic, waste dumps, greenhouses

and so forth will in most cases display similar traffic patterns (due to semi-random triggering

of events). Such monitoring systems are gradually becoming an integrated part of a modern

society.

2.2.3 Audio conferences

Voice over IP (VoIP) with real-time delivery of voice audio data across the network is another

example of a class of applications that produces thin data streams. There is a strict timeliness

requirement due to the interactive nature of the applications. Nowadays, audio chat is typically

included in virtual environments, and IP telephony is increasingly common. For example, many

VoIP telephone systems use the G.7xx audio compression formats recommended by ITU-T.

G.711 and G.729 which have a requirement of 64 and 8 Kbps, respectively. The packet size is

determined by the packet transmission cycle (typically in the area of a few tens of ms, giving

packet sizes of around 80 to 320 bytes for G.711) [55].

Skype [2] is a well-known conferencing service, with several million registered users, that

communicate over the Internet. Table 2.1 shows statistics from the analysis of two Skype con-

ferencing traces. We have compared the default behaviour of Skype using UDP to its fallback

behaviour when using TCP. We can see that when Skype uses TCP, the packet sizes increase, as

14 Chapter 2. Thin-stream applications

does the interarrival-time between packets. This makes for an increase in bandwidth, but not in

the number of transmitted packets. The small average packet size combined with an interarrival

time between packets that averages to 34 ms qualifies it as a thin-stream. To enable satisfactory

interaction in audio conferencing applications, ITU-T defines guidelines for the one-way trans-

mission time [60]. These guidelines indicate that users begin to get dissatisfied when the delay

exceeds 150-200 ms and that the maximum delay should not exceed 400 ms.

2.3 Greedy streams vs. thin streams

Compared to the greedy streams shown in table 2.1, e.g., streaming a video fromYouTube [101],

downloading a document over hypertext transfer protocol (HTTP) from a server in the UK or

downloading a CD-image from uninett.no, the examples given above are a small selection of

applications whose data stream is thin. Other examples include virtual environments (such as

virtual shopping malls and museums), augmented reality systems and stock exchange systems.

All of these send small packets and have relatively low packet rates. Yet, they are still highly

interactive and thus depend on the timely delivery of data.

We have seen a range of examples of how interactive applications often produce data trans-

mission patterns with small packet sizes and high interarrival time between packets. These pat-

terns of transmission can, when combined with reliable transport protocols, lead to unwanted

high latencies. We will now present a study where we analyse a typical thin-stream application

with regard to latency.

2.4 Latency-analysis for an interactive thin-stream scenario

The design of reliable transport protocols has historically focused on maximising throughput

without violating fairness1. As such, the retransmission mechanisms are attuned to high-rate

applications like file transfers or bulk data streaming. We know of no previous studies that

focus on the effect that thin-stream patterns have on delivery latency. Therefore, when we

were given access to a server-side packet trace from Funcom’s massively multi-player online

game (MMOG) Anarchy Online [44], we performed a thorough analysis of the data to find

out how frequent unwanted latency occurs. Server-client communication was the focus of our

scrutiny, since we wanted to investigate server-side modifications that could benefit all clients

on a modified server. Our analysis of thin-stream applications indicates, however, that the thin-

stream properties are dominant both ways (server-client and client-server).

1We define fairness as per-stream TCP fairness. This means that greedy TCP streams that share a bottleneck
achieves the same throughput over time, given that they have comparable network conditions (RTTs).

2.4. Latency-analysis for an interactive thin-stream scenario 15

(a) RTT versus maximum application delay.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140 160 180

n
u

m
b

e
r

o
f

p
a

c
k
e

ts
 p

e
r

R
T

T

connection RTTs sorted by packets/RTT

(b) Packets per RTT with standard deviation

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160 180

lo
s
s
 (

%
)

connections sorted by max values

(c) Per-stream loss rate.

Figure 2.3: Statistics from analysis of Anarchy Online server side dump [50].

The Anarchy Online game world is divided into regions. Players that interact with each

other in a specific in-game area are all connected to the same server. The connections are point

to point TCP. The trace from Anarchy Online that we analysed, included about 175 separate

TCP connections, representing players in one virtual game region hosted on a server physically

located in the US.

Figure 2.3 shows loss- and delay statistics in a one-hour trace from the game server. In

figure 2.3(a), we can see the average and maximum RTT and the maximum application-layer

delay for each connection. We have marked a section of the plot (quadrant A) inside which

all streams have experienced latency events that may severely degrade the QoE [32]. We can

see from figure 2.3(b) that all of the connections have high interarrival time between packets,

and qualify as thin streams. On average, all streams are well below 1 packet per RTT. The per-

stream loss rate is shown in figure 2.3(c). Many of the analysed connections have no registered

loss at all. Good connections or only short connection durations may explain this. For the

connections that show loss, however, only very small amounts of loss are needed to cause high

application delays2. The in-game experience of a delay of several seconds can be frustrating.

When the delay exceeds 20 seconds ,as the statistics show several examples of, it may ruin the

game session for the player. We have found no correlation between loss-events across the whole

range of connections. We therefore assume that loss (for this dump) is not caused by server-side

2The highest registered application delay for this dataset was ∼67 seconds. This was after 6 retransmissions
were needed in order to recover the lost segment.

16 Chapter 2. Thin-stream applications

bottlenecks.

2.5 Summary

The analysis of interactive and latency-sensitive applications shows us that network patterns

featuring small packets and high interarrival times are predominant. Table 2.1 presents a wide

range of examples of interactive applications that display thin-stream properties. When trans-

mitted using TCP, such thin streams are shown to exhibit aggravated latency when loss occurs.

This is shown by the latency-analysis in figure 2.3. Retransmission mechanisms provided by

reliable protocols that use TCP-based schemes seem to fail in providing acceptable delays when

thin-stream traffic is retransmitted. In spite of the shortcomings of TCP in such scenarios, many

developers still choose TCP for time-dependent applications. This is because of restrictive

firewall policies that may stop alternative protocols, and the fact that reliability must be imple-

mented on the application layer when using UDP. Newer, experimental protocols are not widely

supported, and therefore very seldom used by commercial applications. To explain the reason

why thin-stream applications are affected by latency events, we have to study the mechanisms

that reliable protocols use to retransmit lost data and control congestion. To explain the high

observed latencies when loss occurs, we describe the workings of reliable transport protocols

next.

Chapter 3

Transport

As shown in chapter 2, thin streams can experience very high retransmission delays when loss

occurs. The reason for the observed delays is to be found in the inner workings of the re-

transmission mechanisms of reliable protocols. When choosing a transport protocol for a time

dependent application, the alternatives are limited to the following options:

1. Use established transport protocols (like TCP) that provide a range of services, but can

yield high delays.

2. Use unreliable protocols (like UDP or DCCP) and implement reliability and in order

delivery on the application layer.

3. Use an experimental reliable protocol that is tailored for the needs of time-dependent

applications.

4. Use a quality of service (QoS) option.

However, QoS protocols have not become widely available, and the use of UDP has been criti-

cised for its lack of congestion control. Consequently, many current time-dependent and inter-

active distributed applications are implemented using reliable transport protocols, such as TCP.

In addition, many applications that use UDP despite its shortcomings, use a reliable transport

protocol as fallback when UDP is blocked by a firewall. Also, when reliability is implemented

on top of unreliable transport protocols (like UDP), the basic mechanisms of retransmission are

often borrowed from TCP, yielding the same high thin-stream latencies. Experimental protocols

are not widely supported, and therefore avoided by developers of commercial applications due

to lack of availability at clients.

This chapter is devoted to describing the strengths and weaknesses of the different transport

layer alternatives pertaining to thin streams. We describe TCP, SCTP, UDP and DCCP on the

transport layer. We also present analysis of the performance of TCP (a range of versions),

17

18 Chapter 3. Transport

SCTP (Linux kernel SCTP) and UDP with application layer reliability when transmitting thin

streams. Based on the results from thin-stream analysis we identify the principal reasons why

thin streams experience extreme retransmission delays for reliable transfer.

3.1 TCP

One of the core components of the Internet protocol suite, TCP is one of the most used transport

protocols on the Internet. Being the prime choice for reliable delivery used in for instance email,

HTTP and FTP communication, it is widely supported and enabled for use in ISP firewalls. TCP

is and end-to-end protocol; decisions pertaining to transmission are taken at the sender. Based

on acknowledgements (ACKs) from the receiver, TCP tries to learn about the condition of the

network path of the stream, and take appropriate measures. The basic services of TCP are as

follows:

• Reliability: If data is lost, it is retransmitted until acknowledgement of successful delivery

is received.

• In-order delivery: The stream of bytes is delivered to the receiver application in the same

order as it was sent.

• Congestion control: If congestion is detected on the path of the stream, TCP adapts the

send rate to allow concurrent TCP streams to share the bandwidth.

• Flow control: The sender does not transmit more data than the receiver has capacity to

receive.

• Error control: By checksumming the transmitted data, transmission errors can be de-

tected.

The services provided by TCP imply that the sender has to keep track of the current state of each

TCP stream. It also means that a collection of data has to be transmitted with each sent packet in

order to keep correct accounting of the TCP state at the sender and the receiver. This information

is structured in the TCP header. The inclusion of a TCP header with every transmission results

in a larger transmission overhead for TCP than for simpler transport protocols. Figure 3.1 shows

the TCP header structure. Each TCP connection is uniquely defined by the IP address and the

TCP port. The available capacity at the receiver is communicated through the “Window size”-

field. The “Sequence number” is a counter that keeps track of the number of bytes the stream

has transferred. The sender learns how much of the transmitted data has been successfully

delivered by reading the “Acknowledgement number”. Other fields are used to keep track of the

TCP state, setup and teardown process. Space is also reserved for custom options.

3.1. TCP 19

Bit offset 0-3 8-154-7 16-31

0

32

64

96

128

160

160/192+

Source port Destination port

Sequence number

Acknowledgement number

Offset Reserved Flags Window size

Checksum Urgent pointer

Options

Data

Figure 3.1: TCP header structure.

Figure 3.2: Developments in TCP congestion control up to “New Reno” that are relevant to thin streams.

3.1.1 TCP developments culminating in TCP “New Reno”

After several stages of development, the first complete TCP draft [93] defined how to provide

the basic services of TCP. One of the central tools for providing the services was a “go back

N”-algorithm. “Go back N” enables the sending of several segments of data before receiving

an acknowledgement. How much data to send before waiting for feedback was determined by

the receive window specified by the receiver. The receive window size was usually defined by

the buffer size for receiving data allocated by the receiving TCP code. Figure 3.3 illustrates

an example of “go back N”-behaviour. The receiver advertises a window of 3 segments (it has

capacity for 3 segments in its receive buffer). Segments 1 and 2 are successfully delivered, while

segment 3 is lost. Retransmission of segment 3 is triggered by a timer, and normal behaviour is

reestablished. Note that the receiver uses cumulative acknowledgements (cumACKs) signalling

the successful reception of all data up to the acknowledged sequence number (index in the

range of sent bytes). The use of cumACKs in early TCP also meant that all segments following

a loss had to be retransmitted. Retransmissions were triggered by a timer which was based on

a minimum value (1 second) and modified with an estimated RTT. Several RTT measurements

were taken into consideration when calculating the retransmission timeout (RTO), resulting in

a “smoothed” RTO.

When John Nagle described the “congestion collapse” in 1984 [78], he proposed two new

features to be added to TCP. The first was dubbed “Nagle’s algorithm”, which aimed to avoid

unnecessary sending of small packets by delaying transmission on the sender until a segment

is full or a timer is triggered. Figure 3.4(a) shows one example of behaviour when Nagle’s

20 Chapter 3. Transport

Sender Receiver

X

1

2

3

ACK(2)

1 2 3 4 5 6 7

Timeout 3

1 2 3 4 5 6 7

3

5

4

ACK(3)1 2 3 4 5 6 7

.

.

.

Timer start 3

X

X

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

5

4

6

Figure 3.3: Example of “go back N” behaviour.

Sender Receiver

Time

Waiting for segment

to fill up.

Data from application

Data from application

1 2 3 4 5 6

1 2 3 4 5 6 1, 2, 3, 4, 5, 6

(a) With Nagle’s algorithm.

Sender Receiver

Time

Data from application

Data from application

1 2 3

4 5 6

1, 2, 3

4, 5, 6

(b) Without Nagle’s algorithm.

Figure 3.4: Example of packet transmission with and without Nagle’s algorithm. A premise for the
example is that there are unacknowledged data on the connection.

algorithm is active. The application delivers a small segment to be sent over TCP. The data is

delayed in the network buffer until the data waiting to be sent can fill the maximum segment

size (MSS). If no more data is received from the application within a given time limit, the

smaller segment is sent. The data is only delayed if there are unacknowledged segments on

the connection. The timing of transmissions for the same example without Nagle’s algorithm

is shown in figure 3.4(b). Here, the data is sent when delivered from the application, without

further delay. Nagle also proposed a congestion control scheme using Internet control message

protocol (ICMP) (source quench) packets to signal a reduction of the send rate before packets

have to be dropped. This was later rejected since it generates unnecessary traffic.

In 1986, Van Jacobsen investigated occurrences of congestion collapse on the ARPANET.

The investigations resulted in a paper where possible solutions to the recurring congestion prob-

lems were described [61]. The implementation of the new mechanisms in BSD 4.3 (Tahoe)

resulted in the first “modern” TCP, which added congestion control to the services provided by

TCP. The introduction of the congestion window was made to limit the throughput in accor-

3.1. TCP 21

0

4

8

12

20

16

36

24

28

32

40

44

0 2 4 6 8 10 12 14 16 18 20 22 24

ssthresh

ssthresh

RTT

C
o
n
g
e
s
ti

o
n
 w

in
d
o
w

 (
M

S
S
)

loss

fast recovery

when all lost segments

are recovered, restore

original cwnd

slow-start slow-start

Figure 3.5: AIMD, slow-start and fast recovery example.

dance with the available per-stream bandwidth.

Slow start was implemented to find the maximum available bandwidth within a short pe-

riod of time. Congestion avoidance was instrumented as an “additive increase, multiplicative

decrease” (AIMD)-algorithm. Figure 3.5 describes the AIMD-algorithm with slow start. The

amount of sent data is doubled each RTT until the slow start threshold (ssthresh) is reached.

At that point, the “additive increase” begins, incrementing the sent data by one MSS each RTT

until loss is detected. A retransmission timeout is interpreted as a congestion notification, trig-

gering the decrease. This causes the ssthresh1 to be set to half the congestion window size, and

slow start is initiated. In order to respond even more drastically to severe congestion, the expo-

nential backoff mechanism was suggested. This mechanism doubles the retransmission timer

for each successive retransmission of a given segment. This allowed for a total withdrawal of

the competing streams upon severe congestion.

The “fast retransmit”-algorithmmade for more effective retransmissions when feedback was

abundant. If one of the segments in the send window was lost, but successive segments arrived

at the receiver, the receiver would continue to send acknowledgements for the last in-order

segment received (see figure 3.6). This effect of resending the last acknowledgement was called

“duplicate acknowledgements” (dupACKs). After receiving three dupACKs, an assumption

could be made that loss had occurred (not network reordering). The ssthresh would be set to

half the congestion window size, a retransmission of the first unacknowledged segment would

be made and TCP would enter slow-start. This allowed for quicker recovery than waiting for a

retransmission timeout.

With the introduction of “fast recovery” in 1989 [23], TCP Reno was born. When a fast

retransmit was triggered, TCP would not go into slow start, but halve the congestion window,

1The start value of ssthresh was, in early TCP versions, set to the size of the receive window. This was later
changed so that ssthresh would reflect the estimated link capacity.

22 Chapter 3. Transport

Sender Receiver

1

X
2

3

4

5

(S)ACK 1

dupACK 1

dupACK 1

dupACK 1
Fast retransmission of 2

{minRTO

Figure 3.6: Example of how a fast retransmission is triggered after receiving three dupACKs.

and continue to send data segments (shown with grey dots and dotted lines in figure 3.5). If

all lost segments were recovered (acknowledged) before a timeout was triggered, the old con-

gestion window would be restored, and transmission could continue at the previous rate. This

improvement helped improve bandwidth utilisation since the streams would not all go into slow

start when sporadic loss occurred.

Further improvement to TCP Reno was made in 1995 when a scheme to use ACK informa-

tion to detect multiple holes in the ACK sequence was devised. When loss was detected by three

dupACKs, the ssthresh would be set to half the congestion window (cwnd), and fast recovery

would be initiated. The improved algorithm would, however, transmit a new segment from the

end of the congestion window each time a dupACK was received, thus potentially maintaining

a stream of ACKs. Upon reception of a dupACK that acknowledged some, but not all of the

sent packets in the congestion window, it was assumed that a new hole was detected, and a new

fast retransmission was performed. The fast recovery phase was kept until all holes had been

“plugged” (or a timeout occurred) [41]. This TCP-version was branded “TCP New Reno”, and

was, until very recently, the default TCP variation in many operating systems.

3.1.2 Retransmission timeout calculation

A critical part of packet recovery in TCP is how the retransmission timeout is calculated. The

effect of this calculation is also to a large degree influencing the retransmission latencies we

observe in our analysed traces.

The recommendations for calculating the RTO timer in TCP are summarised in RFC 2988 [84].

The RTO calculation is based on two intermediately calculated variables: Smoothed RTT

(SRTT) and RTT variance (RTTVAR). SRTT and RTTVAR are calculated based on success-

ful RTT measurements that are made as ACKs arrive. The specification says that Karn’s algo-

rithm [63] must be used for RTTmeasurements. Karn’s algorithm states that RTTmeasurements

from retransmitted data segments should never be used as the basis for RTO calculation. This is

because the result is ambiguous when considering which transmission triggered the ACK used

3.1. TCP 23

as basis for the calculation.

K = 4

SRT T = R

RT T VAR=
R

2

RTO = SRT T +max(G, K × RT T VAR)

(3.1)

Upon initiating a new connection, the RTO should be set to 3 seconds [23]. When the first RTT

measurement R is made, the SRTT, RTTVAR and RTO should be set according to the algorithm

shown in equation 3.1. G represents the timer granularity for the TCP implementation. K is

set to the value specified in [84]. The specification states that a lower granularity (G ≤ 100ms)

yields more accurate RTT measurements. Another consideration pertaining to timer granularity

is that the maximum wakeup time for a timeout is RTO+ G.

α=
1

8
,β =

1

4

RT T VAR= (1− β)× RT T VAR+ β × |SRT T − R′|

SRT T = (1−α)× SRT T +α× R′

RTO = SRT T +max(G, K × RT T VAR)

(3.2)

When subsequent ACKs arrive, the RTTVAR, SRTT and RTO have to be recalculated [84]. The

variables are updated according to the algorithm in equation 3.2. α and β are set according

to [61]. The new RTTVAR is calculated based on the current RTT measurement R′, and the

previous SRTT and RTTVAR. SRTT is computed based on the current RTT measurement and

the previous SRTT value. The RTO value is set based on the newly calculated SRTT and

RTTVAR. If the measured RTT fluctuates, the K × RT T VAR inflates, and the RTO becomes

high. The rationale for this algorithm is that the RTT variations are indications of congestion.

It therefore ensures a conservative RTO by making RTTVAR count to a large degree. This

approach does, however, increase the retransmission latency, which has led to alternative RTO

calculations being used in some operating systems (like Linux).

If the calculated RTO is lower than 1 second, the value should be rounded up to one second

according to the RFC. In several operating systems (for instance Linux), this minimum RTO

(RTOmin) is kept at a lower value
2 to avoid unnecessary high retransmission delays. When the

RTOmin is chosen, it is a tradeoff between the need to avoid spurious retransmissions3, and the

2The Linux kernel (2.6.30) has an RTOmin of 200 ms while FreeBSD 7.2 allows a 30 ms RTOmin.
3Spurious retransmissions are retransmissions that prove redundant in the process of recovering a lost segment.

If, for instance, the RTOmin is very low, a timeout may trigger a new retransmission even though the transmitted

24 Chapter 3. Transport

1 i c sk −> i c s k _ r t o = min (((tp−> s r t t >> 3) + tp−> r t t v a r) , TCP_RTO_MAX)

Figure 3.7: The Linux kernel (2.6.23.8) code for calculating the RTO timer.

need to keep retransmission delays low. The specification also states that a maximum value (of

at least 60 seconds) may be placed on the RTO.

Figure 3.7 shows, as an example, the Linux kernel code for calculating the RTO. The

variable tp->srtt holds the SRT T ≪ 3, the current RTT variation is kept in tp->rttvar and

TCP_RTO_MAX is the system’s maximum allowed RTO. The effect is that the RTO is set to

the SRT T + RT T VAR. RT T VAR has a lower bound of 200 ms in the Linux kernel, effectively

setting the RTOmin to 200 ms. SRT T and RT T VAR is calculated as described in figures 3.1

and 3.2. The difference in the RTO calculation is made to tone down the effect of RT T VAR,

thus making the RTO less vulnerable to fluctuations in the estimated RTT.

3.1.3 Delayed acknowledgements

Cumulative acknowledgements are the basic way of confirming packet delivery in TCP. The

receiver inserts the sequence number of the highest in-order data segment that has been deliv-

ered into the ACK. The sender then knows that all sent segments below the given sequence

number have been delivered. This technique opens for rationalising the delivery of ACKs. A

common way of reducing the number of ACKs that are transmitted upstream is to use a mecha-

nism called delayed acknowledgements (delayed ACKs). Figure 3.8 shows an example of how

this technique works. Instead of sending an ACK for every received packet as shown in fig-

ure 3.8(a), the receiver waits for the next packet to arrive before sending a cumulative ACK that

covers both segments (illustrated in figure 3.8(b)). If no further segments arrive, the ACK is

triggered by a timer as shown in figure 3.8(c). RFC 1122 [23], which describes requirements

for Internet hosts, states that TCP should implement delayed ACKs, but that the delay should

not exceed 500 ms. A common value for the delayed ACK timer is 200 ms (used for instance

in the Linux kernel). In addition to reducing the upstream traffic, the delayed ACKs can help

reduce processing overhead for TCP since less packets have to be generated.

Delayed ACKs may present problems for TCP variations that rely on precise RTT measure-

ments for its mechanisms because less feedback is available to get accurate RTT measurements.

The combination of Nagle’s algorithm and delayed ACKs can also cause high delays that may

be unfortunate for time-dependent applications. This is because transmissions are delayed both

on sender and receiver.

segment was successfully received and an ACK is underway to the sender. Generally, if throughput is the only
relevant metric, spurious retransmissions are a waste of link resources.

3.1. TCP 25

Sender Receiver

Time Time

seq=1
2
3
4

ack=1
2
3
4

(a) Without delayed ACKs. Every received data seg-
ment is ACKed.

Sender Receiver

Time Time

seq=1
2
3
4

ack=2

4

(b) With delayed ACKs. Bandwidth is saved on the up-
stream path.

Sender Receiver

Time Time

}200ms

delay

seq=1

ack=1

(c) With delayed ACKs. If no further segments arrive,
the ACK is triggered by a timer.

Figure 3.8: Examples with and without delayed ACKs.

3.1.4 TCP Vegas

TCP Vegas [25] is a modification of “Reno” that was introduced in 1994. Using fine-grained

timers, this TCP variation is able to detect congestion based on RTT measurement analysis and

dynamically calculate the RTO. This enables retransmissions of segments before a “traditional”

timeout would occur.

TCP Vegas differs from Reno in both retransmission scheme and congestion avoidance. The

changes in the retransmission mechanisms are as follows:

• TCP Reno uses coarse-grained timers4 to calculate RTT and variance. This reduces the

accuracy of the calculated values and also influences the triggering of timeouts. The finer

timer used in Vegas reduces the overhead when calculating timeouts.

• The fine-grained timers used to calculate RTTs based on system clock timestamps are

used to retransmit in the following cases:

4In TCP Reno (the BSD implementation), the granularity of the timer used to compute RTT and variance
estimates is 500 ms [25]. This helps to keep TCP conservative when retransmitting, but can result in inaccurate
RTT estimates, and makes the RTO prone to extra delays due to late checking.

26 Chapter 3. Transport

1. When receiving the first dupACK, if the new RTT is greater than the RTO, the

segment is retransmitted without waiting for 3 dupACKs to arrive.

2. The first and second ACK after a retransmission are checked to see if the RTT is

greater than the RTO. If the test is positive, a retransmission is performed.

Vegas also uses coarse-grained timers (TCP Reno-style) in case the listed special cases

do not identify a lost segment.

• TCP Vegas does not allow the congestion window to be halved more then one time in

the course of one RTT. This is necessary since Vegas reacts more quickly to signs of

congestion.

TCP Vegas also takes a different approach to the detection of loss and the congestion avoid-

ance algorithms. While Reno detects loss and reacts to it, Vegas tries to detect signs that con-

gestion is about to occur, and react before loss can happen. The following algorithm is used

when slow-start is not in effect:

• Define a “baseRTT” for each segment to be sent. The value chosen for “baseRTT” is

commonly the minimum observed RTT. Calculate an “expected throughput” (current con-

gestion window size / “baseRTT”).

• Find the estimated “actual sending rate” by recording the number of bytes transmitted

between the segment is sent and its ACK is received, and divide this number by the

sample RTT. Do this calculation once per RTT.

• Compare the “actual throughput” to the “expected throughput” and adjust the window

size based on this difference.

When in slow-start, TCP Vegas doubles its congestion window every second RTT (in con-

trast to each RTT for Reno). The less aggressive mechanisms of Vegas ensure better bandwidth

utilisation in an all-Vegas environment. When competing with Reno (and other, more aggressive

TCP flavours), TCP Vegas reacts earlier to congestion than its competing streams, and would

receive less than it’s share of the available bandwidth [25]5.

3.1.5 Selective Acknowledgements

One inherent limitation of using cumulative ACKs is that only assumptions can be made to

which segments have been delivered and which have been lost. This problem was addressed by

5Windows Vista’s “Compound TCP” is reported to share similar properties to Vegas (window expansion by
RTT measurements). It is also shown to produce slightly lower goodput than comparable TCP variations under
many circumstances [56].

3.1. TCP 27

the “selective acknowledgement” (SACK) TCP extension [72]. When SACKs are in effect, the

receiver uses TCP header extensions to report which segments are lost, and which are success-

fully delivered. The sender can, using the SACK information, retransmit only the lost segments,

thus saving resources. SACKs have to be supported both by the sender and receiver, and the use

of SACKs is negotiated in the three-way handshake.

3.1.6 Duplicate SACK

Duplicate SACK (DSACK) [42] is an extension to SACK that enables the identification of seg-

ments that have been transmitted more than one time. The receiver includes within the ACK

the sequence number(s) of the packet(s) that triggered the ACK. The DSACK information can

be used by the sender to better assess the network loss by identifying spurious retransmissions.

The algorithm assumes that duplicates are caused by spurious retransmissions. If network du-

plication is detected (a DSACK can not be coupled with a retransmission), the algorithm is

disabled.

3.1.7 Forward acknowledgements

TCP forward acknowledgement (FACK) [73] implements an algorithm where the SACK infor-

mation is used to better estimate the amount of outstanding (sent, not ACKed) data. This is

done by interpreting the highest SACKed sequence number as a sign that all lower unSACKed

segments are lost. This helps to reduce burstiness in transmissions since it controls the out-

standing data more accurately. The reordering of packets on the network does, however, break

the algorithm, and FACK is therefore often disabled for a stream if reordering is detected.

3.1.8 Congestion control for high-speed links

A lot of research has been done to develop TCP mechanisms that can cope with high-speed

links with loss. When the available bandwidth is generally high, AIMD has problems reaching

Gbps speeds if there are occasional losses. On wireless links that experience relatively high

link-layer delays (due to link-layer loss and retransmissions), reaching a proper end-to-end

transmission rate is also a challenge. The research in this field has focused mainly on a flexible

and speedy adaptation of the congestion window. The RTO and fast retransmit principles are

usually affected only to a small degree (for instance by alternative methods for RTT estimation).

The following TCP variations are central in the line of cwnd-adapting mechanisms.

TCP binary increase congestion (BIC) [115] is developed for networks with high bandwidth-

delay products (BDPs). The congestion control algorithm can be categorised into three parts:

1) Additive increase, 2) binary search and 3) max probing. The key feature of BIC is that it

28 Chapter 3. Transport

searches for the middle point of two values: winmax and winmin. winmax is the window size

when the last loss was detected (or a fixed value at the beginning of a connection). winmin is the

window size after a reduction. If an increase in window size is made without any loss-events,

winmin is set to the current window size, and a new search is performed. If the search returns a

value that is larger than a given constant smax , BIC increments the window by smax . This gives

the algorithm a linear growth in the beginning. The binary search yields smaller and smaller

increments until it stabilises. If loss occurs, the window is reduced, and the search process

starts again. This gives the algorithm the pattern of a binary search and it is able to quickly

reach a suitable size for the congestion window. The search stops when the increase is less than

a constant (smin). When the window size reaches winmax , BIC enters “max probing” where it

tries to increase the window size as long as no loss events are detected. The probing starts very

slow, escalating to linear increase if successful.

In a revised version of BIC (TCP CUBIC) [53], the three-part window growth function is

replaced with a cubic function. The cubic function is less aggressive near the equilibrium, and

thus more fair to other streams (especially for connections with low RTT). The modification also

simplifies window size calculation since three different stages are replaced with one function.

A “TCP mode” is also incorporated to compensate for the parts of the cubic function which

grows more slowly than a generic AIMD TCP variant (like New Reno) would. CUBIC is the

choice TCP variation for several Linux distributions today.

TCP Westwood [30] was designed to improve throughput for connections with high capac-

ity, tendency for loss and dynamic bandwidth (as often found in wireless networks). The central

idea in Westwood is to use a bandwidth estimate to adjust ssthresh and the cwnd. An eligible

rate estimation is calculated by counting the amount of acknowledged data over a time inter-

val. The time interval is computed using TCP Vegas-like differences between estimated and

actual rate (based on RTT measurements). This scheme aims to separate loss caused by noise

or network layer delays from loss by congestion and treat each case separately.

Tests performed on the Westwood TCP variation soon revealed that the algorithm overes-

timated the available bandwidth (due to ACK compression6). This overestimation can cause

Westwood to get a fairness-advantage over competing streams using other TCP variations.

Westwood plus [48] was developed to counter this overestimation. The Westwood algorithm is

modified so that a sample bandwidth is calculated every RTT instead of on ACK arrival. The

bandwidth samples are spread evenly over the estimated RTT period, thus filtering events of

high ACK density.

Using regular AIMD, high bandwidths are near impossible to achieve7. This led to the

6ACKs have to arrive at the sender with the same inter-ACK spacing as they were sent in order to facilitate
accurate cwnd calculation. When queueing happens on the feedback path, ACKs may arrive with small spacing,
leading to an overblown cwnd

7On a connection with packet sizes of 1500B and an RTT of 100ms, a loss rate of 1

5×109 would make it impos-

3.1. TCP 29

development of “high-speed TCP” (HSTCP) [40]. In HSTCP, the cwnd calculation is done

differently depending on the current size of the cwnd. When the window is small, HSTCP

behaves like regular AIMD TCP variations. A large cwnd causes HSTCP to increase faster and

decrease slower than regular AIMD (the parameters set based on the current cwnd size). HSTCP

may react more slowly to congestion events and network changes (like new flows) [68], and thus

grab more bandwidth than the competing streams when this happens.

Another TCP variation for high BDP connections is “scalable TCP” (STCP) [64]. The

method suggested in STCP for adapting to high-speed networks is to use a constant to incre-

ment the cwnd (cwnd = cwnd + 0.01 for each received ACK). When the cwnd is large, this

gives a much quicker growth than regular AIMD-based algorithms (cwnd = cwnd + (1

cwnd
)

per received ACK). To avoid unfairness towards competing non-STCP streams, a “legacy win-

dow” limit is defined. Thus, STCP uses regular AIMD window growth until the legacy window

is reached and the modified growth function is activated. The use of a constant for cwnd cal-

culation makes STCP simpler to implement than, for instance, the parametrised HSTCP. When

the cwnd is large, competing streams may lose throughput due to the higher aggressiveness of

STCP.

H-TCP [68] resembles HSTCP and STCP in its cwnd calculations, but aims to be more fair

towards other competing streams. This is achieved by defining a time interval after each loss

event, in which H-TCP adheres to the AIMD cwnd increase function. When the time interval

has elapsed, the faster increase function is reinstated. This allows for fairness in “low-speed

regimes”, while enabling high throughput in “high-speed regimes”.

TCP variations that adjust the cwnd each time an ACK arrives penalises streams with high

RTTs. TCP Hybla [28] aims to remove this negative effect for streams with high RTTs. This

is achieved by normalising the different streams’ RTTs relative to a reference RTT (RT T0).

The normalised RTT is used to make the actual throughput independent of the RTT. Hybla

also includes the SACK option since multiple losses are more probable over long RTTs, and

multiple segment recovery therefore is sensible. High RTT connections may suffer badly from

exponential backoff since an ACK from a non-retransmitted packet is needed to recover. In

Hybla, exponential backoff is therefore not used.

A range of other high-speed TCP variations have been devised, but they all focus on flexible

and rapid adjustment of the cwnd. Since thin streams does not depend on the cwnd fluctuations,

but on timers and fast retransmit adjustments, they are not markedly affected by such variations.

sible to achieve an average rate of 10Gbps [40]. This is because the growth rate is too slow to catch up with the
reduced congestion window (caused by loss) for such large window sizes.

30 Chapter 3. Transport

3.1.9 Summary

We have described the basic mechanisms of TCP with focus on the mechanisms that affect re-

transmission delays for thin streams. Different approaches for timer calculations influence the

retransmission delays when timeout occurs. TCP Vegas actively applies trusted RTT measure-

ments, which is used to adjust retransmission timers. This could affect the observed retransmis-

sion delays for thin streams. Different strategies for triggering fast retransmissions affect the

latency. Explicit gap notification like SACKs also potentially affect the retransmission latency

if the sender uses the information to modify its retransmission schemes.

3.2 Evaluation of TCP retransmission delays

To evaluate the performance of available TCP variations in the context of thin streams, we have

performed a range of tests where the focus of our analysis is retransmission latency. Results

from analysing the Anarchy Online [50] concluded that thin streams suffer unwarranted high

latencies when using TCP. This realisation led to another question: Is any of the currently

available8 TCP variations able to support thin streams? Experiments performed in [50] and

extended in [79] show how different TCP congestion control mechanisms perform for thin-

stream traffic.

In [79], the following TCP variations were tested : Reno, BIC, high-speed TCP, H-TCP,

Hybla, S-TCP, Vegas (Linux version without fine-grained timers) and Westwood. All TCP

variations were tested with different combinations of SACK, DSACK and FACK in order to

determine the influence of each mechanism on thin-stream latency. One of the findings was that

only small differences in latency could be found between the TCP variations9. All the tested

variations showed the same symptoms of high latency upon retransmissions.

Even though the differences between TCP variations were small, a tendency could be found

that TCP New Reno performs best for a range of different parameters in the thin-stream sce-

nario. Figure 3.9 shows the latency for a test setup over an emulated network (see figure 3.10)

with an RTT of 100 ms. Traffic patterns for the test were generated by replaying the Anarchy

Online trace that was analysed in section 2.4. The bars labelled “1p” have been exposed to 1%

loss, while “5p” signifies a loss rate of 5%. In addition, 10% delay variation (jitter) has been

added for the bars labelled “var+”.

The results for the first retransmission (figure 3.9(a)) show that TCP New Reno without

any modifications performs well for all the tested variations. Jitter causes a general increase in

8By “currently available”, we mean variations that are available in the Linux kernel, and possible to compare
by experimentation.

9Details on the performance of the different TCP variations for both thin and greedy streams can be found in
the thesis of Espen Paaby [79].

3.2. Evaluation of TCP retransmission delays 31

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

v
e

g
a

s
 v

a
r+

5
p

b
ic

 v
a

r+
5

p
w

e
s
tw

o
o

d
 v

a
r+

5
p

d
s
a

c
k
 f

a
c
k
 v

a
r+

5
p

fa
c
k
 v

a
r+

5
p

d
s
a

c
k
 v

a
r+

5
p

s
a

c
k
 v

a
r+

5
p

re
n

o
 v

a
r+

5
p

v
e

g
a

s
 5

p
b

ic
 5

p
w

e
s
tw

o
o

d
 5

p
d

s
a

c
k
 f

a
c
k
 5

p
fa

c
k
 5

p
d

s
a

c
k
 5

p
s
a

c
k
 5

p
re

n
o

 5
p

v
e

g
a

s
 v

a
r+

1
p

b
ic

 v
a

r+
1

p
w

e
s
tw

o
o

d
 v

a
r+

1
p

d
s
a

c
k
 f

a
c
k
 v

a
r+

1
p

fa
c
k
 v

a
r+

1
p

d
s
a

c
k
 v

a
r+

1
p

s
a

c
k
 v

a
r+

1
p

re
n

o
 v

a
r+

1
p

v
e

g
a

s
 1

p
b

ic
 1

p
w

e
s
tw

o
o

d
 1

p
d

s
a

c
k
 f

a
c
k
 1

p
fa

c
k
 1

p
d

s
a

c
k
 1

p
s
a

c
k
 1

p
re

n
o

 1
p

T
im

e
 i
n

 m
s

Times for first retransmission RTT=100ms

(a) Successful 1st retransmission.

 0

 500

 1000

 1500

 2000

 2500

 3000

v
e

g
a

s
 v

a
r+

5
p

b
ic

 v
a

r+
5

p
w

e
s
tw

o
o

d
 v

a
r+

5
p

d
s
a

c
k
 f

a
c
k
 v

a
r+

5
p

fa
c
k
 v

a
r+

5
p

d
s
a

c
k
 v

a
r+

5
p

s
a

c
k
 v

a
r+

5
p

re
n

o
 v

a
r+

5
p

v
e

g
a

s
 5

p
b

ic
 5

p
w

e
s
tw

o
o

d
 5

p
d

s
a

c
k
 f

a
c
k
 5

p
fa

c
k
 5

p
d

s
a

c
k
 5

p
s
a

c
k
 5

p
re

n
o

 5
p

v
e

g
a

s
 v

a
r+

1
p

b
ic

 v
a

r+
1

p
w

e
s
tw

o
o

d
 v

a
r+

1
p

d
s
a

c
k
 f

a
c
k
 v

a
r+

1
p

fa
c
k
 v

a
r+

1
p

d
s
a

c
k
 v

a
r+

1
p

s
a

c
k
 v

a
r+

1
p

re
n

o
 v

a
r+

1
p

v
e

g
a

s
 1

p
b

ic
 1

p
w

e
s
tw

o
o

d
 1

p
d

s
a

c
k
 f

a
c
k
 1

p
fa

c
k
 1

p
d

s
a

c
k
 1

p
s
a

c
k
 1

p
re

n
o

 1
p

T
im

e
 i
n

 m
s

Times for second retransmission RTT=100ms

(b) Successful 2nd retransmissions.

Figure 3.9: Average retransmission delay, simplex streams, 100ms delay [50].

32 Chapter 3. Transport

Figure 3.10: Test setup with an emulated network.

variance, while increased loss affects SACK, DSACK/FACK and Vegas the most. Figure 3.9(b)

displays the statistics for 2nd retransmission. Here, the difference between variations is more

pronounced, but New Reno still stands out as stable for all test parameters.

Testing TCP variations with thin-streams showed that TCP New Reno had the best overall

latency-performance. To get a deeper understanding of how the thin-stream properties affect

the number of retransmissions, we performed experiments where we varied basic properties

(loss rate, RTT and packet IAT) and observed how this affected the number of retransmissions.

Figure 3.11 shows results from the retransmission analysis. As expected, figure 3.11(a) shows

a linear relationship between loss rate and retransmission rate. A higher loss rate increases the

probability that more than one retransmission is needed to recover a lost segment. This inhibits

a greedy stream, but severely degrade the latency-performance for a thin stream. The relative

share of retransmissions needed to recover is independent of the connection RTT, as we can

see from figure 3.11(b). Since the stream is thin, the majority of retransmissions are due to

timeouts. The RTO value varies depending on the measured RTT and the RTT variance. If the

RTT stays stable, the retransmission frequency reflects the loss rate as shown in figure 3.11(a).

Figure 3.11(c) shows a scenario where we vary the IAT. We see an increase in the share of

retransmissions as the packet IAT crosses 200 ms. This is caused by a combination of lost

ACKs and the RTO that is calculated to ∼ (200ms + RT T) = 300ms. When a segment is

received, but the ACK is lost, the ACK from the next transmitted segment acknowledges the

previous segment cumulatively. When the packet IAT crosses the 200 ms boundary, the next

ACK fails to arrive before an RTO is triggered, and the segment is retransmitted.

The analysis of TCP variations showed that only small differences in the retransmission

delays can be observed between the tested TCP variations. TCP New Reno provides the lowest

overall latency for thin streams. Analysis of the retransmission properties indicate that high

packet IATs can increase the chance of spurious retransmissions. Aside from that, there seems

to be a near-linear relationship between loss rate and the number of retransmissions for thin

streams.

3.3. SCTP 33

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

%
 r

e
tr

a
n

s
m

is
s
io

n
s
.

% loss in each direction.

TCP New Reno

(a) Varying loss rate. RTT=100 ms, packet
IAT=140 ms.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500

%
 r

e
tr

a
n

s
m

is
s
io

n
s

RTT

TCP New Reno

(b) Varying RTT. Loss=0.5%, packet IAT =140 ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 100 200 300 400 500

%
 r

e
tr

a
n

s
m

is
s
io

n
s

interarival time

TCP New Reno

(c) Varying packet IAT, loss=0.5%, RTT=100 ms.

Figure 3.11: Analysis of changes in number of retransmissions for TCP New Reno when varying net-
work and stream parameters. Packet size for all tests are 120 bytes [39].

3.3 SCTP

The stream control transport protocol (SCTP) [97] was originally designed for transporting Pub-

lic Switched Telephone Network (PSTN) signalling traffic over Internet protocol (IP) networks

by the IETF signalling transport (SIGTRAN) working group [95]. SCTP supports a range of

functions that is critical to message-oriented signalling transport, but also has features and op-

tions that are useful for many other applications. After several rounds of modifications, SCTP

has ambitions to become an ubiquitous protocol that ideally should be able to replace both TCP

and UDP. This is enabled by the wide range of optional features that can be specified when

setting up an SCTP connection10.

SCTP is message- and connection oriented, meaning that one SCTP connection (often called

an association) may serve several different data streams between the two hosts. Message bound-

10A factor that may contribute to the relatively slow adoption rate of SCTP is that the broad range of services
makes the API for socket setup more complex. The overhead for connection setup and header-overhead due to
separate chunk headers may also be inhibiting factors.

34 Chapter 3. Transport

(a) SCTP packet structure.

(b) SCTP data chunk structure.

Figure 3.12: SCTP data packet structure.

aries are preserved, in contrast to TCP which delivers a byte-stream to the receiver. Reliability

is provided through acknowledged data delivery. Flow control is provided to prevent receiver

overflow. The protocol also checks for bit errors and ensures that duplicates are removed. For

improved fault tolerance, SCTP provides multihoming support, which allows for more than one

IP address to be associated with the connection.

3.3.1 SCTP chunks and bundling

Preservation of message boundaries in SCTP is realised through message containers called

“chunks”. An SCTP packet consists of a generic SCTP header and a collection of chunks

(see figure 3.12). Various tasks pertaining the connection are communicated through different

chunk types (examples of chunk types are: DATA, INIT, SACK, ABORT and SHUTDOWN).

Each chunk type has a different header structure reflecting the task of the chunk type.

Figure 3.12(b) shows the composition of the data chunk header. It contains the payload

length, transmission sequence number (TSN), stream identifier, stream sequence number and

payload protocol identifier. In addition, the header contains flags regarding fragmentation and

ordering as well as a chunk type identification field. The TSN is a number that uniquely identi-

fies the chunk in the SCTP connection, regardless of the stream that the chunk belongs to.

The separation of messages (chunks) from the packet data structure makes SCTP very flex-

ible when it comes to the composition of each packet. Chunks do no not have to originate from

the same data-stream, and retransmissions can be stacked in between regular data chunks that

are transmitted for the first time. The SCTP specification (RFC 4960 [97]) states that the user

can request that SCTP bundle chunks when the path MTU allows. It is also stated that SCTP

3.3. SCTP 35

Figure 3.13: SCTP SACK chunk structure.

implementations may bundle chunks when congestion occurs, even if the user has not explicitly

asked for it. Such “unsolicited bundling” may help improve delivery latency for thin-streams.

3.3.2 Acknowledgements in SCTP

For reliable transfer to work, acknowledgements have to be passed to the sender. For this pur-

pose, SCTP applies a special chunk. Drawing on the experiences from the TCP developments,

SACK-functionality is mandatory in SCTP. The SACK also incorporates functionality like the

TCP duplicate SACK mechanism. The SACK chunk structure is shown in figure 3.13. The

“cumulative TSN ACK”-field contains a TSN that acknowledges all transmitted chunks up to

the cumACK TSN value. Following the cumACK are counters for the number of gap ACKs

and duplicate TSNs are included in the SACK. At the end of the SACK chunk is the list of gap

ACKs and, finally, the list of duplicate TSNs. The intrinsic inclusion of cumACK, gap ACKs

and duplicate TSNs allows for SCTP to make qualified assumptions about chunk bundling and

retransmissions.

SCTP also supports delayed SACKs (as described in section 3.1.3). An implementational

choice is that delayed acknowledgements is enabled as default in the implementations that we

have studied11. This can contribute to heightened retransmission delays.

3.3.3 SCTP RTO calculation

The RTO calculation specified in [97] is identical to the TCP RTO calculation for TCP de-

scribed in section 3.1.2. In the same way as for TCP, this leaves the retransmission timer value

vulnerable to RTT fluctuations (which yields overblown RTOs). There are differences in how it

is commonly implemented, however. The recommended value for RTOmin is one second both

for TCP and SCTP. While TCP implementations often soften this requirement, the SCTP im-

plementations we have studied adhere to the recommendation. The high RTOmin value helps to

11We have used as reference FreeBSD 7.2 and Linux lksctp in the 2.6.28 kernel. There are more than 20 different
SCTP implementations [114], though, and details may differ between them.

36 Chapter 3. Transport

avoid spurious retransmissions, but can cause unwanted delays for interactive streams.

Another aspect of the SCTP RTO functionality is that the RTO timer is reset if a SACK

arrives which acknowledges some, but not all, outstanding chunks. This is done to keep the

cwnd open (by allowing dupSACKs to arrive so that a fast retransmit can be triggered) and to

avoid spurious retransmissions. The extra delay that is added to the timer can, however, result

in increased latency for thin streams. For streams with high packet IAT, this rarely (or never)

happens. For interactive applications with a relatively low packet IAT (like Skype in table 2.1)

over a high RTT connection, though, it can cause delays.

3.3.4 SCTP retransmission strategies

A salient difference from TCP (regarding the retransmission mechanisms) is that SCTP is

message-oriented. Instead of retransmitting the previous packet(s) as TCP does, SCTP keeps

track of the chunks that have timed out or been reported as lost and retransmits outstanding

chunks. This makes the protocol more flexible with regard to packet composition and bundling.

The SCTP implementation can apply bundling strategies to choose the optimal combination of

chunks to be retransmitted with each packet. Chunks scheduled for retransmission can also be

bundled with fresh data.

The fast retransmit mechanism (as described in section 3.1) is employed also by SCTP.

After receiving three duplicate SACKs, a fast retransmission is triggered on the next outstanding

chunk.

3.3.5 Other SCTP options

In addition to the basic SCTP features described in the previous sections, there are several

options and extensions to SCTP that can prove valuable to different kinds of applications. One

such extension is partial reliability [98], that can be used for time-dependent applications. This

allows for optional reliability that enables UDP-like behaviour. This means that certain chunks

can be tagged as “unreliable”, and are transmitted without the restrictions imposed by reliability

and in-order delivery12. The option of timed reliability is also specified in [98]. Timed reliability

makes it possible to invalidate a message in the sender buffer if a given timer has expired. This

can save system and network resources in cases where the chunk should be dropped rather than

be sent if the time limit is exceeded.

Another option that SCTP supports is multi homing. A multi-homed association keeps sev-

eral IP addresses at one (or both) endpoints. This provides application-transparent robustness

against faulty network paths.

12The partial reliability extension actually allows for any combination of reliability and in-order delivery (for
instance unreliable, ordered delivery).

3.4. Evaluation of SCTP retransmission delays 37

RTT (ms) Type Occurrences Share Min (ms) Max (ms) Avg (ms)
0 Retransmission timeout 282 76.2 % 999.1 1256.6 1005.5

Fast retransmit 24 6.5 % 1024.4 1280.4 1088.4
Reported lost and bundled 34 9.2 % 464.0 744.0 592.7
Unsolicited bundling 30 8.1 % 231.8 744.0 274.7

100 Retransmission timeout 275 43.0 % 1039.9 1612.1 1049.8
Fast retransmit 23 3.6 % 1126.5 1386.2 1173.1
Reported lost and bundled 27 4.2 % 460.0 1356.1 689.3
Unsolicited bundling 314 49.1 % 15.3 532.0 51.2

200 Retransmission timeout 266 40.1 % 996.2 1460.1 1144.6
Fast retransmit 35 5.3 % 1228.4 1740.7 1274.2
Reported lost and bundled 24 3.6 % 487.9 976.0 780.7
Unsolicited bundling 338 51.0 % 28.0 888.0 172.8

400 Retransmission timeout 242 27.9 % 1343.0 1660.1 1352.0
Fast retransmit 31 3.6 % 1427.2 1943.6 1496.2
Reported lost and bundled 26 3.0 % 780.0 1430.1 1011.1
Unsolicited bundling 567 65.5 % 11.8 832.0 213.4

Table 3.1: SCTP cumulative retransmission statistics for thin streams, first retransmission [86].

3.4 Evaluation of SCTP retransmission delays

The SCTP transport protocol was originally designed to handle signalling traffic. Such sig-

nalling traffic shows typical thin-stream properties. The flexibility of SCTP as a message-

oriented protocol with options for partial reliability also made it interesting to test with thin-

stream traffic. Thorough testing of SCTP properties13 and comparison between SCTP and TCP

was performed in [85]. The experiments analysed SCTP retransmission delays, both for greedy

and thin streams. SCTP occasionally bundles unacknowledged chunks on retransmissions even

though the chunk is not confirmed lost. Chunks that are registered as lost can be bundled with

regular transmissions (of new data). In addition, retransmissions by timeout and fast retransmit

are performed. Statistics were made of the frequency of each type of retransmission under dif-

ferent conditions. Tests were also made to compare the SCTP results to TCP New Reno for the

same scenarios.

Table 3.1 shows the share of retransmissions caused by each of the retransmission methods

SCTP uses. The delay before the sent data is cumulatively ACKed is also shown. The thin

stream sent over the test network had a packet IAT of 250 ms and a packet size of 100 bytes.

The loss over the emulated network was 5% for these tests. The most prominent change as

the RTT increases is that the number of unsolicited bundles increases drastically. From further

analysis, it is clear that most of the unsolicited bundles represent spurious retransmissions. If

13The SCTP version tested was the Linux kernel SCTP (lksctp) [13] available in the 2.6.16 Linux kernel.

38 Chapter 3. Transport

 0

 500

 1000

 1500

 2000

 2500

 3000

3
.r

e
tr

2
.r

e
tr

1
.r

e
tr

3
.r

e
tr

2
.r

e
tr

1
.r

e
tr

4
.r

e
tr

3
.r

e
tr

2
.r

e
tr

1
.r

e
tr

3
.r

e
tr

2
.r

e
tr

1
.r

e
tr

m
s

RTT 0 ms RTT 100 ms RTT 200 ms RTT 400 ms

Figure 3.14: SCTP retransmissions by timeout [86].

this effect were to happen for semi-greedy streams, it would be unfortunate, as it would increase

the bandwidth used drastically. A full-fledged greedy stream, however, would always fill the

MSS, thus voiding any chance for unsolicited bundling. For thin streams, however, unsolicited

bundling may be warranted if a faster recovery is made. As the RTT increases, (and unsolicited

bundles also increase), the retransmissions by timeout also decrease. As retransmission by

timeout is the mechanism that usually produces the largest retransmission delays, this effect

is good with regard to latency. The fact that higher retransmission delays are seen for fast

retransmit than for retransmissions by timeout can be explained by timer restarts14.

Statistics for retransmissions by timeout are displayed in figure 3.14. We can see that the

average delays before a retransmitted chunk is ACKed increases for each additional retransmis-

sion. The increase is, however, not exponential as would be expected from TCP. This is because

SCTP can restart the timer when a late SACK arrives. The RTO can then be recalculated, and

the backoff is reduced to a non-exponential mode. The fact that recovery does not occur until a

second has passed, however, makes the delays bad for interactive applications.

SCTP was also compared to TCP New Reno, both with thin and greedy streams. Results

from the tests with greedy streams showed that the fast retransmit-mechanism in SCTP yielded

lower retransmission delays compared to TCP New Reno. The main contributing reason for this

was that SCTP had no limit for the number of times a segment can be fast retransmitted before

a cumulative ACK is received.

14When the RTT is high, the chance increases for a special scenario where a chunk is first fast retransmitted,
lost again, and retransmitted by a delayed timeout. The delay happens when incoming dupSACKs trigger a timer
reset like described in section 3.3.3.

3.4. Evaluation of SCTP retransmission delays 39

Loss Scenario Extension Retransmission Delay Statistics

Min Max Avg Std

RTT = 0 ms Plain 203.6 1632.1 231.7 98.6

S 203.2 816.1 224.5 72.0

S+D 202.9 1632.1 233.4 101.9

S+D+F 200.1 1632.1 234.6 108.9

S+F 200.1 1632.1 225.2 87.8

RTT = 100 ms Plain 308.1 1216.1 328.3 97.7

S 308.1 1264.1 348.5 113.9

S+D 308.1 11185.2 388.4 554.4

S+D+F 308.1 9816.6 360.3 378.4

S+F 308.1 16901.0 392.6 708.7

RTT = 200 ms Plain 412.1 6614.4 481.6 305.1

S 412.1 3328.2 488.2 277.7

S+D 412.1 3360.2 461.1 180.5

S+D+F 412.1 2752.1 464.6 179.0

S+F 412.1 5912.4 487.3 404.5

RTT = 400 ms Plain 612.1 4960.3 728.4 437.2

S 612.1 2842.5 692.5 264.2

S+D 612.1 2480.2 693.0 239.4

S+D+F 612.1 2480.2 708.7 286.2

S+F 612.1 2480.2 697.8 246.1

Table 3.2: TCP New Reno retransmission delays [86].

Table 3.2 shows the thin-stream retransmission statistics for tests performed on TCP New

Reno. Packet IAT and size is the same as for the SCTP test described above. The abbreviations

in the tables represents the following TCP mechanisms: Plain is standard TCP New Reno, S is

the SACK extension, D is DSACK and F is FACK. Tests performed with thin-stream transmis-

sion patterns confirmed the TCP observations described in [79]. Average retransmission delays

for SCTP and thin streams were actually higher than for TCP New Reno. Although surprising,

considering that SCTP was designed for signalling traffic, this can be explained by three main

contributing factors:

1. lksctp in the 2.6.16 kernel uses delayed SACKs as default, with no option to disable this

feature. For greedy streams, this limits the upstream traffic without any significant per-

formance penalty. For interactive thin streams, delayed SACKs increase the time before

the sender is able to react to loss.

2. The RTOmin of the tested SCTP implementation was set to 1 second (in contrast to TCP

New Reno’s RTOmin of 200 ms). This reduces the number of spurious retransmissions

for greedy streams, but increases the retransmission delay for thin streams unable to fast

retransmit.

40 Chapter 3. Transport

bits

0

32

64

0 - 15 16 - 31

Source port Destination port

Length Checksum

Data

Figure 3.15: UDP header structure.

3. At the time when our tests were performed, the lksctp implementation needed 4 dupli-

cate SACKs to trigger a fast retransmission15. This increases the delay before fast re-

transmitting, and makes SCTP respond more slowly than TCP in the cases where fast

retransmissions are possible.

The high RTOmin in SCTP means that if the data segment is recovered after only one re-

transmission, TCP New Reno is preferred. If several retransmissions of the same segment are

needed, the SCTP property of multiple fast retransmissions before backing off yields lower re-

transmission delays for SCTP than for TCP New Reno. SCTP bundling of unacknowledged

segments can compensate for some of the increased retransmission delay, but latencies are still

too high to satisfy interactive applications when loss occurs.

3.5 UDP with application layer reliability

The simplest protocol among the transport protocols is the User Datagram Protocol (UDP) [92].

It provides addressing (port number) and error checking (checksum). Messages are sent as

they are delivered from the application layer, giving the sender control of the transmission

timing. No correction is done from the protocol if packets are lost, duplicated or reordered. The

communication setup demands no handshake, and the transmission logic is stateless. UDP can

support multicast and broadcast.

Figure 3.15 shows the UDP header. Source and destination port numbers enable applica-

tion multiplexing. Checksumming makes error detection possible. The simplicity of the UDP

header makes the payload to header ratio large. UDP gives the application designer freedom to

control the transmissions, but leaves much to be wanted with regard to security. The absence

of reliability and congestion control makes UDP streams likely to cause congestion when used

for data-intensive applications. Since application designers must implement services that are

15The use of 4 dupSACKs was according to the first SCTP RFC [99], published in year 2000. When the revised
RFC for SCTP [97] was published in 2007, the number of SACKs needed to trigger a fast retransmission was
changed to 3 (as used in TCP).

3.5. UDP with application layer reliability 41

needed (like support for reliability and sequenced delivery) on the application layer, implemen-

tations show great variation in fairness.

UDP is preferred to TCP for many applications with special timing needs (like media

streaming and fast-paced online games). To provide services needed by the applications (like

reliability and in-order delivery), frameworks must be developed that can be configured to suit

the developer’s needs. Such network libraries and middleware come in many variants and levels

of abstraction. Some examples include ACE [3], ENet [37], HawkNL [7], Plib [12], SDL [11],

ClanLib [5], Net-Z [8], RakeNet [9], ReplicaNet [10], UDT [52, 14] and ZoidCom [15]. Two

main strategies are common for such application-layer frameworks: 1) a low-level network li-

brary with basic services, and 2) a more complex library with many options and a high level of

abstraction. We next present one example of each type of library.

UDT [52] provides various features based on UDP transport. A structured (socket-like)

interface provides a high level of abstraction making it easy for application developers to use.

Partial reliability and in-order delivery are supported, and congestion control mechanisms en-

able UDT to maintain a level of fairness. A wide range of parameters can also be set, in order

to achieve the combination of options that is best for each application. Moreover, UDT divides

its packets into control and data messages. In order to keep track of the status of the remote

host, keep-alive messages are an integral part of the framework. This combined with aggres-

sive bundling strategies, used if less than the estimated bandwidth is consumed, contributes to

a large redundancy rate for the UDT platform. Retransmissions are managed as for TCP with

timeouts and dupACKs, and additionally using negative acknowledgements.

ENet [37] aims for online gaming support. It was developed for the Cube game engine [35]

and was later used by other networked games. ENet provides a relatively thin, simple and robust

network communication layer on top of UDP. It provides optional, reliable, in-order delivery of

packets. ENet is a small library that provides some functionality without supplying a high level

of abstraction and can therefore not be considered a middleware platform. The services include

a connection interface for communicating with the foreign host. Delivery can be configured to

be stream oriented or message oriented. The state of the connection is monitored by pinging

the target, and network conditions such as RTT and packet loss are recorded. Partial reliability

is supported, and retransmissions are triggered using timeouts based on the RTT, much like the

TCP mechanisms. The congestion control implements exponential backoff, making it vulnera-

ble to bursts of loss, and ENet also applies bundling of queued data if the maximum packet size

is not reached.

42 Chapter 3. Transport

 0

 500

 1000

 1500

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

m
s

RTT 50 ms RTT 100 ms RTT 200 ms

maximum

 0

 500

 1000

 1500

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

m
s

RTT 50 ms RTT 100 ms RTT 200 ms

average

(a) Latency vs. RTT. Loss=0.5%. Packet IAT=100 ms.

 0

 500

 1000

 1500

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

m
s

50 ms interarrival 100 ms interarrival 200 ms interarrival

maximum

 0

 500

 1000

 1500

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

m
s

50 ms interarrival 100 ms interarrival 200 ms interarrival

average

(b) Latency vs. packet IAT. Loss=0.5%. RTT=200 ms.

 0

 500

 1000

 1500

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

m
s

0.1% loss 0.5% loss 2.5% loss

maximum

 0

 500

 1000

 1500

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

E
N

e
t

U
D

T

T
C

P
 n

e
w

 r
e

n
o

T
C

P
 b

ic

S
C

T
P

m
s

0.1% loss 0.5% loss 2.5% loss

average

(c) Latency vs. loss rate. RTT=100 ms. IAT=100 ms.

Figure 3.16: Perceived application layer latency.

3.6 Analysis of retransmission delays for UDP and applica-

tion layer reliability

For very latency-sensitive applications, like FPS games, UDP is the most common choice of

protocol. In the cases where reliability and in-order delivery must be provided, this is imple-

mented on the application layer. We wanted to test the performance of a couple of frameworks

that provide such service against TCP and SCTP in order to learn more about latency perfor-

mance. We chose two different frameworks: 1) ENet, that is designed explicitly for game traffic,

and 2) UDT which tries to use “free” bandwidth to avoid retransmissions.

Figure 3.16 shows results from tests where thin streams were transmitted over an emulated

network. We varied the RTT, packet IAT and loss rate to see how this would influence the de-

livery latency. There are only very small differences in the average delivery latency for all the

tests. SCTP has a higher average latency because of the high RTOmin value in the lksctp imple-

mentation. The timer reset mechanism in SCTP can also contribute to its high average delay,

3.7. DCCP 43

since this function negatively effects the latency for thin streams. When we study the maximum

delivery latency, we see large differences between the tested alternatives. In figure 3.16(a), the

RTT is varied, while IAT and loss is kept constant. We can see that UDT has the lowest max-

imum delay for all RTTs. ENet also performs better than the TCP and SCTP variations. The

reason for this is probably that UDT bundles aggressively, and estimates the “free” bandwidth

to be large, especially for low RTTs. ENet has more aggressive retransmission techniques since

it does not implement congestion control.

When the IAT is varied (figure 3.16(b)), UDT still shows the lowest maximum latency

overall. For the 50 ms IAT test, however, TCP New Reno performs nearly as well as UDT. In

the 200 ms IAT test, all tested alternatives have a maximum latency of above one second. In

this case, ENet shows the highest delivery latency. For the 200 ms IAT test, we can also note

that the average latency for SCTP is almost double of the other tested alternatives.

As expected, a low loss rate keeps the maximum latency down for all the tested alternatives.

Figure 3.16(c) shows the results when the loss rate is varied. The lowest maximum delivery

latency is still provided by UDT. As the loss rate is increased to 2.5%, all the tested alternatives

(except UDT) are well above one second in maximum latency.

The overall impression is that UDP with the tested application layer frameworks is able

to provide lower maximum latency. This comes at the cost of redundancy and the lack of

congestion control. There is also the consideration that UDP is often blocked by ISP firewalls.

Another observation from the test results is that high IATs seem to make the maximum latency

very high for all the tested alternatives. Thin streams often have very high packet IAT, so this

should be considered also when implementing frameworks for reliability and in-order delivery

on top of UDP.

3.7 DCCP

Datagram Congestion Control Protocol (DCCP) [65] provides congestion control without pro-

viding reliability. This is beneficial when timed delivery is desirable. DCCP is connection-

oriented, providing reliable setup and teardown. Flow-control is provided, and the setup en-

ables negotiation of optional features. Applications that need to control delivery timing can

do so without having to implement congestion control. This provides a level of flexibility in

between TCP and UDP.

While DCCP provides a combination of services that is useful for many classes of appli-

cations, the fact that it has to be commonly supported in different operating systems is still a

limitation. As long as TCP provides reliable services and UDP can be extended on the applica-

tion layer, most developers still keep to combinations of the two.

For this work, DCCP has not been explored since TCP, UDP and SCTP all are more widely

44 Chapter 3. Transport

available, and they can provide the same set of services. The congestion control feature of

DCCP also has little influence on the high-IAT thin-stream scenario, and can therefore readily

be investigated using the more common protocols.

3.8 Related transport protocol mechanisms

Other projects have performed work in the field of time-dependent delivery over reliable pro-

tocols. Some of this work is also relevant for the thin-stream scenario. This section discusses

approaches that are relevant to this thesis in one or more aspects.

3.8.1 Timer calculation

Ekström and Ludwig [36] point out that the retransmission timeout algorithm defined in RFC

2988 [84] and used in both TCP and SCTP responds sluggishly to sudden fluctuations in the

RTT. This leads to extreme estimated RTO values in some cases. They also point out that

the RTTVAR computation does not distinguish between positive and negative variations, and

therefore increases the RTO in the case of both RTT increases and decreases. Their proposed

algorithm alleviates the consequences of RTT fluctuations and is, as such, a good addition to the

main protocol for a range of special cases. Their findings are consistent with our observations

made in [86] of high RTO values that are worsened by the SCTP delayed acknowledgement

algorithm. While their solution leads to a more stable RTO, it is on average higher than that

proposed in RFC2988, which is not desirable for our scenario.

3.8.2 Exponential backoff

Ekström and Ludwig also mention that a less conservative exponential backoff algorithm [36]

should be considered, which is one of the mechanisms that we investigated. The removal of

exponential backoff for special cases when using SCTP for telephony is suggested by RFC

4166 [34]. The document warns, however, about the effect this may have on congestion. The

general removal of exponential backoff in order to recover more quickly after loss events is a

controversial issue that has been discussed also by Mondal and Kuzmanovic. They argue that

exponential backoff is not necessary to maintain the stability of the Internet [77]. As this change

will, possibly, lead to longer recovery-time after congestion events as streams retransmit more

aggressively, care should be taken to introduce such changes on a general basis. Thin-stream

applications, however, put very little pressure on a bottleneck due to the low packet IATs of

the stream. They therefore contribute very little to congestion events, and do not expand their

congestion window as the application limits the window size.

3.8. Related transport protocol mechanisms 45

3.8.3 Fast retransmit modifications

The problem of late retransmissions has been addressed by the optional Early Fast Retransmit

(EFR) mechanism16 which exists in FreeBSD for SCTP and has been used for tests and com-

parisons in this thesis. The EFR mechanism is active whenever the congestion window is larger

than the number of unacknowledged packets and when there are packets to send. It starts a timer

that closely follows RT T+RT T VAR for every outgoing packet. When the timer is triggered and

the stream is still not using the entire congestion window, it retransmits all packets that could

have been acknowledged in the meantime. An EFR timeout does not trigger slow start like a

normal timeout, but it reduces the congestion window by one.

In an IETF draft, Allman et al.17 suggested that measures should be taken to recover lost

segments when there are too few unacknowledged packets to trigger a fast retransmission. They

proposed Early Retransmit (ER), which should reduce waiting times in four situations: 1) the

congestion window is still initially small, 2) it is small because of heavy loss, 3) flow control

limits the send window size, or 4) the application has no data to send. The draft proposed to

act as follows whenever the number of outstanding segments is smaller than 4 and an ACK

arrives: if new data is available, it follows Limited Transmit [16], if not, it reduces the number

of duplicate packets necessary to trigger fast retransmit to as low as 1 depending on the number

of unacknowledged segments. This makes fast retransmissions possible in several cases where

retransmission by timeout would otherwise have been performed, thus keeping the stream’s

congestion window open. ER is less frequently active than EFR, but it is more aggressive when

the number of unacknowledged packets is small.

Hurtig and Brunström suggested a modification to the ER algorithm from working on a

number of bytes-basis as originally proposed, to a number of packets-basis [57]. This increases

the effectiveness of the ER algorithm for signalling (and thin-stream) scenarios.

Brennan and Curran [26] performed a simulation study for greedy traffic and identified

weaknesses in the fast retransmit procedure. They propose to modify the fast retransmit mech-

anism to allow a given chunk to be fast retransmitted only once if no timeouts intervene. This

would make the fast retransmission scheme more conservative, and reduce the chance of poor

network utilisation due to prolonged congestion events. Their modifications would, however,

increase delays for thin streams.

16This mechanism can be enabled in FreeBSD by using the net.inet.sc tp.earl y_ f ast_ret ran syscontrol.
We have, however, not been able to find any published papers which yields further details of the mechanism’s
implementation in FreeBSD.

17IETF Draft draft-allman-tcp-early-rexmt-05: Mark Allman, Konstantin Avrachenkov, Urtzi Ayesta, Josh Blan-
ton, “Early Retransmit for TCP and SCTP”, June 2007, expired Dec. 2007.

46 Chapter 3. Transport

3.8.4 RTT estimation and congestion detection

The proposed method of TCP Santa Cruz [83] uses TCP timestamps and TCP options to deter-

mine the copy of a segment that an acknowledgement belongs to and can therefore provide a

better RTT estimate. Since the RTT estimate can distinguish multiple packet losses and sudden

increases in actual RTT, TCP Santa Cruz can avoid exponential back-off. The ability of TCP

Santa Cruz to consider every ACK in RTT estimation has minor effects in our scenario where

hardly any packets are generated. The ability to discover the copy of a packet that an ACK

refers to would still be desirable but would require receiver-side changes that we avoid.

3.8.5 RTOmin and delayed SACKs

The effects of SCTP RTOmin is discussed both by Jungmaier and TÃijxen [62] and by Grin-

nemo and Brunström [49]. Their work propose a reduction to fulfil the requirements of RFC

4166 [34], an RFC on the applicability of SCTP for telephony. The RFC itself discusses prob-

lems and solution approaches, and it proposes to choose the path within a multi-homed asso-

ciation that experiences the shortest delay, an approach that may be used as a supplement to

other techniques for thin-stream scenarios. The RFC considers reduction of the RTOmin, but

warns that this solution may have negative effects on network behaviour. Removing delayed

SACK is mentioned without stating any side-effects. This would also be beneficial in our sce-

nario. However, it is a receiver-side change, while we aim exclusively at sender-side changes.

Of the discussed options, we choose the removal of the exponential back-off, but instead of

doing it arbitrarily, we limit it to situations where fast retransmit is impossible due to lack of

unacknowledged packets (i.e., too few packets in flight).

3.8.6 Unreliable and partially reliable transport

Problems with carrying time-sensitive data over SCTP were presented by Basto and Freitas [20].

The traffic that they considered was loss-tolerant, and they proposed the use of SCTP’s partial

reliability extensions [98]. Ladha et al. [67] examined several methods of detecting spurious

retransmissions and proposed modifications that would increase throughput but also increase

the latency of individual lost packets.

Lundqvist and Karlsson presents a solution for TCP with integrated forward error correction

(FEC) in a paper from 2004 [70]. Such a solution helps to reduce retransmission latencies for

thin streams by avoiding the retransmissions themselves. This solution will, however constantly

increase bandwidth for the stream, especially in greedy-stream scenarios. For thin-stream sce-

narios, the effect is limited because of the need for sent data in order to have an effective FEC.

It does also require modifications to both sender and receiver, and is therefore not one of the

3.9. Thin-stream challenges 47

principles we consider in relation to our sender-side only modifications.

3.8.7 Latency-sensitive streams

The earlier work that has been done in the field of reducing latency upon retransmissions all

focus on special cases of greedy streams [66, 46, 110, 45, 111] where measures can be taken to

improve performance of the target applications. Our work identifies thin streams as time-critical

and latency sensitive. We therefore apply a combination of several modifications upon detection

of the thin stream, and can thus improve latency for the stream in a manner not yet explored in

literature.

3.9 Thin-stream challenges

In chapter 2, thin-stream properties and latency requirements are discussed. Experiments pre-

sented in sections 5.2 and 3.4 show how thin-streams suffer from high latencies when using

reliable transport protocols. When UDP-based application layer techniques were evaluated in

section 3.6, the tested frameworks showed high maximum delays for high packet IAT (thin)

streams. A wide range of different alternatives were evaluated, all producing the unwanted

retransmission latencies that were pronounced in the Anarchy Online traces (shown in sec-

tion 2.4). In order to explain the behaviour of common retransmission mechanisms, we have

reviewed the key concepts of TCP and SCTP congestion control and reliability mechanisms.

Implementations of reliability and in-order delivery on top of UDP is also very often modelled

on the principles from TCP.

The foremost tool used by TCP to recover without triggering a timeout is the fast retransmit-

mechanism. This is also the key to understanding the high latencies that can be observed for

thin streams. When the stream is thin, the congestion window never expands to be limited by

congestion control. Thin streams often have no more than one packet in flight per RTT. As a

fast retransmit needs three dupACKS to be triggered, this seldom (or never) happens for such

streams. The effect is that recovery for thin streams is limited almost entirely to timeouts. A

retransmission by timeout triggers exponential backoff, thus delaying further retransmission

attempts. Subsequent lost retransmissions increases the delay until we can observe extreme

values (like the ∼67 second delay observed in the Anarchy-online trace from section 2.4 after

6 retransmissions of the same packet).

Figure 3.17 shows an example of a transmission pattern for a thin stream experiencing loss.

In the example, the application produces less than one packet per RTT, meaning that an ACK is

received before the next transmission (if no loss occurs). When a packet is lost, one dupACK

may be received before a timeout is triggered. As three dupACKs are needed to trigger a fast

48 Chapter 3. Transport

Sender Receiver

X

1

2

3

4

5

Fast retransmit 2

Timeout retransmission 2

(S)ACK 1

��pACK 1

��pACK 1

��pACK 1

Figure 3.17: Fast retransmit with thin streams.

retransmission, timeouts dominate retransmissions. If the same segment is lost several times,

exponential backoff soon raises delivery latency to a scale of several seconds. As the thin

stream often keeps its transmission properties (packet IAT) throughout its lifetime, the effect

that all retransmissions happen by timeout delays recovery every time loss occurs, influencing

the experience of users running thin-stream applications like games, VoIP, remote desktops and

shells. Thus, for interactive applications, which very often display thin-stream properties, such

high delays cause latency-events that degrade application performance and reduce the QoE. We

can therefore conclude that support for such interactive applications should be improved. As

a basis for investigations into such improvements, all mechanisms that affect application layer

delay for reliable protocols should be taken into consideration. As greedy streams perform well

as regards latency, we want to separate greedy and thin streams, and apply new techniques to

improve latency only when warranted. In the next chapter, we present modifications that we

have developed for TCP and SCTP with the aim of improving retransmission delays for thin

streams.

Chapter 4

Thin-stream modifications

We have seen from the analysis of TCP and SCTP performance that the largest contributing

factor to thin-stream latency is the retransmission strategy. Retransmission timers, exponential

backoff and the fast retransmit algorithm do not work optimally for thin streams. In this chapter,

the modifications that we developed to improve the retransmission latency are described. When

considering how to improve the latency situation for thin streams, we formulated the following

prioritisation:

• The underlying reason for the high latencies we observed in thin-stream scenarios over

reliable protocols was the inability to trigger fast retransmissions. Hence, we want to

investigate and modify mechanisms related to fast retransmit.

• Since thin streams never probe for bandwidth, the change in bandwidth usage when it

enters recovery (withdraws) is minimal. When the thin stream goes into exponential

backoff, it results in very high latencies with insignificant effects on congestion. For that

reason, we want to investigate and modify the exponential backoff mechanism.

• The analysis of thin-stream applications revealed that the payload is generally very small.

Based on this observation, we wanted to investigate ways to utilise “free” space in the

sent packets (when packet sizes are significantly smaller then the maximum transmission

unit (MTU) size) to improve the delivery latency when loss occurs.

• Other protocols have been devised that give better support for timely delivery while pro-

viding the same services as TCP (or SCTP). New protocols, however, need to be sup-

ported on both sides of the connection. We wanted to create transparent, sender-side,

standards compliant modifications, so that any unmodified receiver may benefit from a

modified sender.

• TCP-based congestion control- and recovery schemes are well-tested and well-functioning

for greedy streams, and changing the general behaviour of TCP and SCTP would be coun-

49

50 Chapter 4. Thin-stream modifications

terproductive (and unwise). Therefore, we wanted to separate the thin streams from the

greedy using a metric, and apply modifications to reduce latency only when the system

identifies the stream as thin.

Working from these premises, we developed a set of modifications for TCP and SCTP. The

following sections describe the rationale behind, and the changes made, to TCP and SCTP in

the Linux kernel.

4.1 TCP modifications and implementation

Our proposed set of mechanisms consists of a way to identify the thin streams, and then change

the retransmission mechanisms to adapt to thin-stream behaviour. In addition, we have de-

veloped and tested a bundling mechanism that takes advantage of the small packet sizes that

thin-stream applications very often generate. By bundling unacknowledged segments with new

data, we aim to reduce the delivery latency. Our proposed modifications and their implementa-

tion in the Linux kernel are presented in the following sections.

4.1.1 TCP thin stream detection

In order to separate greedy streams from thin, a suitable metric (or set of metrics) for distinction

had to be chosen. A wide range of metrics and modifiers can be used to this end. The thin-stream

detection mechanism must be able to dynamically detect the current properties of a stream, and

separate greedy streams from thin. Since the process needs to be continuous, effectiveness

should be a criterion. This means that it should ideally be based on variables that are already

available in the TCP code. The identification mechanism should be able to identify the thin

streams as precisely as possible, with eventual false positives reduced to a minimum (or none).

The application should not have to be aware of the detection mechanism, nor have to feed data

about its transmission rate to the network stack; it should be transparent to the application.

Choices

Application of the thin-streams modifications must be dynamic in order to use regular TCP

mechanisms when the stream is not thin. This means that a wrapper has to be applied each time

an affected retransmission mechanism is called. Figure 4.1 shows how each modification is en-

capsulated in code that selects between mechanisms based on the current stream properties. The

key to a proper identification is the tcp_stream_is_thin-test. The primary identifying property

for the thin streams, the high packet IAT, is also the main reason for the high retransmission

delays we have observed. A natural path of investigation is therefore to find a way to gather

4.1. TCP modifications and implementation 51

i f
�

tcp_st ream_is_thin
�

{

apply modifications

} else {

use normal TCP

}

Figure 4.1: Determining whether to use thin-stream modifications.

and use information about the packet IAT from the application. A system of fine-grained timers

(as described for TCP Vegas in section 3.1.4) could help to accurately detect the relationships

between link RTT and packet IAT. This would tell us whether the feedback was sufficient for

the retransmissions to work satisfactorily, or if extra measures should be taken to reduce latency.

This would, however, require extra calculations as well as the adaptation of the TCP subsystem

to support fine-grained timers. Another option would be to let the application report its trans-

mission patterns to the transport layer. As mentioned, an exchange of information between the

transport layer and the application layer would complicate the implementation and jeopardise

transport-layer transparency. We therefore look to the existing transport-layer variables to iden-

tify a suitable mechanism for thin-stream detection. The mechanism we chose is based on the

already existing counter of unacknowledged packets.

in_t ransi t ≤ (pt t f r + 1) (4.1)

Equation 4.1 shows the criterion we implemented to classify a stream as thin and apply the

enhancements. Here, in_transit is the number of packets in flight1 and pt t f r is the number of

packets required to trigger a fast retransmission (3 for Linux 2.6.23.8). By adding one to the

pt t f r limit, we take into consideration that a packet has to be lost for a fast retransmission to be

triggered (1 lost packet + 3 dupACKs = 4 in_transit). Experiments were performed where we

also considered the connection RTT and the estimated loss rate to adjust the limit for triggering

thin-stream mechanisms. Loss rate was taken into consideration for our SCTP-experiments.

The algorithm could be extended by taking into consideration the number of packets in flight

over time, but that would require the introduction of new variables and more calculations. Other

modifiers could also be applied, like the measured RTT and loss rate. A high RTT connection

would yield high retransmission delays due to an inflated RTO. It would also leave room for

more packets in flight. In such cases, the thin-stream requirement could be relaxed to compen-

sate for the potentially raised latencies upon retransmissions. A high loss rate would also be

1Packets in flight , or “FLIGHT SIZE” as it is called in the TCP specifications, are packets that are transmitted,
but not yet acknowledged.

52 Chapter 4. Thin-stream modifications

bad for thin streams that would go into exponential backoff, and would not probe for bandwidth

upon recovery. Therefore, a modifier for high loss rates could be implemented. We have, how-

ever chosen the most conservative approach for the TCP thin stream triggering mechanism: to

keep it at a static level determined by the current in_transit variable and the transport protocol’s

pt t f r . This conservative choice limits the activation of modifications to the cases where fast

retransmit cannot be triggered. As equation 4.1 shows, the triggering mechanism relies only

on counting transmitted but unacknowledged packets and uses neither packet send times nor

additional SACK information to draw further conclusions. This is because the tests presented

in section 5.2 showed no detectable latency improvement from such mechanisms.

Implementation

We created a new inline function in include/net/tcp.h to provide efficient checking of the current

number of packets in flight. This function could then be used by all thin-stream mechanisms.

Figure 4.2 shows the code that performs the check. In our implementation we operate with a

“THIN_LIMIT” of 4, to reflect the number of dupACK needed to trigger a fast retransmit. The

TCP socket struct (tcp_sock) is used to hold information necessary to manage a socket. The

member packets_out is a counter of the updated number of packets in flight. By making this

function inline, we can increase efficiency for this function that is called each time a related

retransmission mechanism is to be triggered.

1 s t a t i c i n l i n e unsigned i n t t c p _ s t r e am _ i s _ t h i n (cons t s t r u c t t c p_ so ck ∗ t p)
2 {
3 re turn (tp−>p a c k e t s _ o u t < THIN_LIMIT)) ;
4 }

Figure 4.2: Test for determining whether there are less than 4 packets in flight, located in in-

clude/net/tcp.h.

4.1.2 Switches for enabling the thin-stream modifications

Even though the modifications are triggered dynamically based on whether the system currently

identifies the stream as thin, the basic enabling of each mechanism should be optional to the user

(system). By implementing switches to enable the modifications, we allow for application de-

signers / server administrators to choose whether the modifications are needed for their system

setup. For instance, in a scenario with no time-dependency, there would be no large rationale

to take extra measures to avoid second-long delays. We have implemented two alternative ways

of enabling each mechanism:

4.1. TCP modifications and implementation 53

Mechanism sysctl IOctl Input

LT tcp_force_thin_rm_expb TCP_THIN_RM_EXPB Bool
mFR tcp_force_thin_dupack TCP_THIN_DUPACK Bool
RDB tcp_force_thin_rdb TCP_THIN_RDB Bool
RDB bundle limit tcp_rdb_max_bundle_bytes N/A Num

Table 4.1: Mechanisms implemented for triggering the modifications.

sysctl net.ipv4.tcp_force_thin_rm_expb=1

(a) Syscontrol enabling of modification.

echo “1” > /proc/sys/net/ipv4/tcp_force_thin_rm_expb

(b) /proc-variable enabling of modification.

Figure 4.3: Examples of how to enable the LT thin-stream modification.

1. Linux system-wide syscontrol: A syscontrol is a variable that is set by a system admin-

istrator to control operating system properties on a system-wide basis. The variable is

defined in sysctl_net_ipv4.c and updated/kept in include/net/tcp.h.

2. Linux per-stream IOcontrol: When creating the socket, the application designer can

choose to enable available mechanisms for this stream only. For TCP, the variable is

kept in the tcp_sock struct (see section 4.1.1) and can be accessed for reference if the

respective socket is used.

If the syscontrol setting is enabled, this enables the modification for all streams, regardless of the

settings of corresponding IOcontrols. By allowing both methods for enabling the implemented

mechanisms, it is possible to use the syscontrol to improve latency for proprietary thin-stream

applications where the code cannot be inspected or modified. The use of IOcontrols allows for

flexible enabling of each implemented mechanism based on the program designer’s intimate

knowledge of the application’s needs and expected stream properties.

Table 4.1 shows a list of the syscontrols and IOcontrols that can be used to enable our imple-

mented mechanisms. The “Input”-column shows the parameters given to the control. “Bool”

signifies an on/off trigger, and “Num” means that a value can be specified. The modifica-

tions can be enabled system-wide through the syscontrol as shown in the examples presented

in figure 4.3. An alternative way is to write the value to the proc-file system variable for this

syscontrol as shown in figure 4.3(b). Root access is needed to set such system-wide parameters.

An example of how to assign a limit for RDB bundling is shown in 4.4. IOcontrols are specified

in the source code of the application that creates the socket. After the socket is created, the

IOcontrols can be used to enable custom properties for the specific socket. Figure 4.5 shows

an example of how the IOcontrol is enabled in Linux using the setsockopt() function.

54 Chapter 4. Thin-stream modifications

sysctl net.ipv4.tcp_rdb_max_bundle_bytes=600

Figure 4.4: Example of the use of a syscontrol to limit RDB bundling to 600 bytes.

1 i n t f l a g = 1 ;
2 i n t r e s u l t = s e t s o c k o p t (sock , IPPROTO_TCP , TCP_THIN_RM_EXPB ,
3 (char ∗) &f l a g , s i z e o f (i n t)) ;

Figure 4.5: Example of the use of a IOcontrol to enable the LT thin-stream modification.

When this method is used for enabling the mechanisms, each socket can be assigned different

combinations of the mechanisms for better customisation and adaptation to the intended use of

the socket.

4.1.3 Linear retransmission time-outs

The most extreme latency-events that were observed in our thin-stream analysis occurred when

the same data segment had to be retransmitted several times due to timeouts. This triggers expo-

nential backoff which, depending on the RTO, soon reaches second-long delays. We therefore

wanted to explore modifications to the use of exponential backoff for thin streams.

As the RTO calculation is one of the fundamental parts of TCP recovery and congestion

control, we want to keep the existing mechanisms for RTO calculation. The exponential back-

off, however, causes very large delays. As thin streams does not expand the congestion window,

the exponential backoff mechanism tries to hold back a stream that is not aggressively probing

for bandwidth. Our goal was therefore to implement a mechanism that uses linear timeouts

based on the calculated RTO when the stream is identified as thin.

Choices

The modification we propose for this case of retransmission is to keep linear timeouts as long

as the stream registers as thin (using the test described in section 4.1.1).

Figure 4.6 shows a comparison of RTO (see section 3.1.2) values for subsequent timeouts

with linear and exponential backoff timers. Since the time it takes to react to feedback is limited

by the RTT, a high-RTT connection suffers more from exponential backoffs than a low-RTT

connection. For the first retransmission, exponential backoff is not in effect, but as the number

of consecutive timeouts increases, the added retransmission delay soon gets very high2.

2Assuming that the initial RTO is 300 ms, the fourth retransmission of the same lost segment would happen
after 300+ 300 ∗ 2+ 300 ∗ 4+ 300 ∗ 8= 4500 ms.

4.1. TCP modifications and implementation 55

Retransmissions

R
T
O

 m
u
lt

ip
li
e
r

1

2

3

4

5

6

7

1 2 3 4

8

9

Exponential backoff

Linear timeouts

0

(a) RTO multiplier

Retransmissions

T
im

e
 o

f
re

tr
a
n
s
m

is
s
io

n
 (

in
 R

T
O

s
)

1

2

3

4

5

6

7

1 2 3 4

8

9

Exponential backoff

Linear timeouts

0

(b) Retransmission send time

Figure 4.6: Difference between linear timeouts and exponential backoff.

A series of consecutive timeouts can be caused by loss of data, but can also happen when

(S)ACKs are lost or delayed due to delayed (S)ACKs on the receiver. By retransmitting more

quickly when the congestion window is collapsed, we can avoid the largest retransmission de-

lays both when data and ACKs are lost. As an addition, or alternative scheme, a change in the

RTO calculation may be devised. The commonly used RTO calculation algorithm is, however,

the basis for congestion control on most implementations today, and would be difficult to mod-

ify without risking a skew in throughput compared to unmodified TCP implementations. An

alternative could be to implement a separate timer to handle thin-stream retransmission calcula-

tions (TCP Vegas-style), but that would require that we spend extra cycles on the separate timer

calculations. We have therefore chosen to keep the RTO calculation unmodified.

Implementation of linear timeouts

When modifying the Linux code to implement linear timeouts for thin streams, we intercept

execution at the point where the RTO is doubled as shown in figure 4.7. We insert an if-test

that checks if the modification is enabled tp->thin_rm_expb || sysctl_tcp_force_thin_rm_expb,

whether the stream is thin (tcp_stream_is_thin(tp)) and whether the connection is established

(not in setup, teardown or a state of exception: sk->sk_state == TCP_ESTABLISHED). If the

test is passed, we reset exponential backoff counters (icsk->icsk_backoff = 0) and perform a

new RTO calculation (based on the last RTT measurement). This recalculation is performed

56 Chapter 4. Thin-stream modifications

1 i f ((tp−>th in_ rm_expb | | s y s c t l _ t c p _ f o r c e _ t h i n _ rm_ e x p b) &&
2 t c p _ s t r e am _ i s _ t h i n (t p) && sk−> s k _ s t a t e == TCP_ESTABLISHED) {
3 /∗ Use l i n e a r t i m e o u t s ∗ /

4 i c sk −> i c s k _ b a c k o f f = 0 ;
5 i c sk −> i c s k _ r t o = min (((tp−> s r t t >> 3) + tp−> r t t v a r) , TCP_RTO_MAX) ;
6 } e l s e {
7 /∗ Regu lar RTO c a l c u l a t i o n w i t h e x p o n e n t i a l b a c k o f f ∗ /

8 i c sk −> i c s k _ r t o = min (i c sk −> i c s k _ r t o << 1 , TCP_RTO_MAX) ;
9 }

Figure 4.7: Code that enables linear timeouts if the stream is thin. Located in net/ipv4/tcp_timer.c.

because the stream might oscillate between being thin and not, thus keeping a very high RTO

from before it qualified as thin. If any of the enabling requirements fail, the original code is

called, which doubles the already calculated RTO (icsk->icsk_rto « 1) as long as the value does

not exceed the maximum allowed RTO.

We need to confirm that the connection is in an established state since Linux TCP code uses

the exponential backoff modifier to limit connection attempts in its three-way handshake. If a

new RTO calculation is performed without any RTT measurements, a faulty (very low) RTO

will be used (for the next connection attempt), and the connection will not be established.

4.1.4 Modified fast retransmit

Due to the high interarrival time between data segments that the application produces, fast

retransmissions hardly ever occur in our thin-stream scenario (as shown in section 3.9). In

most cases, a retransmission by timeout is triggered before the three (S)ACKs that are required

to trigger a fast retransmission are received. We therefore explore modifications to the fast

retransmit mechanism in order to recover more quickly from loss when the stream is thin.

As for the other thin-stream mechanisms, the target of our investigations is to reduce the

retransmission delay. Our analysis showed that a thin-stream sender often receives indications

that loss or reordering has occurred (dupACKs), but rarely get enough to trigger the fast retrans-

mit. We therefore wanted to experiment with modifications to this algorithm and analyse the

effect they have on latency for the thin streams.

Choices

As the name indicates, fast retransmit was designed to recover from loss before a (slow) timeout

was triggered. This was designed to happen on indications that packets were still leaving the

network (incoming ACKs). In a scenario with many packets in transit, reordering is a relatively

4.1. TCP modifications and implementation 57

Sender Receiver

X

1

2

3

4

5

Fast retransmit 2

Timeout retransmission 2

(S)ACK 1

��pACK 1

��pACK 1

��pACK 1

(a) Fast retransmission after three dupACKs. (b) Fast retransmission upon first indication of loss.

Figure 4.8: Difference between standard and modified fast retransmission for thin streams.

rare phenomenon3. With thin streams, however, this phenomenon will occur extremely seldom

due to the low number of packet in transit. We therefore wanted to modify the number of

dupACKs needed to trigger a fast retransmission. In order to reduce retransmission latency

for a thin stream, we allow a fast retransmission to be triggered by the first indication that a

packet is lost, as illustrated in figure 4.8. The thin stream, when recovering, does not expand

its congestion window, and will therefore contribute little to renewed congestion. With regard

to the retransmission latency, a fast retransmission that does not send the connection into slow-

start and trigger exponential backoffs is preferable. In our opinion, the lowered retransmission

latency justifies the need to risk occasional spurious retransmissions.

Implementation of modified fast retransmit

The function tcp_time_to_recover() contains a set of tests that determines whether a sign of

congestion is caused by loss or reordering. If none of the tests returns true, the algorithm

assumes that reordering has happened, and continues forward transmission. The code dis-

played in figure 4.9 is a new test that we have inserted at the end of the function. The test

checks whether the thin-stream modification to fast retransmit is enabled ((tp->thin_dupack ||

sysctl_tcp_force_thin_dupack), whether the stream is thin (tcp_stream_is_thin(tp)) and whether

at least one dupACK has been received (tcp_fackets_out(tp) > 1). If all requirements are met, it

signals initiation of recovery by returning “True” (1).

3A study of reordering for web-server connections with 208.000 analysed connections showed that 0.04% of
the packets were reordered [112]. For a few of the measured sites up to 3.2% reordering were observed. Such
reorder rates were, however, categorised as anomalies.

58 Chapter 4. Thin-stream modifications

1 i f ((tp−>t h i n_dupa ck | | s y s c t l _ t c p _ f o r c e _ t h i n _ d u p a c k) &&
2 t c p _ f a c k e t s _ o u t (t p) > 1 && t c p _ s t r e am _ i s _ t h i n (t p)) {
3 re turn 1 ;
4 }

Figure 4.9: Code that adds a rule for thin-stream fast retransmission on first indication of loss. Located
in net/ipv4/tcp_input.c.

Figure 4.10: The minimum size of a Gigabit Ethernet frame when transporting a 100 byte packet [39].

4.1.5 Redundant Data Bundling

As shown in table 2.1, many thin-stream applications send very small packets. For some of

the analysed applications, the average packet size is below 100 bytes. In such a stream, a typ-

ical packet would consist of 40% headers (Ethernet header, Internet Protocol (IP) header and

TCP header). Compared to the common maximum transmission unit of 1500 bytes (Ethernet

802.3 [59]), the utilised space would be no more than 11%. In high-speed networks, the mini-

mum frame size is also increased so that maximum cable length would not be too short ([59]).

As an example, Gigabit Ethernet uses a minimum frame size of 512 bytes (see figure 4.10).

If each transmitted packet has a 100 byte payload, the utilisation would be 32%, leaving 68%

of every sent packet empty (at least within the Gb Ethernet links4). The combination of these

frame size considerations and the low rate of the thin streams led us to investigate possible ways

to improve delivery latency by introducing an element of redundancy.

The aim of our investigations was to try to utilise the "free" space in thin-stream packets

by resending unacknowledged data. This should be made in such a way that it would yield

maximum improvement in delivery latency. The improved latency should be balanced against

the potential redundancy the mechanism would create.

Choices

Our proposed mechanism is called redundant data bundling (RDB) and was refined and imple-

mented in the Linux kernel [39]. As long as the combined packet size is less than the maximum

4We think it fair to assume that the development of cabled networks will result in most network connections
being high speed in time, considering that throughput still is the driving factor.

4.1. TCP modifications and implementation 59

(a) First sent packet. (b) Second packet: Bundled data.

Figure 4.11: Method of bundling unacknowledged data [89].

segment size (MSS), we copy (bundle) data from unacknowledged packets in the send queue

into the new packet. The copied data has to be in sequential order to comply with TCP stan-

dards, i.e. the oldest data must come first, and there may be no gaps in bundled packets. If

a retransmission occurs, unacknowledged packets are bundled with the retransmission. This

increases the probability that a lost segment is delivered with the following packet. Thus, a

receiver may have the data delivered within a packet IAT, instead of having to wait for a retrans-

mission. Figure 4.11 shows an example of how a previously transmitted data segment is bundled

with the next packet. Notice how the sequence number stays the same while the packet length is

increased. If packet (a) is lost, the ACK from packet (b) acknowledges both segments, making

a retransmission unnecessary. In contrast to the retransmission mechanisms (modified dupACK

and linear timeouts), which are triggered by there being fewer than four packets in transit, re-

dundant data bundling (RDB) is enabled by small packet sizes, and limited by the packet IATs

of the stream. If the packets are large, which is typical for bulk data transfer, bundles are not

made and RDB not triggered.

An alternative to the chosen bundling strategy could be to bundle only on retransmissions

(done to a certain degree by TCP already). We chose to let the mechanism bundle whenever

possible, to maximise the effect on delivery latency. When the IAT is lower than the RTT, there

are unacknowledged data to bundle for each new packet that is scheduled for transmission. This

yields the lowest delivery latencies. When the IAT is too low, segments are combined until the

MSS is filled. When the IAT is too high, ACKs are received before a new segment is transmitted.

Alternative ways of adapting bundling to packet IAT or RTT are therefore not implemented.

The mechanism does not bundle if the packet size exceeds the MSS. This automatically limits

bundling to the small-packet scenario it was meant for.

RDB was developed as a modification to the Linux TCP stack. As such, it is transparent

to the application. It is also designed to be transparent to the receiver. The only prerequisite is

that a receiving TCP implementation must check both sequence number and packet size when

a packet is received. As a TCP implementation needs to support this to be standards compliant,

it is common practise for most operating systems today5.

5RDB has been successfully tested with Linux, FreeBSD, OS X (10.5) and Windows Vista computers as re-
ceivers.

60 Chapter 4. Thin-stream modifications

Implementation of RDB

The Linux implementation of RDB was first made in the 2.6.22.1 kernel, and incrementally

improved and ported to the 2.6.23.8 kernel. In contrast to the modifications described in sections

4.1.3 and 4.1.4, which contained only small modifications to retransmission behaviour, RDB

required more code. The code is included for inspection in appendix E. The main reason for the

increased complexity was the need to copy between existing SKBs (Linux TCP segment control

block). There is also need for extra accounting, since an incoming ACK may acknowledge half

of the payload of a packet in the retransmission queue.

Figure 4.12 shows a flow diagram of the methods involved in the sending of packets using

RDB. The methods that are new, or modified to facilitate RDB are marked in bold. Bundling

can be attempted in two cases:

1. When the application produces data to be sent (for instance by calling send()).

2. When a retransmission is triggered by an incoming dupACK or a retransmission timeout.

When data is passed from the application, a new SKB is created. Bundling is enabled if the

SKB passes the following test in tcp_sendmsg(): If the packet is smaller than the current MSS

and contains no SYN or FIN flags, it calls tcp_trans_merge_prev(). The check for SYN/FIN

is made, because it is meaningless to bundle data in the setup and teardown process since no

data is unacknowledged at that time. If the packet is found to be pure data, the previous SKB

in the output-queue is checked to see if its payload can be copied into the current (most recent)

SKB. If the new (bundled) packet is found to not exceed the MSS, the data from the previous

SKB is inserted into the new one. In order to make room for the extra data, the current data

is moved in memory. The new SKB inherits the sequence number from the previous SKB (re-

flecting the first byte in the payload), and its size is increased. When copying the data, care

must be taken to handle linear and non-linear data in separate ways. This imposes a limitation

on bundling, as all non-linear data must follow a linear data segment (of size skb_headlen(skb))

(see figure 4.13). Thus, if the current SKB has linear data, and the previous SKB has non-linear

data, bundling is not performed. When an ACK arrives, the tcp_data_snd_check() function

initiates a check for SKBs that are ready to be transmitted. If the ACK triggers a retransmis-

sion, and flow- and congestion control permits it, control is directed to the tcp_retransmit_skb()

function. The TCP implementation enters this function also when a timeout is triggered. In

tcp_retransmit_skb(), tests are performed to check that the SKB contains no SYN or FIN flags

and if there are more outstanding (not acknowledged) SKBs. If these premises are fulfilled,

tcp_retrans_merge_redundant() are called, and copy operations are performed similar to what

was described for the function tcp_trans_merge_prev(). The RDB algorithm tries to include as

4.1. TCP modifications and implementation 61

A retransmit is triggered.

Data is sent from user-space,

e.g., send().

tcp_retrans_merge_redundant()

 tcp_trans_merge_prev()

tcp_sendmsg()

tcp_retransmit_skb()

tcp_push_one() tcp_push_pending_frames()

tcp_write_xmit()

tcp_transmit_skb()

icsk->icsk_af_ops->queue_xmit()

An ACK has arrived (assumes

that the connection is established)

tcp_data_snd_check()

Figure 4.12: Flow-diagram: Outgoing TCP-packets. The functions we have implemented or modified
are marked in bold. Alternative (new) call paths are shown with dotted lines [39].

62 Chapter 4. Thin-stream modifications

linearSKB Header

SKB data linear continued

(a) Linear memory SKB.

linearSKB Header

SKB data

page

page

page

page

(b) Non-linear memory
SKB.

linearSKB Header

SKB data

linear continued

����

����

����

(c) Linear/non-linear mem-
ory SKB. Allowed.

linearSKB Header

SKB data

linear

page

page

(d) Linear/non-linear mem-
ory SKB. Not allowed.

Figure 4.13: SKB structure. Linear memory must all come at the start of the SKB.

much unacknowledged data as possible into the retransmitted packet. Therefore, the following

SKBs are traversed until no more outstanding packets are found, or the packet size approaches

the MTU. Since payload data is added after the current SKB in this case, the current payload

will not have to be moved. This difference also means that any linear data SKBs following a

current non-linear SKB will prevent bundling (as shown in figure 4.13).

Since RDB modifies the internal structure of SKBs, accounting must also be done when

ACKs arrive. Figure 4.14 shows a diagram of how the control flows when incoming packets

arrive. The method that we have changed is bold. The control is passed from the IP layer

to tcp_clean_rtx_queue() which removes acknowledged SKBs from the output queue. This

method behaves exactly as unmodified TCP if the full payload of an SKB is acknowledged. The

whole SKB is then removed from the queue. In order to improve accounting efficiency, avoid

unnecessary data transmission and free space in SKBs for potential future redundant bundling,

the handling of partially acknowledged packets is modified. We now remove acknowledged

data from partially acknowledged packets.

4.2 SCTP modifications and implementation

SCTP does not only differ from TCP by being message-oriented, but also on subtle aspects of

timers and retransmission techniques. The results from our initial evaluation of SCTP shows

that it does not perform better than TCP New Reno with regard to latency for thin streams.

As the SCTP retransmission mechanisms and implementation internals are different from TCP,

the modifications also needed separate handling. In the next sections, we describe our SCTP-

modifications for improving thin-stream latency, and their implementation in the Linux kernel.

4.2.1 Thin stream detection

SCTP differs from TCP by being chunk-oriented. This makes packet structuring more flexible

than it is in TCP since the composition of chunks in a packet is not in any way predetermined.

4.2. SCTP modifications and implementation 63

Figure 4.14: Flow-diagram: Incoming TCP-packets. The functions we have implemented or modified
are marked in bold [39].

The mechanisms for triggering retransmissions are also based on per-chunk timing and statis-

tics. To choose and implement a thin-stream detection mechanism in SCTP, different means

had to be considered in order to reach the same goal of thin stream identification.

In the same manner as for TCP (section 4.1.1), we need to dynamically detect whether the

stream qualifies as thin. There is need for effectiveness in the detection algorithm as the process

is dynamic and continuous. Since SCTP can bundle several separate connections within an asso-

ciation, the metric used to identify if the stream is thin must be packet-based, not chunk-based.

The method should be structured to be applicable for all connections within an association,

thereby identifying connection-aggregated ability to trigger fast retransmissions. The mecha-

nism should not have to rely on statistics passed from the application; it should be transparent

to the application layer.

Choices

The number of packets in transit was the choice of metric in TCP, and we wanted to use a similar

strategy for SCTP. After considering the available SCTP variables for accounting, we found no

method that would provide equally good thin-stream separation as the TCP in_flight variable.

64 Chapter 4. Thin-stream modifications

In order to dynamically track thin streams, the accounting would therefore have to be separately

implemented.

in_t ransi t ≤
pt t f r + 1

1− lossrate
(4.2)

The thin-stream mechanisms for SCTP was designed to follow the same scheme for triggering

as shown in figure 4.1. The formula to determine if the stream is thin is shown in equation 4.2.

Here, in_transit is the number of packets in flight (flight size), pt t f r is the number of packets

required to trigger a fast retransmission (3 according to RFC 4960 [97]) and lossrate is the

fraction of packets that are detected as lost. The loss detection and modification was included

as an experimental modifier to the packets in transit-test. The loss-modifier increases the thin-

stream limit for in_transit if losses are high. This is to avoid the most severe cases of backoff

that may happen in cases of extreme loss. One example of such loss is shown in [94], which

presents measurements of VoIP traffic over large distances.

By using the in_transit-metric, we keep the limit for triggering the thin-stream mechanisms

conservative, thus avoiding unwarranted aggressiveness in retransmissions. The mechanisms

rely only on a count of unacknowledged, transmitted packets, and do not take into consideration

SACK or timing data.

Implementation of SCTP thin-stream detection

SCTP identifies chunks by transmission sequence number (TSN) and bundles them when re-

transmitting. The number of packets in flight is therefore not available, as it is in TCP. Thus, we

added a list that holds the highest TSN for every packet in flight, as well as a packet counter.

From the SACK, which acknowledges the highest cumulative TSN, the sender can now know

whether or not a packet has left the network. Moreover, Linux kernel SCTP (lksctp) is not able

to estimate packet loss, and therefore we implemented an algorithm for estimating packet loss

that makes use of the packet-in-flight list to determine whether a packet is lost or not. Then, by

looking at the SACKs returned by the receiver, we mark a packet as lost if the highest TSN in

a packet corresponds to a gap in the SACK, and following the fast retransmission scheme, the

packet is determined to be lost if it is indicated as lost by a SACK on three different occasions.

The structure displayed in figure 4.15 shows the variables needed in order to keep accounting

for chunks that are lost or in_transit. pkt_stat-structs form a linked list, each representing a sent

packet. The variable is_gap_acked indicates whether the chunk with the highest TSN in the

packet was acked by a gap ACK (and therefore received). If is_gap_acked is set, the struct

will still be kept in the list until the chunk is cumulatively acked. marked_lost is set if the

packet can be classified as lost using TCP metrics (three duplicate SACKs or a timeout). The

indicated_lost variable keeps count of dupACKs that signify loss indication. A timestamp is

kept that represent the time the packet was sent. Finally, the highestTSN keeps the highest TSN

4.2. SCTP modifications and implementation 65

1 s t r u c t p k t _ s t a t {
2 i n t i s _gap_acked ;
3 i n t marked_ l o s t ;
4 i n t i n d i c a t e d _ l o s t ;
5 unsigned long t imes t amp ;
6 __u32 highes tTSN ;
7 s t r u c t p k t _ s t a t ∗ next , ∗ prev ;
8 } ;

Figure 4.15: Structure for keeping the information necessary to monitor loss rate and packets in transit.
Located in include/net/sctp/structs.h.

of the chunks in the current packet. The highest TSN is used to represent a sent packet, since

SCTP uses bundling strategies that do not tie specific chunks to certain packets.

The list of pkt_stat-structs is accessed from the sctp_association-struct in include/net/sct-

p/structs.h and updated on construction of each SCTP packet. The sctp_association-struct also

has variables for counting the packets in transit and the number of packets that has left the net-

work. When a SACK arrives that cumulatively ACKs the highestTSN of one or more elements

of the in_transit-list, the element is removed, and the number of in_transit packets decremented.

Identification of reason for retransmission

SCTPs various methods of chunk bundling enable uncountable variations of chunk stacking

upon retransmission. To determine the reason for each retransmission by trace analysis alone

would therefore be a very complicated task. We, however, do not need to analyse the data from

the transmissions. Our field of interest is the packet IAT and size. We therefore implemented

an optional mechanism that “tags” the first byte of all chunks in every retransmitted packet with

the reason for retransmission. The tagging is a special feature that allows us deeper insight

into which retransmission mechanisms that are dominant for each tested scenario. The chunk

tagging does, however, render the payload useless for an application and is therefore only of

value for analytical purposes.

Figure 4.16 shows the code that performs this tagging. First (line 1-2), the payload of the

chunk is located, the offset indicating the first byte of chunk data. The byte is then replaced

with a character indicating the reason for this chunk’s retransmission: ’f’ means fast retransmit

(line 4), ’t’ means retransmission by timeout (line 8) and ’b’ is a bundled chunk (line 10). To

determine which chunk triggered a retransmission by timeout, the lowest TSN of all chunks

in the packet is found (line 7). The chunk with the lowest TSN is the one that triggered the

timeout, the rest of the chunks in the packet are bundles.

66 Chapter 4. Thin-stream modifications

1 # i f d e f THIN_ANALYSIS
2 da t a_chunk_pay l oad = (char ∗) chunk−>skb−>d a t a ;
3 c h u n k _ o f f s e t = 16 ; / / f i r s t b y t e o f da ta chunk pay load

4 i f (f a s t _ r e t r a n s m i t) {
5 da t a_chunk_pay l oad [c h u n k _ o f f s e t] = ’ f ’ ;
6 } e l s e {
7 cur ren tTSN = n t o h l (chunk−>subh . da t a_hd r −> t s n) ;
8 i f (cur ren tTSN == lowestTSN){
9 da t a_chunk_pay l oad [c h u n k _ o f f s e t] = ’ t ’ ;

10 } e l s e {
11 da t a_chunk_pay l oad [c h u n k _ o f f s e t] = ’ b ’ ;
12 }
13 }
14 # e n d i f

Figure 4.16: Code for tagging the payload of packets with the reason for retransmission. Only used for
the purpose of analysis as it will overwrite the chunk payload. Located in include/net/sctp/outqueue.c.

Mechanism sysctl Input

modified RTOmin sctp_thin_minrto Bool
modified timer restart sctp_thin_restart_timer Bool
LT sctp_thin_expbackoff Bool
mFR sctp_thin_fr Bool
bundling on fast retransmit sctp_thin_bundling_fr Bool
chunk tagging sctp_thin_debug_tag_payload Bool

Table 4.2: Mechanisms implemented for triggering the modifications in SCTP.

4.2.2 Implementation of switches to enable thin-stream modifications

In our modifications to SCTP, we implemented enabling of each mechanism through dedicated

syscontrols. Extended per-application flexibility through IOcontrols are not implemented for

our SCTP modifications due to time limitations.

Table 4.2 shows a list of the syscontrols that can be used to enable our implemented mech-

anisms. The “Input”-column shows the parameters given to the control. “Bool” signifies an

on/off trigger. No numerical limits were implemented for our SCTP modifications, and so all

the switches are boolean. Examples of how the modifications are enabled can be seen in fig-

ure 4.17. The sysctl-command can be used as shown in figure 4.17(a). An alternative way is

to write the value to the proc-file system variable for this syscontrol as shown in figure 4.17(b).

Root access is needed to set such system-wide parameters.

4.2. SCTP modifications and implementation 67

sysctl net.ipv4.sctp_thin_minrto=1

(a) syscontrol enabling of modification

echo “1” > /proc/sys/net/ipv4/sctp_thin_minrto

(b) /proc-variable enabling of modification

Figure 4.17: Examples of how to enable the modified RTOmin thin-stream modification.

4.2.3 Modified minimum retransmission timeout

To avoid timeouts occurring too early, which can lead to spurious retransmissions and a reduced

congestion window, SCTP has a rather high RTOmin value (1000 ms). Nevertheless, in our thin-

stream scenario, we can see that almost all retransmissions are due to timeouts. We therefore

wanted to investigate the effect of changing the SCTP RTOmin.

When the stream is detected to be thin, the high RTO used in SCTP brings no value to the

connection. We therefore want to reduce the RTOmin value to lower the retransmission delay

when timeouts happen.

Choices

Since our goal is to make small, effective modifications to improve latency for thin streams,

we find it more expedient to make an adjustment to the RTOmin than to try to develop a whole

new RTO calculation algorithm. The RTOmin is a fixed value, which represents the absolute

minimum the system should wait before retransmitting if no feedback is received. An RTOmin

that is too low has the potential to cause unwanted spurious retransmissions. An RTOmin that

is too high could (as shown in section 3.4) cause very high retransmission latencies for thin

streams. Our choice fell on the well-proven 200 ms RTOmin used in the Linux kernel imple-

mentation of TCP. This value allows for feedback to arrive for most connections, while not

delaying retransmissions unacceptably long (in an interactive application’s perspective).

As a consequence of reducing RTOmin, the relative effect of delayed SACKs on the RTO

calculation that was described in section 3.4 grows. When the receiver-side SACK delay is

eliminated, the calculated RTO is greatly reduced due to a lower measured RTT. Thus, although

receiver-side enhancements are more difficult to apply in some scenarios (since client machines

must be updated), we experimented also with the disabling of delayed SACKs.

Implementation

The code displayed in figure 4.18 controls the value that is used as RTOmin for the given SCTP

transport stream. If the syscontrol sctp_thin_minrto is set, and the stream is identified as thin

using the mechanisms described in section 4.2.1, the modified code is enabled. If the calculated

RTO (tp->rto) is lower than 200 ms, the RTOmin is set to 200 ms. If the stream is not thin, or the

68 Chapter 4. Thin-stream modifications

1 i f (s c t p _ t h i n _m i n r t o &&
2 (tp−>asoc−>p a c k e t s _ i n _ f l i g h t <
3 tp−>asoc−> t h i n _ s t r e am _ t h r e s h o l d)) {
4 i f (tp−> r t o < m s e c s _ t o _ j i f f i e s (2 0 0)) {
5 tp−> r t o = m s e c s _ t o _ j i f f i e s (2 0 0) ;
6 }
7 } e l s e {
8 i f (tp−> r t o < tp−>asoc−>r to_min){
9 tp−> r t o = tp−>asoc−>r to_min ;

10 }
11 }

Figure 4.18: Code to reset RTOmin to 200 ms if the stream is identified as thin. Located in in-

clude/net/sctp/transport.c.

syscontrol is not enabled, the system RTOmin of 1000 ms is used. If a greedy stream becomes

thin, a new RTO calculation needs to be performed before the modification takes effect.

4.2.4 Correcting the RTO timer reset

When SCTP receives a SACK that acknowledges some, but not all, of the outstanding chunks,

the RTO timer is reset. For greedy streams, this increases the probability for a retransmission to

be triggered by a fast retransmit before a timeout happens, thus saving the stream from a slow

start that reduces the overall throughput. For thin streams, however, the chance of triggering

a fast retransmit is so small that this mechanism creates additional delay with no prospect of

gain [86, 58]. We have therefore investigated ways of modifying SCTP in order to improve

thin-stream latency for this special case.

We want to reduce the probability that increased latency occurs when SACKS arrive that

acknowledges only some of the outstanding chunks. This could happen in any of our described

thin-stream scenarios, and should therefore be used in conjunction with any of the other thin-

stream mechanisms that we describe here. The timer reset can cause extra retransmission delay

for interactive applications whether or not the stream is thin. We therefore want to be able to

enable the modification for all SCTP associations if the system administrator knows that the

machine will serve interactive applications.

Choices

Figure 4.19 shows an example of how the timer is reset if a SACK arrives that acknowledges

only some of the outstanding chunks. The chunk with TSN 100 is sent at time 0 over a 200 ms

RTT association. After 250 ms, the chunk with TSN 101 is sent and lost. Because delayed

SACKs are standard in SCTP, the TSN 100 is not acknowledged until after 400 ms. At the time

4.2. SCTP modifications and implementation 69

Sender Receiver

X

TSN 100

TSN 101

SACK 100

TSN 101

Time

0ms

250ms

400ms

1400ms

Timer restart

100ms

300ms

}SACK delay

Time

Figure 4.19: Example of how resetting the RTO can increase retransmission delay for thin streams [85].

when the SACK for TSN 100 is received, the TSN 101 chunk is still outstanding. Despite of

this, the RTO is reset to the RTOmin of SCTP of 1000 ms. The effect of this timer reset is that

the chunk with TSN 101 that would have been retransmitted at time 1250 ms without the reset

is actually retransmitted at 1400 ms. The added delay for this example is 150 ms (an increase

of 13%).

In order to improve this situation, we have to choose a way of correcting the RTO restart

when a SACK is received that acknowledges only some of the outstanding chunks. When we

consider that we also propose other modifications that involve the RTO timer, we want to do this

adjustment relative to the RTO value that is calculated for the current stream and configuration.

We therefore explored ways of subtracting the “penalty” that exceeds the RTO that would have

been used for the chunk, had not the timer reset been performed. A suggested way of handling

this situation is presented in [69]. According to the paper, a correct RTO can be ensured by

subtracting the age of the earliest outstanding data chunk from the current RTO value each time

the timer is restarted. This approach is used as the basis for our modifications to the timer

recalculation.

Implementation

The function sctp_check_transmitted() is located in outqueue.c, and performs a traversal of

outstanding chunks when a SACK arrives. It also performs adjustments to the RTO timer if

warranted. The code that performs the correction to the RTO timer restart is called if the variable

restart_timer is set, signalling the RTO recalculation. Figure 4.20 shows the modified code to

be called when this recalculation is triggered. The premise for using the modified code is that

the syscontrol sctp_thin_restart_timer is set in line 1. If this is not the case, the original timer

reset is performed (lines 22-25). The first step is to find the age of the oldest outstanding chunk.

This is performed in lines 3-12 by traversing the transmitted-queue and selecting the first chunk

70 Chapter 4. Thin-stream modifications

1 i f (s c t p _ t h i n _ r e s t a r t _ t i m e r) {
2 o l d e s t _ o u t s t a n d i n g _ c h u n k = NULL;
3 l i s t _ f o r _ e a c h (l i s t _ c h u n k , & t l i s t) {
4 cur_chunk = l i s t _ e n t r y (l i s t _ c h u n k , s t r u c t sc tp_chunk ,
5 t r a n s m i t t e d _ l i s t) ;
6 i f (s c t p _ c h u n k _ i s _ d a t a (cur_chunk)) {
7 i f (! cur_chunk−>t sn_gap_acked){
8 o l d e s t _ o u t s t a n d i n g _ c h u n k = cur_chunk ;
9 break ;

10 }
11 }
12 }
13 i f (o l d e s t _ o u t s t a n d i n g _ c h u n k != NULL){
14 i f (! mod_t imer (& t r a n s p o r t −>T3_ r t x_ t ime r ,
15 (j i f f i e s −
16 (j i f f i e s − o l d e s t _ o u t s t a n d i n g _ c h u n k −>s e n t _ a t)
17 + t r a n s p o r t −> r t o))) {
18 s c t p _ t r a n s p o r t _ h o l d (t r a n s p o r t) ;
19 }
20 } e l s e {
21 i f (! mod_t imer (& t r a n s p o r t −>T3_ r t x_ t ime r ,
22 j i f f i e s + t r a n s p o r t −> r t o)) {
23 s c t p _ t r a n s p o r t _ h o l d (t r a n s p o r t) ;
24 }
25 }
26 }

Figure 4.20: Code to avoid restarting the retransmission timer when a SACK arrives. Located in in-

clude/net/sctp/outqueue.c.

in the queue that is not gap ACKed. If such a chunk is found, the time since the chunk was

sent is subtracted from the current RTO (lines 13-19). The method mod_timer() performs the

recalculation of the RTO. If the timer is successfully set, the execution is continued (by exiting

the function).

4.2.5 Linear retransmission timeouts

If there are too few SACKs to trigger a fast retransmission or no new packets are sent to let

the receiver discover loss, retransmissions are triggered by subsequent timeouts without any

intervening fast retransmissions. At this point, an exponential back-off of the retransmission

timer is performed as for TCP, which leads to the retransmission delay increasing exponentially

when there are occurrences of multiple loss. This effect is aggravated by the high RTOmin used

by SCTP. We therefore investigated modifications to the SCTP exponential backoff mechanism

for thin streams.

Given that the stream is identified as thin, we want to modify the existing exponential back-

off mechanism so to reduce the extreme retransmission latency that can arise due to this mech-

4.2. SCTP modifications and implementation 71

1 i f (! (s c t p _ t h i n _ e x p b a c k o f f &&
2 asoc−>p a c k e t s _ i n _ f l i g h t >=
3 asoc−> t h i n _ s t r e am _ t h r e s h o l d)) {
4 t r a n s p o r t −> r t o = min ((t r a n s p o r t −> r t o ∗ 2) , t r a n s p o r t −>asoc−>rto_max) ;
5 }

Figure 4.21: Code to use linear timeouts if the stream is identified as thin. Located in include/net/sct-

p/sm_sideeffect.c.

anism. Alternative ways of calculating the RTO could have been devised, but as for our TCP

modification described in section 4.1.3, we wanted to keep the changes as simple as possible.

If the stream is not thin, the original SCTP-mechanisms are effective due to more frequent

feedback, and should therefore be kept.

Choices

The actual effect of exponential backoff is reflected by the value of the RTOmin. In the case

of SCTP, the 1000 ms RTOmin yields a high starting point for exponential backoff for any con-

nection. For the thin-stream scenario, this leads to frequent occurrences of high retransmission

latency. We therefore suggest that linear timeouts are applied when the stream is detected as

thin. The effect is then the same as for our linear timeout-modification for TCP (illustrated in

figure 4.6). The linear-timeouts modification is recommended to be used in conjunction with a

reduced RTOmin (described in section 4.2.3). We considered alternative schemes for calculating

the RTO, but concluded that a simple modification only in the cases where the stream is thin

was preferable. The exponential backoff is not needed to protect against aggressive probing for

bandwidth, since the stream is thin, and has only small amounts of data to transmit.

Implementation

lksctp handles exponential backoff of the retransmission timer in the function sctp_do_8_2-

_transport_strike which is located in sm_sideeffect.c. Our modification consists of a wrapper

around the statement that performs the doubling of the RTO. Figure 4.21 shows the code that

performs the modification. Line 4 performs a doubling of the RTO, or sets it to RTOmax .

In line 1, 2 and 3, a check is performed to determine if the modification is enabled (by

sctp_thin_expbackoff), and whether the stream is thin using the mechanisms described in sec-

tion 4.2.1. If the tests confirms the stream as thin and the modification is enabled, no change to

the RTO is performed. If any of the test criteria fail, the RTO is doubled as normal.

72 Chapter 4. Thin-stream modifications

4.2.6 Modified fast retransmit

Despite the high RTOmin value, fast retransmissions hardly ever appear in our thin-stream sce-

nario. If only two or three packets are sent every second, even a one second RTOmin is often

triggered before a fast retransmission. We have investigated this mechanism in SCTP and im-

plemented modifications to the fast retransmit mechanism to reduce the retransmission delay

for thin streams.

In the same way as for TCP (described in section 4.1.4), we want to find ways to relax

the fast retransmission dupACK requirement to help reduce the retransmission delays. This

mechanism should also be dynamically triggered only if the stream is identified as thin.

Choices

When investigating changes to the fast retransmit mechanism, we first had to consider the basic

rationale behind the mechanism. The mechanism was designed to use the indications of loss

in the form of duplicate ACKs to recover without having to go into slow start, which again

would lead to exponential backoffs if the chunk was lost again). We have shown in section 3.4

that thin streams have very low probability to trigger a fast retransmit even when the RTOmin

is as high as 1000 ms. We wanted to keep the properties of fast retransmit (of avoiding slow

start). The fast retransmit mechanism’s effect on the congestion window does not have any

effect for thin streams since the do not expand it. We therefore considered the most effective

solution for fulfilling our goal without disturbing regular SCTP operation to allow the threshold

for a fast retransmit to be lowered from three dupACKs to one (as illustrated in figure 4.8.

The modification implemented may lead to more transmissions in the low-probability case that

packets are reordered, but the gain in latency justifies the need to drop occasional spurious

retransmissions.

Implementation

The file outqueue.c holds the method that traverses the transmitted-queue, and marks data

chunks as missing based on SACK information (sctp_mark_missing). Figure 4.22 shows the

code that implements the modification. Lines 9-12 hold the code that triggers a fast retrans-

mit when the limit of three dupSACKs is reached. We have removed the hard limit of three

dupACKS and included a test that dynamically sets the limit to one if the stream is identi-

fied as thin and the mechanism is enabled (lines 1-7). To determine whether the stream is

thin, we access the implemented mechanism through the asoc-struct which is referenced by the

transmitted-queue (q).

4.2. SCTP modifications and implementation 73

1 i f (s c t p _ t h i n _ f r) {
2 i f (q−>asoc−>p a c k e t s _ i n _ f l i g h t < q−>asoc−> t h i n _ s t r e am _ t h r e s h o l d){
3 f r _ t h r e s h o l d = 1 ;
4 } e l s e {
5 f r _ t h r e s h o l d = 3 ;
6 }
7 }
8
9 i f (chunk−> t s n _m i s s i n g _ r e p o r t >= f r _ t h r e s h o l d) {
10 chunk−> f a s t _ r e t r a n s m i t = 1 ;
11 d o _ f a s t _ r e t r a n sm i t = 1 ;
12 }

Figure 4.22: Code to modify the fast retransmit threshold if the stream is identified as thin. Located in
include/net/sctp/outqueue.c.

4.2.7 Bundling on fast retransmit

SCTP bundles outstanding chunks with a retransmission by timeout if there is room in the packet

(limited by the system MTU). For a greedy stream, a retransmission by timeout is an indication

of heavy loss, since too few dupACKs have been returned to trigger a fast retransmit and signal

that packets have left the network. For thin streams, a timeout may well happen even if only one

packet is lost, since it often cannot trigger a fast retransmit in any case due to the high packet

IAT. When a fast retransmit is performed, SCTP does not bundle any outstanding chunks except

for chunks that are already tagged for fast retransmit. We have therefore investigated bundling

of unacknowledged chunks upon fast retransmit in order to improve delivery latency for thin

streams. By allowing the sender to bundle unacknowledged chunks upon fast retransmit, we

aim to improve the delivery latency when loss occurs.

Choices

We have chosen to implement a mechanism that tries to bundle as many chunks as possible upon

a fast retransmit until the MSS is reached. This is done only when the stream is detected as thin.

If this option is used without also enabling the modification that allows a fast retransmit on the

first dupACK, it will have small (or no) effect. Another option could be to enable bundling

on fast retransmit without limiting the effect to thin streams. This would increase the amount

of spurious retransmissions, but could potentially improve the delivery latency for borderline

cases of thin streams (low IAT, but not low enough to trigger pass the conservative test described

in section 4.2.1). An effect of such bundling would, however, be that the congestion window

would continue to grow even if loss had occurred. Greedy streams would seldom cause spurious

retransmissions if bundling on fast retransmissions were enabled, since the MSS would nearly

always be reached.

74 Chapter 4. Thin-stream modifications

1 i n t che ck_ s t r e am_be f o r e_ add (s t r u c t s c t p _ t r a n s p o r t ∗ t ,
2 s t r u c t s c t p_chunk ∗chunk ,
3 __u8 f a s t _ r e t r a n s m i t) {
4 i f (s c t p _ t h i n _ b u n d l i n g _ f r) {
5 i f (t−>asoc−>p a c k e t s _ i n _ f l i g h t < t−>asoc−> t h i n _ s t r e am _ t h r e s h o l d){
6 re turn ((f a s t _ r e t r a n s m i t && chunk−> f a s t _ r e t r a n s m i t) | |
7 ! chunk−>t sn_gap_acked) ;
8 }
9 e l s e {

10 re turn ((f a s t _ r e t r a n s m i t && chunk−> f a s t _ r e t r a n s m i t) | |
11 (! f a s t _ r e t r a n s m i t && ! chunk−>t sn_gap_acked)) ;
12 }
13 }
14 e l s e {
15 re turn ((f a s t _ r e t r a n s m i t && chunk−> f a s t _ r e t r a n s m i t) | |
16 (! f a s t _ r e t r a n s m i t && ! chunk−>t sn_gap_acked)) ;
17 }
18 }

Figure 4.23: Code to allow bundling of unacknowledged chunks on fast retransmit if the stream is
identified as thin. Located in include/net/sctp/outqueue.c.

Implementation

We have implemented a new function to replace the test that was originally performed in sctp-

_retransmit_mark() to determine whether a fast retransmit should be performed. The new func-

tion is check_stream_before_add(), and returns true if bundling should be performed. The code

that performs the bundling itself is not included here as it conforms with the original SCTP

bundling implementation. Figure 4.23 shows the modified code. The sctp_transport-struct is

passed to the function for access to the asoc-struct where the thin stream limit information is

kept. References to the current chunk and fast_retransmit status is also passed. In line 4, the

code checks whether bundling on fast retransmit is enabled by the syscontrol. The code in line

6 checks whether the stream is currently thin. If the stream is thin, the chunk is tagged for

bundling if it is not already confirmed delivered by a gap ACK (lines 6 and 7). If the modifica-

tion is not enabled by the syscontrol or the stream is not identified as thin, only chunks tagged

for fast retransmit are bundled.

4.2.8 Other possible avenues of investigation

SCTP has a very flexible framework for allowing bundling of chunks. Since each chunk has a

unique TSN, the chunks from different applications can be interleaved and chunks that are not in

consecutive order can be retransmitted in the same packet. This freedom makes the possibilities

for inventive bundling mechanisms near limitless.

Within the time limit and scope of this thesis, the previously described modifications have

4.3. Applicability of modifications 75

Figure 4.24: Applicability of the thin-stream mechanisms for TCP.

been implemented and tested. Other mechanisms, like preempting loss by bundling all out-

standing data on regular transmissions (much like RDB in TCP described in section 4.1.5) have

also been discussed but not fully implemented and tested due to time limitations. Other schemes

like transmitting each chunk twice within a certain time limit (if packet space allows) could also

be explored in future work.

4.3 Applicability of modifications

All of our developed mechanisms, both for TCP and SCTP, are basically targeted at improv-

ing latency for thin streams. As thin streams can vary in packet IAT and size, the different

mechanisms perform differently based on the current stream properties.

In figure 4.24, we characterise the main modifications based on the thin-stream properties

that they are applicable for. Some of our modifications, like the reduced RTOmin and corrected

timer reset for SCTP are applicable for all delay-sensitive, thin-stream applications, regardless

of the degree of packet size and packet IAT within the thin-stream criteria, and are therefore not

included in the figure.

The typical thin-stream case is displayed in the upper left corner of figure 4.24; small packets

and high packet IAT. Such properties can be seen in the analysis of the MMORPGs (WoW, AO

and AoC), RTS game (WiC), SSH-session, sensor network and RDP from table 2.1. Bundling

is possible for this class of streams since the low packet size makes room for bundles before

reaching the MSS. The high packet IATs reduces the chance that fast retransmissions are trig-

gered. Applying the linear timeouts (LT) and modified fast retransmit (mFR) therefore helps to

reduce the retransmission delay.

The class of streams described in the lower left quadrant of figure 4.24 has small packets, but

relatively low packet IATs. Where a greedy stream would always fill the MSS of each packet,

the packet IAT for this class of stream is still so high as to allow the small packet sizes. For this

class of applications, bundling schemes greatly helps to reduce the delivery latency when loss

occurs. Aggressive bundling schemes like RDB can, for borderline thin-stream cases, quickly

76 Chapter 4. Thin-stream modifications

fill up the packet MSS, thus consuming more bandwidth. The number of packets sent will, in

most cases, not be drastically increased. There may be a increase in the number of sent packets

due to the fact that aggressive bundling may cause a segment to be ACKed that would otherwise

be lost. This helps the connection to avoid a timeout with following slow-start(s) and eventual

exponential backoffs. In practise, this also means that the number of sent packets is sometimes

somewhat higher.

The upper right quadrant of figure 4.24 represents a special case that occurs, but that is not

common. A high packet IAT combined with large packets can occur if the application has a

transmission timer for certain events, and that the data to be sent has a size that is close to the

network MSS (or above the MSS, resulting in multiple packets). An example could be a video

codec producing frames at certain intervals with a given packet size. In table 2.1, the closest

example is from the RTS “World in Conflict”. The from server-stream here has a packet size of

365 bytes on average, and transmits 10 packets each second. For this class of applications, the

LT and mFR mechanisms are beneficial, but bundling rarely happens.

The last quadrant in the figure (bottom right) represents a typical greedy (or non-thin)

stream. In this case, standard congestion-control and retransmission mechanisms are functional

with regard to latency, and should be used in their unmodified version.

Chapter 5

Analysis and evaluation

Performing a well-balanced evaluation of the modifications described in chapter 4 required that

we chart several key properties of the behaviour of traffic transmitted using the modifications:

• The effect of each modification on latency for different network conditions.

• The effect of combinations of modifications.

• The effect of the modifications on unmodified, competing streams.

In order to answer these questions, we had to be able to control the network parameters (RTT,

loss rate and loss burstiness) and also to control the behaviour of the stream (packet IAT, packet

size). Most network emulators (like netem [1]) cause evenly distributed loss. In the Internet,

loss patterns caused by congestion are more bursty. In order to answer the questions we had as

accurately as possible, we set up several different test environments, and performed exhaustive

tests. This chapter describes the test environments, the tests that were performed and the results

from the different tests.

5.1 Test environment, evaluation setup, tools and metrics

We needed to control the network properties to gather information about the behaviour of the

modifications under different circumstances. For this purpose, laboratory environments were

the best way to perform controlled tests for each combination of network and stream properties.

To gather data about the performance of the modifications under real-life Internet conditions, we

also set up several tests that transmitted data over the Internet. All experiments that are directly

compared have been performed on the same hardware with the same system configuration1.

1We have tried to achieve configuration equality as far as can be done. Different operating systems do, however,
have slightly different options. In such cases, we have striven to match system settings as close as possible within
the respective system’s limitations.

77

78 Chapter 5. Analysis and evaluation

The sender used our modified Linux kernel when testing the modifications, the receiver always

used an unmodified kernel. The reason why the receiver always used an unmodified kernel is

the requirement that our modifications should be transparent to the receiver. By adhering to

the TCP standards, any host with a correct TCP implementation should be able to receive a

stream with or without modifications. The following sections describe each of the main test

environments used to evaluate the TCP, SCTP and UDP/application layer mechanisms.

5.1.1 Alternative evaluation methods

Our proposed mechanisms were implemented in the Linux kernel. The effects were then evalu-

ated by performing detailed laboratory tests and Internet tests. The possibility of performing an

evaluation by simulation was explored, but rejected. It proved to be difficult for the following

reasons:

• We could not find a good framework that could be reliably modified to simulate the thin-

stream behaviour for our modifications. The main problem was that simulators (like ns2)

are usually focused on throughput and congestion control for greedy streams. To reduce

the complexity of simulations, they use an abstraction of packet size, assuming that all

segments are filled to the MSS. A reliable thin-stream simulation would therefore be

impossible without making major changes to the simulator structure.

• Simulation frameworks that use the Linux kernel as a base for their networking were eval-

uated. The tested frameworks did, however, either abstract segment sizes like explained

in the previous item, or proved difficult to integrate with our thin-stream modifications

due to special timer adaptations made for the simulator. In the one case [100] where sim-

ulations looked promising, an error in the simulator’s network modelling invalidated the

gathered results.

The alternative of developing our own simulation framework would be time-consuming and

still lack the confidence provided by a well-tested framework. We therefore concluded that the

(potential) benefits of speed-up of test execution, large-scale network simulations and fairness

evaluation in a simulated environment would not outweigh the disadvantages.

5.1.2 Laboratory tests with artificial loss

The experiments that aim to chart the behaviour of our thin-stream modifications under different

network conditions demand that we have total control over both network and stream properties.

In the network, we want to be able to control and vary RTT and loss rate. In order to test for

different aspects of thin streams, we must be able to control packet IAT and size. We must also

be able to record the resulting data patterns, both on the sender and on the receiver.

5.1. Test environment, evaluation setup, tools and metrics 79

Sender Receiver

Figure 5.1: Test setup where a network emulator is used to create loss and delay.

An identifying property of thin streams is the high packet IAT. In order to generate enough

instances of loss to get statistically viable numbers, tests have to be run for a long time2. Since

jitter has shown to influence the latency very little when TCPNewReno is used (see section 5.2),

we have chosen not to include tests with jitter variations.

The layout of our laboratory test environment for artificial (network emulator) loss is shown

in figure 5.1. The evaluated streams are simplex (one-way) flows from the sender to the receiver.

The data is transmitted to the receiver via a network emulator which induces loss and delays

the packets. Loss and delay are induced in both directions for the connection, meaning that

ACKs are also lost (as may happen in live scenarios). Loss rates and delay are presented for

each performed test. Packet traces are recorded at the sender, and also at the receiver if required

for test analysis. This test setup generates a predictable loss rate with packet losses occurring at

regular intervals.

5.1.3 Laboratory tests with cross-traffic induced loss

In order to get an indication of how thin streams perform in a more realistic loss scenario, we

created another laboratory test environment. The aim was to create loss in the same manner as

on a congested Internet link; through a bandwidth-limited node with a tail-dropping queue and

traffic that causes congestion.

Figure 5.2 shows the layout of our cross-traffic test setup. The sender and receiver computers

behave like described in section 5.1.2. Delay, both upstream and downstream, is still created by

the network emulator. It does, however, no longer drop packets, but instead uses traffic control3

to enforce bandwidth limitation with a tail-dropping queue on the pass-through link. We use

two extra machines to generate cross traffic across the bandwidth-limited link.

The cross traffic generation was designed to mimic HTTP-like traffic. With respect to em-

ulating such traffic, a lot of work has been done to define parameters such as file-transfer size

and mean interarrival time, as well as the number of concurrent clients [29, 19]. Most studies

2If a thin stream has a steady packet IAT of 120 ms, and the link loss rate is 2%, a test has to be run for 8 hours
in order to generate 4800 instances of loss.

3Linux tc with netem was used [1]. The link was limited to 10Mbps with a “hierarchical token bucket”-
algorithm using the following tc-commands: “tc qdisc add dev eth5 root handle 10: htb default 1”, “tc class add
dev eth5 parent 10: classid 10:1 htb rate 10000kbit ceil 10000kbit burst 6k prio 2”

80 Chapter 5. Analysis and evaluation

Sender Receiver

Cross-traffic

sender

Cross-traffic

receiver

Figure 5.2: Test setup where a network emulator is used to create delay and limit bandwidth. Loss is
created by competing HTTP-like cross-traffic.

agree on a heavy-tail distribution to describe the file sizes [29]. The studies show that there

are many small files, and few large ones, but the greater sizes can become almost arbitrarily

large. Thus, we used a Pareto distribution with a minimum size of 1000 bytes4 giving us a mean

transfer size of approximately 9200 bytes per connection. Furthermore, we had 81 concurrent

web-client programs running, where the number was determined by the number of different

delays that one netem instance can assign to connections. Each of the client programs started

new streams within a pre-configured time-interval. To control the loss rate, we set the request

interarrival-times to follow an exponential distribution with a preset mean value. On the bot-

tleneck, the bandwidth was limited to 10Mbps with a queue length of 100 packets. The queue

length was decided after experimenting for parameters that would give a realistic loss scenario.

A longer queue would lead to bursts of delivered packets with large jitter, while a shorter queue

resulted in high loss rates.

5.1.4 Internet tests

The performance of our modifications in a live Internet scenario was tested using the basic setup

shown in figure 5.3. In order to get an impression of the network characteristics for different

types of applications (for instance p2p and client/server), we varied which ISP the sender and

receiver were placed at. In such tests, loss and delay varies depending on path properties and

4The maximum size was limited to approximately 64 MB in our cross-traffic environment. If we were to allow
arbitrarily large file sizes, given the configured bandwidth limitation, the large files would, over time, dominate the
traffic, and the desired effect would be lost.

5.1. Test environment, evaluation setup, tools and metrics 81

Figure 5.3: Test setup for Internet tests. Loss and delay are determined by path and competing traffic.

competing traffic. We can vary the packet IAT and size, but have no further influence over the

network properties5. Traces of the sent traffic were gathered at sender and receiver (as for the

laboratory tests) to be analysed.

5.1.5 Test data

One of the challenges when performing experiments to determine the effect of thin streams on

reliable protocols is to generate the data patterns for the evaluated streams. For our tests, we

have chosen two different approaches, each with its own purpose:

1. Traffic generating application: We have implemented applications that generate traffic ac-

cording to special patterns. The packet IAT and size can be customised to reflect different

thin stream scenarios. This approach is used to determine the effect of our modifications

as the thin-stream properties vary.

2. Replay of traces: The traces that we analysed to identify the thin-stream properties are

captured from real applications (see table 2.1). They reflect the patterns that such thin-

stream applications display during ordinary use. To measure the effect of our modifica-

tions in a realistic scenario with varying traffic patterns, we replay such traces.

The combination of the two strategies for generating data patterns with the flexibility of labora-

tory tests and Internet testing provide a broad range of data for analysis.

5.1.6 Metrics

In order to measure the effect of our mechanisms, we had to decide on a set of metrics. The met-

rics were chosen to describe both the effect on latency, the consumption of network resources

and the effect on competing streams.

• ACK latency: Describes the time interval from the first time a data segment is sent until

the time when an ACK arrives to confirm that the segment is successfully delivered.

5The loss rate can be influenced by sending greedy streams over the same path at the time of the test. We have,
however, not wanted to do that since we want the network characteristics to reflect normal scenarios.

82 Chapter 5. Analysis and evaluation

• Delivery latency: Describes the time interval from the first time a data segment is sent

until it is delivered at the receiver. The one-way-delay (OWD) is subtracted from the

value, so that a packet delivered within one OWD has a delivery latency of 0 ms6.

– Transport layer: The delivery latency at the transport layer. Provides per-packet

statistics.

– Application layer: Delay from the time the data is sent until it is actually delivered

to the application. Takes into account the in-order requirement.

• Loss: Loss rate for the connection that was evaluated.

• Transmission overhead (tohd): Measures the amount of overhead to successfully deliver

the data in percent. We have to keep in mind that for thin streams, a large overhead

(measured in percent) may constitute only a small amount of consumed bandwidth.

• Throughput: The aggregated throughput over a period of time is used to measure the

impact of different retransmission mechanisms on per-stream fairness.

• Retransmission reason (SCTP): SCTP is a chunk-oriented protocol with a range of differ-

ent strategies for bundling chunks. We have logged what triggered the retransmission to

understand the dynamics of SCTP retransmissions better.

5.1.7 Loss estimation

In the cases where loss was not created using a network emulator, we needed to calculate or

estimate the loss rate. In the cases where dumps were available both from the sender and

receiver machines, loss was calculated as shown in definition 1. The numbers of sent and

received packets were counted, and the difference accounted for lost packets.

Definition 1 (Loss estimation - sender and receiver dumps)

loss rate =
sent packets− received packets

sent packets
(5.1)

Definition 2 (Loss estimation - sender dump only)

loss rate =
Registered ret ransmit ted packets

Total number o f sent packets
(5.2)

6A detailed description of the delivery delay-metric and how it is calculated is provided in section 5.1.9

5.1. Test environment, evaluation setup, tools and metrics 83

100%

goodput

100%

transmission overhead

Figure 5.4: Relationship between transmission overhead and goodput in the statistics from the laboratory
tests.

In the cases where we only had access to a sender-side dump, the loss rate was estimated from

the number of retransmissions (as shown in definition 2). This way of determining loss is

affected by the retransmission mechanisms, and also bundling skews this estimate severely. We

have therefore avoided to use this way of measuring loss, only using it to confirm the loss rates

(using TCP New Reno) in cases where we have no influence on the network behaviour. The

method we used for calculating loss is specified for each presented test.

5.1.8 Calculation of transmission overhead

A metric was needed to analyse the transmission overhead (tohd) for different retransmission

scenarios. Since bundling involves copying data between packets, measuring tohd as a function

of sent and received packets would not give an accurate result. We therefore decided to measure

tohd based on the number of sent bytes compared to optimal (lossless) delivery.

Definition 3 (Transmission overhead (tohd))

ω= Out going b y tes (ag gregated pa yload) f rom sender

tohd =
ω− (seqmax − seqmin)

ω

Definition 3 shows our way of measuring the transmission overhead (tohd). We define tohd as

the sent data in excess of perfect (lossless) delivery of all data as a percentage of the data size.

Figure 5.4 shows how our metric works. In the case of 0% tohd, all the data is delivered with no

need for retransmissions at all. In the case of 5% loss, if only one retransmission is needed each

time a packet is lost, the tohd is 5%. If no data is delivered to the receiver, the tohd is 100%.

5.1.9 Calculation of delivery delay

The cumulative distribution function (CDF) plots show the delivery delay to the application at

the receiver. Figure 5.5 shows how we record the timestamp t at the sender and t ′ at the receiver.

Since achieving accurate results by synchronising the clocks of the hosts is very difficult, we

84 Chapter 5. Analysis and evaluation

Sender Receiver

Time Time

Figure 5.5: Calculating delivery delay (φi) by using timestamps at sender and receiver.

do not calculate absolute delay values. We assume that the lowest recorded difference ∆t i

represents the OWD. For each sent segment, we find the delay by subtracting the OWD from

the measured difference. Our recorded metric (φ) is thereby the delay above the lowest possible

delivery time.

For tests that span several hours or days, the possibility that the clocks will drift is high7.

We therefore find ∆t1,min for the first 1000 packets, and ∆t2,min for the last 1000 packets of the

trace. We assume that both values represent the one-way delay at the given time, and calculate

the drift τ as described in equation 5.3.

∆t1,min = min
1≤i≤1000

∆t i

∆t2,min = min
n−1000≤i≤n

∆t i

τ=∆t2,min−∆t1,min

(5.3)

The drift modifier τ is applied to each φ-measurement to compensate for the level of drift at the

time the measurement was made. If the path (in an Internet test) is radically changed during an

experiment, the change is clearly visible from the analysed data, and the test is discarded since

no valid delivery delay can be calculated.

5.2 Evaluation of TCP modifications

We have performed a large number of experiments to measure the effect of the thin-stream

modifications in different scenarios. First, laboratory tests were run in order to determine the

explicit effect of each modification. The laboratory tests were performed with loss created by a

network emulator, and with loss created by competing traffic. Experiments were then performed

using the modified TCP to transmit over the Internet. They included a range of experiments

to chart the effect of the thin-stream modifications on competing streams in order to address

fairness.

The statistics from the evaluation of the TCP modifications show three different plots orig-

7All our measurements indicate that the drift is linear, meaning that we can compensate for the effect by
calculating the rate of the drift.

5.2. Evaluation of TCP modifications 85

RTT (ms) 50, 100, 150, 200, 250, 300
Loss 5%

IAT (ms) 25, 50 100, 150, 200, 250, 500
Packet size (B) 100

TCP version New Reno, LT, mFR, LT + mFR, RDB, LT + mFR + RDB

Table 5.1: Laboratory test parameters for tests performed with uniform loss.

inating from the same set of experiments: 1) CDF of transport-layer delivery, 2) CDF of

application-layer delivery, 3) ACK latency measured at the sender. An improvement in the

average values that may be difficult to detect from the ACK latency plots may be more clearly

shown in the CDFs. Also, ACK latency statistics are affected by lost ACKs which will not have

an impact on the delivery latency plots. Combined, the plots shed light on different aspects of

the streams as viewed from both the sender and receiver.

This section describes the experiments and results.

5.2.1 Artificial, uniform loss in an emulated network

The first part of our experiments evaluating the properties of our thin-stream TCP modifications

was controlled laboratory tests to measure the effect of each modification. The laboratory setup

and loss model used were as described in section 5.1.2 with uniformly distributed loss created

by a network emulator. The duration of each test was 8 hours. Since we had implemented per-

stream IOcontrol enabling of the modifications, we were able to run several streams in parallel

during one 8 hour test period8. At the network emulator, the RTT was varied for different tests.

The stream characteristics (packet IAT and size) were configured using our own data generator

application streamzero. The parameters that were used for this set of tests are listed in table 5.1.

All combinations of all the listed parameters were tested for a total of 294 different traces, each

representing an 8 hour test. The TCP variations tested were: TCP New Reno, linear timeouts

(LT), modified fast retransmit (mFR) and redundant data bundling (RDB). Combinations of our

modifications were also tested as indicated in table 5.1.

As the test process was very time-consuming, we had to prioritise the parameters to vary.

The choice was made to keep the packet size and loss rate constant for this test. The loss

rate was set to 5% since we wanted to measure the effect when retransmissions happen, and

therefore needed the loss rate to be relatively high. Effects when the loss rate is varied are

described in more detail in the experiments in section 5.2.2 where loss is created by competing

traffic and in the Internet experiments (section 5.2.4). The packet size was kept at a constant

8Using IOcontrols, we could turn on each mechanism separately for each stream. Using pre-defined port
numbers for each sent stream we could transmit several streams in parallel, and still be able to analyse the results
from each separate stream.

86 Chapter 5. Analysis and evaluation

Outlier

99th percentile

Quartile

Quartile

Median

1st percentile

Minimum value

Maximum value

a 1 2 3

TCP New Reno

loss:5.4%

tohd:5.7%

: (re)transmission

: TCP variation

: Loss rate

: Transmission overhead

Figure 5.6: Legend for the boxplots used to describe the ACK latency for our TCP experiments.

100 bytes since we wanted the bundling mechanism to be active, and this is a packet size that

reflects most scenarios as indicated by table 2.1.

Here, we present a subset of the test results that highlight interesting aspects of how each

thin-stream modification performs under particular conditions. Graphs of the results for the

whole series of tests can be found in appendix C.1.

The statistics for this test set are presented through three different kinds of plot: 1) A box

plot representing the delay from the time when a data segment is sent until it is acknowledged.

We call this interval the ACK latency. 2) A CDF showing the latency for delivery to the transport

layer at the receiver. 3) A CDF showing the latency for delivery to the application layer at the

receiver.

In the boxplot, each set of four boxes (“a, 1, 2, 3”) shows the ACK latency for one stream

over an 8 hour test period. The item labelled “a” on the x-axis shows statistics for all packets,

whereas “1”, “2” and “3” shows statistics for 1st, 2nd and 3rd retransmission. Figure 5.6 shows

the legend for the box plots. The values printed beneath each item on the x-axis describe loss

and tohd for the respective test. Loss is either estimated (from a server-side dump) or calculated

from server and receiver dumps (as described in section 5.1.7). The tohd is a metric for the

transmission overhead, and is calculated as described in section 5.1.8.

The CDFs show the share of successfully delivered data as a function of the delivery latency.

At the point of the plot where the line reaches the number 1 on the y-axis, all data has been

delivered. The value on the x-axis where the line reaches 1 on the y-axis reflects the highest

delivery latency for the test. Since the maximum latency usually is very high for our tests, and

the tested mechanisms differ only for a few percent of the transmitted segments, only the most

relevant section of the total CDF is displayed. As the maximum delays of each test are relevant

for the analysis, maximum values are shown as a part of the legend.

5.2. Evaluation of TCP modifications 87

0 200 400 600 800 1000

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5006ms
RDB − Max lat: 1983ms
LT − Max lat: 1263ms
mFR − Max lat: 2214ms
All mods − Max lat: 1064ms

(a) CDF of transport-layer delivery latency.

0 200 400 600 800 1000

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5006ms
RDB − Max lat: 1983ms
LT − Max lat: 1263ms
mFR − Max lat: 2214ms
All mods − Max lat: 1064ms

(b) CDF of application-layer delivery latency.

a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

la
te

n
c
y
 (

m
s
)

TCP New Reno LT mFR LT + mFR RDB All mods
loss:5.01% loss:4.91% loss:5.00% loss:5.06% loss:5.00% loss:5.04%
tohd:6.08% tohd:5.97% tohd:6.37% tohd:6.34% tohd:11.07% tohd:11.32%

(c) Box plot of ACK latency

Figure 5.7: Latency statistics: RTT 100 ms, IAT 200 ms, packet size 100 bytes, uniform loss 5%.

88 Chapter 5. Analysis and evaluation

RTTs lower than IATs

Figure 5.7 shows the results for the test performed with an RTT of 100 ms and a packet IAT of

200 ms. The parameters reflect a typical thin stream with a packet IAT well above the path RTT.

When studying the delays for unmodified TCP New Reno, we can clearly observe the exponen-

tial growth of retransmission delays in figure 5.7(c) as the number of retransmissions increases.

In contrast to this, the LT section clearly reflects how avoiding the exponential backoffs helps

reducing latency for such streams. In this test, the IAT is twice the RTT, which means that the

chance for receiving three dupACK before a timeout is very slim. The mFR modification shows

how the triggering of fast retransmit after the first dupACK improves latency for all recorded

retransmissions. When we combine LT and mFR, we see that there is a general improvement,

especially for the maximum and 99 percentile values. The tohd is slightly higher for the tests

that apply the mFR modification. In this scenario, bundling does not happen for most transmis-

sions (reflected in the relatively low tohd for RDB and All mods). Upon retransmission, though,

bundling may be performed, giving a small decrease in latency for all retransmissions. When

all the thin-stream modifications are combined, the result for this test is lowered latency with

small variance for all retransmissions.

The results seen in the boxplot are also reflected in the CDFs of delivery latency shown

in figures 5.7(a) and 5.7(b). We see that RDB and "all mods" are able to deliver most of the

data earlier than the other tested options. The reason for this is that segments that are bundled

help to avoid delays caused by the requirement for in-order delivery to the application layer.

Loss may also, in some cases, be preempted even if the IAT is this high. On the transport layer

(figure 5.7(a)), RDB performs better for the last 5%, reflecting the loss rate for the test. The

CDF of the application layer delivery latency, however, shows that the in-order requirement

keeps another 4% of the data waiting to be delivered. This creates additional delay for the

streams without RDB enabled. When RDB is enabled, the application layer and transport layer

delivery delay are nearly equal, as lost data is delivered with the next packet. The maximum

values show the effect of the LT mechanism that reduces the effect of the highest delays. Here,

the combination of all the mechanisms performs best, and reduces the maximum latency to 1

5

of the maximum latency registered for TCP New Reno.

One aspect of the CDF is that a repetitive pattern of measured values with low variance

results in CDFs with clearly defined “break points” where the different retransmission mecha-

nisms are in effect (as observed in figure 5.7). When there is a larger variance in the observed

values, the “corners” where latency is increased are less defined or “smoother”. A gentle curve

can also be caused by a larger variance in the observed values. This effect usually happens when

the packet IATs are sufficiently low to enable other retransmission mechanisms than timeouts.

5.2. Evaluation of TCP modifications 89

0 200 400 600 800 1000 1200

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5166ms
RDB − Max lat: 416ms
LT − Max lat: 3318ms
mFR − Max lat: 5716ms
All mods − Max lat: 403ms

(a) CDF of transport-layer delivery latency.

0 200 400 600 800 1000 1200

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5166ms
RDB − Max lat: 416ms
LT − Max lat: 3318ms
mFR − Max lat: 5715ms
All mods − Max lat: 403ms

(b) CDF of application-layer delivery latency.

a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

la
te

n
c
y
 (

m
s
)

TCP New Reno LT mFR LT + mFR RDB All mods
loss:4.96% loss:5.06% loss:5.04% loss:5.03% loss:4.98% loss:5.03%
tohd:5.20% tohd:5.31% tohd:5.69% tohd:5.66% tohd:52.66% tohd:52.68%

(c) Box plot of ACK latency.

Figure 5.8: Latency statistics: RTT 150 ms, IAT 100 ms, packet size 100 bytes, uniform loss 5%.

90 Chapter 5. Analysis and evaluation

RTTs larger than IATs

The test presented in figure 5.8 shows a scenario where the packet IAT is lower than the RTT.

This increases the chance of triggering fast retransmits, and is also suited for bundling. Since

most of the data segments are delivered successfully, the variance, when all sent segments are

considered, is low. The variance increases when fast retransmit or bundling are active, which

spreads the measured values. The fact that loss occurs both upstream and downstream also

increases the variance of the measurements. There is, however, a noticeable improvement in

latency also when considering all transmissions (’a’). The 99 percentile mark for TCP New

Reno in figure 5.8(c) lies at slightly below 1000 ms. This value is noticeably lowered by the

modifications. We can also observe the effect of exponential backoff for the retransmissions,

but not as pronounced as for figure 5.7, since fast retransmits are more likely to occur. The mFR

mechanism makes a much larger impact than in figure 5.7, also caused by the lowered packet

IAT. There are no occurrences of 2nd and 3rd retransmissions for the test with all modifications

active. This is because RDB is able to deliver all the data before retransmissions are made. This

comes at the tohd cost of 52.68% meaning that approximately one old segment was bundled

with every new one.

The delivery latency on the transport layer (figure 5.8(a)) shows that RDB has generally the

lowest latency. The mFR mechanism is able to lower delivery latency by almost 200 ms for the

most delayed segments. LT and TCP New Reno show results that are very similar to each other.

Figure 5.8(b) shows the CDF of the application layer delivery latency. Here, we see that RDB

and the “All mods” tests perform best. In the middle, the mFR mechanism shows a reduction in

latency compared to unmodified TCP and the LT mechanism that shows equal latency statistics.

The “staircase” patterns in the CDF represent retransmissions, while the smaller variations and

gentle slopes are caused by segments that have to wait for retransmission before they can be

delivered to the application. This is also the reason why as much as 17% of the segments can be

delayed even though the loss rate is 5%. The maximum values are significantly lowered when

the modifications are active, mostly due to RDB for this scenario.

High IAT and RTT

In figure 5.9, the RTT and IAT are high. This scenario has the properties of an intercontinental

connection. The high RTT is reflected in the RTO, which, in combination with the high IAT,

makes reaction to loss slow. We can see the effect of this slow reaction in the high maximum

value for TCP New Reno (over 7 seconds). In this scenario, the LT and mFRmodifications show

good results, as the IAT is high. RDB is able to bundle, and though the maximum latencies are

high, the 99th percentiles for all transmissions are significantly lowered. The result of this

bundling is a tohd of 53%. The tohd for LT and mFR is very close to that of TCP New Reno,

5.2. Evaluation of TCP modifications 91

0 500 1000 1500

0
.8

6
0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7075ms
RDB − Max lat: 1246ms
LT − Max lat: 3827ms
mFR − Max lat: 4427ms
All mods − Max lat: 980ms

(a) CDF of transport-layer delivery latency.

0 500 1000 1500

0
.8

6
0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7075ms
RDB − Max lat: 1246ms
LT − Max lat: 3827ms
mFR − Max lat: 4427ms
All mods − Max lat: 980ms

(b) CDF of application-layer delivery latency.

a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

la
te

n
c
y
 (

m
s
)

TCP New Reno LT mFR LT + mFR RDB All mods
loss:5.00% loss:5.02% loss:5.02% loss:4.99% loss:4.93% loss:5.07%
tohd:5.84% tohd:5.77% tohd:6.14% tohd:6.00% tohd:53.09% tohd:53.17%

(c) Box plot of ACK latency.

Figure 5.9: Latency statistics: RTT 250 ms, IAT 200 ms, packet size 100 bytes, uniform loss 5%.

92 Chapter 5. Analysis and evaluation

indicating that the latency benefit of the LT and mFR modifications is very high compared to

the “costs”.

The delivery latency on the transport layer seen in figure 5.9(a) shows properties that are

very close to the one we saw for the previous test (figure 5.8(a)). This is a result of the IAT

being lower than the RTT. The delays until recovery are higher, though, reflecting the high

RTT of the connections. The application delay in figure 5.9(b) shows that a latency improve-

ment is made by the LT modifications at each retransmission “step” of the ladder. The mFR

modification gives an overall improvement whenever loss occurs, and RDB yields very good

delivery latencies. The number of occurrences of 2nd and 3rd retransmissions is reduced by

the preemptive effect of RDB, but when such retransmissions occasionally happen, the latency

is not significantly improved. The combination of all mechanisms does, however, reduce de-

livery latency significantly as shown in the CDF (figure 5.9(b)). The maximum values are also

significantly lowered for all modifications.

Low RTT and IAT

As an example of a lower RTT connection, we have chosen the test with an RTT of 50 ms

and a packet IAT of 50 ms. Figure 5.10 shows the results for this experiment. Given the low

RTT, feedback is usually received at the sender well before a timeout can be triggered. This is

because of the 200 ms RTOmin. Even though the packet IAT equals the RTT in this scenario,

the LT and mFR mechanisms show small effect. Fast retransmissions can be triggered before

the RTO is triggered since the IAT is 50 ms, and four segments can be sent before the timer is

triggered. The combination of the LT and mFR modifications reduces both the maximum ACK

latency and the 99 percentile values, especially for the 2nd and 3rd retransmission. Bundling is

possible, since the number of packets in transit is two on average for this scenario. Given the

relatively high RTOmin compared to the IAT, the bundled segments usually preempt the need

for retransmissions, significantly reducing both ACK latency and delivery delay. The tohd for

RDB in this test is 52.57% indicating an average of one bundled segment per transmission. The

LT and mFR modifications display tohd-values that are very close to that of TCP New Reno.

The transport layer delivery shown in figure 5.10(a) shows that mFR is able to come close

to RDB in delivery latency. TCP New Reno and the LT mechanism are close to each other in

delivery delay. The maximum latencies for TCP New Reno, LT and mFR are also very close

to each other, reflecting the regular TCP mechanisms’ ability to provide lower latency in lower

RTT / IAT scenarios. The positive effect of RDB on delivery latency for this scenario can be

seen in figure 5.10(b). The maximum delivery latency when RDB is used is just above 200 ms.

This is because retransmissions are almost totally avoided.

5.2. Evaluation of TCP modifications 93

0 200 400 600 800 1000

0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4116ms
RDB − Max lat: 204ms
LT − Max lat: 4660ms
mFR − Max lat: 4060ms
All mods − Max lat: 203ms

(a) CDF of transport-layer delivery latency.

0 200 400 600 800 1000

0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4116ms
RDB − Max lat: 204ms
LT − Max lat: 4660ms
mFR − Max lat: 4060ms
All mods − Max lat: 203ms

(b) CDF of application-layer delivery latency.

a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

la
te

n
c
y
 (

m
s
)

TCP New Reno LT mFR LT + mFR RDB All mods
loss:4.99% loss:4.99% loss:4.92% loss:4.96% loss:5.00% loss:5.03%
tohd:5.47% tohd:5.46% tohd:5.44% tohd:5.47% tohd:52.57% tohd:52.58%

(c) Box plot of ACK latency.

Figure 5.10: Latency statistics: RTT 50 ms, IAT 50 ms, packet size 100 bytes, uniform loss 5%.

94 Chapter 5. Analysis and evaluation

RTT (ms) 50, 100, 150, 200, 250, 300
Loss Cross-traffic 1-5%, cross-traffic 4-20%

IAT (ms) 25, 50, 100, 150, 200, 250, 500
Packet size (B) 100

TCP version New Reno, LT, mFR, LT + mFR, RDB, LT + mFR + RDB

Table 5.2: Laboratory test parameters for tests performed with cross-traffic loss.

5.2.2 Congestion-Caused, variable loss in an emulated network

Uniform loss emulates some network scenarios, but very often loss patterns are bursty. The

burstiness may increase latency because there is a greater probability that several retransmis-

sions of the same segment are lost. Therefore, to generate loss by competition, we sent web

traffic over the same emulated network, now with a bandwidth limitation and tail-dropping

queue. Since the induced loss was generated by the emulated HTTP traffic, the average loss

rate varied slightly from test to test. We also varied the intensity of the competing traffic in or-

der to generate two levels of loss. Using these settings, we experienced an average packet loss

of about 2% for a “low loss” set of tests, and 5% for a ”high loss” set in the emulated network.

All combinations of the parameters listed in table 5.2 were tested, and the setup is as described

in section 5.1.3.

High loss

One of the defining factors of the cross-traffic tests is that the RTT of the test connection is

correlated with the experienced loss rate. The generated cross traffic is set up with RTTs be-

tween 5 and 405 ms, equally distributed over 81 connections (see section 5.1.3). As a low-RTT

connection gets feedback more quickly, it has a fairness-advantage over high-RTT connections

that need more time to adapt to network conditions [76]. There are TCP variations that aim to

even out this difference (like BIC and CUBIC), but since the thin-streams are nearly unaffected

by cwnd dynamics, such schemes have shown small effects. The tests we have performed with

high RTTs therefore show much higher loss rates than the tests performed with low RTTs, even

though the cross-traffic parameters are identical.

Figure 5.11 shows cross-traffic tests with an RTT of 100 ms and a packet IAT of 100 ms.

The loss rates shown in figure 5.11(c) are very close to those that we created with netem in

the artificial loss-tests in section 5.2.1. An effect of the cross-traffic loss is that the variance

is increased for all the analysed tests. Since the RTT is below the RTOmin, bundling and fast

retransmit have an effect, even though the IAT is not lower than the RTT. We can see that LT

alone does not have a large effect when compared to TCP New Reno. The mFR modification

does not yield much improved latency when applied alone, either. When LT and mFR are

combined, though, the effect is distinct, both for average, 99 percentiles and maximum values.

5.2. Evaluation of TCP modifications 95

0 200 400 600 800 1000 1200 1400

0
.8

6
0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11721ms
RDB − Max lat: 1235ms
LT − Max lat: 5461ms
mFR − Max lat: 12069ms
All mods − Max lat: 1239ms

(a) CDF of transport-layer delivery latency.

0 200 400 600 800 1000 1200 1400

0
.8

6
0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11721ms
RDB − Max lat: 1235ms
LT − Max lat: 5461ms
mFR − Max lat: 12069ms
All mods − Max lat: 1239ms

(b) CDF of application-layer delivery latency.

a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

la
te

n
c
y
 (

m
s
)

TCP New Reno LT mFR LT + mFR RDB All mods
loss:4.53% loss:4.31% loss:4.65% loss:4.43% loss:4.32% loss:4.45%
tohd:4.70% tohd:4.49% tohd:5.01% tohd:4.64% tohd:51.21% tohd:51.25%

(c) Box plot of ACK latency.

Figure 5.11: Latency statistics: RTT 100 ms, IAT 100 ms, packet size 100 bytes, cross-traffic loss. High
loss rate.

96 Chapter 5. Analysis and evaluation

The effect of bundling removes the need for more than two retransmissions for the analysed

tests, and lowers the latency further. This is at the cost of redundancy, reflected in the tohd of

51.25%. The result when all the modifications are combined is very close to the RDB result,

indicating that RDB is responsible for most of the gain seen for this test.

Figure 5.11(a) shows the transport layer delivery latency for this test. We can see that RDB

and mFR have lower latency in the area where loss occurs. The application-layer effects of

the observed improvements are made clear in figure 5.11(b). The lines in this CDF show more

gentle slopes than what we have seen in section 5.2.1. This is caused by a larger variance in RTT

and larger delivery delay due to the more bursty loss patterns generated by the cross-traffic. The

delivery latency analysis also shows that mFR improves the perceived latency on the receiver

side more than the box plot indicates. The LT mechanism yields a small improvement when

compared to TCP New Reno. The main contribution for the LT mechanism here, is to reduce

the high maximum latencies that mFR and TCP New Reno show. It is clear that the LT and mFR

mechanisms complement each other by providing lowered latency for different loss scenarios.

The maximum latencies observed are generally higher for our cross-traffic experiments, even

though the loss rate may be very close. This is probably also caused by the burstiness of the

loss patterns caused by short periods of congestion over the bottleneck. Such events will affect

the calculated RTO due to an increased RTTVAR.

Figure 5.12 shows the statistics for the experiments performed with an RTT of 250 ms and

an IAT of 200 ms. Because of the high test RTT, the analysed thin streams suffer very high loss

in the competition over the bottleneck. As such, this test scenario reflects cases of extreme loss

that are occasionally experienced on the Internet [94]. The boxplot in figure 5.12(c) shows how

the extreme loss rate affects the ACK latency. Compared to TCP New Reno, the LTmodification

primarily reduces latency for the 2nd and 3rd retransmission. The IAT is lower than the RTT

for this test, resulting in lowered latencies for mFR and RDB mechanisms. This effect can

also be seen from the 99th percentile for all transmissions. For this test, the combination of

LT and mFR give the lowest maximum latencies. The tohd for LT + mFR indicates that this

gain is at a very low cost, as it is identical to the loss rate. RDB significantly improves the 99th

percentile for all retransmissions, but at the relatively high cost of a 54.19% tohd. The results

for all modifications are close to what is seen for RDB. The rather high latency experienced for

3rd retransmission in this test may be explained by a low level of samples for this test (only

9 samples of 3rd retransmission) due to the bundling performed. A somewhat higher loss rate

also increases the chance for higher 3rd retransmission latencies.

In scenarios where the competition is this intense, small differences in the traffic can lead

to congestion problems. For some cross-traffic tests we have noticed that the loss rate increases

when RDB is active. This may be caused by a higher total number of sent packets when using

RDB. Lost segments that are bundled and cumulatively ACKed mean that the stream does not

5.2. Evaluation of TCP modifications 97

0 500 1000 1500 2000

0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 17001ms
RDB − Max lat: 3835ms
LT − Max lat: 9291ms
mFR − Max lat: 33491ms
All mods − Max lat: 8106ms

(a) CDF of transport-layer delivery latency.

0 500 1000 1500 2000

0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 17001ms
RDB − Max lat: 3835ms
LT − Max lat: 9291ms
mFR − Max lat: 33491ms
All mods − Max lat: 8106ms

(b) CDF of application-layer delivery latency.

a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

la
te

n
c
y
 (

m
s
)

TCP New Reno LT mFR LT + mFR RDB All mods
loss:9.99% loss:9.77% loss:9.28% loss:9.21% loss:10.72% loss:10.77%

tohd:10.05% tohd:9.79% tohd:9.20% tohd:9.21% tohd:54.19% tohd:54.24%

(c) Box plot of ACK latency

Figure 5.12: Latency statistics: RTT 250 ms, IAT 200 ms, packet size 100 bytes, cross-traffic loss. High
loss rate.

98 Chapter 5. Analysis and evaluation

detect the loss, and consequently does not back off exponentially. The absence of such long

periods of waiting causes an increased number of sent packets for RDB.

Transport layer delivery latency for this test is shown in figure 5.12(a). The curves closely

resemble the ones we saw from the uniform-loss test with same parameters (in figure 5.9(a)).

Due to the increased loss rate, a larger percentage of the sent data is affected by increased

delay. When comparing to the application layer latency in figure 5.12(b), we can see a gentler

curve for TCP New Reno, LT and mFR than seen in the previous tests. The high loss rate

increases the chance for several retransmissions of the same segment, causing higher delays for

delivered segments due to the in-order requirement. The highest number of retransmissions for

one segment when using TCP New Reno was 6 in this test. Waiting segments cause different

delivery delays, explaining the gentle curves. The LT mechanism yields results that are very

close to TCP New Reno, but we can see a lowered maximum latency. Improved latencies can

be seen in the mFR statistics where, surprisingly, the maximum latency is highest by far. This

can be explained by the presence of exponential backoff and unfortunate coincidences (like

the 6 subsequent retransmissions of the same segment). Both TCP New Reno and the mFR

test have occurrences of 6 retransmissions. The high value of the maximum delay seen in the

mFR test can be caused by lost ACKs that inflate the estimated RTT. RDB shows a significant

improvement in latency, but at a cost in tohd. The same can be seen when all modifications are

applied.

Low loss

In the second configuration of the cross-traffic tests, the IAT of cross-traffic connections was

reduced to keep loss well below 5%. This was done by increasing the IAT between each HTTP-

like connection over the bottleneck. An important consideration was to keep loss low also for

high RTT tests. The result is that loss is in the range of 1 to 3%. Such loss rates can often

be experienced on the Internet, especially if a wireless link is used, or a gateway is shared

by many connections. Even though the loss is lowered, many of the tests experience up to 6

retransmissions of the same segment, leading to high delays.

Figure 5.13 shows the results from tests performed with an RTT of 200 ms and a packet

IAT of 500 ms. Even though the IAT is very high for this scenario, it reflects several of the

thin-stream applications presented in chapter 2 (like SSH, Anarchy Online, CASA and Remote

Desktop). For the boxplot shown in figure 5.13(c), the variance is very low for all modifications.

This is caused by two main factors: 1) The high IAT means that almost all retransmissions are

triggered by timeouts, 2) There are fewer samples due to the lower packet IAT.

Since most retransmissions are caused by timeouts, the exponential increase in latency for

each new retransmission is very pronounced for TCP New Reno, mFR and RDB. The reason

why RDB shows the same exponential curve is that bundles are not performed since two RTTs

5.2. Evaluation of TCP modifications 99

0 500 1000 1500

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7027ms
RDB − Max lat: 3283ms
LT − Max lat: 1363ms
mFR − Max lat: 3344ms
All mods − Max lat: 1448ms

(a) CDF of transport-layer delivery latency.

0 500 1000 1500

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7027ms
RDB − Max lat: 3283ms
LT − Max lat: 1363ms
mFR − Max lat: 3344ms
All mods − Max lat: 1448ms

(b) CDF of application-layer delivery latency.

a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

la
te

n
c
y
 (

m
s
)

TCP New Reno LT mFR LT + mFR RDB All mods
loss:2.99% loss:2.83% loss:2.57% loss:2.84% loss:3.18% loss:2.85%
tohd:3.01% tohd:2.87% tohd:2.59% tohd:2.87% tohd:6.15% tohd:5.51%

(c) Box plot of ACK latency.

Figure 5.13: Latency statistics: RTT 200 ms, IAT 500 ms, packet size 100 bytes, cross-traffic loss. Low
loss rate.

100 Chapter 5. Analysis and evaluation

elapse between each transmitted packets. If a retransmitted packet is lost, the unacknowledged

segment can be bundled. The high IAT also minimises the effect of the mFR mechanism. For

this scenario, the LT mechanism helps reduce the severity of the latency events.

In figures 5.13(a) and 5.13(b), the differences between the modifications are only visible

where the delay jumps from 50 to 450 ms. There are only minimal differences between transport

and application layer latency. This is caused by the high packet IAT; every packet is delivered

and ACKed before a new data segment is delivered from the application, even when loss occurs.

An effect of the mFR mechanism can be observed, indicating that it leads to lower delivery

latency in some cases. The LT mechanism and the combination of all the mechanisms show

equal curves, which also points to LT being the most influential modifications when all are

activated for this scenario. The maximum latency is reduced for all modifications compared to

TCP new Reno.

With an RTT of 150 ms and an IAT of 50 ms, figure 5.14 shows a scenario typical for faster-

paced networked games, VNC or VoIP (see table 2.1). The relatively low IAT increases the

effect on latency observed for RDB. Figure 5.14(c) shows the ACK latency statistics for this

scenario. The LT mechanism reduces maximum latencies, and also affects 99 percentiles for

the 2nd and 3rd retransmission. No significant effect can be seen from the mFR mechanism

when studying the ACK latency. The delivery latency in figure 5.14(b), however, shows a small

improvement. The combination of LT and mFR helps to keep most retransmission latencies

well below 1000 ms. The difference in tohd between “LT + mFR” and TCP New Reno can

be partly attributed to a somewhat larger loss rate in the “LT + mFR” test. A large latency

improvement can be observed for the tests where RDB is active.

In figure 5.14(a), the RDB mechanism shows by far the best latency. Here, the LT mecha-

nism actually performs worse than TCP New Reno. Figure 5.14(b) shows that the application

layer latency for RDB is near-identical to the transport layer latency. The number of bundled

segments, however, increases drastically, leading to a tohd of 76.04% for RDB. The segment

size of 100 bytes leaves room for many segments to be bundled together. If the data segments

delivered from the application were somewhat larger, the tohd would go down.

By presenting this subset of results from our laboratory experiments, we have tried to shed

some light on the effect of each modification under different conditions. For complete statistics

from this set of tests, consult appendices C and D.

5.2.3 Bundle-limit tests

A side effect of the bundling mechanism is the tohd that occurs as long as there is space (within

the MTU) for bundling. Our tests show that, given a relatively low loss rate, a large gain

in latency can be achieved by bundling only one or two segments. We wanted to determine

5.2. Evaluation of TCP modifications 101

0 200 400 600 800 1000

0
.9

4
0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11425ms
RDB − Max lat: 11480ms
LT − Max lat: 6346ms
mFR − Max lat: 11527ms
All mods − Max lat: 6457ms

(a) CDF of transport-layer delivery latency.

0 200 400 600 800 1000

0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11425ms
RDB − Max lat: 11480ms
LT − Max lat: 6346ms
mFR − Max lat: 11527ms
All mods − Max lat: 6457ms

(b) CDF of application-layer delivery latency.

a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

la
te

n
c
y
 (

m
s
)

TCP New Reno LT mFR LT + mFR RDB All mods
loss:1.46% loss:1.79% loss:1.44% loss:1.70% loss:1.49% loss:1.45%
tohd:1.59% tohd:2.16% tohd:1.62% tohd:2.05% tohd:76.04% tohd:76.03%

(c) Box plot of ACK latency.

Figure 5.14: Latency statistics: RTT 150 ms, IAT 50 ms, packet size 100 bytes, cross-traffic loss. Low
loss rate.

102 Chapter 5. Analysis and evaluation

RTT (ms) 50, 150, 300
Loss 5%

IAT (ms) 25, 50, 100,150, 200, 250, 500
Packet size (B) 50, 100, 250, 500, 750, 1000, 1400

Bundle limit (B) 100, 400, 700, 1000, 1300, no limit

Table 5.3: Parameters for RDB limit laboratory experiments.

whether an optimal ratio between tohd and achieved latency could be found. We performed

experiments for measuring the effect of limited bundling in a controlled laboratory environment

(as shown in section 5.1.2). Connection RTT, packet IAT, packet size and the maximum bytes

allowed in a bundled packet were varied. All combinations of the parameters listed in table 5.3

were tested.

The plots displayed in this section is an analysis of the ACK latency from the tests. The

loss rate and tohd are calculated as described in section 5.2.1. Inherent in the RDB mechanism

is that bundling is possible when the IAT < RT T and when retransmissions are performed.

Our tests show that connections with high RTTs and relatively low IATs cause the tohd to soar

(provided that the packet sizes are sufficiently small to enable bundling). Limiting the number

of bytes that can be bundled reduces the tohd effectively. Unfortunately, as can be seen from

our results, the latency is most reduced when the tohd is not limited. The mechanism is self-

limiting, however, since bundling does not occur if: 1) The IAT becomes so low that TCP places

the data segments in the same packet, and 2) TCP backs off because of loss and buffers data on

the sender side, which results in full packets with no room for bundling.

A typical example of the effect of RDB can be seen in figure 5.15. In this test, the RTT is

150 ms, the IAT 200 ms and the packet size 250 bytes. When up to 500 bytes can be bundled,

there will only be room for one segment, no bundling is performed and no effect is shown. When

the limit is 700 bytes, a maximum of one extra segment can be bundled, and a reduction of the

99th percentile of the delivery latency is seen. From 1000 bytes limit and up, there seems to be

enough room to bundle all waiting segments, and a large improvement of the 99th percentile is

registered. As before, we can observe an increase in the tohd reflecting the average number of

bundled segments.

There are examples where the bundling mechanism shows a very low tohd, but still achieves

large latency benefits. Figure 5.16 shows the results from a test in which the RTT was relatively

low (50 ms) and the IAT was 100 ms, a setup that is representative of a typical “thin stream”. In

such cases, the sender receives feedback for each delivered segment before the application pro-

duces a new segment to transmit. The result is that there is hardly any bundling. The exception

occurs in the event of loss, in which case unacknowledged data is bundled with the next trans-

mission. In figure 5.16, this can be seen by comparing the tohd as the bundle limit increases.

5.2. Evaluation of TCP modifications 103

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

la
te

n
c
y
 (

m
s
)

TCP New Reno 100 400 700 1000 1300 no limit
loss:5.04% loss:4.95% loss:5.02% loss:5.01% loss:5.02% loss:5.06% loss:5.01%
tohd:5.3% tohd:5.1% tohd:5.2% tohd:47.6% tohd:52.6% tohd:52.6% tohd:52.6%

Figure 5.15: Varied RDB bundle limit - uniform loss - RTT 150, IAT 100, PS 250 Loss 5%.

We can see that for a loss rate of 5%, tohd never exceeds 12%. The general trend reflects the

original assumption: a large improvement in latency can be achieved when several segments

can be bundled, at the cost of increased tohd. A limit of one bundled segment yields a tohd

of 50% and recovers data for cases where only one retransmission is needed for the segment.

As more segments are bundled, subsequent losses of the same segment can be recovered. The

bundle limit mechanism therefore seems best suited to avoid the most radical cases of tohd in

scenarios where the packet IAT is relatively low and the packet sizes very small.

5.2.4 Internet tests

To determine whether our modifications also improve the latencies observed at the application

layer in a real-world, Internet scenario, we replayed thin-stream traces (SSH, BZFlag and An-

archy Online) between a machine located in Worcester, Massachusetts (USA) and a machine

in Oslo, Norway. Both machines were connected to commercial access networks. The results

show that the proposed modifications generally improve the application-layer latency, which

directly influences the user’s QoE when retransmissions are necessary.

SSH

Figure 5.17 shows the delivery- and ACK latency for a SSH-dump replayed between access net-

works in Massachusetts, US and Oslo, Norway. Figure 5.17(a) shows the transport-layer delay,

104 Chapter 5. Analysis and evaluation

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

la
te

n
c
y
 (

m
s
)

TCP New Reno 100 400 700 1000 1300 no limit
loss:5.10% loss:4.97% loss:4.93% loss:5.00% loss:5.01% loss:5.02% loss:5.01%
tohd:5.8% tohd:5.5% tohd:5.4% tohd:9.0% tohd:11.6% tohd:11.6% tohd:11.6%

Figure 5.16: Varied RDB bundle limit - uniform loss - RTT 50, IAT 100, PS 250 Loss 5%.

while figure 5.17(b) shows the application-layer delay. The lines in the plot show unmodi-

fied TCP and combinations of our modifications (RDB, LT, and mFR). The analysed streams

were transmitted in parallel, resulting in comparable network conditions. The minimum latency

observed for the SSH tests was 116 ms indicating that this the approximate path RTT.

For the SSH test, the loss rate was measured to∼2%. On the transport layer (figure 5.17(a)),

the difference between the tested TCP variants is made visible for the 2% with highest delivery

latency. Unmodified TCP recovers most segments after 500-600 ms. RDB delivers some more

data within the same latency interval, as do the retransmission modifications (LT + mFR). The

combination of all mechanisms shows the best performance, but not by much.

In contrast, when we study the results for the application-layer (figure 5.17(b)), we see

that the seemingly small differences have a larger impact; the initial 2% loss now has latency

consequences for more than 4% of the data.

We also see that the differences between the modifications are more pronounced and that the

stream with all modifications active delivered 98.2% of the data at ∼500 ms, while unmodified

TCP only delivered 96.6%. An important effect of the modifications is that they reduce the

difference between transport-layer latency and application-layer latency, which is desirable for

interactive applications.

The boxplot in figure 5.17(c) shows the ACK latencies for the same test. As the trace that

was replayed has very high average packet IAT (see table 2.1), the possibility for bundling is

limited. We can see that the effect from exponential backoff is present both for New Reno and

5.2. Evaluation of TCP modifications 105

0 200 400 600 800 1000 1200

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 16766 ms
LT + mFR − Max lat: 4348 ms
RDB − Max lat: 16127 ms
All modifications − Max lat: 4402 ms

(a) CDF of transport-layer delivery latency.

0 200 400 600 800 1000 1200

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 16766 ms
LT + mFR − Max lat: 4348 ms
RDB − Max lat: 16127 ms
All modifications − Max lat: 4402 ms

(b) CDF of application-layer delivery latency.

a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

la
te

n
c
y
 (

m
s
)

TCP New Reno LT + mFR RDB All mods
loss:1.79% loss:1.93% loss:1.98% loss:2.05%
tohd:2.72% tohd:2.91% tohd:38.35% tohd:38.45%

(c) Box plot of ACK latency.

Figure 5.17: SSH trace replayed Massachusetts - Oslo.

106 Chapter 5. Analysis and evaluation

for RDB. The combination of LT and mFR helps reduce the maximum latency to one fourth

of the value observed for TCP New Reno (see maximum values in figure 5.17(b)). The limited

possibility for bundling decreases the effect of RDB, this means that the tohd also remains

relatively low.

Anarchy Online

The Anarchy Online trace was replayed between the same endpoints as for the SSH-experiments

(Worcester-Oslo). The observed path RTT was also the same as for the SSH-experiments:

116 ms. In figure 5.18, the results from this test are summarised. The loss rates we observed

during this test were surprisingly high, 8.86% on average for the TCP New Reno stream. Fig-

ure 5.18(a) shows the transport layer delivery latency. On the transport layer, no difference

between the TCP variations can be detected until 0.9 on the y-axis. This reflects the observed

loss rate. RDB provides significantly lowered delivery latency for this experiment also. On the

transport layer, 99% of the data is delivered within 1000 ms, while TCP New Reno delivers

97% within 1000 ms. On the application layer (figure 5.18(b)), RDB still delivers 99% within

1000 ms, while for TCP New Reno almost 5% of the data is delayed more than 1000 ms. The

LT + mFR mechanisms improve the latency somewhat, though not as much as RDB.

In the boxplot (figure 5.18(c)), TCP New Reno displays the expected exponential increase

in latency for each retransmission. LT + mFR reduces this effect, while also reducing the 99th

percentile value for all transmissions. RDB further reduces the 99th percentile. The maximum

value is also reduced when applying the modifications, albeit still high due to the high loss rate.

BZFlag

The third test performed over the Internet between Worcester and Oslo was the replayed trace

from a BZFlag game (see table 2.1). Figure 5.19 shows the statistics from this experiment. The

loss rate experienced when this test was run was much lower than for the previous two tests:

around 0.5%. In figure 5.19(a), the transport layer delivery delay is shown. The gentle curve

indicates that there is some variance in the measured RTO values. Only small differences be-

tween the TCP variations can be seen in this figure. For the 1% of the data with highest delivery

latency, RDB shows somewhat better latencies than the other variations. On the application

layer, this small difference has a larger effect. Here, the difference in delivery delay manifests

itself for the last 4% of the data.

Figure 5.19(c) shows the ACK latency for the BZFlag test. The BZFlag trace has relatively

low packet IATs (as shown in table 2.1). This increases the chance for fast retransmissions,

but also makes bundling possible for most of the sent packets. The low packet IAT is reflected

in the lowered 99th percentile and maximum value when RDB is active. The ideal bundling

5.2. Evaluation of TCP modifications 107

0 1000 2000 3000 4000

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 39206 ms
LT + mFR − Max lat: 27200 ms
RDB − Max lat: 20363 ms
All modifications − Max lat: 12775 ms

(a) CDF of transport-layer delivery latency.

0 1000 2000 3000 4000

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 39206 ms
LT + mFR − Max lat: 27200 ms
RDB − Max lat: 20363 ms
All modifications − Max lat: 12775 ms

(b) CDF of application-layer delivery latency.

a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

la
te

n
c
y
 (

m
s
)

TCP New Reno LT + mFR RDB All mods
loss:8.86% loss:8.91% loss:9.06% loss:9.17%

tohd:12.55% tohd:12.97% tohd:35.86% tohd:35.96%

(c) Box plot of ACK latency.

Figure 5.18: Anarchy Online trace replayed Massachusetts - Oslo.

108 Chapter 5. Analysis and evaluation

0 200 400 600 800 1000

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5099 ms
LT + mFR − Max lat: 2538 ms
RDB − Max lat: 2438 ms
All modifications − Max lat: 2518 ms

(a) CDF of transport-layer delivery latency.

0 200 400 600 800 1000

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5099 ms
LT + mFR − Max lat: 2538 ms
RDB − Max lat: 2438 ms
All modifications − Max lat: 2518 ms

(b) CDF of application-layer delivery latency.

a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

la
te

n
c
y
 (

m
s
)

TCP New Reno LT + mFR RDB All mods
loss:0.43% loss:0.45% loss:0.49% loss:0.50%
tohd:0.58% tohd:0.68% tohd:72.01% tohd:71.91%

(c) Box plot of ACK latency.

Figure 5.19: BZFlag trace replayed Massachusetts - Oslo

5.2. Evaluation of TCP modifications 109

conditions result in a very high tohd of 72%. The combination of LT and mFR helps reduce

the maximum latency. It also reduces the 99th percentile and maximum values for 2nd and 3rd

retransmission. This is due to the mFR mechanism which ensures faster retransmissions for

many lost segments due to the relatively low packet IAT for the BZFlag trace. The maximum

values for TCP New Reno are halved when using the thin-stream mechanisms. This indicates

that RDB shows an equal effect to the LT mechanism for lowering the maximum values when

the packet IAT is relatively low.

5.2.5 Fairness

Our experiments and results demonstrate that the concept of improving latency by using a mea-

sure of redundancy is very promising from the viewpoint of the user of a thin-stream, inter-

active application. However, a measure of redundancy may mean that the streams using the

modifications consume more of the network resources than they would normally do because we

retransmit faster and fill each packet with more data. This might influence the performance of

other streams. That being so, we investigated how the proposed mechanisms influence other

streams, greedy or thin, that compete for the resources on a common bottleneck.

The test setup for this set of experiments was like the one described in section 5.1.3. The

modified streams were transmitted between one pair of computers, while the unmodified streams

used the other pair. The network emulator was configured to create delay and bandwidth limi-

tations. The bandwidth was limited to 1000kbps.

When many streams attempt to connect across a severely congested bottleneck, there are

long connection setup delays. The three-way handshakes are not regulated by standard conges-

tion control and affect the performance of the already connected streams. To avoid that con-

nection attempts distort the throughput-analysis, we analysed the throughput of the connected

streams only after all connections had been established successfully. By doing this, we were

able to observe the effect of the congestion control mechanism dynamics without the interfering

elements.

When a relatively low number of concurrent streams compete for the resources on the bottle-

neck, all the streams behave normally. As the number of concurrent streams increases, fairness

breaks down given enough competing streams over a bottleneck9. The effect is that chance

decides, to a larger degree, which streams are able to deliver data. This is caused by the mas-

sive loss experienced by all streams, which results in a constant state of recovery and slow

start. If subsequent retransmissions of the same packet are lost, there are exponential backoffs

whose duration is determined by RTOmin and the measured RTT. RTT measurements are very

9The number of concurrent streams that are needed for the described congestion breakdown is relative to the
bottleneck capacity. For our tests, results started to get unpredictable when more than 256 concurrent streams were
sharing the 1000 kbps bottleneck.

110 Chapter 5. Analysis and evaluation

1 thick vs 1 thin
0

1
0

0
3

0
0

5
0

0
7

0
0

9
0

0
2 thick vs 2 thin 4 thick vs 4 thin 8 thick vs 8 thin 16 thick vs 16 thin

32 thick vs 32 thin

0
1

0
0

3
0

0
5

0
0

7
0

0
9

0
0

T
C

P

R
D

B L
T

m
F
R

L
T
+
m

F
R a
ll

64 thick vs 64 thin

T
C

P

R
D

B L
T

m
F
R

L
T
+
m

F
R a
ll

128 thick vs 128 thin

T
C

P

R
D

B L
T

m
F
R

L
T
+
m

F
R a
ll

256 thick vs 256 thin

T
C

P

R
D

B L
T

m
F
R

L
T
+
m

F
R a
ll

512 thick vs 512 thin

T
C

P

R
D

B L
T

m
F
R

L
T
+
m

F
R a
ll

T
h
ro

u
g
h
p
u
t
(K

b
it
/s

e
c
o
n
d
 a

g
g
re

g
a
te

d
 o

v
e
r

3
0
 s

e
c
o
n
d
s
)

TCP variation used for competing streams

Figure 5.20: Aggregated throughput of n greedy unmodified TCP streams when competing with
thin streams with different configurations/modifications. Thin-stream properties: Packet size: 120 B,
Interarrival-time: 85 ms. Link properties: Bottleneck bandwidth: 1000 kbps, RTT: 100 ms.

inaccurate in this case, because most segments are lost. A situation then arises in which retrans-

missions occur at intervals that are more or less random. None of the streams are able to back

off (because they are already in the recovery phase), and the occasional retransmissions are

sufficient to maintain the high level of congestion. Our measurements of such high-congestion

scenarios indicate that this causes a situation in which one or more streams get significantly

higher throughput than the others and that this occurs in a seemingly random manner. The de-

scribed state of congestion-control breakdown occurs independent of whether our thin-stream

modifications are activated or not. They are also independent of whether the streams are greedy

or thin.

This situation of seeming randomness also occurs when a large number of thin streams

(with or without the proposed modifications) compete for the resources over a bottleneck. The

reason is that the thin streams never conform to regular congestion control, because they do not

expand their congestion window; hence, they are not able to back off. This means that if the

5.2. Evaluation of TCP modifications 111

congestion is caused by a large enough number of streams (relative to the bottleneck capacity),

the throughput is random and there is a sort of congestion collapse, from which none of the

streams can back off (because they are already in a state of a completely collapsed congestion

window).

Figure 5.20 shows the results from a set of fairness tests, in which a set of greedy streams

using standard (New Reno) TCP transmitted over a bottleneck with a rate limit of 1000 kbps.

The greedy streams were exposed to competition from a set of thin streams, using a different

configuration for each test. The boxplot shows statistics for the measured aggregated throughput

for every 30 seconds for all greedy streams. The throughput was measured by analysing the

acknowledgements (ACKs) on a sender side dump. The 30-second interval was chosen to avoid

a lot of measurements where 0 bytes were ACKed (which would skew the statistics).

We can see from figure 5.20 that RDB grabs more bandwidth than the other TCP variants.

The tohd for this combination of IAT and RTT when using RDB is ∼83%. As the number

of competing thin streams increases, the effect from the competing RDB streams gradually

increases until the greedy TCP streams are marginalised. We have to keep in mind, though,

that each thin stream consumes much less bandwidth than a greedy stream would under the

same conditions. From 64 competing streams and up, the differences in achieved throughput

between streams that compete with RDB and streams that compete with other TCP variations

narrow as loss forces the RDB streams to back off (sender-side buffering fills up the packets).

We see that it becomes more difficult to find consistent patterns in the measured throughput

when the competition reaches a point at which all streams go into (permanent) recovery (from

∼128 competing streams and up). For this scenario, the randomness surfaces regardless of the

kind of modification the greedy streams is competing with. Another significant point from the

analysis of figure 5.20 is that there are only very small differences in the measured throughput of

the greedy streams when competing with the LT-mechanism or the mFR-mechanism (or both).

This indicates that the relatively small overhead that is introduced upon retransmission for these

mechanisms does not affect the throughput of competing streams for this scenario.

The streams are thin in the first place, with small packets and a low packet frequency, and

therefore consume a very low amount of bandwidth. RDB shows a slightly higher number

of sent packets than unmodified streams in lossy conditions because it receives more frequent

feedback (from successfully delivered, bundled segments).

5.2.6 Comparison of thin stream performance in different operating sys-

tems

We have, in the course of our investigations, found very few available mechanisms that affect

thin-stream latency positively in existing operating systems. However, operating systems are

112 Chapter 5. Analysis and evaluation

Trace ReceiverSender

Figure 5.21: Test setup where a network emulator is used to create loss and delay. A separate machine
is dedicated to create the packet trace.

constantly modified and upgraded to adapt to new challenges. We therefore wanted to perform

experiments with updated versions of some of the most commonly used operating systems to

determine how they perform for thin-stream transfer, e.g.:

• Windows XP SP3: Windows XP is still one of the most used operating systems [18]. We

therefore wanted to measure the performance of an updated version, namely Windows

XP with service pack 3 and all available updates.

• Windows 7: Windows 7 is the up-and-coming operating system from Microsoft. It con-

tains an updated network stack10 and also implements a new TCP version: Compound

TCP (CTCP) [74]. We have tested both the default Windows 7 TCP version and the new

CTCP.

• FreeBSD 7.2: BSD is a common choice for servers and tailored systems. The BSD

network stack has also traditionally been amongst the first to implement new networking

solutions, and FreeBSD is often tuned for performance.

• Linux (2.6.28): Linux is also a common choice for server environments. It is also gaining

ground in the desktop segment and in handheld devices (i.e., through Android [47]).

When configuring each host for this set of experiments, we did our best to optimise each system

for low network latency. This means that we disabled Nagle’s algorithm where possible, and

also searched for relevant options for each different system in order to get the best possible

thin-stream latency. Another aspect of performing experiments on different operating systems

is that traces may be affected by the respective systems’ method for capturing data traffic. We

therefore created a network setup based on the one described in section 5.1.2, but inserted an

extra computer dedicated to creating the packet trace as shown in figure 5.21.

The test parameters were chosen to reflect a thin stream with a packet IAT that is greater

than the RTT. The RTT was set to 150 ms, the packet IAT to 180 ms and the loss rate was set

to 2% both upstream and downstream. The high packet IAT (compared to the RTT) means that

Nagle’s algorithm is not active in any case due to the lack of unacknowledged segments (see

10The network stack was redesigned for Windows Vista [75].

5.2. Evaluation of TCP modifications 113

a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3 a 1 2 3

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

la
te

n
c
y
 (

m
s
)

WinXP SP3 Win7 default Win7 ctcp FreeBSD 7.2 Linux (2.6.28) Linux mod
loss:2.29% loss:1.94% loss:1.96% loss:1.96% loss:2.14% loss:0.16%
tohd:3.36% tohd:5.76% tohd:5.80% tohd:3.96% tohd:2.14% tohd:4.40%

Figure 5.22: ACK latency for OS comparison. RTT= 150 ms, packet IAT=180 ms, loss=2%.

section 3.1.1)11. Using such a high packet IAT also assures that the traditional fast retransmis-

sion mechanisms is ineffective. To generate the transmitted data patterns, a Python-script was

created that could be executed on all the tested operating systems.

The results from our experiments are shown in figure 5.22. Since only sender-side dumps

were created for this set of experiments, the loss rates displayed are estimations based on the

number of registered retransmissions (as described in section 5.1.7). This means that when

bundles are performed (in “Linux mod”), it does not register as loss in the printed statistics

since it preempts the retransmissions. The values for tohd, however, accurately picture the

overhead calculated as described in section 5.1.8. For some of the traces, no occurrence of a 3rd

retransmission was recorded. All the tested systems showed maximum values close to 2500 ms,

except for FreeBSD and our modified Linux kernel. The 99th percentile for all transmissions is

also significantly lower for Linux (2.6.28) and FreeBSD than for the tested Windows versions.

11This was a relevant consideration since we trusted in the IOcontrol-interface of Python to turn off Nagle’s
algorithm for Windows 7. This was done since we could not find any reference to registry entries that would force
Nagle off (as for Windows XP).

114 Chapter 5. Analysis and evaluation

The two tested TCP versions in Windows 7 show latencies that are very similar to each other

(at least for all transmissions and 1st retransmission). The modified Linux version show lower

latency for all retransmissions than any of the other tested versions. The 99th percentile for

all transmissions are also significantly lowered. When we look at the tohd, we can see that

Linux (2.6.28) has a tohd of 2.14%, indicating that one retransmission was enough to recover

the lost segment in most of the cases. Windows XP and FreeBSD show a little higher tohd

with 3.36% and 3.96%, respectively. The modified Linux kernel gives a tohd of 4.40%, which

is low, considering the increased aggressiveness of the mechanisms. The high IAT, however,

limits bundling to cases where loss occurs (or extra delays happen). Surprisingly, the highest

tohd is registered in the Windows 7 experiments with 5.76% for Windows 7 default and 5.80%

for CTCP which implies aggressive behaviour for this scenario.

The performed tests indicate that the support for retransmission latency in thin-stream sce-

narios is poor, also in newer operating system versions. The improvement in the 99th percentile

for all retransmission is approximately 200 ms to the second best result (FreeBSD). The maxi-

mum values are also significantly reduced.

5.2.7 Summary

In this section, we have shown the results of a wide range of experiments performed with thin-

stream data traffic over TCP. Test were performed in the laboratory where we varied RTT and

packet IAT, while testing the different modifications. We also performed experiments where

loss was created by competing traffic. We experimented with different bundling limits when

using RDB. Test were performed between access networks inWorcester, Massachusetts, US and

Oslo, Norway, where packet traces from thin stream applications were replayed. To measure

the effect of our modifications on competing traffic, we performed experiments on fairness. We

also compared the thin-stream performance of TCP on different operating systems. From our

tests, we can draw some conclusions on a general basis:

• Thin streams often produce high retransmission latencies when using TCP.

• When the IAT is low, mFR and RDB yield the largest latency-improvements. When the

IAT is high, mFR and LT improve latencies, while RDB shows less effect.

• The modifications help to reduce latency both for low and high RTT connections.

• Improved latencies are seen when the modifications are active, even when the loss rates

are very low. The improvements from our modifications are greater when the loss rate is

higher.

5.3. Evaluation of SCTP modifications 115

• The maximum latency is often caused by multiple retransmissions by timeout, and is in

many cases drastically reduced when using our modifications.

• We can detect only a small (or no) increase in tohd from the LT and mFR modifications.

RDB can, in case of low packet IATs, result in high tohd.

• The difference between transport-layer and application-layer delays is significant when

using TCP due to the in-order requirement for data delivery. Lowered retransmission

delays can therefore result in large improvements in the user experience.

• The LT and mFR mechanisms do not affect throughput of competing streams enough to

be detectable. RDB uses more resources than unmodified TCP on a congested bottleneck.

When high loss rates makes streams back off, however, the effect is evened out.

In summary, our TCP experiments show reduced data delivery latency in thin-stream scenar-

ios when our modifications are applied. Especially, the high worst-case delays that are damag-

ing to the user experience are reduced. Fairness-experiments show that for our tested scenarios,

the “cost” is usually negligible.

5.3 Evaluation of SCTP modifications

For evaluation of the modifications to SCTP described in section 4.2, a set of experiments were

performed after the same patterns as for the TCP experiments (section 5.2). Both laboratory and

Internet experiments were performed. In addition to using the laboratory experiments to deter-

mine the effect on thin-stream latency for different scenarios, we used chunk tagging to show

accurately which mechanism triggered each retransmission. The effect on RTO calculation

from delayed SACKs in lksctp was also analysed. Finally, we performed tests of throughput for

two competing streams in order to give an indication of how the modifications affect fairness.

The tests were performed on the 2.6.16 Linux kernel and FreeBSD 6.2. Note that the results

from our SCTP experiments show the same trends as for TCP. We do therefore not include as

many details since the conclusions are the same, i.e., our modifications improve the timeliness

of data delivery for thin streams.

5.3.1 RTO calculation

As we performed the laboratory tests of SCTP, it soon became clear that delayed SACKs af-

fect the RTO calculation to a large degree. This was made evident when we experimented with

lowering the RTOmin from one second to 200 ms (as is used by the Linux kernel TCP implemen-

tation). When the packet IATs are low, the frequency of feedback will be sufficient to achieve

116 Chapter 5. Analysis and evaluation

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

m
s

RTO samples

Calculated RTO
Measured RTT

Real RTT

(a) Default configuration.

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140

m
s

RTO samples

Calculated RTO
Measured RTT

Real RTT

(b) Without delayed SACKs.

Figure 5.23: RTO calculated by SCTP with reduced RTOmin for thin streams.

a reliable RTT estimation. For thin streams, however, the estimation is severely affected by

the delayed SACKs. The effect of delayed SACKs on the RTO calculation can be seen from

figure 5.23. Figure 5.23(a) shows how the calculated RTO fluctuates. The measured RTT is

artificially high because of the delayed SACKS. When the RTT measurements occasionally re-

flect the actual RTT, the RTTVAR causes the RTO be inflated. Figure 5.23(b) shows the same

tests without delayed SACKS. We can see peaks in the RTO measurement caused by sporadic

high RTT measurements. The peaks occur much less frequently, though, and the peaks keep

much lower values. The RTO peaks almost always stay below 1 second, which means that

the RTO is normally rounded up to the RTOmin. When we perform experiments with a low-

ered RTOmin, however, the delayed SACKs result in higher retransmission latencies for the thin

streams. Since the delayed SACKs make it difficult to compare the effect of our modifications

to TCP, and since it increases latency for thin streams, delayed SACKs are turned off for our

experiments.

5.3.2 Artificial, uniform loss in an emulated network

Laboratory experiments were set up to determine the effect of the SCTP modifications under

different conditions. The experimental setup was as described in section 5.1.2. We wanted

SCTP to be able to bundle using its intrinsic bundling schemes, so the packet size was set to

a constant 120 bytes. The mechanisms we evaluated were: unmodified lksctp (lksctp), Linear

timeouts (LT), modified RTOmin (minRTO), modified fast retransmit (mFR) and all the modifi-

cations combined (all mods). The timer reset modification was active for all SCTP variations

except unmodified lksctp. Earlier experiments [85] showed that bundling on fast retransmit did

not enhance latency for thin streams, so this modification was not tested. Table 5.4 shows the

test parameters for this group of tests. We used TCP New Reno as reference, since we have

5.3. Evaluation of SCTP modifications 117

RTT (ms) 0, 50, 100, 200, 250, 400
Loss 1%, 5%

IAT (ms) 50, 100, 150, 200, 250
Packet size (B) 120
SCTP version lksctp (unmodified), LT, minRTO, mFR, All modifications
TCP version New Reno

Table 5.4: Laboratory test parameters for tests performed on SCTP with uniform loss.

lksctp LT minRTO mFR All mods
TCP

New Reno

Figure 5.24: ACK latency. RTT=100 ms, packet IAT=250 ms. Uniform loss (5%).

shown that this is the standard TCP version that shows the best thin-stream latencies [50]. Each

test had a duration of 2 hours and was repeated several times to produce enough retransmis-

sions to be statistically viable. In this test set, SCTP traffic was sent over an emulated network,

introducing artificial loss and delays. As a representative example, we present the results of

comparing lksctp with our modifications in a thin stream scenario. The tests produced a large

number of 1st and 2nd retransmissions. The number of 3rd retransmissions is so low that it has

to be regarded as an indication rather than a statistically viable dataset.

The SCTP tests showed results similar to the TCP tests (presented in section 5.2) when the

RTT and IAT were varied. Figure 5.24 shows results from the SCTP tests when the RTT is

100 ms and the packet IAT is 250 ms. This is the typical thin-stream scenario where the packet

IAT is larger than the connection RTT.When linear timeouts were used, we observed a reduction

118 Chapter 5. Analysis and evaluation

RTT (ms) 0, 50, 100, 200, 250, 400
Loss Cross-traffic ∼5%

IAT (ms) 50, 100, 150, 200, 250
Packet size (B) 120
SCTP version lksctp (unmodified), LT, minRTO, mFR, All modifications
TCP version New Reno

Table 5.5: Laboratory test parameters for tests performed on SCTP with congestion induced loss.

in maximum latencies compared to lksctp, especially for 2nd and 3rd retransmission. The 99th

percentile and average latencies were only marginally reduced. With an RTOmin of 200 ms, we

saw improved average and 99-percentile latencies as well. The results can be explained by the

fact that most retransmissions in thin stream scenarios are caused by timeouts. By reducing the

RTO, the latencies for all retransmissions by timeout have been lowered. For the mFR mecha-

nism, we saw that the average and 99-percentile latencies were drastically improved compared

to lksctp. Maximum values were still high, caused by exponential backoff. The test where

all our modifications were combined showed large improvements for maximum, 99-percentile

and average latencies. Generally, we saw that improvements from the modifications got more

pronounced on the 2nd and 3rd retransmission.

For the 1st and 2nd retransmission, TCP New Reno performs better than unmodified lksctp.

On the 3rd retransmission, lksctp has a better average value, although the 99 percentiles and

maximum latency are still better with TCP. However, our modified lksctp performs better than

TCP except for maximum values of the 1st and 2nd retransmission. In the 3rd retransmission,

however, TCP displays much higher maximum latencies than the modified lksctp. The differ-

ence between All mods and TCP New Reno is not very large for the 1st retransmission, but

gradually increase as TCP New Reno backs off exponentially.

5.3.3 Congestion-caused, variable loss in an emulated network

Uniform loss emulates some network scenarios, but situations where the loss patterns are bursty

are common on the Internet. Bursty loss patterns increase the chance that several retransmis-

sions of the same chunk is lost. Therefore, to compete for resources with a more realistic load,

we sent web traffic over the same emulated network to introduce congestion and thereby loss.

The laboratory setup was as described in section 5.1.3. Since the induced loss was generated

by the emulated HTTP traffic, the total loss varied slightly from test to test. On the bottleneck,

the bandwidth was limited to 10Mbps with a queue length of 100 packets. Using these settings,

we experienced an average packet loss of about 5% in the emulated network. Table 5.5 shows

the test parameters for this group of tests. The cross-traffic induced loss makes for more bursty

loss patterns than the uniform (netem) loss, also resulting in jitter as packets have to wait in the

5.3. Evaluation of SCTP modifications 119

lksctp LT minRTO mFR All mods
TCP

New Reno

Figure 5.25: ACK latency. RTT= 100 ms, packet IAT=250 ms. Cross-traffic induced loss (5%).

queue.

Figure 5.25 shows the ACK latency when loss is created by cross-traffic over a bottleneck.

The results show the same patterns as for the test where the loss was uniformly distributed (fig-

ure 5.24). Unmodified lksctp shows large delays for all retransmissions, and displays the typical

exponential increase of delays between subsequent retransmissions. When the LT modification

is applied, maximum values are reduced. A larger reduction in average retransmission delays

can be seen for the reduced RTOmin. For this scenario where the packet IAT is high, the mFR

mechanism reduces latency, but not by much. The combination of all the mechanisms, however,

results in a large reduction in retransmission latency for this test. The fact that figure 5.25 and

figure 5.24 show so similar results indicates that the burstiness in loss patterns does not affect

thin stream latency to a large degree. The effect of the different mechanisms, as packet IAT and

RTT are varied, reflects what we have seen for the TCP tests in section 5.2. Lower IATs reduce

latency when the mFR mechanism is active, and LT reduces maximum latency. The largest

difference is the modified RTOmin, which reduces SCTP latency for all thin-stream scenarios.

120 Chapter 5. Analysis and evaluation

5.3.4 Analysis of which mechanisms triggers retransmissions

SCTP can order data in a range of different ways due to its chunk-orientedness. This makes

it difficult to determine the mechanism that triggers a retransmission of a given chunk. Such

knowledge about retransmissions can help us to understand the practical workings of the re-

transmission mechanisms better. We therefore made a system that allows us to identify the

mechanism that retransmitted each chunk. To evaluate the effect of our modifications and to

determine the extent of SCTP bundling, we created three “groups” of retransmissions for the

purpose of this analysis: 1) Retransmissions by timeout, 2) Fast retransmissions and 3) “retrans-

missions” by bundling. The different bundling schemes employed by SCTP are all categorised

into the same group. For this analysis, we modified the lksctp implementation to tag the payload

of the chunk with an identifier, depending on the reason for retransmission (see section 4.2.1).

This destroys the payload, but for this set of experiments, the payload is not relevant. We also

sort the retransmissions into groups based on whether they are spurious or valid.

Figure 5.26(a) shows the reasons for retransmissions from a test where the RTT is 100 ms,

the packet IAT is 250 ms and the loss rate is 5%. In this test, unmodified lksctp is used. We can

see that fast retransmission is the dominant trigger for first retransmissions. Bundled chunks

are the second most common source of retransmissions, but the majority of these are spurious.

Timeouts represent a little more than 20%. For second retransmissions, the share of retransmis-

sions due to timeouts increases. Timeouts are responsible for 75% of the retransmissions, and

most of these are spurious. A reason for this may be that a timeout is triggered just before a

SACK that acknowledges the retransmitted chunk is received. The timer reset (described in sec-

tion 3.3.3) contributes to the early retransmissions. Most of the retransmissions by bundling are

spurious also for the second retransmissions. Bundles constitute no more than 15% of the 2nd

retransmissions, though. Although the number of samples for the third retransmission is low,

the data indicate that timeouts still dominate. The relative share of spurious retransmissions is

lower than for the second retransmissions. Here also, the majority of the triggered retransmis-

sions is from timeouts. The ACK latency displayed in figure 5.26(a) shows that the maximum

latency is high, even though there are many spurious retransmissions. This indicates that the

spurious retransmissions do not help to reduce latency for this thin-stream experiment12.

We compare this with the analysis of retransmissions for SCTP with all our thin-stream

modifications active, shown in figure 5.26(b). For first retransmissions, the relative share of

timeouts has been reduced. The share of fast retransmissions has also gone down by 5-6%.

Bundled chunks represent a larger share than for unmodified lksctp, and the majority of these

bundled chunks represent spurious retransmissions. This increase in the share of spurious bun-

dled chunks indicates that the lowered RTOmin and modified fast retransmit may make some

12In some scenarios spurious retransmissions may help to keep the congestion window open by providing extra
feedback to the sender.

5.3. Evaluation of SCTP modifications 121

 0

 20

 40

 60

 80

 100

B

F
R

T
OB

F
R

T
OB

F
R

T
O

%
 o

f
re

tr
a
n
s
m

it
te

d
 c

h
u
n
k
s

retr. 1 retr. 2 retr. 3

Spurious
Valid

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1 2 3

T
im

e
 (

m
s
)

Retransmission

Max, min, avg for retr 1, 2 and 3

(a) Unmodified lksctp.

 0

 20

 40

 60

 80

 100

B

F
R

T
OB

F
R

T
OB

F
R

T
O

%
 o

f
re

tr
a
n
s
m

it
te

d
 c

h
u
n
k
s

retr. 1 retr. 2 retr. 3

Spurious
Valid

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1 2 3

T
im

e
 (

m
s
)

Retransmission

Max, min, avg for retr 1, 2 and 3

(b) All SCTP modifications.

Figure 5.26: Cause for retransmissions. RTT=100 ms, IAT=250 ms, loss=5%. The bar denoted TO

represents timeouts, FR represents fast retransmissions, and B are bundled chunks.

122 Chapter 5. Analysis and evaluation

of the lksctp bundling strategies superfluous for the first retransmission. The small share of

spurious retransmissions when timeouts occur indicates that the lowered RTOmin is an effective

means for recovery for such thin streams. For the second retransmissions, the share of spurious

retransmissions is very large (more than 90%). As for unmodified TCP, the majority of second

retransmissions is from timeouts. Even though most retransmissions are spurious, the share

is not much larger than for unmodified lksctp. The relative share of fast retransmissions has

increased compared to unmodified lksctp, while bundles have decreased somewhat. The high

share of spurious retransmissions indicates that the high IAT makes it difficult to calculate a

good RTO, resulting in retransmissions by timeout just too early. For the third retransmission

group, the general pattern resembles closely that of unmodified lksctp. The overall share of

spurious retransmissions is increased. For fast retransmissions in this test, none of the third

retransmissions were valid. The share of fast retransmissions is low, however. We can see large

improvements in the ACK latency for modified SCTP. Both average and maximum values show

large reductions compared to unmodified lksctp.

The increase in spurious retransmissions seen when the modified SCTP is applied is not very

large. The second and third retransmissions also occur seldom, which means that the count of

packets containing redundant data is low. For such thin-stream scenarios, we think that the large

improvement in retransmission latencies, reducing maximum latencies from more than 4000 ms

to a little above 2000 ms for our modifications (see figure 5.26), justifies the additional spurious

retransmissions that occur.

5.3.5 Internet tests

To see if our modifications could also improve the latencies observed at the transport layer in a

realistic, real-world scenario over the Internet, we replayed game traffic from Anarchy Online

(see table 2.1) between machines in Oslo and a machine located at the University of Mas-

sachusetts (Amherst, MA, USA). We ran 12-hour tests both from our university network and

from three Norwegian ISPs (Get, NextGenTel and Telenor). We measured a minimum RTT of

121 ms and loss rates below 0.1%. Experiments were performed with all modifications. The

modified lksctp was based on the 2.6.16 Linux kernel, while the unmodified lksctp in our tests

was from the newer 2.6.22 Linux kernel13. FreeBSD 6.2 was also evaluated for this test sce-

nario. As can be seen in figures 5.27 and 5.28, we observed varying loss rates and patterns

that provided different conditions for SCTP, and the results show that the proposed modifica-

tions generally improved the transport-layer latency (and thus the QoE) when loss occurs and

retransmission becomes necessary.

13We used the unmodified 2.6.22 kernel as comparison since it was the newest kernel at the time the experiments
were performed, and updates to SCTP had been implemented that could potentially improve the performance. The
observed results did not encourage a port of our extensions.

5.3. Evaluation of SCTP modifications 123

 0.9986

 0.9988

 0.999

 0.9992

 0.9994

 0.9996

 0.9998

 1

 0 1000 2000 3000 4000 5000

C
D

F
 (

b
y
te

s
)

latency (ms)

Anarchy Online game traffic replayed - UiO-UMASS

Modified lksctp - Loss: 0,086%
FreeBSD with EFR - Loss: 0,083%

Regular lksctp - Loss: 0,069%
FreeBSD - Loss: 0,077%

Figure 5.27: CDF of transport-layer delivery latency for replayed Anarchy Online game traffic.

Figure 5.27 shows the results when we compare lksctp and SCTP in FreeBSD, with and

without the early fast retransmit (EFR, see section 3.8), to our modified SCTP. To ensure that the

network conditions were comparable, we had four machines, one for each setup, concurrently

sending game traffic to a machine running unmodified lksctp at UMass. We used tcpdump on

both sides and calculated the delivery delay as described in section 5.1.9. The delivery latency

for the set of tests presented in this section is transport-layer latency. The transport-layer latency

calculations which takes the in-order requirement into account was not implemented for our

SCTP analysis software due to time limitations. We expect that the application-layer delivery

latency follows the same patterns as we have seen in the TCP-experiments in section 5.2 since

the basic mechanisms for retransmissions are the same for SCTP as for TCP.

Figure 5.27 shows a CDF of the arrival times, i.e., the amount of data (in number of bytes)

that has arrived within a given latency (in milliseconds). Large deviations from the average

occur only when retransmissions are necessary. In this test, we experienced a packet loss rate

below 0.1% which means that the setups perform more or less equally up to a CDF of 0.999.

This is also confirmed by the statistics shown in table 5.6 which show that all tests have similar

average latencies. As shown in figure 2.3, higher loss-rates can be expected in a game-server

setting, and even low loss rates can cause QoE-degrading latency events.

When loss is experienced, the differences are clear. For a small but relevant number of

packets that are retransmitted by fast retransmit, lksctp achieves lower latencies than FreeBSD.

FreeBSD with EFR follows unmodified FreeBSD closely for most situations. It has however

124 Chapter 5. Analysis and evaluation

spurious average maximum
loss rate retransmissions latency latency

(%) (%) (ms) (ms)
mod. lksctp 0.0855 6.708 302 1725
lksctp 0.0690 0.032 304 3521
FreeBSD 0.0765 0.006 303 5326
FreeBSD EFR 0.0831 0.038 304 2664

Table 5.6: Relative arrival time statistics for ∼ 2.65× 106 packets.

clear benefits over both lksctp and unmodified FreeBSD for a relevant number of chunks that

are early-fast-retransmitted (in the CDF range 0.9992 to 0.9995). That these benefits do not

have a larger effect on the CDF is most likely caused by the small number of packets that are

concurrently in-flight in our scenario. That inhibits the re-opening of the congestion window

when it has collapsed, which in turn prevents EFR from being triggered at all because the

condition is that flight size must be smaller than the congestion window size.

Modified lksctp delivers a considerable number of chunks with shorter latency, and looking

at the maximum latencies experienced (shown by the arrows in figure 5.27 and in table 5.6),

we see large improvements. The latency improvement is mainly due to removal of the retrans-

mission timer reset after reception of a partial SACK, which forces all other SCTP variations

to wait one RTOmin before retransmitting lost chunks in idle phases of the sender application.

Considering that the minimum RTT for the connection was 121 ms, this demonstrates that the

modifications can reduce the transport-layer latency of a relevant number of lost chunks by

several RTTs.

As shown earlier (for example in figure 5.26(b)), the latency improvement comes at the

cost of a slightly increased bandwidth requirement. Table 5.6 shows that the modifications

increase the number of spurious retransmissions compared to all the other tested mechanisms.

Nevertheless, for the interactive thin-stream applications of our scenario, both the increase in

bandwidth and the collapse of the congestion window are negligible disadvantages compared

to the latency reduction that can be achieved.

The tests above were performed at our university and may thus not represent the network

conditions of a typical user. We validated the results in typical home user settings by running the

Internet tests also from three typical access networks provided by Norwegian ISPs. As lksctp

and SCTP in FreeBSD (with and without EFR) had similar performance, we compared only

modified and unmodified lksctp. The results are shown in figure 5.28. We see the same trends.

Our modifications reduce the transport-layer latency in case of loss, and as shown by the arrows

in the plot, the devastating worst case delays are reduced on the order of seconds.

5.3. Evaluation of SCTP modifications 125

 0.9986

 0.9988

 0.999

 0.9992

 0.9994

 0.9996

 0.9998

 1

 0 500 1000 1500 2000 2500 3000 3500

C
D

F
 (

b
y
te

s
)

latency (ms)

Anarchy Online game traffic replayed - Get-UMASS

Unmodified lksctp - Loss: 0,039%
Modified lksctp - Loss: 0,045%

(a) ISP: Get.

 0.997

 0.9975

 0.998

 0.9985

 0.999

 0.9995

 1

 0 500 1000 1500 2000 2500 3000

C
D

F
 (

b
y
te

s
)

latency (ms)

Anarchy Online game traffic replayed - NextGenTel - UMASS

Unmodified lksctp - Loss: 0,15%
Modified lksctp - Loss: 0,17%

(b) ISP: NextGenTel.

 0.997

 0.9975

 0.998

 0.9985

 0.999

 0.9995

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
D

F
 (

b
y
te

s
)

latency (ms)

Anarchy Online game traffic replayed - Telenor - UMASS

Unmodified lksctp - Loss: 0,18%
Modified lksctp - Loss: 0,18%

(c) ISP: Telenor.

Figure 5.28: CDF for transport-layer delivery latency for replayed Anarchy Online game traffic between
UMass and three different commercial access networks in Oslo (Norway).

5.3.6 Fairness

A major concern when modifying a transmission protocol like SCTP is whether the principle

of fairness for congestion-controlled protocols is preserved. This is especially important in

our case, in which more aggressive retransmission measures are implemented. To determine

the degree to which the new mechanisms affect fairness, we set up a range of tests where

regular SCTP (lksctp) streams competed with modified SCTP. For reference, we also tested

two competing lksctp streams. We used the testbed shown in section 5.1.3, introduced a 50 ms

delay in each direction and limited the bandwidth to 1 Mbps. The streams’ achieved throughput

was compared as a metric for fairness.

Figure 5.30(a) shows the aggregated throughput of the lksctp stream and the modified SCTP

stream when trying to achieve different send rates in competition with a greedy lksctp stream.

The figure shows no noticeable difference at the “thin-stream” rates. When bit rates increase,

and the modifications are no longer active, the regular lksctp actually achieves a little higher

throughput than the modified SCTP. This can be explained by small delays in the modified

126 Chapter 5. Analysis and evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

C
D

F

Achieved throughput (Kbps)

lksctp vs. mod. SCTP
lksctp vs. lksctp

Figure 5.29: CDF of throughput on 100 ms intervals (connection RTT) for lksctp vs. lksctp and lksctp
vs. modified SCTP.

SCTP code that are introduced by the data structures for handling loss and packets in transit.

In addition, there are tests to establish whether a stream is thin that are not present in regular

lksctp.

In figure 5.30(b), the throughput of the greedy streams competing with modified and un-

modified SCTP is shown. The graph shows also here that the throughput is nearly identical.

As previously explained, the stream competing with the modified SCTP has slightly higher

throughput in the 400, 500 and 1000Kbps experiments. Furthermore, measurements were per-

formed to calculate the average throughput every two seconds to see the short term variations.

An example of this is shown in figure 5.29 where only very small differences can be seen

between the throughput of the stream that competes with regular lksctp and the stream that

competes with the modified SCTP.

The tests indicate that fairness is preserved when a modified SCTP stream competes with

an lksctp stream; actually, the stream competing with our modified lksctp achieves slightly

higher aggregated throughput. When few packets are sent per RTT, few resources are consumed

whether our modifications are in use or not. When the number of packets per RTT grows, the

consumption of resources is almost identical. The reason is that our modifications are switched

off when the number of packets in transit exceeds the threshold for thin streams.

5.3. Evaluation of SCTP modifications 127

(a) Increasing bandwidth stream throughput.

(b) Greedy stream throughput.

Figure 5.30: Comparison of throughput as an indication of fairness.

128 Chapter 5. Analysis and evaluation

5.3.7 Summary

In this section, we have presented the results of our experiments to determine the effects of our

thin-stream modifications to SCTP. Experiments have been conducted in a laboratory where

parameters like loss, RTT and IAT have been varied. As a part of the laboratory experiments,

the statistics for which mechanism triggered each retransmission have been analysed. Traces

from thin-stream applications have been replayed over the Internet to measure the effect of the

modifications under more realistic conditions. The following general conclusions can be drawn

from our results:

• The high RTOmin used in SCTP results in very high latencies for thin-streams in general.

• We can improve the thin-stream latency by choosing a lower RTOmin (for instance 200 ms,

as is used for TCP in Linux).

• Delayed acknowledgements influence the RTO calculation when the RTOmin is reduced,

and results in too high RTO values for thin streams.

• Thin streams using SCTP suffer from high retransmission latencies because of the inabil-

ity to trigger fast retransmissions.

• Our thin-stream modifications to SCTP significantly reduce the retransmission latencies

for most thin-stream scenarios.

• The LT mechanism greatly reduces maximum latencies (caused by several consecutive

retransmissions by timeout).

• Experiments where we compare the achieved throughput for competing SCTP streams

(with and without the modifications) show that no disadvantage to fairness is detected.

In summary, our modifications to SCTP improve the application-layer latency performance

for thin streams over the original lksctp and FreeBSD implementations of SCTP, regardless of

loss pattern and RTT. While the average latency is nearly unchanged (at least for very low loss

rates), we are able to handle a large number of the cases that are caused by multiple packet losses

and that cause severe application-layer delays for interactive applications. This is achieved

through slightly more aggressive retransmission strategies when thin streams are detected by

the system. A slightly increased number of spurious retransmissions pays for significantly

improved thin-stream latency.

5.4. UDP and application layer approaches 129

Test Description

ENet Unmodified ENet gaming framework over UDP
modified ENet ENet with linear timeouts
UDT UDT middleware over UDP
TCP New Reno Unmodified TCP New Reno
TCP BIC Unmodified TCP BIC
modified TCP TCP with the LT and mFR modifications
TCP with RDB TCP with only the RDB modification
SCTP Unmodified lksctp
modified SCTP SCTP with modified RTOmin, LT and mFR

Table 5.7: Mechanisms that were tested and compared.

RTT (ms) 50, 100, 200
Loss 0.1%, 0.5%, 2.5%

IAT (ms) 50, 100,200
Packet size (B) 100

Table 5.8: Parameters for experiments performed on UDP and application-layer reliability frameworks.

5.4 UDP and application layer approaches

Many application-layer frameworks are available that supply reliability and in-order delivery on

top of UDP. In many cases, such frameworks model their mechanisms on the ideas from TCP,

although UDP places no limits on the send rate. If the frameworks that supply such services are

tailored for interactive applications, like games, it is in the interest of the user that the stream

withdraws somewhat when heavy congestion is detected. We wanted to compare the gaming

framework ENet and the advanced middleware UDT (described in section 3.5), as representa-

tive examples of such application layer approaches, to transport-layer protocols to determine

their effect on thin-stream latency. After studying the source code for ENet, we found that ex-

ponential backoff is practised for retransmissions. We therefore also made a modified version

of ENet that uses linear timeouts. UDT is designed for high-speed, wide area networks, and

uses its own congestion control and reliability mechanisms. It probes the path for bandwidth,

and redundantly uses what it identifies as “spare” bandwidth to improve throughput and latency.

For comparison, we tested several of the protocols and mechanisms described in chapter 3.

Table 5.7 shows the frameworks and transport protocols that were tested and compared. TCP

New Reno had no options turned on whereas BIC used SACK, FACK and DSACK. SCTP uses

SACK by default. For this interactive scenario, we turned off Nagle’s algorithm (explained in

section 3.1.1) for both TCP and SCTP. Additionally, we tested TCP and SCTP with thin-stream

modifications and the RDB algorithm.

Table 5.8 shows the parameters for this set of experiments. All combinations of the listed

130 Chapter 5. Analysis and evaluation

parameters were tested. Small packets were sent at a low rate in accordance with the game

characteristics described in section 2.1. To emulate the network, we used netem to introduce

delay and packet loss as described in section 5.1.2.

5.4.1 Latency comparison

One of the most important aspects of networking support for an interactive gaming scenario is

the system’s ability to deliver data in time. The measured results for the different mechanisms

listed above are shown in figure 5.3114. The first observation is that the average results are very

similar, except for SCTP, which generally has higher latencies. Thus, with respect to average

latency, all the TCP and UDP based approaches seem usable. However, looking at the worst case

scenario, which really hurts the user experience, we can see large differences. These maximum

latencies depend on the number of retransmissions of the same packet. Since the loss is random,

the maximum number of consecutive lost transmissions of a packet varies. The figures give

nevertheless a representative picture of the performance of the different mechanisms. The plots

in figures 5.31(a), 5.31(b) and 5.31(c) show the latency varying the RTT, packet IAT and loss,

respectively. When the IAT is equal to (or higher than) the RTT, we see that retransmissions

from timeouts and backoffs result in very large values for ENet, TCP New Reno, TCP BIC

and SCTP. By changing the retransmission mechanisms as described when applicable, we can

achieve large latency improvements. This comes at the earlier mentioned cost of a possible

increase in spurious retransmissions. Another (orthogonal) way to improve the latency is to send

multiple copies of a data element by bundling unacknowledged data in succeeding packets like

in UDT (when using less than the estimated bandwidth) and TCP with RDB. The modifications

increase aggressiveness in (re)transmissions, and may have an impact on fairness. We therefore

next describe the results from experiments where we examine the bandwidth tradeoff from these

changes.

5.4.2 Bandwidth consumption

Adding support for reliability comes at the price of retransmitting lost packets, and trying to

reduce the retransmission latency increases the possibility of spurious retransmissions, which

increases the bandwidth requirement further. To quantify the tradeoff, we have measured the

number of bytes per second (Bps) and the number of packets per second (pps). Figure 5.32

shows the required bandwidth corresponding to the achieved latencies in figure 5.31(a) where

the packet IAT is 100 ms and the loss rate is 0.5% in both directions. On the right y-axis, the

figure shows the relative bandwidth compared to the IP payload of pure UDP packets. With

14When the loss rate is high (2.5%) and the RTT is high (200ms), the standard TCP variants and SCTP have
maximum values well above 2000 ms, although the scale of the figure is limited at 1500.

5.4. UDP and application layer approaches 131

 0

 500

 1000

 1500

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
s

RTT 50 ms RTT 100 ms RTT 200 ms

maximum

 0

 500

 1000

 1500

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
s

RTT 50 ms RTT 100 ms RTT 200 ms

average

(a) Latency vs. RTT - IAT=100 ms, loss=0.5%.

 0

 500

 1000

 1500

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
s

50 ms interarrival 100 ms interarrival 200 ms interarrival

maximum

 0

 500

 1000

 1500

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
s

50 ms interarrival 100 ms interarrival 200 ms interarrival

average

(b) Latency vs. packet IAT - RTT=200 ms, loss=0.5%.

 0

 500

 1000

 1500

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
s

0.1% loss 0.5% loss 2.5% loss

maximum

 0

 500

 1000

 1500

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
o

d
if
ie

d
 S

C
T

P

S
C

T
P

T
C

P
 w

it
h

 R
D

B

m
o

d
if
ie

d
 T

C
P

T
C

P
 b

ic

T
C

P
 n

e
w

 r
e

n
o

U
D

T

m
o

d
if
ie

d
 E

N
e

t

E
N

e
t

m
s

0.1% loss 0.5% loss 2.5% loss

average

(c) Latency vs. loss rate - RTT=100 ms, IAT=100 ms.

Figure 5.31: ACK latency.

132 Chapter 5. Analysis and evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

E
N

e
t

m
o
d
if
ie

d
 E

N
e
t

U
D

T

T
C

P
 n

e
w

 r
e
n
o

T
C

P
 b

ic

m
o
d
if
ie

d
 T

C
P

T
C

P
 w

it
h
 R

D
B

S
C

T
P

m
o
d
if
ie

d
 S

C
T

P

E
N

e
t

m
o
d
if
ie

d
 E

N
e
t

U
D

T

T
C

P
 n

e
w

 r
e
n
o

T
C

P
 b

ic

m
o
d
if
ie

d
 T

C
P

T
C

P
 w

it
h
 R

D
B

S
C

T
P

m
o
d
if
ie

d
 S

C
T

P

E
N

e
t

m
o
d
if
ie

d
 E

N
e
t

U
D

T

T
C

P
 n

e
w

 r
e
n
o

T
C

P
 b

ic

m
o
d
if
ie

d
 T

C
P

T
C

P
 w

it
h
 R

D
B

S
C

T
P

m
o
d
if
ie

d
 S

C
T

P

 0

 50

 100

 150

 200

 250

 300

B
p
s

%

RTT 50ms RTT 100ms RTT 200ms

Figure 5.32: Measured bandwidth - IAT=100 ms, loss=0.5%.

respect to the number of bytes sent, the traditional TCP variants are best regardless of loss,

packet interarrival time and RTT. Compared to the user space libraries, TCP and SCTP do not

add an additional header, and therefore consume marginally less bandwidth. However, the data

and loss rates are low, so the increase is negligible. The most resource consuming approaches

are UDT and TCP with RDB. The reasons are that UDT always tries to use all the estimated

bandwidth, and RDB bundles previous packets as long as there is unacknowledged data in the

queue and the size limit for the new packet is not reached. Thus, when the RTT is low, UDT

re-sends a packet multiple times to fill the pipe, and the overhead for TCP with RDB increases

with the amount of unacknowledged data. In terms of the number of bytes, TCP with RDB

is more expensive with higher packet rates and longer RTTs. In contrast to UDT, RDB would

remain active even if no “free” bandwidth was detected over the network path. In such cases

UDT would no longer provide lower latency for the application.

Another way of comparing the overhead is to look at the number of packets sent (see fig-

ure 5.33). Many consider this more relevant because of the fixed time between packets on the

transmission medium. For example, the minimum size of an Ethernet frame is 64 bytes corre-

sponding to the Ethernet slot time of 512 bits used for carrier sensing and collision detection

at 10 and 100 Mbps. For Gigabit Ethernet, the slot is increased from 512 to 4096 bit. Thus, it

can be said that space may be wasted if the packets are not filled – at least to the slot size (see

section 4.1.5).

5.5. Summary 133

 0

 10

 20

 30

E
N

e
t

m
o
d
if
ie

d
 E

N
e
t

U
D

T

T
C

P
 n

e
w

 r
e
n
o

T
C

P
 b

ic

m
o
d
if
ie

d
 T

C
P

T
C

P
 w

it
h
 R

D
B

S
C

T
P

m
o
d
if
ie

d
 S

C
T

P

E
N

e
t

m
o
d
if
ie

d
 E

N
e
t

U
D

T

T
C

P
 n

e
w

 r
e
n
o

T
C

P
 b

ic

m
o
d
if
ie

d
 T

C
P

T
C

P
 w

it
h
 R

D
B

S
C

T
P

m
o
d
if
ie

d
 S

C
T

P

E
N

e
t

m
o
d
if
ie

d
 E

N
e
t

U
D

T

T
C

P
 n

e
w

 r
e
n
o

T
C

P
 b

ic

m
o
d
if
ie

d
 T

C
P

T
C

P
 w

it
h
 R

D
B

S
C

T
P

m
o
d
if
ie

d
 S

C
T

P

n
u
m

b
e
r

o
f
p
a
c
k
e
ts

 p
e
r

s
e
c
o
n
d

RTT 50ms RTT 100ms RTT 200ms

Figure 5.33: Number of packets sent - IAT=100 ms, loss=0.5%.

In our plots, the application sends approximately 10 pps (actually marginally less on average

due to the timing granularity in user space). Traditional TCP follows this rate and since only

a few packets are lost, the measured packet rate is approximately 9.6 pps. ENet and SCTP (as

well as the modified versions) both send a few more packets. As UDT always try to fill the

estimated pipe, the packet rate is large, e.g., for an RTT of 50 ms, UDT sends about 29 packets

per second. Finally, TCP with RDB sends slightly fewer packets compared to standard TCP

since no retransmission was triggered using RDB.

5.5 Summary

In this chapter, we have presented results from a large number of experiments performed both

in a laboratory environment and on the Internet. The experiments have compared traditional

versions of TCP, SCTP as well as UDP with application layer approaches to modified versions

designed to reduce latency for thin streams. With respect to data delivery latency, the pro-

posed enhancements generally reduce latency and especially the large worst-case delays. This is

achieved at the price of a slightly increased bandwidth. According to our fairness-experiments,

the modifications will hardly affect per-stream fairness. An exception is RDB, which can grab

some more resources than unmodified TCP for some special cases. In such cases of relatively

low IAT and small packet sizes, the applications may suffer large delays due to the inadequacies

134 Chapter 5. Analysis and evaluation

of the retransmission mechanisms of TCP, and are significantly helped by the redundant trans-

missions of RDB. We therefore think that our enhancements are viable, and look at how their

improvements in data delivery latency influence the users’ QoE next.

Chapter 6

Experienced effect for the users

After performing the extensive measurements of our TCPmodifications presented in section 5.2,

a natural way to substantiate the observed measurements was to perform subjective user eval-

uations. We have therefore carried out user surveys evaluating the QoE for some thin-stream

interactive applications. We have also performed a laboratory experiment where we determined

the chance of hitting an opponent in an FPS game (BZFlag [4]) with and without our modifi-

cations. Finally, we have created an interactive demonstration where the effect of each of our

TCP modifications can be tested in a thin-stream game setting.

6.1 Skype user tests

IP telephony over the Internet is used by a steadily increasing number of people. We wanted

to investigate whether our modifications could improve the perceived quality of such a VoIP

session, and chose Skype as the test application. Skype is a popular VoIP program that defaults

to UDP for transport, but falls back to TCP if UDP is blocked for some reason. As shown

in table 2.1, it generates small packets and has a relatively high packet IAT, which makes it a

typical thin stream application. The TCP modifications for thin streams should be able to help

reduce latency upon packet loss. Due to the relatively low IAT (e.g., compared to Anarchy

Online in table 2.1), the triggering of fast retransmissions by standard mechanisms is possible.

Considering speech in VoIP conferences, differences between each conversation can make

it difficult to evaluate one session when compared to another. To have directly comparable data,

and to be able to reproduce the results, we chose to use sound clips which we played across

the Skype session. We experimented with several different sound clips, both with respect to the

numerical results gathered from packet traces, and to feedback from users in preliminary tests.

A total of three different sound clips were ultimately chosen for this test. Each clip was played

two times, once using our TCP modifications and once using unmodified TCP. The sound clip

was sent across the Skype connection and the resulting output was recorded at the receiver.

135

136 Chapter 6. Experienced effect for the users

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 50 100 150 200 250 300 350 400

C
D

F
 (

b
y
te

s
)

Latency after lowest observed value (ms)

TCP New Reno with modifications
TCP New Reno

(a) Transport layer latency.

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 50 100 150 200 250 300 350 400

C
D

F
 (

b
y
te

s
)

Latency after lowest observed value (ms)

TCP New Reno with modifications
TCP New Reno

(b) Application layer latency.

Figure 6.1: Skype latency - loss=2%, RTT=130 ms.

When performing the user evaluation experiment, we played the first minute of each clip.

The length was chosen to make it possible to remember the perceived quality for comparison.

We present the results from one test where a speech news podcast was used as source, and two

tests where music was used. The podcast was chosen because speech is what Skype is designed

for, thus the codec should be tuned for it. The music was chosen because it is easier to notice

audio artifacts when there is a steady rhythm to relate to. A complicating factor is that Skype

encoding sometimes distorts the sound when using TCP, even under perfect network conditions

(no loss or delay). All the recordings would, however, be exposed to these irregularities, so

the resulting recordings should be directly comparable. Unfortunately, it was not possible to

investigate the cause of the distortion further since Skype is a proprietary application.

As a reference to the improvements that we observed in statistical analysis, we included

CDFs of delivery latency for one of the clips used in the experiment. The configuration of

the environment used for the test was as described in section 5.1.2. Figure 6.1 shows both

application and transport layer delivery latency. The statistics shown are very similar to what

we have seen in other tests in section 5.2 where the gain at the transport layer greatly improves

the results at the application layer.

When taking part in a phone conversation, one of the most important aspects is the sound

quality. Distortion and similar artifacts degrades the user experience, making it more difficult

to understand the speaker. We therefore made recordings of Skype conversations played over

links with loss and delay, and had a group of people evaluate the perceived quality.

To get an impression of how distortions affect the sound, audio spectrums for one of the

test clips used are shown in figure 6.2. The clip was played over a Skype connection with 2%

loss and an RTT of 130 ms. One playback was performed using TCP with all our modifications

active, and one using unmodified TCP New Reno. Where TCP New Reno is used (figure 6.2(a)),

we can see several gaps in the audio waves that distort the sound experienced by the user. In

figure 6.2(b), the same clip is played over the same link using our TCP modifications. We

6.1. Skype user tests 137

(a) TCP New Reno.

(b) TCP with LT, mFR and RDB.

Figure 6.2: A 20 second “audio spectrum” of a representative Skype session played over a link with 2%
loss and an RTT of 130 ms.

can observe distortions for this clip also, but at a much lower frequency and for shorter time

intervals.

As a reference test, we played the same version of one sound clip twice. This was done to

ensure that a “memory effect” does not influence the answers overly much (for instance that,

after listening to two clips, the listener would prefer the first clip because he/she had “forgotten”

the faults observed in that clip.). The statistics were gathered from a web interface where the

participants listened to each clip, chose a preference and made comments. The reference clip

was added since our web backend did not implement clip randomisation.

In total, we collected 88 votes, and the results are shown in figure 6.3. The recordings made

with the modifications were clearly preferred by the users. We were told that the differences

in “clip 1”, which was the podcast, were small but still noticeable. With clip 3, which was

one of the songs, the users commented that the version without the modifications was distinctly

suffering in quality compared to the clip where modified TCP was used. The test subjects

complained about delays, noise, gaps, and others artifacts, and said that it was easy to hear the

difference.

In the reference test (“Clip 2“ in figure 6.3), the majority of the test subjects answered that

they considered the quality as equal. Of the users that decided on one of the versions of this

clip, most of them chose the one that was played first. This is caused by the “memory effect”

(discussed above); the listener may have “forgotten” the errors of the first clip. For “Clip 1”,

the modified version was the second clip to be played. The “memory effect” may here have

diminished the results for the modified version of TCP. Even so, a relevant majority of the test

subjects preferred the modified version. For “Clip 3” (figure 6.3), the order was the opposite

(modified TCP first). We can assume that some of the people who chose the modified TCP

version were fooled by the “memory effect”. However, the majority of subjects who chose the

modified TCP version is so large (95,4%) that we deem the numbers reliable.

138 Chapter 6. Experienced effect for the users

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

M
o

d

N
o

m
o

d

E
q

u
a

l

M
o

d

N
o

m
o

d

E
q

u
a

l

V
a

r1

V
a

r2

E
q

u
a

l

C
h

o
s
e

n
 s

e
le

c
ti
o

n
 (

%
)

Clip 1 Clip 3 Clip 2

Comparative tests mod/nomod
Reference test:

Same clip played twice

Figure 6.3: Preferred sound clips from Skype user tests.

6.2 Secure shell user test

The second application that was chosen for user evaluation was secure shell (SSH). As shown

in chapter 2, a text-based SSH session represents a typical thin stream. This protocol is widely

used as a remote tunnel for example to administrate servers or remotely edit configuration files.

While working in an SSH session, loss can lead to delays that make the editing of text more

difficult (e.g., lag between pressing keys and the subsequent screen update).

The system used for this experiment was configured as described in section 5.1.2. We

have included here the CDFs of a SSH session played over the test network so that the users’

evaluations can be evaluated in view of the statistics. The resulting CDFs of transport and

application latency are shown in figure 6.4. Here also, the statistics are very similar to the

analysis presented in section 5.2.

The experience of using a remote text terminal can be severely diminished by network loss.

The screen may not be updated with the character that was typed, and it may be difficult to edit

the document in a controlled manner. After analysing the SSH latency, we wanted to test if the

improvements in application layer latency could be noticed by the user.

The test network was configured in the same way as for the Skype test. The users opened

a command window on the sender computer and initiated a text-based SSH connection to the

receiver. Each user then opened a text editor (like “vi” or “emacs”) and typed a few sentences.

The users were encouraged to try to keep their eyes on the screen while typing in order to

observe any irregularities that might occur while typing. In order to make the test applicable

6.2. Secure shell user test 139

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 200 400 600 800 1000 1200 1400

C
D

F
 (

b
y
te

s
)

Latency above minimum observed value (ms)

TCP with modifications
Regular TCP

(a) Transport layer latency.

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 200 400 600 800 1000 1200 1400

C
D

F
 (

b
y
te

s
)

Latency above minimum observed value (ms)

TCP with modifications
Regular TCP

(b) Application layer latency.

Figure 6.4: SSH latency - loss=2%, RTT=130 ms.

Figure 6.5: SSH user test: Preferred connection.

to the users that prefer watching the keyboard while writing, a second test was devised. This

test consisted of repeatedly hitting the same key, while watching the screen. After the typing,

the user was to close the editor and log out of the SSH-session. We then made a change in the

network configuration (turned on or off the modifications), and the user repeated the procedure.

Afterwards, the test subjects had to decide which of the two sessions they considered to have

the best performance. In order to avoid the “memory effect”, half of the test subjects took the

modified TCP test first, the other half took the regular TCP test first. A total of 26 people

participated in this test. All of the participants were familiar with text editing over SSH, and

used a text editor that they were comfortable with.

Figure 6.5 shows how many chose each type of session. The black area represents the per-

centage of the test subjects who preferred the regular TCP session (19%), while the hachured

area represents the ones who preferred the session that used the modified TCP (81%). A fre-

quently occurring comment from the users was that they preferred the connection using the

modified TCP because the disturbances that occurred seemed less bursty. That is, if they had

written a group of letters, they showed up without a large delay. Another recurring comment

was that deleting became more difficult in the sessions using regular TCP because it was easy

140 Chapter 6. Experienced effect for the users

to delete too many letters at a time. The large share of users that preferred the session us-

ing the modified TCP strongly suggests that the improvement shown in figure 6.4 can also be

experienced at the user level.

The number of participants for the user test may, statistically, be too small to draw absolute

conclusions based on them. Seen in correlation with the measured data, however, we feel that

this is a strong indication of the impact of the TCP modifications on the user experience for the

tested thin-stream application.

6.3 BZFlag hit probability evaluation

The TCP modifications are most effective for interactive thin-stream applications like online

games. As a way to evaluate the effect of the mechanisms, we wanted to benchmark the position

updates in a real game environment. BZFlag [4] is an open source, FPS game where players

challenge each other using tanks on a virtual battleground. As shown in table 2.1, it generates

thin streams with an average packet IAT of 24 ms and an average payload size of 30 bytes.

Thus, it is a game well suited to demonstrate the benefits of our thin stream TCP-modifications.

To collect the data needed to generate the results presented here, we constructed a network

consisting of five machines. Three acted as clients running computer controlled opponents

(bots), one ran the server application, while the fifth machine acted as a network emulator be-

tween the server and the clients. We needed to impose loss and delay on the links between

the server and the clients so that we could evaluate the effects of the modifications. Thus, the

server was placed behind a network emulator as described in section 5.1.2. After performing

several measurements from different Norwegian ISP’s to machines in the US and various Eu-

ropean countries, we chose an average loss rate of 2 % and a round trip time (RTT) of 130 ms,

as representative emulated network values. The three clients ran 26 bots altogether, which rep-

resents a typical high-paced BZFlag-multiplayer scenario. To get a sufficiently large number

of samples, six one hour long tests were performed (three with the modifications enabled and

three without).

From the packet traces, we measured the delivery latency for the connections in the experi-

ment (shown in figure 6.6). We include the statistics from both transport layer and application

layer as a reference in addition to the measurements that we present on shot accuracy.

The reduced application layer latency also affected the user experience. In initial experi-

ments, users were asked to evaluate the accuracy of their aiming. It soon became clear, how-

ever, that it was difficult to determine whether a miss was caused by network conditions or bad

aiming. We therefore devised a system for measuring the impact of latency from logs of per-

ceived and actual positions at the time a shot was fired. To see how the latency influenced the

perceived player positions, we collected the actual and perceived position of the other players

6.3. BZFlag hit probability evaluation 141

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200

C
D

F
 (

b
y
te

s
)

Latency above minimum observed value (ms)

TCP with modifications
Regular TCP

(a) Transport layer latency.

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200

C
D

F
 (

b
y
te

s
)

Latency above minimum observed value (ms)

TCP with modifications
Regular TCP

(b) Application layer latency.

Figure 6.6: BZFlag delivery latency - loss=2%, RTT=130 ms.

A

B

B'v

Perceived

position

Real

position

Figure 6.7: Difference angle calculation.

each time a chosen tank (reference tank) fired a shot. We then calculated the difference (angle)

between the two positions as viewed from the reference tank. Figure 6.7 shows how the two

vectors representing perceived and actual position were found. The angle v was then calculated

using the law of cosines. Position A represents the reference tank, B represents the perceived

position of an opponent at the time of the shot, while B’ represents the actual position of the

opponent. Figure 6.8 shows that the angle of difference between the line from the shooter to

the perceived position of the target (AB′ in figure 6.7) and the line to the actual position (AB

in figure 6.7) is smaller when the modifications were applied. On average, the angle between

AB′ and AB was reduced by 0.7 degrees when the modifications were enabled (from 3.5 to 2.7

degrees). The dimensions of the game field (the virtual battleground) were 200 by 200 world

units (wu, BZFlag’s internal distance metric). In BZFlag, each tank is 2.8 wu wide and 6 wu

long. Provided that the player aimed at the centre of the opponent’s tank (a “perfect shot”) based

on the perceived position, the angle of difference (v) may be so substantial that a would-be hit

actually evaluates as a miss. Figure 6.9 shows how we calculate the wu deviation caused by

the angle v. Using the formula x = n× tan v, we can extrapolate the deviation in wu when the

distance n to the target increases. Here, n is the distance between the player and the opponent,

and x is the deviation from the actual position of the observed tank. A “perfect shot” would

142 Chapter 6. Experienced effect for the users

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F
 (

b
y
te

s
)

Deviation (degrees)

BZflag - Deviation between perceived and actual position

TCP with modifications
Regular TCP

Figure 6.8: CDF of difference.

Figure 6.9: Hit limit calculation.

have a 100 % chance of hitting enemies when the distance to the target is less than 30 wu using

the modifications. Using regular TCP, the distance to guarantee a hit would have to be reduced

to 23 wu. In practise, this means that the modifications increase the chances of hitting your

opponent due to a smaller deviation between perceived and actual position. The 7 wu improve-

ment is, for reference, equal to the width of 2.5 tanks in the game, a deviation that is large when

trying to hit your target. We also investigated how the difference between perceived and actual

position affects the chance of the shot hitting when we varied the distance between the tanks.

Figure 6.10(a) shows how large the radius of the hit box has to be to guarantee that the “perfect

shot” is a hit given a specific distance to the opponent. The dotted lines at 1.4 wu and 3 wu

represent the tank hit box when seen from the front and from the side. The graph shows how

the effect of the modifications increases with the distance to the opponents you are trying to hit.

Figure 6.10(b) shows the chance of hitting your opponent with a “perfect shot” at different

distances using regular TCP and the modifications. If you, as an example, fire at an opponent at

a distance of 50 wu, there is 12 % greater chance of a hit using the modifications than without.

6.3. BZFlag hit probability evaluation 143

 0

 1.4

 2.8

 4.2

 5.6

 7

 8.4

 9.8

 0 50 100 150 200

D
e

v
ia

ti
o

n
 c

a
u

s
e

d
 b

y
 l
a

te
n

c
y
 (

w
u

)

Distance from opponent (wu)

Tank length / 2

Tank width / 2

TCP with modifications
Regular TCP

(a) BZFlag hit limits (world units).

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
h

a
n

c
e

 t
o

 h
it
 2

.8
w

u
 w

id
e

 t
a

rg
e

t
w

it
h

 "
p

e
rf

e
c
t

s
h

o
t"

 (
%

)

Distance from opponent (wu)

TCP with modifications
Regular TCP

(b) BZFlag hit limits (percent).

Figure 6.10: BZFlag hit limits for “perfect shot”.

144 Chapter 6. Experienced effect for the users

Figure 6.11: Screen shot of the interactive, thin-stream, game demonstration

6.4 An interactive demonstration

In order to demonstrate the effects of TCP retransmission mechanisms on a thin stream (like

position updates in a game), we have created a proof-of-concept application where the modifi-

cations can be dynamically turned on and off.

The server calculates the positions for an object moving in a circle, i.e., the Millennium

Falcon circling the Death Star, in order to have a predictable trajectory. When a client connects,

the server sends position updates with regular intervals. A network emulator positioned between

the server and the client creates loss and delay1. The client, once connected, updates a graphical

representation of the object each time a new position update is received. From the client user

interface, several parameters can be changed in order to observe the effect on how position

updates are received.

Interarrival time and packet size can be changed, and each of the thin-stream mechanisms

described above can be turned on and off. When a network emulator is used to generate loss

and delay, the RTT and loss rate also can be varied in order to experiment with different effects

of our modifications.

1When this demonstration was performed at external locations, the network loss and delay were often sufficient
to provide a good impression of the effect of our mechanisms. In such cases, the network emulator was not needed.

6.5. Summary 145

6.5 Summary

In this chapter we have described two user surveys that were performed as evaluations of the

experienced effect of our TCP modifications. The subjective evaluation of the quality of Skype

audio transfer and SSH text sessions both strengthened the assumption that there is a significant

improvement to be observed at the application layer. We also calculated the difference in shot

accuracy for a FPS game, and showed that the chance to hit your opponent increases when

using our TCP modifications. Finally, we presented a demonstrator based on the concept of

game position updates. In all experiments, the conclusion is clear: the modifications improve

the user’s perceived quality in the thin-stream scenario.

Chapter 7

Conclusions

In this thesis, our work on reducing thin-stream latency for reliable network transport has been

presented. We will now summarise the work presented herein, provide a critical review of the

presented topics and outline possible directions of future work.

7.1 Summary

Distributed, interactive applications often produce what we call thin streams: data streams with

high packet IATs and small packet sizes. Such streams, when transported over reliable pro-

tocols, result in high retransmission latencies when loss occurs. We analysed a selection of

time-dependent applications to reveal their thin-stream properties, we have performed a thor-

ough analysis of the latency behaviour of thin-stream gaming scenarios and we have evaluated

the application-layer latency over UDP for the thin-stream scenario. Based on the observations

from these analyses, we have modified TCP and SCTP to improve the thin-stream latency when

using these protocols.

Our thin-stream modifications were implemented in the Linux kernel and subjected to ex-

tensive experiments. Using both laboratory experiments and Internet tests, the effects of the

modifications were analysed. A set of user surveys was performed to determine the effect of

our modifications on user perception. Furthermore, we performed an analysis of the actual ef-

fect of our modifications on the probability to hit a target in an FPS game. Finally, the effects

of the implemented modifications were illustrated through an interactive demonstration.

7.2 Contributions

Here, we summarise the most important contributions derived from this work and relate our

results to the hypotheses presented in section 1.3.

147

148 Chapter 7. Conclusions

Investigation of thin-stream properties: The investigation of Hypothesis 1 demanded that

we performed in-depth analysis of data patterns from a wide range of interactive appli-

cations. The analysis we performed confirmed that a wide range of the time-dependent

applications showed thin-stream properties. The variation in packet IAT and sizes for the

thin streams was analysed with respect to their effects on delivery latency. Typical packet

sizes ranged from 100 to 400 bytes, and IATs ranged from 30-600 ms.

Thin-stream latency analysis: To address Hypothesis 2, extensive analyses of latency for

typical thin-stream scenarios were performed. From these analyses, we were able to

determine that thin streams suffer from extreme latencies. In a trace from the massively

multiplayer online game (MMOG) Anarchy Online [44], for example, we found acknowl-

edgement latencies of up to 67 seconds. By studying the analysed traces in detail, we

were able to determine the main reasons for the increased latencies. Furthermore, we

performed experiments to determine whether some reliable transport protocol variations

reduce delivery latency for thin streams. We identified TCP New Reno as the best al-

ternative for reliable thin-stream transport, but we concluded also that none of the tested

variations provides satisfactory latencies for thin streams.

Adaptation of retransmission mechanisms to reduce latency for thin streams: We im-

plemented modifications to the existing retransmission mechanisms (in the Linux kernel)

that reduce latency for thin streams. The mechanisms include timer reset corrections and

a new RTOmin value for SCTP, fast retransmission after one dupACK as well as linear

timeouts for both TCP and SCTP and a bundling mechanism for TCP. The mechanisms

are dynamically switched on and off so that traditional mechanisms are used for greedy

streams. The modifications were evaluated thoroughly through a series of experiments.

In answer to the questions posed by Hypothesis 3, we found that the modifications are

able to provide lowered delivery latency for thin streams.

Implementation of a bundling mechanism that takes advantage of small packet sizes in

thin streams to reduce latency: We implemented a new mechanism that takes advantage

of the fact that many thin streams have very small packet sizes. The bundling mechanism

sends unacknowledged data segments with new packets, so as to avoid retransmissions.

In many cases (like for Gigabit Ethernet), the minimum frame size is much larger than the

packet sizes produced by thin-stream applications, making bundling possible with very

little actual overhead. In answer to Hypothesis 4, the mechanism was evaluated through

extensive experiments, and was found to significantly reduce delivery latency for thin

streams.

7.3. Critical assessment of the results 149

Evaluation of transport protocols and our thin-stream modifications: We evaluated the

described approaches for TCP, SCTP and UDP with application-layer reliability. All our

modifications were designed to be transparent to the receiver in answer to Hypothesis

5; any unmodified (standards compliant) receiver can receive the benefit of a modified

sender. Our findings show that we are able to reduce delivery latency for all the thin-

stream scenarios we evaluated, especially the worst-case latencies that ruin the user expe-

rience are significantly reduced. In addition to the experiments performed to measure the

latency of thin streams when using reliable transport, we performed surveys where users

evaluated the effect of our mechanisms. All our results show that latency can be reduced

significantly for thin-stream interactive applications by applying our mechanisms.

Evaluation of the impact of our modifications on per-stream fairness: As the implemented

modifications apply more aggressive retransmission strategies when thin streams are de-

tected, we evaluated also the effect of our modifications on competing streams (fairness).

This evaluation showed that the modifications to the retransmission mechanisms do not

affect fairness because the thin stream’s congestion window stays below the minimum

congestion window size. The bundling mechanism leads to increased packet sizes in cer-

tain scenarios, and therefore needs more resources. The number of sent packets, though,

is not much higher since the bundling mechanism does not trigger extra transmissions.

The subject matter of this thesis resulted in five publications in peer-reviewed journals and

conferences [54, 88, 89, 38, 87]. Additionally, the interactive demonstration was exhibited at

NOSSDAV 2008 [91] and the thin-stream mechanisms and the Linux implementation were

presented at the Linux Kongress 2008 in Hamburg [90].

The commonly used retransmission techniques, derived from the TCP specifications, result

in high retransmission latencies for thin streams. Based on the findings from this thesis, we

conclude that thin-streams should be handled separately from greedy streams when using reli-

able transport. We have shown that the high latencies can be significantly reduced by applying

separate handling of thin- and greedy streams.

7.3 Critical assessment of the results

In the following, we review the hypotheses postulated in section 1.3 and evaluate each claim in

view of the experiences gained from the work in this thesis.

• Hypothesis 1: Thin streams are very often a product of time-dependent or interactive

applications.

150 Chapter 7. Conclusions

During the course of our work on distributed, interactive applications, we found that such time-

dependent applications very often show thin-stream properties (some of which are presented

in table 2.1). When an application does not fill up the send buffers, it is usually because the

applications rely on timed transmissions. Such timed transmissions are usually either produced

by human interaction, or responses to certain events. In either case, the application is time-

dependent to a certain degree.

• Hypothesis 2: Retransmission mechanisms and congestion control mechanisms have

been developed to maximise throughput, and may therefore cause higher retransmission

latency when the transported stream is thin.

Several weaknesses were found in TCP and SCTP retransmission mechanisms for thin-stream

transmission. The largest contributing factor to increased latency is the lack of feedback due

to high packet IATs in thin streams. When reliability is implemented over unreliable protocols

like UDP, the retransmission mechanisms used are very often based on the same principles as

for TCP and SCTP. Our observations can therefore be applied generally for thin-stream latency

over reliable connections.

• Hypothesis 3: It is possible to adapt existing retransmission and congestion control

mechanisms to achieve lower latency for thin streams without jeopardising performance

for greedy streams.

We implemented modifications that were dynamically triggered when the system detected a thin

stream. The mechanisms we implemented provided unmodified service to greedy streams while

improving latency for thin streams. From our investigations into per-stream fairness, we saw

that only the bundling mechanism had any impact on the achieved throughput. We therefore

regard the claim to be well-founded. There may be other avenues of investigation, in addition

to the ones we have explored, that will lead to reduced latency for time-dependent, thin-stream

applications.

• Hypothesis 4: We can take advantage of the thin stream properties to achieve lower

delivery latencies for the thin streams.

Our investigations into this hypothesis resulted in a bundling mechanism that took advantage of

the small packet sizes observed in most thin streams. Using an extra measure of redundancy, we

were able to significantly reduce latency for a range of time-dependent applications. Here also,

other approaches may lead to similar results, and additional limitations can be implemented to

reduce the potential overhead for the implemented mechanism.

• Hypothesis 5: Modifications to improve thin-stream latency can be implemented in such

a way that unmodified receivers may benefit from them.

7.3. Critical assessment of the results 151

We have, during the development of all our modifications, kept transparency to the receiver as

a strict requirement. It is possible to develop other mechanisms or, maybe, new protocols that

can address many of the problems we have identified, but we have deemed such wok outside

the scope of this thesis. The mechanisms that we have developed can, in practise, be deployed

instantly, and be of service to the masses without modifying the receivers. As interactive appli-

cations, by being interactive, communicates both ways, the largest benefit would be by having

thin-stream support on both sender and receiver. This may be achieved either by modifying ex-

isting systems and lobby for standardisation of the changes, or by developing new protocols. It

has, however, proved difficult to gain wide acceptance for new protocols, and we have therefore

chosen the first alternative.

The term “thin stream” describes a class of streams that differs from greedy streams by

having higher packet IAT and smaller packet sizes. Aside from that, thin streams show great

variation (as discussed in section 4.3). Some streams dynamically fluctuate between being

thin and greedy, other keep the same properties throughout their lifetime and some streams are

borderline thin/greedy. Our set of modifications provides significantly lowered latency in many

cases, while being less effective in other. We have tried to find ways of limiting the frame

of operation for our mechanisms to target the areas where the need is greatest. More effective

ways of limiting this frame may exist, though a totally effective way of achieving optimal results

without trade-offs may not be possible.

The requirement on thin-stream detection of in_t ransi t < 4 that we used is the most con-

servative choice. It ensures that the modifications are enabled only in situations where fast

retransmissions cannot occur. There may be good reasons to relax this requirement in order to

improve the latency benefits further. For instance, the limit could be increased when heavy loss

occurs, which is likely to trigger exponential backoff. With a slightly higher limit for in_transit

packets to trigger the thin-stream modifications, a thin stream that will not expand its congestion

window further can avoid some of the most punishing latencies.

The mFR modification may be seen as a variation of the ER mechanism (described in sec-

tion 3.8.3). ER does, however, differ from our approach in two ways. The first is the mo-

tivation (our goal is to reduce latency for consistently thin streams which are shown to be

time-dependent in many cases). The second is that Allman et al. try to prevent retransmis-

sion timeouts by retransmitting more aggressively, thus keeping the congestion window open

even though congestion may be the limiting factor. If their limiting conditions change, they still

have higher sending rates available. Our applications are not limited by congestion control. We

have no motivation to prevent retransmission timeouts in order to keep the congestion window

open because in the thin-stream scenario, we do not need a larger window, but we retransmit

early only to reduce application-layer latencies.

152 Chapter 7. Conclusions

RDB is active when there are unacknowledged segments and small packet sizes. It is not

active if only one segment is on the wire at any given time, nor when the stream is greedy

(i.e., when the segments fill up). These inherent limitations ensure that RDB only consumes

extra bandwidth when the potential for increased latency is high. For cases in which lowered

throughput in streams that compete with RDB-enabled thin streams is unwanted, a trigger could

be created to ensure that RDB is only active if IAT > RTT. In this way, RDB would only be

active upon loss, yielding latency improvements with a minimum of redundancy. The RDB-

activated stream would receive ACKs in situations in which a regular TCP-stream would record

loss, so there would still be an effect on other streams with regard to throughput. Such an option

could be helpful for streams that fluctuate in bandwidth, but have periods of typical thin-stream

activity. In this way, the added redundancy in the transitions between thin and greedy could be

reduced significantly.

Another special case for RDB appears for applications whose IAT is low, but not low enough

that the packet sizes reach the MTU size. In this case, our measurements show high redundancy

due to massive bundling (especially if the bundling is combined with high RTTs). In order to

improve latency while reducing this redundancy, a trigger could be implemented that disables

RDB if a certain limit is reached (in_t ransi t > l imit). In such cases, it would also be possible

to enable bundling with only a subset of the packets that are sent.

The performance of different operating systems when transmitting thin streams should be

evaluated for an even broader range of parameters. This could provide insights into the cases

that suffer the most for the different systems, and help to suggest the system, or system config-

uration, that would provide the best service for special thin-stream scenarios. It may also help

to suggest additional adaptations of the thin-stream mechanisms for each special case.

One of the aspects of applying a dynamic trigger for our mechanisms is that streams may

fluctuate between greedy and thin. Such fluctuating streams may suffer higher latencies if

loss occurs in the transition between thin and greedy. There may also be effects pertaining

to fairness, as for instance the RDB mechanism bundles up to the MSS for a stream going from

thin to greedy. The effects of such fluctuating streams when our modifications are applied may

therefore be subjected to additional experimentation.

Our experiments to learn about the effects of our modifications on per-stream fairness have

focused on thin streams competing with greedy streams, and one-on-one cases (thin stream with

gradually decreasing packet IAT). A wider range of test parameters (thin/thick streams, IATs,

RTTs, fluctuating streams, loss rates) should be evaluated to get more information about the

effects in different scenarios. We should also perform experiments on the number of streams,

modified or unmodified, that can share a bottleneck of a certain capacity before loss becomes

too severe to support any kind of interactive applications (with or without modifications).

7.4. Future work 153

7.4 Future work

During our work on the topic of thin streams over reliable transport, we investigated a wide

range of options for increasing the latency for such interactive streams. We performed exper-

iments to evaluate the aspects of our mechanisms that we found most relevant to the subject

matter. There are, however, unexplored avenues of investigation. In this section, we outline

some of the topics that may extend the work presented in this thesis.

In section 7.3, we discussed alternative ways of identifying thin streams and triggering

mechanisms. A possible future expansion of the work reported herein may be to chart which

thin-stream limit gives a reasonable tradeoff between latency reduction and redundancy. Ex-

periments could also be performed to find ways of limiting the activation of RDB to the cases

where redundancy is well balanced against reduced latency.

Alternative ways to achieve similar results to the presented modifications can be devised.

For example, all segments (packets) could be sent twice with a given delay between transmis-

sions. The delay would need to be calculated so that the chance that the second segment is lost

within the same burst of losses as the first is minimised, while maximising the chance that the

second segment is delivered and ACKed before a retransmission by timeout occurs. In order to

keep the level of redundancy low, this mechanism would also have to be limited to thin streams.

TCP Vegas should, if implemented as specified with trusted, fine-grained timers, be able to

handle some of the latency-issues that we have identified for time-dependent thin-streams. A

future approach should be to validate such an implementation, and compare the results to the

modifications described in this thesis.

Finally, as described in section 5.1.1, we have evaluated several simulators for thin-stream

experiments. None of the tested alternatives could provide us with a satisfactory solution within

the time and resources available. To achieve insights into the effects of our modifications in

complex systems larger than we practically can perform experiments on, a simulator should be

developed that can cope with both fairness and latency issues as well as handle varying segment

sizes.

Bibliography

[1] netem. http://www.linuxfoundation.org/en/Net:Netem, July 2008.

[2] Skype, March 2008. http://www.skype.com.

[3] The adaptive communication environment (ace). http://www.cse.wustl.edu/ schmidt/ACE.html,

August 2009.

[4] BZFlag, September 2009. http://bzflag.org.

[5] Clanlib game sdk. http://www.clanlib.org/, August 2009.

[6] Collaborative adaptive sensing of the atmosphere (CASA), Aug 2009.

http://www.casa.umass.edu/.

[7] Hawk network library (hawknl). http://www.hawksoft.com/hawknl/, August 2009.

[8] Quazal net-z advanced distributed game state engine.

http://www.quazal.com/en/products/net-z/net-z, August 2009.

[9] Rakenet cross-platform c++ game networking engine. http://www.jenkinssoftware.com/,

August 2009.

[10] Replicanet multiplatform connectivity. http://www.replicanet.com/, August 2009.

[11] Simple directmedia layer (sdl). http://www.libsdl.org/, August 2009.

[12] Steve’s portable game library (plib). http://plib.sourceforge.net/, August 2009.

[13] The Linux Kernel Stream Control Transmission Protocol (lksctp) project, October 2009.

http://lksctp.sourceforge.net/.

[14] Udt udp-based data transfer. http://udt.sf.net, August 2009.

[15] Zoidcom automated networking system. http://www.zoidcom.com/, August 2009.

155

156 Bibliography

[16] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing TCP’s Loss Recovery Using

Limited Transmit. RFC 3042 (Proposed Standard), January 2001.

[17] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control . RFC 2581 (Proposed

Standard), April 1999. Updated by RFC 3390.

[18] AT Internet Institute. Internet users equipment. http://www.atinternet-institute.com/,

September 2009.

[19] Paul Barford and Mark Crovella. Generating representative web workloads for network

and server performance evaluation. In SIGMETRICS ’98/PERFORMANCE ’98: Pro-

ceedings of the 1998 ACM SIGMETRICS joint international conference on Measurement

and modeling of computer systems, pages 151–160, New York, NY, USA, 1998. ACM

Press.

[20] Vitor Basto and Vasco Freitas. SCTP extensions for time sensitive traffic. In Proceedings

of the International Network Conference (INC), July 2005.

[21] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for

Differentiated Service. RFC 2475 (Informational), December 1998. Updated by RFC

3260.

[22] Inc Blizzard Entertainment. World of Warcraft. http://www.worldofwarcraft.com/, Jan-

uary, 2008.

[23] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122 (Stan-

dard), October 1989. Updated by RFC 1349.

[24] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture: an

Overview. RFC 1633 (Informational), June 1994.

[25] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP Vegas: new tech-

niques for congestion detection and avoidance. In Proceedings of the ACM International

Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communications (SIGCOMM), pages 24–35. ACM Press, 1994.

[26] Rob Brennan and Thomas Curran. SCTP congestion control: Initial simulation studies.

In Proc. of the International Teletraffic Congress (ITC 17), September 2001.

[27] Bungie. Halo 3. http://halo.xbox.com/halo3/, September 2009.

[28] Carlo Caini and Rosario Firrincelli. TCP hybla: a TCP enhancement for heterogeneous

networks. International journal of satellite communications and networking, 22(5):547–

566, 2004.

Bibliography 157

[29] K. Cardoso and J. de Rezende. HTTP traffic modeling: Development and application,

2002.

[30] Claudio Casetti, Mario Gerla, Saverio Mascolo, M. Y. Sanadidi, and Ren Wang. TCP

Westwood: end-to-end congestion control for wired/wireless networks. Wireless Net-

work, 8(5):467–479, 2002.

[31] M. Claypool. The effect of latency on user performance in real-time strategy games.

Elsevier Computer Networks, 49(1):52–70, September 2005.

[32] Mark Claypool and Kajal Claypool. Latency and player actions in online games. Com-

munications of the ACM, 49(11):40–45, November 2005.

[33] Clip2. The bitterrent protocol specification. http://www.bittorrent.org/beps/-

bep_0003.html.

[34] L. Coene and J. Pastor-Balbas. Telephony Signalling Transport over Stream Control

Transmission Protocol (SCTP) Applicability Statement. RFC 4166 (Informational),

February 2006.

[35] Cube SourceForge Project. Cube. http://www.cubeengine.com/, May 2007.

[36] Hannes Ekström and Reiner Ludwig. The peak-hopper: A new end-to-end retransmission

timer for reliable unicast transport. In INFOCOM, 2004.

[37] The enet project. enet website. http://enet.cubik.org/, July, 2009xs.

[38] K. Evensen, A. Petlund, C. Griwodz, and P. Halvorsen. Redundant bundling in TCP

to reduce perceived latency for time-dependent thin streams. Communications Letters,

IEEE, 12(4):324–326, April 2008.

[39] Kristian Riktor Evensen. Improving TCP for time-dependent applications. Master’s

thesis, Department of Informatics, University of Oslo, Oslo, Norway, May 2008.

[40] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649 (Experimental),

December 2003.

[41] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to TCP’s Fast Re-

covery Algorithm. RFC 3782 (Proposed Standard), April 2004.

[42] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension to the Selective Ac-

knowledgement (SACK) Option for TCP. RFC 2883 (Proposed Standard), July 2000.

[43] Funcom. Age of conan. http://www.ageofconan.com/, September 2009.

158 Bibliography

[44] Funcom. Anarchy online. http://www.anarchy-online.com/, September 2009.

[45] Ashvin Goel, Charles Krasic, and Jonathan Walpole. Low-latency adaptive streaming

over tcp. ACM Trans. Multimedia Comput. Commun. Appl., 4(3):1–20, 2008.

[46] Asvin Goel, Charles Krasic, Kang Li, and Jonathan Walpole. Supporting low latency

TCP-based media streams. In Proceedings of the IEEE International Workshop on Qual-

ity of Service (IWQoS), pages 193–203, May 2002.

[47] Google. Google Android for mobile devices. http://www.android.com/, September 2009.

[48] Luigi A. Grieco and Saverio Mascolo. Performance evaluation and comparison of West-

wood+, New Reno, and Vegas TCP congestion control. ACM Computer Communication

Review, 34(2):25–38, 2004.

[49] Karl-Johan Grinnemo and Anna Brunstrom. Performance of SCTP-controlled failovers

in M3UA-based SIGTRAN networks. In Proc. of the Advanced Simulation Technologies

Conference (ASTC), April 2004.

[50] Carsten Griwodz and Pål Halvorsen. The fun of using TCP for an MMORPG. In Pro-

ceedings of the International Workshop on Network and Operating System Support for

Digital Audio and Video (NOSSDAV), pages 1–7. ACM Press, May 2006.

[51] Carsten Griwodz, Knut-Helge Vik, and Pål Halvorsen. Multicast tree reconfiguration

in distributed interactive applications. In Proceedings of the International Conference

(NIME), pages 1219 – 1223, January 2006.

[52] Yunhong Gu and Robert L. Grossman. UDT: UDP-based Data Transfer for High-Speed

Wide Area Networks. Computer Networks (Elsevier), 51(7), May 2007.

[53] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly high-speed tcp

variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, 2008.

[54] Szabolcs Harcsik, Andreas Petlund, Carsten Griwodz, and Pål Halvorsen. Latency eval-

uation of networking mechanisms for game traffic. In Proceedings of the Workshop

on Network and System Support for Games (NETGAMES), pages 129–134, September

2007.

[55] Mahbub Hassan and Danilkin Fiodor Alekseevich. Variable packet size of ip packets for

voip transmission. In Proceedings of the IASTED International Conference conference

on Internet and Multimedia Systems and Applications (IMSA), pages 136–141. ACTA

Press, 2006.

Bibliography 159

[56] Sofiane Hassayoun and David Ros. Improving application layer latency for reliable thin-

stream game traffic. In Accepted for the 34th Annual IEEE Conference on Local Com-

puter Networks (LCN), October 2009.

[57] P. Hurtig and A. Brunstrom. Packet loss recovery of signaling traffic in sctp. In Pro-

ceedings of the International Symposium on Performance Evaluation of Computer and

Telecommunication Systems (SPECTS0́7), San Diego, California, July 2007.

[58] P. Hurtig and A. Brunstrom. Improved loss detection for signaling traffic in sctp. In

Proceedings of ICC 2008, Beijing, China, May 2008.

[59] IEEE. IEEE 802.3-2008 - Section One, 2008.

[60] International Telecommunication Union (ITU-T). One-way Transmission Time, ITU-T

Recommendation G.114, 2003.

[61] Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM ’88, pages 314–

329, Stanford, CA, August 1988.

[62] Andreas Jungmaier and Michael TÃijxen. On the use of SCTP in failover-scenarios. In

Proc. of the 6th World Multiconference on Systemics, Cybernetics and Informatics, July

2002.

[63] Phil Karn and Craig Partridge. Improving round-trip time estimates in reliable transport

protocols. pages 2–7, 1988.

[64] Tom Kelly. Scalable tcp: improving performance in highspeed wide area networks.

SIGCOMM Comput. Commun. Rev., 33(2):83–91, 2003.

[65] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol (DCCP).

RFC 4340 (Proposed Standard), March 2006.

[66] Charles Krasic, Kang Li, and Jonathan Walpole. The case for streaming multimedia with

tcp. In Proceedings of the International Workshop on Interactive Distributed Multimedia

Systems and Telecommunication Services (IDMS), September 2001.

[67] Sourabh Ladha, Stephan Baucke, Reiner Ludwig, and Paul D. Amer. On making SCTP

robust to spurious retransmissions. ACM Computer Communication Review, 34(2):123–

135, 2004.

[68] D. Leith and R. Shorten. H-TCP: TCP congestion con-

trol for high bandwidth-delay product paths, June 2005.

http://www.hamilton.ie/net/draft-leith-tcp-htcp-00.txt.

http://www.hamilton.ie/net/draft-leith-tcp-htcp-00.txt

160 Bibliography

[69] R. Ludwig and K. Sklower. The Eifel retransmission timer. SIGCOMM Comput. Com-

mun. Rev., 30(3):17–27, 2000.

[70] H. Lundqvist and G. Karlsson. Tcp with end-to-end fec. In Communications, 2004

International Zurich Seminar on, pages 152–155, 2004.

[71] Chris Majewski, Carsten Griwodz, and Pål Halvorsen. Translating latency requirements

into resource requirements for game traffic. In Proceedings of the International Network

Conference (INC), July 2006.

[72] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgement

Options. RFC 2018 (Proposed Standard), October 1996.

[73] Matthew Mathis and Jamshid Mahdavi. Forward acknowledgement: refining TCP con-

gestion control. In Proceedings of the ACM International Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM),

pages 281–291. ACM Press, 1996.

[74] Microsoft. The compound tcp for high-speed and long distance networks.

http://research.microsoft.com/en-us/projects/ctcp/, September 2009.

[75] Microsoft. New networking features in windows server 2008 and windows vista.

http://technet.microsoft.com/en-us/library/bb726965.aspx, September 2009.

[76] Dimitrios Miras, Martin Bateman, and Saleem Bhatti. Fairness of high-speed tcp stacks.

In AINA ’08: Proceedings of the 22nd International Conference on Advanced Informa-

tion Networking and Applications, pages 84–92, Washington, DC, USA, 2008. IEEE

Computer Society.

[77] Amit Mondal and Aleksandar Kuzmanovic. Removing exponential backoff from tcp.

SIGCOMM Comput. Commun. Rev., 38(5):17–28, 2008.

[78] J. Nagle. Congestion control in IP/TCP internetworks. RFC 896, January 1984.

[79] Espen Søgård Paaby. Evaluation of TCP retransmission delays. Master’s thesis, Depart-

ment of Informatics, University of Oslo, Oslo, Norway, May 2006.

[80] Wladimir Palant, Carsten Griwodz, and Pål Halvorsen. Consistency requirements in

multiplayer online games. In Stephane Natkin Adrian David Cheok, Yutaka Ishibashi

and Keiichi Yasumoto, editors, Network & System Support for Games (NetGames 2006),

pages 1–4. ACM Press, 2006.

Bibliography 161

[81] Wladimir Palant, Carsten Griwodz, and Pål Halvorsen. Evaluating dead reckoning varia-

tions with a multi-player game simulator. In Proceedings of the International Workshop

on Network and Operating System Support for Digital Audio and Video (NOSSDAV),

pages 20–25, May 2006.

[82] Wladimir Palant, Carsten Griwodz, and PÃěl Halvorsen. Gls: Simulator for online multi-

player games. In Kenji Mase, editor, ACMMultimedia (MM 2006), pages 805–806. ACM

Press, 2006.

[83] Christina Parsa and J. J. Garcia-Luna-Aceves. Improving TCP congestion control over

internets with heterogeneous transmission media. In International Conference on Net-

work Protocols (ICNP), pages 213–221, November 1999.

[84] V. Paxson and M. Allman. Computing TCP’s Retransmission Timer. RFC 2988 (Pro-

posed Standard), November 2000.

[85] Jon Pedersen. Evaluation of SCTP retransmission delays. Master’s thesis, Department

of Informatics, University of Oslo, Oslo, Norway, May 2006.

[86] Jon Pedersen, Carsten Griwodz, and Pål Halvorsen. Considerations of SCTP retransmis-

sion delays for thin streams. In Proceedings of the IEEE Conference on Local Computer

Networks (LCN), pages 1–12, November 2006.

[87] Andreas Petlund, Paul Beskow, Jon Pedersen, Espen Søgård Paaby, Carsten Griwodz,

and Pål Halvorsen. Improving sctp retransmission delays for time-dependent thin

streams. Springer’s Multimedia Tools and Applications, Special Issue on Massively Mul-

tiuser Online Gaming Systems and Applications, 2009.

[88] Andreas Petlund, Kristian Evensen, , Carsten Griwodz, and Pål Halvorsen. Improving

application layer latency for reliable thin-stream game traffic. In Proceedings of the

Workshop on Network and System Support for Games (NETGAMES), pages 91–98, Oc-

tober 2008.

[89] Andreas Petlund, Kristian Evensen, Carsten Griwodz, and Pål Halvorsen. TCP mech-

anisms for improving the user experience for time-dependent thin-stream applications.

In Chun Tung Chou Ehab Elmallah, Mohamed Younis, editor, The 33rd Annual IEEE

Conference on Local Computer Networks (LCN). IEEE, 2008.

[90] Andreas Petlund, Kristian R Evensen, Carsten Griwodz, and Pål Halvorsen. Latency

reducing tcp modifications for thin-stream interactive applications. In W. Stief, editor,

UpTimes - Magazine of the German Unix User Group (Proceedings of Linux Kongress

162 Bibliography

2008), number 2, pages 150–154, Bachemer Str. 12, 50931 Köln, 2008. German Unix

User Group, German Unix User Group.

[91] Andreas Petlund, Kristian R Evensen, Carsten Griwodz, and Pål Halvorsen. Tcp en-

hancements for interactive thin-stream applications. In Carsten Griwodz and Lars Wolf,

editors, Network and Operating Systems Support for Digital Audio and Video (NOSSDAV

2008), pages 127–128. ACM, 2008. short paper and demo.

[92] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[93] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981. Updated

by RFC 3168.

[94] Batu Sat and Benjamin W. Wah. Playout scheduling and loss-concealments in voip for

optimizing conversational voice communication quality. In Proceedings of the ACM

International Multimedia Conference (ACM MM), pages 137–146, October 2007.

[95] SIGTRAN. Ietf signaling transport workgroup. http://tools.ietf.org/wg/sigtran/, July

2009.

[96] Spotify. Spotify online music service. http://www.spotify.com/, July 2009.

[97] R. Stewart. Stream Control Transmission Protocol. RFC 4960 (Proposed Standard),

September 2007.

[98] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad. Stream Control Transmis-

sion Protocol (SCTP) Partial Reliability Extension. RFC 3758 (Proposed Standard), May

2004.

[99] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina,

M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmission Protocol. RFC 2960

(Proposed Standard), October 2000. Updated by RFC 3309.

[100] SIMREAL technology. NCTUns network simulator. http://nsl10.csie.nctu.edu.tw/,

September 2009.

[101] The Clacoons. "Kålfis i Natten". http://www.youtube.com/watch?v=rGqeaG0g92s, Oc-

tober 1997. Toneveld performance.

[102] The Entertainment Software Association. ESAs 2006 essential facts about the computer

and video game industry, January 2008.

Bibliography 163

[103] Knut-Helge Vik. Game state and event distribution using proxy technology and appli-

cation layer multicast. In Proceedings of the ACM International Multimedia Conference

(ACM MM), pages 1041–1042, 2005.

[104] Knut-Helge Vik, Carsten Griwodz, and Pål Halvorsen. Applicability of group communi-

cation for increased scalability in MMOGs. In Proceedings of the Workshop on Network

and System Support for Games (NETGAMES), Singapore, October 2006. ACM Press.

[105] Knut-Helge Vik, Carsten Griwodz, and Pål Halvorsen. Dynamic group membership man-

agement for distributed interactive applications. In Proceedings of the IEEE Conference

on Local Computer Networks (LCN), pages 141–148, October 2007.

[106] Knut-Helge Vik, Carsten Griwodz, and Pål Halvorsen. On the influence of latency es-

timation on dynamic group communication using overlays, (to appear). In Proceedings

of the SPIE/ACM Conference on Multimedia Computing and Networking (MMCN), San

Jose, CA, USA, January 2009.

[107] Knut-Helge Vik, Pål Halvorsen, and Carsten Griwodz. Constructing low-latency overlay

networks: Tree vs. mesh algorithms. In Proceedings of the IEEE Conference on Local

Computer Networks (LCN), October 2008.

[108] Knut-Helge Vik, Pål Halvorsen, and Carsten Griwodz. Evaluating steiner tree heuristics

and diameter variations for application layer multicast. Elsevier Computer Networks,

52(15):2872–2893, October 2008.

[109] Knut-Helge Vik, Pål Halvorsen, and Carsten Griwodz. Multicast tree diameter for dy-

namic distributed interactive applications. In Proceedings of the Joint Conference of the

IEEE Computer and Communications Societies (INFOCOM), pages 1597–1605, April

2008.

[110] Bing Wang, Jim Kurose, Prashant Shenoy, and Don Towsley. Multimedia streaming via

TCP: an analytic performance study. In MULTIMEDIA ’04: Proceedings of the 12th

annual ACM international conference on Multimedia, pages 908–915, New York, NY,

USA, 2004. ACM.

[111] Bing Wang, Jim Kurose, Prashant Shenoy, and Don Towsley. Multimedia streaming via

tcp: An analytic performance study. ACM Trans. Multimedia Comput. Commun. Appl.,

4(2):1–22, 2008.

[112] Yi Wang, Guohan Lu, and Xing Li. A study of internet packet reordering. In ICOIN,

pages 350–359, 2004.

164 Bibliography

[113] B. S. Woodcock. An analysis of mmog subscription growth, April 2009.

[114] www.sctp.org. Sctp implementations, September 2009.

http://www.sctp.org/implementations.html.

[115] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary increase congestion control for

fast long-distance networks. In Proceedings of the Joint Conference of the IEEE Com-

puter and Communications Societies (INFOCOM), 2004.

[116] Michael Zink, David Westbrook, Sherief Abdallah, Bryan Horling, Vijay Lakamraju,

Eric Lyons, Victoria Manfredi, Jim Kurose, and Kurt Hondl. Meteorological command

and control: An end-to-end architecture for a hazardous weather detection sensor net-

work. In Proceedings of the ACM Workshop on End-to-End, Sense-and-Respond Sys-

tems, Applications, and Services (EESR), pages 37–42, Seattle, WA, June 2005.

http://www.sctp.org/implementations.html

Appendix A

List of abbreviations

ACK Acknowledgement

AIMD Additive increase / multiplicative decrease

AO Anarchy Online

AoC Age of Conan

BDP Bandwidth-delay product

B Bytes

Bps Bytes per second

CDF Cumulative distribution function

cumACK Cumulative acknowledgement

cwnd Congestion window

DCCP Datagram congestion control protocol

DSACK Duplicate selective acknowledgement

dupACK Duplicate acknowledgement

EFR Early fast retransmit

FACK Forward acknowledgement

FPS First-person shooter (game)

FTP File transfer protocol

HTTP Hypertext transfer protocol

IAT Interarrival time

ICMP Internet control message protocol

IP Internet protocol

ISP Internet service provider

kbps Kilo-bits per second

lksctp Linux kernel SCTP

LT Linear timeouts (thin-stream modification)

165

166 Appendix A. List of abbreviations

mFR Modified fast retransmit (thin-stream modification)

MMOG Massively multiplayer online game

ms Milliseconds

MSS Maximum segment size

OS Operating system

OWD One-way delay

p2p Peer-to-peer

pps Packets per second

QoE Quality of experience

QoS Quality of service

RDB Redundant data bundling (thin-stream modification)

RDP Remote desktop protocol

RFC Request for comments

RPG Role-playing game

RTO Retransmission timeout

RTOmin Minimum retransmission timeout

RTS Real-time strategy (game)

RTTVAR RTT variance

RTT Round trip time

SACK Selective acknowledgement

SCTP Stream control transmission protocol

SKB Linux TCP segment control block

SRTT Smoothed RTT

SSH Secure shell

ssthresh Slow-start threshold

TCP Transmission control protocol

tohd Transmission overhead

TSN Transmission sequence number

UDP User datagram protocol

VNC Virtual network computing

VoIP Voice over IP

WiC World in Conflict

WoW World of Warcraft

wu World unit (BZFlag distance metric)

Appendix B

Tools

• analyzeTCP and analyzeSCTP: Used to analyse the ACK delay and delivery delay from

packet traces. For ACK delay, only a sender-side trace is needed. for delivery delay

sender and receiver-side traces are needed.

• tracepump: Logs the packet IATs and packet sizes of original, not retransmitted, packets

from a trace file. It opens a connection to a listening server and replays the exact data

patterns (IAT and packet sizes) over the network.

• streamzero: Creates a connection to a listening server and produces a thin stream. The

thin stream parameters (packet size and IAT) can be specified for each stream that is

created.

• interarrival: Gathers information about packet sizes and IATs from a trace file. Used to

create the statistics presented in table 2.1.

• http-server/http-client: Used to create cross traffic for creating loss on a bandwidth-

limited bottleneck with a tail-dropping queue.

• scripts: A wide range of scripts for setting up batches of tests, generating statistics and

plots.

• tcpdump: Used to capture packets and create traces for analysis.

• tc / netem: Used to create bandwidth limitation, delay and loss.

• sctp_perf: Used to create custom thin stream traffic for SCTP.

167

Appendix C

Complete set of boxplots from TCP

laboratory experiments

This appendix contains the whole range of boxplots from our laboratory experiments using the

thin-stream TCP modifications. This is an extension of the selected statistics that are presented

and discussed in section 5.2.

C.1 Uniform loss

169

170 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
0
0
m

s
−

ia
t1

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
3
%

lo
s
s
:4

.9
1
%

lo
s
s
:5

.1
0
%

lo
s
s
:5

.0
0
%

lo
s
s
:4

.9
7
%

lo
s
s
:5

.0
3
%

to
h
d
:5

.2
5
%

to
h
d
:5

.1
0
%

to
h
d
:5

.6
0
%

to
h
d
:5

.5
7
%

to
h
d
:5

2
.8

1
%

to
h
d
:5

2
.8

6
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
0
0
m

s
−

ia
t1

5
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
2
%

lo
s
s
:5

.0
0
%

lo
s
s
:5

.1
0
%

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
0
%

lo
s
s
:4

.9
9
%

to
h
d
:5

.7
4
%

to
h
d
:5

.7
5
%

to
h
d
:6

.2
5
%

to
h
d
:6

.1
8
%

to
h
d
:1

1
.6

3
%

to
h
d
:1

1
.6

6
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
0
0
m

s
−

ia
t2

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
1
%

lo
s
s
:4

.9
1
%

lo
s
s
:5

.0
0
%

lo
s
s
:5

.0
6
%

lo
s
s
:5

.0
0
%

lo
s
s
:5

.0
4
%

to
h
d
:6

.0
8
%

to
h
d
:5

.9
7
%

to
h
d
:6

.3
7
%

to
h
d
:6

.3
4
%

to
h
d
:1

1
.0

7
%

to
h
d
:1

1
.3

2
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
0
0
m

s
−

ia
t2

5
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
5
%

lo
s
s
:5

.0
7
%

lo
s
s
:4

.9
4
%

lo
s
s
:5

.0
4
%

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
1
%

to
h
d
:1

5
.5

1
%

to
h
d
:1

5
.5

1
%

to
h
d
:1

5
.5

0
%

to
h
d
:1

5
.5

6
%

to
h
d
:2

1
.2

9
%

to
h
d
:2

1
.3

3
%

C.1. Uniform loss 171

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
0
0
m

s
−

ia
t2

5
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
4
%

lo
s
s
:5

.0
0
%

lo
s
s
:4

.9
8
%

lo
s
s
:5

.0
1
%

lo
s
s
:5

.0
0
%

to
h
d
:5

.4
0
%

to
h
d
:5

.4
2
%

to
h
d
:5

.4
5
%

to
h
d
:5

.4
1
%

to
h
d
:8

0
.4

2
%

to
h
d
:8

0
.4

2
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
0
0
m

s
−

ia
t5

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
0
%

lo
s
s
:4

.9
4
%

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
5
%

lo
s
s
:4

.8
4
%

lo
s
s
:5

.0
9
%

to
h
d
:9

.7
4
%

to
h
d
:9

.7
1
%

to
h
d
:9

.9
3
%

to
h
d
:9

.8
6
%

to
h
d
:1

0
.4

4
%

to
h
d
:1

0
.6

2
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
0
0
m

s
−

ia
t5

0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
5
%

lo
s
s
:4

.9
9
%

lo
s
s
:4

.9
4
%

lo
s
s
:4

.9
9
%

lo
s
s
:4

.9
2
%

to
h
d
:5

.3
1
%

to
h
d
:5

.3
3
%

to
h
d
:5

.3
4
%

to
h
d
:6

7
.8

2
%

to
h
d
:6

7
.8

2
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
5
0
m

s
−

ia
t1

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
6
%

lo
s
s
:5

.0
6
%

lo
s
s
:5

.0
4
%

lo
s
s
:5

.0
3
%

lo
s
s
:4

.9
8
%

lo
s
s
:5

.0
3
%

to
h
d
:5

.2
0
%

to
h
d
:5

.3
1
%

to
h
d
:5

.6
9
%

to
h
d
:5

.6
6
%

to
h
d
:5

2
.6

6
%

to
h
d
:5

2
.6

8
%

172 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
5
0
m

s
−

ia
t1

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
6
%

lo
s
s
:5

.0
6
%

lo
s
s
:5

.0
4
%

lo
s
s
:5

.0
3
%

lo
s
s
:4

.9
8
%

lo
s
s
:5

.0
3
%

to
h
d
:5

.2
0
%

to
h
d
:5

.3
1
%

to
h
d
:5

.6
9
%

to
h
d
:5

.6
6
%

to
h
d
:5

2
.6

6
%

to
h
d
:5

2
.6

8
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
5
0
m

s
−

ia
t1

5
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
1
%

lo
s
s
:4

.9
1
%

lo
s
s
:4

.9
5
%

lo
s
s
:5

.0
9
%

lo
s
s
:5

.0
3
%

to
h
d
:5

.8
0
%

to
h
d
:5

.7
9
%

to
h
d
:5

.9
4
%

to
h
d
:5

.9
7
%

to
h
d
:5

3
.1

1
%

to
h
d
:5

3
.0

8
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
5
0
m

s
−

ia
t2

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
1
%

lo
s
s
:4

.9
8
%

lo
s
s
:5

.0
0
%

lo
s
s
:5

.0
2
%

lo
s
s
:4

.9
7
%

lo
s
s
:5

.0
2
%

to
h
d
:6

.0
2
%

to
h
d
:5

.9
9
%

to
h
d
:6

.1
8
%

to
h
d
:6

.2
1
%

to
h
d
:1

1
.7

1
%

to
h
d
:1

1
.9

6
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
5
0
m

s
−

ia
t2

5
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
0
%

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
1
%

lo
s
s
:4

.9
7
%

lo
s
s
:4

.9
1
%

lo
s
s
:5

.1
0
%

to
h
d
:1

5
.1

6
%

to
h
d
:1

5
.6

6
%

to
h
d
:1

5
.3

9
%

to
h
d
:1

5
.5

0
%

to
h
d
:2

2
.2

7
%

to
h
d
:2

2
.3

5
%

C.1. Uniform loss 173

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
5
0
m

s
−

ia
t2

5
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
7
%

lo
s
s
:5

.0
5
%

lo
s
s
:4

.9
9
%

lo
s
s
:4

.9
8
%

lo
s
s
:5

.0
0
%

lo
s
s
:5

.0
1
%

to
h
d
:5

.4
2
%

to
h
d
:5

.4
9
%

to
h
d
:5

.4
9
%

to
h
d
:5

.4
4
%

to
h
d
:8

5
.9

3
%

to
h
d
:8

5
.9

3
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
5
0
m

s
−

ia
t5

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
4
%

lo
s
s
:5

.0
6
%

lo
s
s
:4

.8
5
%

lo
s
s
:5

.1
2
%

lo
s
s
:5

.0
4
%

lo
s
s
:4

.9
0
%

to
h
d
:9

.6
3
%

to
h
d
:9

.8
0
%

to
h
d
:9

.7
1
%

to
h
d
:9

.8
8
%

to
h
d
:1

7
.2

5
%

to
h
d
:1

7
.2

7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t1
5
0
m

s
−

ia
t5

0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
7
%

lo
s
s
:4

.9
5
%

lo
s
s
:5

.0
2
%

lo
s
s
:4

.9
9
%

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
0
%

to
h
d
:5

.4
0
%

to
h
d
:5

.3
8
%

to
h
d
:5

.5
2
%

to
h
d
:5

.4
8
%

to
h
d
:7

5
.6

6
%

to
h
d
:7

5
.6

6
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t2
0
0
m

s
−

ia
t1

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
8
%

lo
s
s
:4

.9
2
%

lo
s
s
:4

.9
5
%

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
5
%

to
h
d
:5

.2
8
%

to
h
d
:5

.2
5
%

to
h
d
:5

.4
0
%

to
h
d
:5

.4
1
%

to
h
d
:6

7
.8

4
%

to
h
d
:6

7
.8

3
%

174 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t2
0
0
m

s
−

ia
t1

5
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
3
%

lo
s
s
:5

.0
5
%

lo
s
s
:5

.0
8
%

lo
s
s
:5

.0
2
%

lo
s
s
:4

.9
9
%

lo
s
s
:4

.9
5
%

to
h
d
:5

.7
5
%

to
h
d
:5

.8
0
%

to
h
d
:6

.1
0
%

to
h
d
:6

.0
2
%

to
h
d
:5

3
.3

2
%

to
h
d
:5

3
.2

8
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t2
0
0
m

s
−

ia
t2

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
0
%

lo
s
s
:5

.0
3
%

lo
s
s
:5

.0
8
%

lo
s
s
:4

.9
5
%

lo
s
s
:4

.9
7
%

lo
s
s
:4

.9
7
%

to
h
d
:5

.8
0
%

to
h
d
:5

.8
8
%

to
h
d
:6

.2
0
%

to
h
d
:5

.9
9
%

to
h
d
:5

3
.0

5
%

to
h
d
:5

3
.0

9
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t2
0
0
m

s
−

ia
t2

5
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
8
%

lo
s
s
:4

.9
1
%

lo
s
s
:5

.0
8
%

lo
s
s
:4

.9
4
%

lo
s
s
:5

.1
1
%

lo
s
s
:4

.9
0
%

to
h
d
:1

4
.7

9
%

to
h
d
:1

4
.9

4
%

to
h
d
:1

5
.0

8
%

to
h
d
:1

4
.7

6
%

to
h
d
:2

2
.6

9
%

to
h
d
:2

2
.3

8
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t2
0
0
m

s
−

ia
t2

5
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
5
%

lo
s
s
:4

.9
8
%

lo
s
s
:4

.9
7
%

lo
s
s
:4

.9
8
%

lo
s
s
:5

.0
1
%

lo
s
s
:5

.0
0
%

to
h
d
:5

.3
0
%

to
h
d
:5

.3
3
%

to
h
d
:5

.4
0
%

to
h
d
:5

.3
9
%

to
h
d
:8

9
.0

2
%

to
h
d
:8

9
.0

2
%

C.1. Uniform loss 175

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t2
0
0
m

s
−

ia
t5

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.1
0
%

lo
s
s
:4

.9
9
%

lo
s
s
:4

.9
6
%

lo
s
s
:4

.8
6
%

lo
s
s
:4

.8
8
%

lo
s
s
:4

.9
9
%

to
h
d
:1

0
.5

3
%

to
h
d
:1

0
.3

6
%

to
h
d
:1

0
.2

3
%

to
h
d
:9

.9
7
%

to
h
d
:1

8
.1

4
%

to
h
d
:1

7
.4

5
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t2
0
0
m

s
−

ia
t5

0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
8
%

lo
s
s
:5

.0
5
%

lo
s
s
:5

.0
5
%

lo
s
s
:4

.9
9
%

lo
s
s
:5

.0
0
%

lo
s
s
:4

.9
5
%

to
h
d
:5

.3
7
%

to
h
d
:5

.4
5
%

to
h
d
:5

.4
9
%

to
h
d
:5

.4
0
%

to
h
d
:8

0
.4

2
%

to
h
d
:8

0
.4

2
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t2
5
0
m

s
−

ia
t1

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
2
%

lo
s
s
:5

.0
1
%

lo
s
s
:5

.0
1
%

lo
s
s
:4

.9
3
%

lo
s
s
:4

.9
4
%

lo
s
s
:5

.0
3
%

to
h
d
:5

.2
4
%

to
h
d
:5

.4
0
%

to
h
d
:5

.4
3
%

to
h
d
:5

.4
2
%

to
h
d
:6

7
.8

2
%

to
h
d
:6

7
.8

4
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t2
5
0
m

s
−

ia
t1

5
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
9
%

lo
s
s
:5

.0
3
%

lo
s
s
:4

.9
1
%

lo
s
s
:5

.0
4
%

lo
s
s
:5

.0
7
%

lo
s
s
:5

.0
1
%

to
h
d
:5

.6
2
%

to
h
d
:5

.6
3
%

to
h
d
:5

.5
6
%

to
h
d
:5

.7
4
%

to
h
d
:5

2
.6

9
%

to
h
d
:5

2
.6

6
%

176 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t2
5
0
m

s
−

ia
t2

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
0
%

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
2
%

lo
s
s
:4

.9
9
%

lo
s
s
:4

.9
3
%

lo
s
s
:5

.0
7
%

to
h
d
:5

.8
4
%

to
h
d
:5

.7
7
%

to
h
d
:6

.1
4
%

to
h
d
:6

.0
0
%

to
h
d
:5

3
.0

9
%

to
h
d
:5

3
.1

7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t2
5
0
m

s
−

ia
t2

5
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
9
%

lo
s
s
:4

.9
7
%

lo
s
s
:4

.9
4
%

lo
s
s
:5

.0
4
%

lo
s
s
:4

.9
8
%

lo
s
s
:4

.9
4
%

to
h
d
:1

4
.7

2
%

to
h
d
:1

4
.8

2
%

to
h
d
:1

4
.6

2
%

to
h
d
:1

4
.9

4
%

to
h
d
:5

5
.8

2
%

to
h
d
:5

5
.8

6
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t2
5
0
m

s
−

ia
t2

5
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
3
%

lo
s
s
:4

.9
6
%

lo
s
s
:5

.0
4
%

lo
s
s
:5

.0
0
%

lo
s
s
:4

.9
8
%

lo
s
s
:4

.9
7
%

to
h
d
:5

.2
5
%

to
h
d
:5

.2
1
%

to
h
d
:5

.4
6
%

to
h
d
:5

.3
1
%

to
h
d
:9

0
.9

9
%

to
h
d
:9

0
.9

9
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t2
5
0
m

s
−

ia
t5

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
5
%

lo
s
s
:5

.0
9
%

lo
s
s
:4

.9
0
%

lo
s
s
:5

.0
3
%

lo
s
s
:4

.8
6
%

lo
s
s
:4

.9
5
%

to
h
d
:1

0
.3

9
%

to
h
d
:1

0
.4

9
%

to
h
d
:1

0
.1

6
%

to
h
d
:1

0
.4

8
%

to
h
d
:1

7
.1

8
%

to
h
d
:1

7
.6

8
%

C.1. Uniform loss 177

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t2
5
0
m

s
−

ia
t5

0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
1
%

lo
s
s
:4

.9
9
%

lo
s
s
:5

.0
3
%

lo
s
s
:5

.0
1
%

lo
s
s
:5

.0
6
%

to
h
d
:5

.4
1
%

to
h
d
:5

.3
8
%

to
h
d
:5

.4
8
%

to
h
d
:5

.4
7
%

to
h
d
:8

3
.6

3
%

to
h
d
:8

3
.6

3
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t3
0
0
m

s
−

ia
t1

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
3
%

lo
s
s
:5

.0
7
%

lo
s
s
:4

.9
4
%

lo
s
s
:4

.9
9
%

lo
s
s
:5

.0
4
%

lo
s
s
:5

.0
4
%

to
h
d
:5

.2
8
%

to
h
d
:5

.4
1
%

to
h
d
:5

.4
2
%

to
h
d
:5

.5
2
%

to
h
d
:7

5
.6

6
%

to
h
d
:7

5
.6

6
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t3
0
0
m

s
−

ia
t1

5
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
4
%

lo
s
s
:5

.0
4
%

lo
s
s
:5

.0
1
%

lo
s
s
:5

.0
3
%

lo
s
s
:4

.9
6
%

lo
s
s
:4

.9
9
%

to
h
d
:5

.4
0
%

to
h
d
:5

.5
5
%

to
h
d
:5

.5
6
%

to
h
d
:5

.5
0
%

to
h
d
:6

7
.8

6
%

to
h
d
:6

7
.8

4
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t3
0
0
m

s
−

ia
t2

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
8
%

lo
s
s
:5

.0
1
%

lo
s
s
:5

.0
1
%

lo
s
s
:4

.9
8
%

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
2
%

to
h
d
:5

.7
7
%

to
h
d
:5

.7
6
%

to
h
d
:6

.2
0
%

to
h
d
:6

.1
5
%

to
h
d
:5

3
.3

0
%

to
h
d
:5

3
.2

9
%

178 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t3
0
0
m

s
−

ia
t2

5
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
7
%

lo
s
s
:5

.0
3
%

lo
s
s
:5

.0
0
%

lo
s
s
:4

.9
7
%

lo
s
s
:4

.9
8
%

lo
s
s
:5

.0
3
%

to
h
d
:6

.1
8
%

to
h
d
:6

.1
5
%

to
h
d
:6

.0
5
%

to
h
d
:6

.0
5
%

to
h
d
:5

3
.0

8
%

to
h
d
:5

3
.0

8
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t3
0
0
m

s
−

ia
t2

5
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
2
%

lo
s
s
:4

.9
7
%

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
4
%

lo
s
s
:5

.0
2
%

lo
s
s
:4

.9
9
%

to
h
d
:5

.1
7
%

to
h
d
:5

.3
1
%

to
h
d
:5

.3
9
%

to
h
d
:5

.5
1
%

to
h
d
:9

1
.8

9
%

to
h
d
:9

1
.8

7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t3
0
0
m

s
−

ia
t5

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
8
%

lo
s
s
:5

.0
1
%

lo
s
s
:5

.0
6
%

lo
s
s
:4

.9
9
%

lo
s
s
:5

.0
4
%

lo
s
s
:5

.0
2
%

to
h
d
:1

5
.3

6
%

to
h
d
:1

6
.2

8
%

to
h
d
:1

5
.5

1
%

to
h
d
:1

6
.3

7
%

to
h
d
:2

1
.1

7
%

to
h
d
:2

1
.0

7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t3
0
0
m

s
−

ia
t5

0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
1
%

lo
s
s
:4

.9
9
%

lo
s
s
:4

.9
7
%

lo
s
s
:5

.0
4
%

lo
s
s
:5

.0
0
%

lo
s
s
:4

.9
8
%

to
h
d
:5

.3
7
%

to
h
d
:5

.3
3
%

to
h
d
:5

.4
7
%

to
h
d
:5

.4
5
%

to
h
d
:8

5
.9

3
%

to
h
d
:8

5
.9

3
%

C.1. Uniform loss 179

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t5
0
m

s
−

ia
t1

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
9
%

lo
s
s
:5

.0
4
%

lo
s
s
:5

.0
0
%

lo
s
s
:5

.0
0
%

lo
s
s
:5

.0
0
%

lo
s
s
:4

.9
5
%

to
h
d
:5

.7
3
%

to
h
d
:5

.7
0
%

to
h
d
:5

.8
5
%

to
h
d
:5

.8
1
%

to
h
d
:1

1
.5

7
%

to
h
d
:1

1
.4

6
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t5
0
m

s
−

ia
t1

5
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.8
8
%

lo
s
s
:5

.0
1
%

lo
s
s
:4

.9
7
%

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
3
%

lo
s
s
:4

.9
9
%

to
h
d
:5

.9
2
%

to
h
d
:6

.0
7
%

to
h
d
:6

.1
7
%

to
h
d
:6

.2
5
%

to
h
d
:1

1
.0

2
%

to
h
d
:1

1
.1

5
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t5
0
m

s
−

ia
t2

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
5
%

lo
s
s
:5

.0
1
%

lo
s
s
:5

.0
5
%

lo
s
s
:5

.0
1
%

lo
s
s
:4

.9
2
%

lo
s
s
:5

.0
6
%

to
h
d
:6

.1
7
%

to
h
d
:6

.6
0
%

to
h
d
:6

.2
7
%

to
h
d
:6

.4
6
%

to
h
d
:1

9
.7

1
%

to
h
d
:2

0
.0

5
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t5
0
m

s
−

ia
t2

5
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.0
2
%

lo
s
s
:5

.0
5
%

lo
s
s
:4

.9
3
%

lo
s
s
:5

.0
7
%

lo
s
s
:4

.9
2
%

lo
s
s
:5

.0
7
%

to
h
d
:1

5
.0

4
%

to
h
d
:1

5
.5

8
%

to
h
d
:1

5
.2

5
%

to
h
d
:1

5
.7

3
%

to
h
d
:1

9
.4

7
%

to
h
d
:1

9
.5

0
%

180 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t5
0
m

s
−

ia
t2

5
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
8
%

lo
s
s
:5

.0
1
%

lo
s
s
:5

.0
0
%

lo
s
s
:4

.9
7
%

lo
s
s
:5

.0
0
%

lo
s
s
:5

.0
0
%

to
h
d
:5

.3
7
%

to
h
d
:5

.3
9
%

to
h
d
:5

.4
3
%

to
h
d
:5

.3
6
%

to
h
d
:6

7
.8

3
%

to
h
d
:6

7
.8

2
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t5
0
m

s
−

ia
t5

0
0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
9
%

lo
s
s
:5

.0
8
%

lo
s
s
:4

.9
8
%

lo
s
s
:4

.8
6
%

lo
s
s
:5

.2
0
%

lo
s
s
:4

.9
9
%

to
h
d
:9

.5
8
%

to
h
d
:9

.7
9
%

to
h
d
:9

.6
7
%

to
h
d
:9

.7
0
%

to
h
d
:1

0
.7

6
%

to
h
d
:1

0
.6

8
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)
A

C
K

 l
a
te

n
c
y
 :

 t
c
p

−
jo

u
rn

a
l−

s
e
n

d
−

lo
s
s
5
%

−
rt

t5
0
m

s
−

ia
t5

0
−

p
s
1
0
0

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.9
9
%

lo
s
s
:4

.9
9
%

lo
s
s
:4

.9
2
%

lo
s
s
:4

.9
6
%

lo
s
s
:5

.0
0
%

lo
s
s
:5

.0
3
%

to
h
d
:5

.4
7
%

to
h
d
:5

.4
6
%

to
h
d
:5

.4
4
%

to
h
d
:5

.4
7
%

to
h
d
:5

2
.5

7
%

to
h
d
:5

2
.5

8
%

C.2. Cross-traffic loss - high loss rate 181

C.2 Cross-traffic loss - high loss rate

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
0
0
m

s
 I
A

T
:

1
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.5
3
%

lo
s
s
:4

.3
1
%

lo
s
s
:4

.6
5
%

lo
s
s
:4

.4
3
%

lo
s
s
:4

.3
2
%

lo
s
s
:4

.4
5
%

to
h
d
:4

.7
0
%

to
h
d
:4

.4
9
%

to
h
d
:5

.0
1
%

to
h
d
:4

.6
4
%

to
h
d
:5

1
.2

1
%

to
h
d
:5

1
.2

5
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
0
0
m

s
 I
A

T
:

1
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.7
8
%

lo
s
s
:4

.4
6
%

lo
s
s
:4

.4
0
%

lo
s
s
:4

.5
1
%

lo
s
s
:5

.0
0
%

lo
s
s
:4

.6
8
%

to
h
d
:4

.8
2
%

to
h
d
:4

.5
0
%

to
h
d
:4

.5
7
%

to
h
d
:4

.6
5
%

to
h
d
:2

6
.8

6
%

to
h
d
:2

6
.5

9
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
0
0
m

s
 I
A

T
:

2
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.2
9
%

lo
s
s
:4

.6
0
%

lo
s
s
:4

.1
5
%

lo
s
s
:4

.7
2
%

lo
s
s
:4

.5
9
%

lo
s
s
:4

.4
7
%

to
h
d
:6

.3
8
%

to
h
d
:6

.7
9
%

to
h
d
:5

.4
7
%

to
h
d
:6

.1
5
%

to
h
d
:1

0
.2

5
%

to
h
d
:8

.4
9
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
0
0
m

s
 I
A

T
:

2
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:5

.4
8
%

lo
s
s
:4

.3
3
%

lo
s
s
:4

.4
3
%

lo
s
s
:4

.4
5
%

lo
s
s
:5

.3
3
%

lo
s
s
:5

.1
6
%

to
h
d
:9

.6
2
%

to
h
d
:7

.7
5
%

to
h
d
:7

.9
3
%

to
h
d
:7

.9
9
%

to
h
d
:1

3
.2

7
%

to
h
d
:1

2
.9

0
%

182 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
0
0
m

s
 I
A

T
:

2
5
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:3

.7
3
%

lo
s
s
:3

.7
2
%

lo
s
s
:3

.7
3
%

lo
s
s
:3

.7
5
%

lo
s
s
:3

.7
5
%

lo
s
s
:4

.3
1
%

to
h
d
:4

.8
5
%

to
h
d
:4

.8
1
%

to
h
d
:4

.7
8
%

to
h
d
:4

.8
0
%

to
h
d
:8

3
.2

9
%

to
h
d
:8

3
.3

3
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
0
0
m

s
 I
A

T
:

5
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.7
6
%

lo
s
s
:4

.3
8
%

lo
s
s
:4

.5
8
%

lo
s
s
:4

.7
4
%

lo
s
s
:4

.6
7
%

lo
s
s
:4

.7
6
%

to
h
d
:4

.8
0
%

to
h
d
:4

.3
8
%

to
h
d
:4

.6
1
%

to
h
d
:4

.7
6
%

to
h
d
:6

.4
9
%

to
h
d
:6

.9
8
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
0
0
m

s
 I
A

T
:

5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:4

.0
7
%

lo
s
s
:4

.0
8
%

lo
s
s
:4

.0
9
%

lo
s
s
:4

.0
4
%

lo
s
s
:4

.2
2
%

lo
s
s
:4

.3
4
%

to
h
d
:4

.6
2
%

to
h
d
:4

.6
1
%

to
h
d
:4

.5
5
%

to
h
d
:4

.5
9
%

to
h
d
:7

0
.1

6
%

to
h
d
:7

0
.1

7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

1
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

3
.5

6
%

lo
s
s
:1

3
.6

9
%

lo
s
s
:1

3
.1

9
%

lo
s
s
:1

3
.5

5
%

lo
s
s
:1

1
.4

9
%

lo
s
s
:1

1
.2

9
%

to
h
d
:1

7
.4

7
%

to
h
d
:1

7
.1

2
%

to
h
d
:1

8
.0

0
%

to
h
d
:1

7
.2

0
%

to
h
d
:6

5
.3

0
%

to
h
d
:6

5
.2

6
%

C.2. Cross-traffic loss - high loss rate 183

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

1
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

3
.5

6
%

lo
s
s
:1

3
.6

9
%

lo
s
s
:1

3
.1

9
%

lo
s
s
:1

3
.5

5
%

lo
s
s
:1

1
.4

9
%

lo
s
s
:1

1
.2

9
%

to
h
d
:1

7
.4

7
%

to
h
d
:1

7
.1

2
%

to
h
d
:1

8
.0

0
%

to
h
d
:1

7
.2

0
%

to
h
d
:6

5
.3

0
%

to
h
d
:6

5
.2

6
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

1
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

3
.2

0
%

lo
s
s
:1

3
.4

3
%

lo
s
s
:1

3
.7

8
%

lo
s
s
:1

3
.9

5
%

lo
s
s
:1

1
.6

0
%

lo
s
s
:1

2
.5

6
%

to
h
d
:1

5
.5

8
%

to
h
d
:1

5
.7

2
%

to
h
d
:1

7
.5

8
%

to
h
d
:1

6
.7

3
%

to
h
d
:5

4
.2

3
%

to
h
d
:5

4
.6

1
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

2
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

2
.6

2
%

lo
s
s
:1

3
.3

9
%

lo
s
s
:1

3
.1

8
%

lo
s
s
:1

3
.1

7
%

lo
s
s
:1

2
.5

2
%

lo
s
s
:1

2
.3

1
%

to
h
d
:1

4
.8

4
%

to
h
d
:1

4
.6

4
%

to
h
d
:1

5
.8

7
%

to
h
d
:1

5
.4

4
%

to
h
d
:4

9
.0

4
%

to
h
d
:4

8
.9

9
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

2
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

3
.2

3
%

lo
s
s
:1

3
.0

5
%

lo
s
s
:1

2
.4

7
%

lo
s
s
:1

3
.3

9
%

lo
s
s
:1

2
.6

0
%

lo
s
s
:1

2
.4

9
%

to
h
d
:2

0
.2

7
%

to
h
d
:1

9
.4

3
%

to
h
d
:1

9
.4

0
%

to
h
d
:1

9
.8

9
%

to
h
d
:2

7
.1

8
%

to
h
d
:2

6
.7

4
%

184 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

2
5
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

2
.3

7
%

lo
s
s
:1

2
.7

6
%

lo
s
s
:1

2
.4

1
%

lo
s
s
:1

2
.7

5
%

lo
s
s
:1

1
.8

9
%

lo
s
s
:1

1
.0

8
%

to
h
d
:1

9
.8

7
%

to
h
d
:2

0
.3

4
%

to
h
d
:2

0
.3

7
%

to
h
d
:2

0
.2

7
%

to
h
d
:8

8
.6

5
%

to
h
d
:8

8
.6

3
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

5
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

3
.8

6
%

lo
s
s
:1

3
.7

6
%

lo
s
s
:1

3
.7

0
%

lo
s
s
:1

4
.2

2
%

lo
s
s
:1

3
.4

8
%

lo
s
s
:1

3
.8

5
%

to
h
d
:1

6
.4

6
%

to
h
d
:1

5
.6

6
%

to
h
d
:1

6
.3

4
%

to
h
d
:1

6
.3

2
%

to
h
d
:2

4
.4

2
%

to
h
d
:2

3
.9

8
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

3
.4

4
%

lo
s
s
:1

3
.7

5
%

lo
s
s
:1

3
.2

7
%

lo
s
s
:1

3
.6

4
%

lo
s
s
:1

1
.6

4
%

lo
s
s
:1

1
.9

0
%

to
h
d
:1

9
.1

4
%

to
h
d
:1

9
.5

9
%

to
h
d
:1

9
.4

9
%

to
h
d
:1

9
.9

1
%

to
h
d
:7

9
.5

4
%

to
h
d
:7

9
.5

6
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

2
0
0
m

s
 I
A

T
:

1
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

4
.2

5
%

lo
s
s
:1

4
.3

3
%

lo
s
s
:1

4
.4

8
%

lo
s
s
:1

4
.6

7
%

lo
s
s
:1

9
.7

2
%

lo
s
s
:2

1
.0

9
%

to
h
d
:1

2
.2

6
%

to
h
d
:1

2
.3

5
%

to
h
d
:1

2
.0

7
%

to
h
d
:1

2
.4

2
%

to
h
d
:6

9
.2

3
%

to
h
d
:6

9
.4

3
%

C.2. Cross-traffic loss - high loss rate 185

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

2
0
0
m

s
 I
A

T
:

1
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

5
.6

0
%

lo
s
s
:1

5
.7

4
%

lo
s
s
:1

5
.1

9
%

lo
s
s
:1

5
.3

9
%

lo
s
s
:2

0
.2

9
%

lo
s
s
:2

1
.5

1
%

to
h
d
:1

3
.9

8
%

to
h
d
:1

4
.2

3
%

to
h
d
:1

3
.3

5
%

to
h
d
:1

3
.8

1
%

to
h
d
:5

6
.1

9
%

to
h
d
:5

6
.6

9
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

2
0
0
m

s
 I
A

T
:

2
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

6
.8

9
%

lo
s
s
:1

7
.4

5
%

lo
s
s
:1

5
.7

5
%

lo
s
s
:1

6
.1

8
%

lo
s
s
:1

9
.2

2
%

lo
s
s
:1

9
.3

4
%

to
h
d
:1

5
.9

2
%

to
h
d
:1

6
.6

1
%

to
h
d
:1

4
.7

3
%

to
h
d
:1

5
.2

6
%

to
h
d
:5

6
.8

2
%

to
h
d
:5

7
.3

0
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

2
0
0
m

s
 I
A

T
:

2
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

8
.1

5
%

lo
s
s
:1

9
.4

7
%

lo
s
s
:1

9
.1

2
%

lo
s
s
:1

8
.8

0
%

lo
s
s
:1

9
.8

3
%

lo
s
s
:1

9
.9

6
%

to
h
d
:2

3
.0

0
%

to
h
d
:2

5
.7

8
%

to
h
d
:2

3
.7

1
%

to
h
d
:2

5
.1

8
%

to
h
d
:5

9
.1

6
%

to
h
d
:5

9
.8

5
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

2
0
0
m

s
 I
A

T
:

2
5
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

1
.5

2
%

lo
s
s
:1

1
.6

7
%

lo
s
s
:1

1
.5

8
%

lo
s
s
:1

1
.7

0
%

lo
s
s
:1

8
.7

8
%

lo
s
s
:1

8
.6

3
%

to
h
d
:9

.1
4
%

to
h
d
:9

.3
2
%

to
h
d
:8

.9
5
%

to
h
d
:8

.9
5
%

to
h
d
:8

9
.7

4
%

to
h
d
:8

9
.7

8
%

186 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

2
0
0
m

s
 I
A

T
:

5
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

9
.6

4
%

lo
s
s
:2

0
.8

9
%

lo
s
s
:1

9
.7

8
%

lo
s
s
:1

9
.9

5
%

lo
s
s
:1

9
.7

9
%

lo
s
s
:1

9
.8

0
%

to
h
d
:1

9
.6

5
%

to
h
d
:2

2
.0

6
%

to
h
d
:1

9
.5

6
%

to
h
d
:2

1
.0

4
%

to
h
d
:3

3
.1

0
%

to
h
d
:3

5
.2

4
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

2
0
0
m

s
 I
A

T
:

5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

2
.1

3
%

lo
s
s
:1

2
.0

5
%

lo
s
s
:1

2
.2

7
%

lo
s
s
:1

2
.2

3
%

lo
s
s
:2

0
.0

2
%

lo
s
s
:1

9
.7

7
%

to
h
d
:1

0
.2

6
%

to
h
d
:1

0
.1

2
%

to
h
d
:1

0
.0

5
%

to
h
d
:1

0
.0

3
%

to
h
d
:8

3
.9

0
%

to
h
d
:8

3
.8

8
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

2
5
0
m

s
 I
A

T
:

1
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:8

.7
2
%

lo
s
s
:8

.7
5
%

lo
s
s
:8

.7
1
%

lo
s
s
:8

.7
1
%

lo
s
s
:1

0
.8

6
%

lo
s
s
:1

0
.6

4
%

to
h
d
:9

.0
4
%

to
h
d
:8

.8
3
%

to
h
d
:8

.6
9
%

to
h
d
:8

.7
0
%

to
h
d
:7

4
.2

0
%

to
h
d
:7

4
.1

7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

2
5
0
m

s
 I
A

T
:

1
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:9

.4
3
%

lo
s
s
:9

.2
7
%

lo
s
s
:9

.4
2
%

lo
s
s
:9

.5
8
%

lo
s
s
:9

.8
6
%

lo
s
s
:1

0
.6

8
%

to
h
d
:9

.4
4
%

to
h
d
:9

.1
7
%

to
h
d
:9

.4
1
%

to
h
d
:9

.4
5
%

to
h
d
:6

5
.0

4
%

to
h
d
:6

5
.2

0
%

C.2. Cross-traffic loss - high loss rate 187

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

2
5
0
m

s
 I
A

T
:

2
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:9

.9
9
%

lo
s
s
:9

.7
7
%

lo
s
s
:9

.2
8
%

lo
s
s
:9

.2
1
%

lo
s
s
:1

0
.7

2
%

lo
s
s
:1

0
.7

7
%

to
h
d
:1

0
.0

5
%

to
h
d
:9

.7
9
%

to
h
d
:9

.2
0
%

to
h
d
:9

.2
1
%

to
h
d
:5

4
.1

9
%

to
h
d
:5

4
.2

4
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

2
5
0
m

s
 I
A

T
:

2
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:9

.6
6
%

lo
s
s
:9

.8
0
%

lo
s
s
:9

.4
1
%

lo
s
s
:9

.6
3
%

lo
s
s
:1

0
.6

3
%

lo
s
s
:1

1
.7

1
%

to
h
d
:1

0
.5

8
%

to
h
d
:1

0
.8

0
%

to
h
d
:1

0
.3

8
%

to
h
d
:1

0
.5

6
%

to
h
d
:5

4
.3

3
%

to
h
d
:5

4
.7

4
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

2
5
0
m

s
 I
A

T
:

2
5
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:7

.9
7
%

lo
s
s
:7

.9
5
%

lo
s
s
:8

.0
3
%

lo
s
s
:7

.9
8
%

lo
s
s
:9

.4
2
%

lo
s
s
:9

.4
4
%

to
h
d
:8

.6
0
%

to
h
d
:8

.4
0
%

to
h
d
:8

.3
8
%

to
h
d
:8

.3
9
%

to
h
d
:8

7
.4

3
%

to
h
d
:8

7
.3

9
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

2
5
0
m

s
 I
A

T
:

5
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

1
.6

8
%

lo
s
s
:1

0
.4

7
%

lo
s
s
:1

0
.3

6
%

lo
s
s
:1

0
.3

9
%

lo
s
s
:1

1
.4

1
%

lo
s
s
:1

2
.0

6
%

to
h
d
:1

9
.0

8
%

to
h
d
:1

7
.9

7
%

to
h
d
:1

7
.4

0
%

to
h
d
:1

8
.0

2
%

to
h
d
:2

4
.3

3
%

to
h
d
:2

5
.4

5
%

188 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

2
5
0
m

s
 I
A

T
:

5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:8

.3
4
%

lo
s
s
:8

.4
7
%

lo
s
s
:8

.3
4
%

lo
s
s
:8

.3
6
%

lo
s
s
:9

.9
0
%

lo
s
s
:1

0
.0

6
%

to
h
d
:8

.3
7
%

to
h
d
:8

.6
1
%

to
h
d
:8

.5
4
%

to
h
d
:8

.4
9
%

to
h
d
:8

5
.4

4
%

to
h
d
:8

5
.4

4
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

3
0
0
m

s
 I
A

T
:

1
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:6

.4
0
%

lo
s
s
:6

.4
3
%

lo
s
s
:6

.4
5
%

lo
s
s
:6

.3
7
%

lo
s
s
:6

.4
4
%

lo
s
s
:6

.4
4
%

to
h
d
:7

.0
2
%

to
h
d
:7

.1
3
%

to
h
d
:7

.1
2
%

to
h
d
:6

.9
8
%

to
h
d
:7

5
.4

3
%

to
h
d
:7

5
.4

4
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

3
0
0
m

s
 I
A

T
:

1
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:6

.5
2
%

lo
s
s
:6

.6
0
%

lo
s
s
:6

.7
0
%

lo
s
s
:6

.4
2
%

lo
s
s
:6

.7
8
%

lo
s
s
:6

.6
9
%

to
h
d
:7

.0
0
%

to
h
d
:6

.8
6
%

to
h
d
:7

.0
6
%

to
h
d
:6

.8
5
%

to
h
d
:6

7
.4

8
%

to
h
d
:6

7
.4

8
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

3
0
0
m

s
 I
A

T
:

2
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:6

.3
7
%

lo
s
s
:6

.6
4
%

lo
s
s
:6

.1
5
%

lo
s
s
:6

.5
6
%

lo
s
s
:6

.7
4
%

lo
s
s
:6

.6
6
%

to
h
d
:6

.6
0
%

to
h
d
:6

.8
5
%

to
h
d
:6

.4
9
%

to
h
d
:6

.8
0
%

to
h
d
:5

2
.4

9
%

to
h
d
:5

2
.4

3
%

C.2. Cross-traffic loss - high loss rate 189

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

3
0
0
m

s
 I
A

T
:

2
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:6

.9
2
%

lo
s
s
:6

.8
4
%

lo
s
s
:6

.5
1
%

lo
s
s
:6

.8
9
%

lo
s
s
:6

.9
7
%

lo
s
s
:6

.7
3
%

to
h
d
:7

.2
5
%

to
h
d
:7

.1
5
%

to
h
d
:6

.8
8
%

to
h
d
:7

.2
4
%

to
h
d
:5

2
.1

9
%

to
h
d
:5

2
.1

0
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

3
0
0
m

s
 I
A

T
:

2
5
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:6

.3
0
%

lo
s
s
:6

.2
8
%

lo
s
s
:6

.2
6
%

lo
s
s
:6

.2
5
%

lo
s
s
:6

.2
3
%

lo
s
s
:6

.2
4
%

to
h
d
:7

.8
4
%

to
h
d
:7

.9
6
%

to
h
d
:7

.8
7
%

to
h
d
:7

.8
6
%

to
h
d
:8

4
.2

4
%

to
h
d
:8

4
.3

2
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

3
0
0
m

s
 I
A

T
:

5
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:7

.0
0
%

lo
s
s
:7

.1
0
%

lo
s
s
:6

.9
3
%

lo
s
s
:7

.4
0
%

lo
s
s
:6

.3
4
%

lo
s
s
:6

.4
7
%

to
h
d
:1

2
.3

0
%

to
h
d
:1

2
.7

3
%

to
h
d
:1

2
.2

3
%

to
h
d
:1

3
.3

8
%

to
h
d
:1

5
.2

8
%

to
h
d
:1

5
.5

9
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

3
0
0
m

s
 I
A

T
:

5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:6

.4
1
%

lo
s
s
:6

.4
3
%

lo
s
s
:6

.3
8
%

lo
s
s
:6

.3
7
%

lo
s
s
:6

.4
3
%

lo
s
s
:6

.3
6
%

to
h
d
:7

.5
7
%

to
h
d
:7

.3
7
%

to
h
d
:7

.5
5
%

to
h
d
:7

.4
4
%

to
h
d
:8

6
.9

1
%

to
h
d
:8

6
.9

0
%

190 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

5
0
m

s
 I
A

T
:

1
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.6
5
%

lo
s
s
:2

.7
5
%

lo
s
s
:2

.6
5
%

lo
s
s
:2

.8
1
%

lo
s
s
:2

.9
5
%

lo
s
s
:2

.6
9
%

to
h
d
:2

.6
6
%

to
h
d
:2

.7
6
%

to
h
d
:2

.6
5
%

to
h
d
:2

.8
1
%

to
h
d
:1

7
.2

7
%

to
h
d
:1

7
.0

1
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

050010001500200025003000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

5
0
m

s
 I
A

T
:

1
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.9
6
%

lo
s
s
:2

.9
2
%

lo
s
s
:2

.7
2
%

lo
s
s
:2

.7
3
%

lo
s
s
:2

.5
3
%

lo
s
s
:2

.7
6
%

to
h
d
:3

.0
0
%

to
h
d
:2

.9
8
%

to
h
d
:2

.7
4
%

to
h
d
:2

.7
8
%

to
h
d
:3

.0
3
%

to
h
d
:3

.3
8
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

5
0
m

s
 I
A

T
:

2
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.9
0
%

lo
s
s
:2

.7
8
%

lo
s
s
:3

.1
1
%

lo
s
s
:2

.7
7
%

lo
s
s
:2

.9
4
%

lo
s
s
:3

.1
4
%

to
h
d
:4

.5
1
%

to
h
d
:4

.3
4
%

to
h
d
:4

.8
9
%

to
h
d
:4

.3
4
%

to
h
d
:6

.3
2
%

to
h
d
:5

.6
9
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

050010001500200025003000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

5
0
m

s
 I
A

T
:

2
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:3

.0
6
%

lo
s
s
:3

.2
3
%

lo
s
s
:3

.0
5
%

lo
s
s
:3

.2
7
%

lo
s
s
:2

.9
6
%

lo
s
s
:2

.9
2
%

to
h
d
:5

.6
8
%

to
h
d
:6

.0
5
%

to
h
d
:5

.6
6
%

to
h
d
:6

.1
7
%

to
h
d
:7

.7
7
%

to
h
d
:7

.5
7
%

C.2. Cross-traffic loss - high loss rate 191

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

5
0
m

s
 I
A

T
:

2
5
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.2
5
%

lo
s
s
:2

.2
1
%

lo
s
s
:2

.2
1
%

lo
s
s
:2

.2
4
%

lo
s
s
:2

.7
3
%

lo
s
s
:2

.4
3
%

to
h
d
:2

.2
9
%

to
h
d
:2

.2
7
%

to
h
d
:2

.2
7
%

to
h
d
:2

.2
8
%

to
h
d
:7

2
.8

5
%

to
h
d
:7

2
.8

1
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

5
0
m

s
 I
A

T
:

5
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.8
4
%

lo
s
s
:3

.1
4
%

lo
s
s
:3

.0
4
%

lo
s
s
:3

.1
4
%

lo
s
s
:2

.8
0
%

lo
s
s
:3

.2
2
%

to
h
d
:2

.8
4
%

to
h
d
:3

.1
4
%

to
h
d
:3

.0
5
%

to
h
d
:3

.1
4
%

to
h
d
:2

.9
9
%

to
h
d
:3

.3
6
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 h

ig
h

 l
o

s
s
 −

 R
T

T
:

5
0
m

s
 I
A

T
:

5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.4
7
%

lo
s
s
:2

.4
3
%

lo
s
s
:2

.4
7
%

lo
s
s
:2

.4
6
%

lo
s
s
:2

.7
4
%

lo
s
s
:2

.8
2
%

to
h
d
:2

.4
8
%

to
h
d
:2

.4
4
%

to
h
d
:2

.4
9
%

to
h
d
:2

.4
7
%

to
h
d
:5

4
.6

8
%

to
h
d
:5

4
.7

0
%

192 Appendix C. Complete set of boxplots from TCP laboratory experiments

C.3 Cross-traffic loss - low loss rate

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
0
0
m

s
 I
A

T
:

1
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.2
6
%

lo
s
s
:1

.3
4
%

lo
s
s
:1

.3
1
%

lo
s
s
:1

.2
9
%

lo
s
s
:1

.3
6
%

lo
s
s
:1

.3
4
%

to
h
d
:1

.2
8
%

to
h
d
:1

.3
6
%

to
h
d
:1

.3
2
%

to
h
d
:1

.3
1
%

to
h
d
:5

0
.3

7
%

to
h
d
:5

0
.3

7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
0
0
m

s
 I
A

T
:

1
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.4
4
%

lo
s
s
:2

.8
9
%

lo
s
s
:1

.3
5
%

lo
s
s
:1

.3
6
%

lo
s
s
:1

.4
9
%

lo
s
s
:1

.3
7
%

to
h
d
:1

.4
9
%

to
h
d
:4

.4
0
%

to
h
d
:1

.3
8
%

to
h
d
:1

.3
8
%

to
h
d
:1

0
.8

1
%

to
h
d
:1

0
.6

3
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
0
0
m

s
 I
A

T
:

2
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.4
5
%

lo
s
s
:1

.4
2
%

lo
s
s
:1

.4
7
%

lo
s
s
:1

.4
6
%

lo
s
s
:1

.5
4
%

lo
s
s
:1

.4
3
%

to
h
d
:2

.3
3
%

to
h
d
:2

.1
1
%

to
h
d
:2

.1
7
%

to
h
d
:2

.1
3
%

to
h
d
:3

.2
2
%

to
h
d
:3

.0
3
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
0
0
m

s
 I
A

T
:

2
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.3
4
%

lo
s
s
:1

.3
0
%

lo
s
s
:1

.4
1
%

lo
s
s
:1

.3
4
%

lo
s
s
:1

.2
8
%

lo
s
s
:1

.2
9
%

to
h
d
:2

.5
5
%

to
h
d
:2

.4
9
%

to
h
d
:2

.6
6
%

to
h
d
:2

.5
7
%

to
h
d
:3

.5
3
%

to
h
d
:3

.6
1
%

C.3. Cross-traffic loss - low loss rate 193

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
0
0
m

s
 I
A

T
:

2
5
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.1
4
%

lo
s
s
:1

.1
6
%

lo
s
s
:1

.1
6
%

lo
s
s
:1

.1
3
%

lo
s
s
:1

.2
1
%

lo
s
s
:1

.2
7
%

to
h
d
:1

.2
5
%

to
h
d
:1

.2
7
%

to
h
d
:1

.2
7
%

to
h
d
:1

.2
4
%

to
h
d
:8

1
.5

6
%

to
h
d
:8

1
.5

7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
0
0
m

s
 I
A

T
:

5
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.4
5
%

lo
s
s
:1

.3
2
%

lo
s
s
:1

.4
8
%

lo
s
s
:1

.6
3
%

lo
s
s
:1

.4
1
%

lo
s
s
:1

.4
3
%

to
h
d
:1

.4
5
%

to
h
d
:1

.3
2
%

to
h
d
:1

.4
7
%

to
h
d
:1

.6
3
%

to
h
d
:1

.5
6
%

to
h
d
:1

.6
0
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
0
0
m

s
 I
A

T
:

5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.2
4
%

lo
s
s
:1

.2
4
%

lo
s
s
:1

.2
6
%

lo
s
s
:1

.2
4
%

lo
s
s
:1

.3
1
%

lo
s
s
:1

.2
9
%

to
h
d
:1

.2
8
%

to
h
d
:1

.2
9
%

to
h
d
:1

.3
1
%

to
h
d
:1

.3
0
%

to
h
d
:6

7
.9

5
%

to
h
d
:6

7
.9

5
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

1
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.4
4
%

lo
s
s
:1

.8
9
%

lo
s
s
:1

.3
9
%

lo
s
s
:1

.7
6
%

lo
s
s
:1

.4
6
%

lo
s
s
:1

.4
9
%

to
h
d
:1

.5
6
%

to
h
d
:2

.1
9
%

to
h
d
:1

.5
0
%

to
h
d
:2

.0
5
%

to
h
d
:5

3
.9

6
%

to
h
d
:5

3
.9

7
%

194 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

1
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.4
4
%

lo
s
s
:1

.8
9
%

lo
s
s
:1

.3
9
%

lo
s
s
:1

.7
6
%

lo
s
s
:1

.4
6
%

lo
s
s
:1

.4
9
%

to
h
d
:1

.5
6
%

to
h
d
:2

.1
9
%

to
h
d
:1

.5
0
%

to
h
d
:2

.0
5
%

to
h
d
:5

3
.9

6
%

to
h
d
:5

3
.9

7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

1
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.4
9
%

lo
s
s
:1

.8
6
%

lo
s
s
:1

.4
7
%

lo
s
s
:1

.8
6
%

lo
s
s
:1

.4
7
%

lo
s
s
:1

.7
8
%

to
h
d
:1

.5
3
%

to
h
d
:2

.0
8
%

to
h
d
:1

.5
4
%

to
h
d
:2

.1
1
%

to
h
d
:5

0
.4

3
%

to
h
d
:5

0
.5

9
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

2
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.4
6
%

lo
s
s
:1

.9
2
%

lo
s
s
:1

.4
6
%

lo
s
s
:2

.1
0
%

lo
s
s
:1

.4
8
%

lo
s
s
:1

.6
3
%

to
h
d
:2

.1
2
%

to
h
d
:2

.7
2
%

to
h
d
:2

.0
9
%

to
h
d
:3

.0
6
%

to
h
d
:1

5
.6

3
%

to
h
d
:1

4
.1

3
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

2
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.5
7
%

lo
s
s
:2

.0
4
%

lo
s
s
:1

.5
6
%

lo
s
s
:1

.8
4
%

lo
s
s
:1

.4
4
%

lo
s
s
:1

.8
7
%

to
h
d
:2

.9
8
%

to
h
d
:3

.7
8
%

to
h
d
:2

.9
5
%

to
h
d
:3

.4
0
%

to
h
d
:4

.0
9
%

to
h
d
:4

.9
5
%

C.3. Cross-traffic loss - low loss rate 195

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

2
5
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.3
6
%

lo
s
s
:1

.3
2
%

lo
s
s
:1

.3
5
%

lo
s
s
:1

.3
2
%

lo
s
s
:1

.4
1
%

lo
s
s
:1

.4
0
%

to
h
d
:1

.7
4
%

to
h
d
:1

.6
8
%

to
h
d
:1

.7
2
%

to
h
d
:1

.6
7
%

to
h
d
:8

6
.7

5
%

to
h
d
:8

6
.7

5
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

5
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.8
1
%

lo
s
s
:2

.0
9
%

lo
s
s
:1

.7
2
%

lo
s
s
:1

.7
8
%

lo
s
s
:1

.6
5
%

lo
s
s
:2

.1
7
%

to
h
d
:1

.8
4
%

to
h
d
:2

.1
2
%

to
h
d
:1

.7
4
%

to
h
d
:1

.7
8
%

to
h
d
:3

.2
8
%

to
h
d
:3

.8
7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

1
5
0
m

s
 I
A

T
:

5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.4
6
%

lo
s
s
:1

.7
9
%

lo
s
s
:1

.4
4
%

lo
s
s
:1

.7
0
%

lo
s
s
:1

.4
9
%

lo
s
s
:1

.4
5
%

to
h
d
:1

.5
9
%

to
h
d
:2

.1
6
%

to
h
d
:1

.6
2
%

to
h
d
:2

.0
5
%

to
h
d
:7

6
.0

4
%

to
h
d
:7

6
.0

3
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

2
0
0
m

s
 I
A

T
:

1
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.3
3
%

lo
s
s
:2

.5
1
%

lo
s
s
:2

.5
1
%

lo
s
s
:2

.4
6
%

lo
s
s
:3

.0
7
%

lo
s
s
:2

.5
9
%

to
h
d
:2

.2
9
%

to
h
d
:2

.4
7
%

to
h
d
:2

.4
7
%

to
h
d
:2

.4
1
%

to
h
d
:6

7
.0

3
%

to
h
d
:6

6
.9

8
%

196 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

2
0
0
m

s
 I
A

T
:

1
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.6
0
%

lo
s
s
:2

.5
6
%

lo
s
s
:2

.4
3
%

lo
s
s
:2

.5
6
%

lo
s
s
:3

.0
8
%

lo
s
s
:2

.9
8
%

to
h
d
:2

.5
9
%

to
h
d
:2

.5
4
%

to
h
d
:2

.4
2
%

to
h
d
:2

.5
4
%

to
h
d
:5

0
.9

1
%

to
h
d
:5

0
.8

7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

2
0
0
m

s
 I
A

T
:

2
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.6
6
%

lo
s
s
:2

.7
7
%

lo
s
s
:2

.5
2
%

lo
s
s
:2

.7
4
%

lo
s
s
:3

.0
8
%

lo
s
s
:2

.5
9
%

to
h
d
:2

.8
3
%

to
h
d
:2

.9
3
%

to
h
d
:2

.6
8
%

to
h
d
:2

.9
0
%

to
h
d
:5

1
.1

2
%

to
h
d
:5

0
.9

4
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

2
0
0
m

s
 I
A

T
:

2
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.9
4
%

lo
s
s
:2

.9
5
%

lo
s
s
:2

.8
8
%

lo
s
s
:2

.6
5
%

lo
s
s
:3

.0
7
%

lo
s
s
:2

.8
2
%

to
h
d
:5

.2
3
%

to
h
d
:5

.2
9
%

to
h
d
:5

.1
3
%

to
h
d
:4

.8
2
%

to
h
d
:2

4
.7

4
%

to
h
d
:2

4
.3

6
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

2
0
0
m

s
 I
A

T
:

2
5
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.7
1
%

lo
s
s
:1

.7
0
%

lo
s
s
:1

.6
9
%

lo
s
s
:1

.6
9
%

lo
s
s
:2

.5
3
%

lo
s
s
:2

.6
4
%

to
h
d
:1

.7
2
%

to
h
d
:1

.6
9
%

to
h
d
:1

.6
9
%

to
h
d
:1

.6
8
%

to
h
d
:8

9
.7

4
%

to
h
d
:8

9
.7

4
%

C.3. Cross-traffic loss - low loss rate 197

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

2
0
0
m

s
 I
A

T
:

5
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.9
9
%

lo
s
s
:2

.8
3
%

lo
s
s
:2

.5
7
%

lo
s
s
:2

.8
4
%

lo
s
s
:3

.1
8
%

lo
s
s
:2

.8
5
%

to
h
d
:3

.0
1
%

to
h
d
:2

.8
7
%

to
h
d
:2

.5
9
%

to
h
d
:2

.8
7
%

to
h
d
:6

.1
5
%

to
h
d
:5

.5
1
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

2
0
0
m

s
 I
A

T
:

5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.1
3
%

lo
s
s
:2

.1
6
%

lo
s
s
:2

.1
5
%

lo
s
s
:2

.1
6
%

lo
s
s
:2

.6
6
%

lo
s
s
:2

.6
9
%

to
h
d
:2

.1
0
%

to
h
d
:2

.1
2
%

to
h
d
:2

.1
3
%

to
h
d
:2

.1
6
%

to
h
d
:8

1
.0

5
%

to
h
d
:8

1
.0

5
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

2
5
0
m

s
 I
A

T
:

1
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.8
7
%

lo
s
s
:2

.6
2
%

lo
s
s
:2

.6
4
%

lo
s
s
:2

.8
0
%

lo
s
s
:2

.8
5
%

lo
s
s
:3

.0
5
%

to
h
d
:2

.8
6
%

to
h
d
:2

.6
5
%

to
h
d
:2

.6
6
%

to
h
d
:2

.8
3
%

to
h
d
:6

9
.8

4
%

to
h
d
:6

9
.8

7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

2
5
0
m

s
 I
A

T
:

1
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.8
7
%

lo
s
s
:2

.8
4
%

lo
s
s
:2

.8
2
%

lo
s
s
:2

.8
8
%

lo
s
s
:3

.0
2
%

lo
s
s
:3

.1
6
%

to
h
d
:2

.8
8
%

to
h
d
:2

.8
3
%

to
h
d
:2

.8
6
%

to
h
d
:2

.9
0
%

to
h
d
:5

6
.8

3
%

to
h
d
:5

6
.8

8
%

198 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

2
5
0
m

s
 I
A

T
:

2
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:3

.0
4
%

lo
s
s
:2

.9
7
%

lo
s
s
:2

.9
6
%

lo
s
s
:2

.8
4
%

lo
s
s
:2

.8
3
%

lo
s
s
:2

.9
3
%

to
h
d
:3

.0
4
%

to
h
d
:2

.9
6
%

to
h
d
:2

.9
7
%

to
h
d
:2

.8
4
%

to
h
d
:5

0
.9

1
%

to
h
d
:5

0
.9

7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

2
5
0
m

s
 I
A

T
:

2
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:3

.0
3
%

lo
s
s
:2

.8
7
%

lo
s
s
:3

.0
1
%

lo
s
s
:3

.2
3
%

lo
s
s
:3

.2
6
%

lo
s
s
:3

.1
1
%

to
h
d
:4

.3
3
%

to
h
d
:4

.0
9
%

to
h
d
:4

.2
9
%

to
h
d
:4

.6
0
%

to
h
d
:5

1
.9

2
%

to
h
d
:5

1
.8

7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

2
5
0
m

s
 I
A

T
:

2
5
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.1
6
%

lo
s
s
:2

.1
6
%

lo
s
s
:2

.1
7
%

lo
s
s
:2

.1
8
%

lo
s
s
:2

.7
6
%

lo
s
s
:2

.7
4
%

to
h
d
:2

.3
9
%

to
h
d
:2

.4
1
%

to
h
d
:2

.4
4
%

to
h
d
:2

.3
8
%

to
h
d
:9

0
.4

9
%

to
h
d
:9

0
.4

9
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

2
5
0
m

s
 I
A

T
:

5
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.8
8
%

lo
s
s
:3

.0
9
%

lo
s
s
:2

.8
2
%

lo
s
s
:2

.8
9
%

lo
s
s
:3

.1
7
%

lo
s
s
:2

.7
5
%

to
h
d
:4

.0
6
%

to
h
d
:4

.3
8
%

to
h
d
:3

.9
7
%

to
h
d
:4

.0
9
%

to
h
d
:8

.5
1
%

to
h
d
:7

.3
9
%

C.3. Cross-traffic loss - low loss rate 199

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

2
5
0
m

s
 I
A

T
:

5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.5
7
%

lo
s
s
:2

.4
9
%

lo
s
s
:2

.5
1
%

lo
s
s
:2

.5
1
%

lo
s
s
:2

.8
0
%

lo
s
s
:2

.8
5
%

to
h
d
:2

.6
5
%

to
h
d
:2

.5
4
%

to
h
d
:2

.6
1
%

to
h
d
:2

.6
2
%

to
h
d
:8

4
.1

7
%

to
h
d
:8

4
.1

7
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

3
0
0
m

s
 I
A

T
:

1
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.1
1
%

lo
s
s
:2

.0
9
%

lo
s
s
:2

.0
6
%

lo
s
s
:2

.0
8
%

lo
s
s
:2

.0
3
%

lo
s
s
:2

.1
8
%

to
h
d
:2

.1
8
%

to
h
d
:2

.1
8
%

to
h
d
:2

.1
5
%

to
h
d
:2

.1
2
%

to
h
d
:7

5
.1

3
%

to
h
d
:7

5
.1

4
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

3
0
0
m

s
 I
A

T
:

1
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.1
5
%

lo
s
s
:2

.1
2
%

lo
s
s
:2

.0
2
%

lo
s
s
:2

.1
2
%

lo
s
s
:2

.1
3
%

lo
s
s
:2

.1
3
%

to
h
d
:2

.1
8
%

to
h
d
:2

.1
5
%

to
h
d
:2

.0
5
%

to
h
d
:2

.1
6
%

to
h
d
:6

6
.9

2
%

to
h
d
:6

6
.9

1
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

3
0
0
m

s
 I
A

T
:

2
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.0
7
%

lo
s
s
:2

.1
4
%

lo
s
s
:2

.0
7
%

lo
s
s
:2

.0
2
%

lo
s
s
:2

.0
2
%

lo
s
s
:2

.2
1
%

to
h
d
:2

.1
0
%

to
h
d
:2

.1
5
%

to
h
d
:2

.1
1
%

to
h
d
:2

.0
6
%

to
h
d
:5

0
.6

4
%

to
h
d
:5

0
.6

9
%

200 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

3
0
0
m

s
 I
A

T
:

2
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.0
9
%

lo
s
s
:2

.1
9
%

lo
s
s
:2

.1
8
%

lo
s
s
:2

.0
5
%

lo
s
s
:2

.1
2
%

lo
s
s
:2

.1
6
%

to
h
d
:2

.3
0
%

to
h
d
:2

.4
4
%

to
h
d
:2

.4
3
%

to
h
d
:2

.2
7
%

to
h
d
:5

0
.7

3
%

to
h
d
:5

0
.7

8
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

3
0
0
m

s
 I
A

T
:

2
5
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.8
1
%

lo
s
s
:1

.8
2
%

lo
s
s
:1

.8
1
%

lo
s
s
:1

.8
3
%

lo
s
s
:2

.0
1
%

lo
s
s
:1

.9
9
%

to
h
d
:2

.2
4
%

to
h
d
:2

.1
5
%

to
h
d
:2

.1
3
%

to
h
d
:2

.2
3
%

to
h
d
:8

8
.3

3
%

to
h
d
:8

8
.3

6
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

3
0
0
m

s
 I
A

T
:

5
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:2

.1
3
%

lo
s
s
:2

.0
8
%

lo
s
s
:2

.0
7
%

lo
s
s
:2

.0
0
%

lo
s
s
:2

.2
7
%

lo
s
s
:2

.2
2
%

to
h
d
:4

.0
9
%

to
h
d
:4

.0
3
%

to
h
d
:3

.9
8
%

to
h
d
:3

.8
8
%

to
h
d
:6

.2
5
%

to
h
d
:6

.1
4
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

3
0
0
m

s
 I
A

T
:

5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.9
7
%

lo
s
s
:1

.9
6
%

lo
s
s
:1

.9
4
%

lo
s
s
:1

.9
6
%

lo
s
s
:2

.0
8
%

lo
s
s
:2

.0
6
%

to
h
d
:2

.1
6
%

to
h
d
:2

.1
7
%

to
h
d
:2

.1
3
%

to
h
d
:2

.1
6
%

to
h
d
:8

6
.1

7
%

to
h
d
:8

6
.1

7
%

C.3. Cross-traffic loss - low loss rate 201

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

5
0
m

s
 I
A

T
:

1
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.0
0
%

lo
s
s
:1

.0
0
%

lo
s
s
:0

.8
6
%

lo
s
s
:1

.0
1
%

lo
s
s
:1

.0
4
%

lo
s
s
:1

.0
5
%

to
h
d
:1

.0
1
%

to
h
d
:1

.0
1
%

to
h
d
:0

.8
7
%

to
h
d
:1

.0
3
%

to
h
d
:7

.6
4
%

to
h
d
:7

.5
6
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

5
0
m

s
 I
A

T
:

1
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:0

.9
8
%

lo
s
s
:0

.9
3
%

lo
s
s
:1

.0
4
%

lo
s
s
:1

.0
0
%

lo
s
s
:0

.9
3
%

lo
s
s
:1

.0
8
%

to
h
d
:1

.0
2
%

to
h
d
:0

.9
8
%

to
h
d
:1

.0
9
%

to
h
d
:1

.0
2
%

to
h
d
:1

.1
2
%

to
h
d
:1

.3
1
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

5
0
m

s
 I
A

T
:

2
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.1
0
%

lo
s
s
:1

.0
6
%

lo
s
s
:1

.0
8
%

lo
s
s
:0

.9
9
%

lo
s
s
:1

.0
2
%

lo
s
s
:1

.0
3
%

to
h
d
:1

.8
0
%

to
h
d
:1

.7
6
%

to
h
d
:1

.6
5
%

to
h
d
:1

.6
1
%

to
h
d
:2

.2
9
%

to
h
d
:2

.3
5
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

5
0
m

s
 I
A

T
:

2
5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.0
4
%

lo
s
s
:1

.0
0
%

lo
s
s
:0

.9
9
%

lo
s
s
:0

.9
5
%

lo
s
s
:1

.0
1
%

lo
s
s
:1

.0
3
%

to
h
d
:2

.0
2
%

to
h
d
:1

.9
6
%

to
h
d
:1

.9
0
%

to
h
d
:1

.8
6
%

to
h
d
:2

.8
5
%

to
h
d
:2

.8
5
%

202 Appendix C. Complete set of boxplots from TCP laboratory experiments

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

5
0
m

s
 I
A

T
:

2
5
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:0

.8
3
%

lo
s
s
:0

.8
3
%

lo
s
s
:0

.8
3
%

lo
s
s
:0

.8
3
%

lo
s
s
:0

.9
1
%

lo
s
s
:0

.8
5
%

to
h
d
:0

.8
5
%

to
h
d
:0

.8
5
%

to
h
d
:0

.8
5
%

to
h
d
:0

.8
6
%

to
h
d
:6

9
.8

4
%

to
h
d
:6

9
.8

3
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)

A
C

K
 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

5
0
m

s
 I
A

T
:

5
0
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:1

.1
1
%

lo
s
s
:1

.0
2
%

lo
s
s
:0

.9
8
%

lo
s
s
:1

.1
2
%

lo
s
s
:1

.0
4
%

lo
s
s
:1

.0
8
%

to
h
d
:1

.1
1
%

to
h
d
:1

.0
2
%

to
h
d
:0

.9
8
%

to
h
d
:1

.1
2
%

to
h
d
:1

.0
6
%

to
h
d
:1

.0
9
%

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

a
1

2
3

01000200030004000

latency (ms)
A

C
K

 l
a
te

n
c
y
 T

C
P

 c
ro

s
s
−

tr
a
ff

ic
 l
o

w
 l
o

s
s
 −

 R
T

T
:

5
0
m

s
 I
A

T
:

5
0
m

s

p

a
c
k
e
t

s
iz

e
 1

0
0
 B

y
te

s

T
C

P
 N

e
w

 R
e
n
o

L
T

m
F

R
L
T

 +
 m

F
R

R
D

B
A

ll
m

o
d
s

lo
s
s
:0

.8
9
%

lo
s
s
:0

.9
0
%

lo
s
s
:0

.8
9
%

lo
s
s
:0

.8
9
%

lo
s
s
:0

.9
4
%

lo
s
s
:0

.9
1
%

to
h
d
:0

.9
0
%

to
h
d
:0

.9
2
%

to
h
d
:0

.9
1
%

to
h
d
:0

.9
0
%

to
h
d
:5

1
.9

7
%

to
h
d
:5

1
.9

5
%

Appendix D

Complete set of CDFs from TCP

laboratory experiments

This appendix contains the whole range of CDFs from our laboratory experiments using the

thin-stream TCP modifications. Transport layer delivery latency and application layer delivery

latency are presented pairwise for each respective test. This is an extension of the selected

statistics that are presented and discussed in section 5.2.

D.1 Uniform loss

203

204 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5355ms
RDB − Max lat: 309ms
LT − Max lat: 4481ms
mFR − Max lat: 4944ms
All mods − Max lat: 602ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 100ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

6
0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5355ms
RDB − Max lat: 309ms
LT − Max lat: 4481ms
mFR − Max lat: 4944ms
All mods − Max lat: 602ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 100ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7669ms
RDB − Max lat: 940ms
LT − Max lat: 1995ms
mFR − Max lat: 2468ms
All mods − Max lat: 901ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 100ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7669ms
RDB − Max lat: 940ms
LT − Max lat: 1995ms
mFR − Max lat: 2468ms
All mods − Max lat: 901ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 100ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5006ms
RDB − Max lat: 1983ms
LT − Max lat: 1263ms
mFR − Max lat: 2214ms
All mods − Max lat: 1064ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 100ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5006ms
RDB − Max lat: 1983ms
LT − Max lat: 1263ms
mFR − Max lat: 2214ms
All mods − Max lat: 1064ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 100ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4741ms
RDB − Max lat: 1905ms
LT − Max lat: 1249ms
mFR − Max lat: 4739ms
All mods − Max lat: 610ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 100ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4741ms
RDB − Max lat: 1905ms
LT − Max lat: 1249ms
mFR − Max lat: 4739ms
All mods − Max lat: 610ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 100ms IAT: 250ms packet size 100 Bytes

D.1. Uniform loss 205

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4998ms
RDB − Max lat: 125ms
LT − Max lat: 4206ms
mFR − Max lat: 3350ms
All mods − Max lat: 125ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 100ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4998ms
RDB − Max lat: 125ms
LT − Max lat: 4206ms
mFR − Max lat: 3350ms
All mods − Max lat: 125ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 100ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4679ms
RDB − Max lat: 2130ms
LT − Max lat: 1217ms
mFR − Max lat: 2129ms
All mods − Max lat: 938ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 100ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4679ms
RDB − Max lat: 2130ms
LT − Max lat: 1217ms
mFR − Max lat: 2129ms
All mods − Max lat: 938ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 100ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4980ms
RDB − Max lat: 355ms
LT − Max lat: 3952ms
mFR − Max lat: 3375ms
All mods − Max lat: 201ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 100ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4980ms
RDB − Max lat: 355ms
LT − Max lat: 3952ms
mFR − Max lat: 3375ms
All mods − Max lat: 201ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 100ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5166ms
RDB − Max lat: 416ms
LT − Max lat: 3318ms
mFR − Max lat: 5716ms
All mods − Max lat: 403ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 150ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5166ms
RDB − Max lat: 416ms
LT − Max lat: 3318ms
mFR − Max lat: 5715ms
All mods − Max lat: 403ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 150ms IAT: 100ms packet size 100 Bytes

206 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5166ms
RDB − Max lat: 416ms
LT − Max lat: 3318ms
mFR − Max lat: 5716ms
All mods − Max lat: 403ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 150ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5166ms
RDB − Max lat: 416ms
LT − Max lat: 3318ms
mFR − Max lat: 5715ms
All mods − Max lat: 403ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 150ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5525ms
RDB − Max lat: 2255ms
LT − Max lat: 2408ms
mFR − Max lat: 2849ms
All mods − Max lat: 432ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 150ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5525ms
RDB − Max lat: 2255ms
LT − Max lat: 2408ms
mFR − Max lat: 2849ms
All mods − Max lat: 432ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 150ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5325ms
RDB − Max lat: 2548ms
LT − Max lat: 1856ms
mFR − Max lat: 2909ms
All mods − Max lat: 736ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 150ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5325ms
RDB − Max lat: 2548ms
LT − Max lat: 1856ms
mFR − Max lat: 2909ms
All mods − Max lat: 736ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 150ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5520ms
RDB − Max lat: 2299ms
LT − Max lat: 1103ms
mFR − Max lat: 5463ms
All mods − Max lat: 1092ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 150ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5520ms
RDB − Max lat: 2299ms
LT − Max lat: 1103ms
mFR − Max lat: 5463ms
All mods − Max lat: 1092ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 150ms IAT: 250ms packet size 100 Bytes

D.1. Uniform loss 207

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5745ms
RDB − Max lat: 443ms
LT − Max lat: 5802ms
mFR − Max lat: 4317ms
All mods − Max lat: 101ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 150ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5745ms
RDB − Max lat: 443ms
LT − Max lat: 5802ms
mFR − Max lat: 4317ms
All mods − Max lat: 101ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 150ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2550ms
RDB − Max lat: 2574ms
LT − Max lat: 1102ms
mFR − Max lat: 2550ms
All mods − Max lat: 1095ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 150ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2550ms
RDB − Max lat: 2574ms
LT − Max lat: 1102ms
mFR − Max lat: 2550ms
All mods − Max lat: 1095ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 150ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2998ms
RDB − Max lat: 466ms
LT − Max lat: 5777ms
mFR − Max lat: 3428ms
All mods − Max lat: 205ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 150ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2998ms
RDB − Max lat: 466ms
LT − Max lat: 5777ms
mFR − Max lat: 3428ms
All mods − Max lat: 205ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 150ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4261ms
RDB − Max lat: 402ms
LT − Max lat: 3848ms
mFR − Max lat: 4908ms
All mods − Max lat: 401ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 200ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4261ms
RDB − Max lat: 402ms
LT − Max lat: 3848ms
mFR − Max lat: 4908ms
All mods − Max lat: 401ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 200ms IAT: 100ms packet size 100 Bytes

208 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 6292ms
RDB − Max lat: 853ms
LT − Max lat: 16421ms
mFR − Max lat: 6498ms
All mods − Max lat: 470ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 200ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

6
0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 6292ms
RDB − Max lat: 853ms
LT − Max lat: 16421ms
mFR − Max lat: 6498ms
All mods − Max lat: 470ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 200ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 6046ms
RDB − Max lat: 1252ms
LT − Max lat: 2698ms
mFR − Max lat: 6446ms
All mods − Max lat: 837ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 200ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 6046ms
RDB − Max lat: 1252ms
LT − Max lat: 2698ms
mFR − Max lat: 6446ms
All mods − Max lat: 837ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 200ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2915ms
RDB − Max lat: 1313ms
LT − Max lat: 1887ms
mFR − Max lat: 6243ms
All mods − Max lat: 835ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 200ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2915ms
RDB − Max lat: 1313ms
LT − Max lat: 1887ms
mFR − Max lat: 6243ms
All mods − Max lat: 835ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 200ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7037ms
RDB − Max lat: 592ms
LT − Max lat: 3807ms
mFR − Max lat: 12277ms
All mods − Max lat: 101ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 200ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7037ms
RDB − Max lat: 592ms
LT − Max lat: 3807ms
mFR − Max lat: 12277ms
All mods − Max lat: 101ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 200ms IAT: 25ms packet size 100 Bytes

D.1. Uniform loss 209

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2914ms
RDB − Max lat: 2915ms
LT − Max lat: 1249ms
mFR − Max lat: 6241ms
All mods − Max lat: 1663ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 200ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2914ms
RDB − Max lat: 2915ms
LT − Max lat: 1249ms
mFR − Max lat: 6241ms
All mods − Max lat: 1663ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 200ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3554ms
RDB − Max lat: 202ms
LT − Max lat: 3420ms
mFR − Max lat: 3737ms
All mods − Max lat: 201ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 200ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3554ms
RDB − Max lat: 202ms
LT − Max lat: 3420ms
mFR − Max lat: 3737ms
All mods − Max lat: 201ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 200ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7216ms
RDB − Max lat: 403ms
LT − Max lat: 7280ms
mFR − Max lat: 17568ms
All mods − Max lat: 401ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 250ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7216ms
RDB − Max lat: 403ms
LT − Max lat: 7280ms
mFR − Max lat: 17568ms
All mods − Max lat: 401ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 250ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4137ms
RDB − Max lat: 1201ms
LT − Max lat: 2875ms
mFR − Max lat: 7422ms
All mods − Max lat: 1493ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 250ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4137ms
RDB − Max lat: 1201ms
LT − Max lat: 2875ms
mFR − Max lat: 7422ms
All mods − Max lat: 1493ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 250ms IAT: 150ms packet size 100 Bytes

210 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7075ms
RDB − Max lat: 1246ms
LT − Max lat: 3827ms
mFR − Max lat: 4427ms
All mods − Max lat: 980ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 250ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

6
0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7075ms
RDB − Max lat: 1246ms
LT − Max lat: 3827ms
mFR − Max lat: 4427ms
All mods − Max lat: 980ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 250ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4423ms
RDB − Max lat: 3283ms
LT − Max lat: 1864ms
mFR − Max lat: 3283ms
All mods − Max lat: 945ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 250ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4423ms
RDB − Max lat: 3283ms
LT − Max lat: 1864ms
mFR − Max lat: 3283ms
All mods − Max lat: 945ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 250ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7492ms
RDB − Max lat: 731ms
LT − Max lat: 7255ms
mFR − Max lat: 7312ms
All mods − Max lat: 353ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 250ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7492ms
RDB − Max lat: 731ms
LT − Max lat: 7255ms
mFR − Max lat: 7312ms
All mods − Max lat: 353ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 250ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 6960ms
RDB − Max lat: 3252ms
LT − Max lat: 1870ms
mFR − Max lat: 3276ms
All mods − Max lat: 1855ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 250ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 6960ms
RDB − Max lat: 3252ms
LT − Max lat: 1870ms
mFR − Max lat: 3276ms
All mods − Max lat: 1855ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 250ms IAT: 500ms packet size 100 Bytes

D.1. Uniform loss 211

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 9323ms
RDB − Max lat: 205ms
LT − Max lat: 4289ms
mFR − Max lat: 4312ms
All mods − Max lat: 251ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 250ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 9323ms
RDB − Max lat: 205ms
LT − Max lat: 4289ms
mFR − Max lat: 4312ms
All mods − Max lat: 251ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 250ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 10582ms
RDB − Max lat: 401ms
LT − Max lat: 5292ms
mFR − Max lat: 4341ms
All mods − Max lat: 401ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 300ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 10582ms
RDB − Max lat: 401ms
LT − Max lat: 5292ms
mFR − Max lat: 4341ms
All mods − Max lat: 401ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 300ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7833ms
RDB − Max lat: 1237ms
LT − Max lat: 12725ms
mFR − Max lat: 15054ms
All mods − Max lat: 666ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 300ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7832ms
RDB − Max lat: 1237ms
LT − Max lat: 12725ms
mFR − Max lat: 15054ms
All mods − Max lat: 666ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 300ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7644ms
RDB − Max lat: 1252ms
LT − Max lat: 7784ms
mFR − Max lat: 2918ms
All mods − Max lat: 728ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 300ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

6
0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7644ms
RDB − Max lat: 1252ms
LT − Max lat: 7784ms
mFR − Max lat: 2918ms
All mods − Max lat: 728ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 300ms IAT: 200ms packet size 100 Bytes

212 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 12176ms
RDB − Max lat: 1351ms
LT − Max lat: 5778ms
mFR − Max lat: 3663ms
All mods − Max lat: 825ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 300ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 12176ms
RDB − Max lat: 1351ms
LT − Max lat: 5778ms
mFR − Max lat: 3663ms
All mods − Max lat: 825ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 300ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4168ms
RDB − Max lat: 1016ms
LT − Max lat: 8293ms
mFR − Max lat: 4562ms
All mods − Max lat: 1025ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 300ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4168ms
RDB − Max lat: 1016ms
LT − Max lat: 8293ms
mFR − Max lat: 4562ms
All mods − Max lat: 1025ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 300ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 6991ms
RDB − Max lat: 1550ms
LT − Max lat: 1550ms
mFR − Max lat: 3612ms
All mods − Max lat: 1048ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 300ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 6991ms
RDB − Max lat: 1550ms
LT − Max lat: 1550ms
mFR − Max lat: 3612ms
All mods − Max lat: 1048ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 300ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8746ms
RDB − Max lat: 251ms
LT − Max lat: 4068ms
mFR − Max lat: 9764ms
All mods − Max lat: 201ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 300ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8746ms
RDB − Max lat: 251ms
LT − Max lat: 4068ms
mFR − Max lat: 9764ms
All mods − Max lat: 201ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 300ms IAT: 50ms packet size 100 Bytes

D.1. Uniform loss 213

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 12527ms
RDB − Max lat: 766ms
LT − Max lat: 1921ms
mFR − Max lat: 4113ms
All mods − Max lat: 505ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 50ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 12527ms
RDB − Max lat: 766ms
LT − Max lat: 1921ms
mFR − Max lat: 4113ms
All mods − Max lat: 505ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 50ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4669ms
RDB − Max lat: 3628ms
LT − Max lat: 1057ms
mFR − Max lat: 2051ms
All mods − Max lat: 759ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 50ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4669ms
RDB − Max lat: 3628ms
LT − Max lat: 1057ms
mFR − Max lat: 2051ms
All mods − Max lat: 759ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 50ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 12477ms
RDB − Max lat: 1767ms
LT − Max lat: 937ms
mFR − Max lat: 2100ms
All mods − Max lat: 755ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 50ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 12477ms
RDB − Max lat: 1767ms
LT − Max lat: 937ms
mFR − Max lat: 2100ms
All mods − Max lat: 755ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 50ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3959ms
RDB − Max lat: 1764ms
LT − Max lat: 1072ms
mFR − Max lat: 3963ms
All mods − Max lat: 758ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 50ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3959ms
RDB − Max lat: 1764ms
LT − Max lat: 1072ms
mFR − Max lat: 3963ms
All mods − Max lat: 758ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 50ms IAT: 250ms packet size 100 Bytes

214 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2514ms
RDB − Max lat: 101ms
LT − Max lat: 2551ms
mFR − Max lat: 4087ms
All mods − Max lat: 102ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 50ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2514ms
RDB − Max lat: 101ms
LT − Max lat: 2551ms
mFR − Max lat: 4087ms
All mods − Max lat: 102ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 50ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 1849ms
RDB − Max lat: 3784ms
LT − Max lat: 1010ms
mFR − Max lat: 3779ms
All mods − Max lat: 771ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 50ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 1849ms
RDB − Max lat: 3784ms
LT − Max lat: 1010ms
mFR − Max lat: 3779ms
All mods − Max lat: 771ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 50ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4116ms
RDB − Max lat: 204ms
LT − Max lat: 4660ms
mFR − Max lat: 4060ms
All mods − Max lat: 203ms

CDF of delivery latency, transport layer − Uniform loss 5% − RTT: 50ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4116ms
RDB − Max lat: 204ms
LT − Max lat: 4660ms
mFR − Max lat: 4060ms
All mods − Max lat: 203ms

CDF of delivery latency, application layer − Uniform loss 5% − RTT: 50ms IAT: 50ms packet size 100 Bytes

D.2. Cross-traffic loss - high loss rate 215

D.2 Cross-traffic loss - high loss rate

216 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11721ms
RDB − Max lat: 1235ms
LT − Max lat: 5461ms
mFR − Max lat: 12069ms
All mods − Max lat: 1239ms

CDF of delivery latency, application layer − CT loss high − RTT: 100ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

6
0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11721ms
RDB − Max lat: 1235ms
LT − Max lat: 5461ms
mFR − Max lat: 12069ms
All mods − Max lat: 1239ms

CDF of delivery latency, application layer − CT loss high − RTT: 100ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 47497ms
RDB − Max lat: 5674ms
LT − Max lat: 2733ms
mFR − Max lat: 11333ms
All mods − Max lat: 1202ms

CDF of delivery latency, application layer − CT loss high − RTT: 100ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 47497ms
RDB − Max lat: 5674ms
LT − Max lat: 2733ms
mFR − Max lat: 11333ms
All mods − Max lat: 1202ms

CDF of delivery latency, application layer − CT loss high − RTT: 100ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5466ms
RDB − Max lat: 2685ms
LT − Max lat: 3067ms
mFR − Max lat: 11706ms
All mods − Max lat: 1499ms

CDF of delivery latency, application layer − CT loss high − RTT: 100ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5466ms
RDB − Max lat: 2685ms
LT − Max lat: 3067ms
mFR − Max lat: 11706ms
All mods − Max lat: 1499ms

CDF of delivery latency, application layer − CT loss high − RTT: 100ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5652ms
RDB − Max lat: 5710ms
LT − Max lat: 1563ms
mFR − Max lat: 5295ms
All mods − Max lat: 2685ms

CDF of delivery latency, application layer − CT loss high − RTT: 100ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 5652ms
RDB − Max lat: 5710ms
LT − Max lat: 1563ms
mFR − Max lat: 5295ms
All mods − Max lat: 2685ms

CDF of delivery latency, application layer − CT loss high − RTT: 100ms IAT: 250ms packet size 100 Bytes

D.2. Cross-traffic loss - high loss rate 217

0 200 400 600 800 1000 1200 1400

0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 6029ms
RDB − Max lat: 217ms
LT − Max lat: 6148ms
mFR − Max lat: 6630ms
All mods − Max lat: 237ms

CDF of delivery latency, application layer − CT loss high − RTT: 100ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 6029ms
RDB − Max lat: 217ms
LT − Max lat: 6148ms
mFR − Max lat: 6630ms
All mods − Max lat: 237ms

CDF of delivery latency, application layer − CT loss high − RTT: 100ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 22987ms
RDB − Max lat: 5581ms
LT − Max lat: 1397ms
mFR − Max lat: 5524ms
All mods − Max lat: 3068ms

CDF of delivery latency, application layer − CT loss high − RTT: 100ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 22987ms
RDB − Max lat: 5581ms
LT − Max lat: 1397ms
mFR − Max lat: 5524ms
All mods − Max lat: 3068ms

CDF of delivery latency, application layer − CT loss high − RTT: 100ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11845ms
RDB − Max lat: 329ms
LT − Max lat: 3178ms
mFR − Max lat: 11468ms
All mods − Max lat: 369ms

CDF of delivery latency, application layer − CT loss high − RTT: 100ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11845ms
RDB − Max lat: 329ms
LT − Max lat: 3178ms
mFR − Max lat: 11468ms
All mods − Max lat: 369ms

CDF of delivery latency, application layer − CT loss high − RTT: 100ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 113556ms
RDB − Max lat: 6579ms
LT − Max lat: 27834ms
mFR − Max lat: 55197ms
All mods − Max lat: 6831ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.6

5
0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 113561ms
RDB − Max lat: 6579ms
LT − Max lat: 27834ms
mFR − Max lat: 55197ms
All mods − Max lat: 6831ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 100ms packet size 100 Bytes

218 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 113556ms
RDB − Max lat: 6579ms
LT − Max lat: 27834ms
mFR − Max lat: 55197ms
All mods − Max lat: 6831ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.6

5
0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 113561ms
RDB − Max lat: 6579ms
LT − Max lat: 27834ms
mFR − Max lat: 55197ms
All mods − Max lat: 6831ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 109286ms
RDB − Max lat: 6487ms
LT − Max lat: 111222ms
mFR − Max lat: 110538ms
All mods − Max lat: 13390ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.6

5
0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 109285ms
RDB − Max lat: 6487ms
LT − Max lat: 111231ms
mFR − Max lat: 110538ms
All mods − Max lat: 13390ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

6
0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 33105ms
RDB − Max lat: 27301ms
LT − Max lat: 27739ms
mFR − Max lat: 54437ms
All mods − Max lat: 3545ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 33105ms
RDB − Max lat: 27301ms
LT − Max lat: 27739ms
mFR − Max lat: 54437ms
All mods − Max lat: 3545ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 54917ms
RDB − Max lat: 27302ms
LT − Max lat: 13752ms
mFR − Max lat: 221139ms
All mods − Max lat: 3088ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 54919ms
RDB − Max lat: 27302ms
LT − Max lat: 13752ms
mFR − Max lat: 221139ms
All mods − Max lat: 3088ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 250ms packet size 100 Bytes

D.2. Cross-traffic loss - high loss rate 219

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 110243ms
RDB − Max lat: 7778ms
LT − Max lat: 54932ms
mFR − Max lat: 54162ms
All mods − Max lat: 3755ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.6

0
.7

0
.8

0
.9

1
.0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 110243ms
RDB − Max lat: 7778ms
LT − Max lat: 54935ms
mFR − Max lat: 54162ms
All mods − Max lat: 3755ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 54942ms
RDB − Max lat: 108211ms
LT − Max lat: 3048ms
mFR − Max lat: 55431ms
All mods − Max lat: 3518ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 54942ms
RDB − Max lat: 108211ms
LT − Max lat: 3048ms
mFR − Max lat: 55431ms
All mods − Max lat: 3518ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 56236ms
RDB − Max lat: 659ms
LT − Max lat: 110445ms
mFR − Max lat: 55755ms
All mods − Max lat: 676ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

0
.8

0
.9

1
.0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 56235ms
RDB − Max lat: 659ms
LT − Max lat: 110446ms
mFR − Max lat: 55755ms
All mods − Max lat: 676ms

CDF of delivery latency, application layer − CT loss high − RTT: 150ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 62064ms
RDB − Max lat: 7431ms
LT − Max lat: 30784ms
mFR − Max lat: 123087ms
All mods − Max lat: 7494ms

CDF of delivery latency, application layer − CT loss high − RTT: 200ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.6

5
0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 62064ms
RDB − Max lat: 7431ms
LT − Max lat: 30784ms
mFR − Max lat: 123083ms
All mods − Max lat: 7494ms

CDF of delivery latency, application layer − CT loss high − RTT: 200ms IAT: 100ms packet size 100 Bytes

220 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 122857ms
RDB − Max lat: 15209ms
LT − Max lat: 61091ms
mFR − Max lat: 30864ms
All mods − Max lat: 30435ms

CDF of delivery latency, application layer − CT loss high − RTT: 200ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.6

5
0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 122857ms
RDB − Max lat: 15209ms
LT − Max lat: 61091ms
mFR − Max lat: 30864ms
All mods − Max lat: 30435ms

CDF of delivery latency, application layer − CT loss high − RTT: 200ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 61141ms
RDB − Max lat: 30639ms
LT − Max lat: 61584ms
mFR − Max lat: 61467ms
All mods − Max lat: 3953ms

CDF of delivery latency, application layer − CT loss high − RTT: 200ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

0
.8

0
.9

1
.0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 61138ms
RDB − Max lat: 30639ms
LT − Max lat: 61584ms
mFR − Max lat: 61467ms
All mods − Max lat: 3953ms

CDF of delivery latency, application layer − CT loss high − RTT: 200ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 122502ms
RDB − Max lat: 60518ms
LT − Max lat: 61555ms
mFR − Max lat: 61047ms
All mods − Max lat: 3444ms

CDF of delivery latency, application layer − CT loss high − RTT: 200ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 122505ms
RDB − Max lat: 60518ms
LT − Max lat: 61559ms
mFR − Max lat: 61047ms
All mods − Max lat: 3444ms

CDF of delivery latency, application layer − CT loss high − RTT: 200ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 123495ms
RDB − Max lat: 7880ms
LT − Max lat: 31554ms
mFR − Max lat: 122745ms
All mods − Max lat: 62297ms

CDF of delivery latency, application layer − CT loss high − RTT: 200ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 123495ms
RDB − Max lat: 7880ms
LT − Max lat: 31554ms
mFR − Max lat: 122745ms
All mods − Max lat: 62297ms

CDF of delivery latency, application layer − CT loss high − RTT: 200ms IAT: 25ms packet size 100 Bytes

D.2. Cross-traffic loss - high loss rate 221

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 121472ms
RDB − Max lat: 61026ms
LT − Max lat: 4876ms
mFR − Max lat: 61041ms
All mods − Max lat: 4386ms

CDF of delivery latency, application layer − CT loss high − RTT: 200ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 121472ms
RDB − Max lat: 61026ms
LT − Max lat: 4876ms
mFR − Max lat: 61041ms
All mods − Max lat: 4386ms

CDF of delivery latency, application layer − CT loss high − RTT: 200ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 31016ms
RDB − Max lat: 3743ms
LT − Max lat: 123135ms
mFR − Max lat: 31271ms
All mods − Max lat: 7623ms

CDF of delivery latency, application layer − CT loss high − RTT: 200ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.6

0
.7

0
.8

0
.9

1
.0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 31016ms
RDB − Max lat: 3743ms
LT − Max lat: 123135ms
mFR − Max lat: 31262ms
All mods − Max lat: 7623ms

CDF of delivery latency, application layer − CT loss high − RTT: 200ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 33515ms
RDB − Max lat: 1874ms
LT − Max lat: 17150ms
mFR − Max lat: 17280ms
All mods − Max lat: 1832ms

CDF of delivery latency, application layer − CT loss high − RTT: 250ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 33515ms
RDB − Max lat: 1874ms
LT − Max lat: 17150ms
mFR − Max lat: 17280ms
All mods − Max lat: 1832ms

CDF of delivery latency, application layer − CT loss high − RTT: 250ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 33205ms
RDB − Max lat: 1790ms
LT − Max lat: 67799ms
mFR − Max lat: 66608ms
All mods − Max lat: 3953ms

CDF of delivery latency, application layer − CT loss high − RTT: 250ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 33205ms
RDB − Max lat: 1790ms
LT − Max lat: 67799ms
mFR − Max lat: 66608ms
All mods − Max lat: 3953ms

CDF of delivery latency, application layer − CT loss high − RTT: 250ms IAT: 150ms packet size 100 Bytes

222 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 17001ms
RDB − Max lat: 3835ms
LT − Max lat: 9291ms
mFR − Max lat: 33491ms
All mods − Max lat: 8106ms

CDF of delivery latency, application layer − CT loss high − RTT: 250ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 17001ms
RDB − Max lat: 3835ms
LT − Max lat: 9291ms
mFR − Max lat: 33491ms
All mods − Max lat: 8106ms

CDF of delivery latency, application layer − CT loss high − RTT: 250ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 9055ms
RDB − Max lat: 3898ms
LT − Max lat: 4257ms
mFR − Max lat: 16872ms
All mods − Max lat: 1717ms

CDF of delivery latency, application layer − CT loss high − RTT: 250ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 9055ms
RDB − Max lat: 3898ms
LT − Max lat: 4257ms
mFR − Max lat: 16872ms
All mods − Max lat: 1717ms

CDF of delivery latency, application layer − CT loss high − RTT: 250ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 17070ms
RDB − Max lat: 4228ms
LT − Max lat: 17144ms
mFR − Max lat: 17136ms
All mods − Max lat: 8504ms

CDF of delivery latency, application layer − CT loss high − RTT: 250ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 17076ms
RDB − Max lat: 4228ms
LT − Max lat: 17144ms
mFR − Max lat: 17136ms
All mods − Max lat: 8504ms

CDF of delivery latency, application layer − CT loss high − RTT: 250ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 33068ms
RDB − Max lat: 33576ms
LT − Max lat: 2713ms
mFR − Max lat: 32324ms
All mods − Max lat: 3283ms

CDF of delivery latency, application layer − CT loss high − RTT: 250ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

6
0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 33068ms
RDB − Max lat: 33576ms
LT − Max lat: 2713ms
mFR − Max lat: 32324ms
All mods − Max lat: 3283ms

CDF of delivery latency, application layer − CT loss high − RTT: 250ms IAT: 500ms packet size 100 Bytes

D.2. Cross-traffic loss - high loss rate 223

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 33634ms
RDB − Max lat: 245ms
LT − Max lat: 8359ms
mFR − Max lat: 16942ms
All mods − Max lat: 1934ms

CDF of delivery latency, application layer − CT loss high − RTT: 250ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 33634ms
RDB − Max lat: 245ms
LT − Max lat: 8359ms
mFR − Max lat: 16942ms
All mods − Max lat: 1934ms

CDF of delivery latency, application layer − CT loss high − RTT: 250ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

3
0
.9

4
0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8465ms
RDB − Max lat: 660ms
LT − Max lat: 18374ms
mFR − Max lat: 9326ms
All mods − Max lat: 557ms

CDF of delivery latency, application layer − CT loss high − RTT: 300ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8465ms
RDB − Max lat: 660ms
LT − Max lat: 18374ms
mFR − Max lat: 9326ms
All mods − Max lat: 557ms

CDF of delivery latency, application layer − CT loss high − RTT: 300ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

3
0
.9

4
0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 18706ms
RDB − Max lat: 811ms
LT − Max lat: 5351ms
mFR − Max lat: 8637ms
All mods − Max lat: 675ms

CDF of delivery latency, application layer − CT loss high − RTT: 300ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 18706ms
RDB − Max lat: 811ms
LT − Max lat: 5351ms
mFR − Max lat: 8636ms
All mods − Max lat: 675ms

CDF of delivery latency, application layer − CT loss high − RTT: 300ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

3
0
.9

4
0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 9122ms
RDB − Max lat: 1907ms
LT − Max lat: 17940ms
mFR − Max lat: 17659ms
All mods − Max lat: 8717ms

CDF of delivery latency, application layer − CT loss high − RTT: 300ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 9122ms
RDB − Max lat: 1907ms
LT − Max lat: 17940ms
mFR − Max lat: 17659ms
All mods − Max lat: 8717ms

CDF of delivery latency, application layer − CT loss high − RTT: 300ms IAT: 200ms packet size 100 Bytes

224 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

3
0
.9

4
0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 9260ms
RDB − Max lat: 1974ms
LT − Max lat: 4619ms
mFR − Max lat: 9164ms
All mods − Max lat: 1325ms

CDF of delivery latency, application layer − CT loss high − RTT: 300ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 9260ms
RDB − Max lat: 1974ms
LT − Max lat: 4619ms
mFR − Max lat: 9164ms
All mods − Max lat: 1325ms

CDF of delivery latency, application layer − CT loss high − RTT: 300ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 9712ms
RDB − Max lat: 5210ms
LT − Max lat: 17768ms
mFR − Max lat: 18809ms
All mods − Max lat: 9146ms

CDF of delivery latency, application layer − CT loss high − RTT: 300ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 9712ms
RDB − Max lat: 5210ms
LT − Max lat: 17768ms
mFR − Max lat: 18809ms
All mods − Max lat: 9146ms

CDF of delivery latency, application layer − CT loss high − RTT: 300ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

3
0
.9

4
0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 17787ms
RDB − Max lat: 4048ms
LT − Max lat: 2376ms
mFR − Max lat: 17808ms
All mods − Max lat: 2374ms

CDF of delivery latency, application layer − CT loss high − RTT: 300ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 17787ms
RDB − Max lat: 4048ms
LT − Max lat: 2376ms
mFR − Max lat: 17808ms
All mods − Max lat: 2374ms

CDF of delivery latency, application layer − CT loss high − RTT: 300ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 9359ms
RDB − Max lat: 329ms
LT − Max lat: 4754ms
mFR − Max lat: 9577ms
All mods − Max lat: 4864ms

CDF of delivery latency, application layer − CT loss high − RTT: 300ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 9359ms
RDB − Max lat: 329ms
LT − Max lat: 4754ms
mFR − Max lat: 9577ms
All mods − Max lat: 4864ms

CDF of delivery latency, application layer − CT loss high − RTT: 300ms IAT: 50ms packet size 100 Bytes

D.2. Cross-traffic loss - high loss rate 225

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4588ms
RDB − Max lat: 938ms
LT − Max lat: 4427ms
mFR − Max lat: 2331ms
All mods − Max lat: 966ms

CDF of delivery latency, application layer − CT loss high − RTT: 50ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

3
0
.9

4
0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4588ms
RDB − Max lat: 938ms
LT − Max lat: 4427ms
mFR − Max lat: 2331ms
All mods − Max lat: 966ms

CDF of delivery latency, application layer − CT loss high − RTT: 50ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2171ms
RDB − Max lat: 947ms
LT − Max lat: 1827ms
mFR − Max lat: 2142ms
All mods − Max lat: 651ms

CDF of delivery latency, application layer − CT loss high − RTT: 50ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2171ms
RDB − Max lat: 947ms
LT − Max lat: 1827ms
mFR − Max lat: 2142ms
All mods − Max lat: 651ms

CDF of delivery latency, application layer − CT loss high − RTT: 50ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4452ms
RDB − Max lat: 2042ms
LT − Max lat: 1474ms
mFR − Max lat: 4133ms
All mods − Max lat: 1267ms

CDF of delivery latency, application layer − CT loss high − RTT: 50ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4452ms
RDB − Max lat: 2042ms
LT − Max lat: 1474ms
mFR − Max lat: 4133ms
All mods − Max lat: 1267ms

CDF of delivery latency, application layer − CT loss high − RTT: 50ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2209ms
RDB − Max lat: 2042ms
LT − Max lat: 954ms
mFR − Max lat: 2167ms
All mods − Max lat: 860ms

CDF of delivery latency, application layer − CT loss high − RTT: 50ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2209ms
RDB − Max lat: 2042ms
LT − Max lat: 954ms
mFR − Max lat: 2167ms
All mods − Max lat: 860ms

CDF of delivery latency, application layer − CT loss high − RTT: 50ms IAT: 250ms packet size 100 Bytes

226 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2363ms
RDB − Max lat: 223ms
LT − Max lat: 2365ms
mFR − Max lat: 2337ms
All mods − Max lat: 222ms

CDF of delivery latency, application layer − CT loss high − RTT: 50ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2363ms
RDB − Max lat: 223ms
LT − Max lat: 2365ms
mFR − Max lat: 2337ms
All mods − Max lat: 222ms

CDF of delivery latency, application layer − CT loss high − RTT: 50ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2053ms
RDB − Max lat: 4669ms
LT − Max lat: 932ms
mFR − Max lat: 2130ms
All mods − Max lat: 939ms

CDF of delivery latency, application layer − CT loss high − RTT: 50ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2053ms
RDB − Max lat: 4669ms
LT − Max lat: 932ms
mFR − Max lat: 2130ms
All mods − Max lat: 939ms

CDF of delivery latency, application layer − CT loss high − RTT: 50ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4601ms
RDB − Max lat: 342ms
LT − Max lat: 4556ms
mFR − Max lat: 2218ms
All mods − Max lat: 365ms

CDF of delivery latency, application layer − CT loss high − RTT: 50ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4601ms
RDB − Max lat: 342ms
LT − Max lat: 4556ms
mFR − Max lat: 2218ms
All mods − Max lat: 365ms

CDF of delivery latency, application layer − CT loss high − RTT: 50ms IAT: 50ms packet size 100 Bytes

D.3. Cross-traffic loss - low loss rate 227

D.3 Cross-traffic loss - low loss rate

228 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

8
6

0
.9

8
8

0
.9

9
0

0
.9

9
2

0
.9

9
4

0
.9

9
6

0
.9

9
8

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 19596ms
RDB − Max lat: 19700ms
LT − Max lat: 4709ms
mFR − Max lat: 4711ms
All mods − Max lat: 9517ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 100ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 19596ms
RDB − Max lat: 19700ms
LT − Max lat: 4709ms
mFR − Max lat: 4711ms
All mods − Max lat: 9517ms

CDF of delivery latency, application layer − CT loss normal − RTT: 100ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4739ms
RDB − Max lat: 4713ms
LT − Max lat: 4712ms
mFR − Max lat: 4859ms
All mods − Max lat: 4707ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 100ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4739ms
RDB − Max lat: 4713ms
LT − Max lat: 4712ms
mFR − Max lat: 4859ms
All mods − Max lat: 4707ms

CDF of delivery latency, application layer − CT loss normal − RTT: 100ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4793ms
RDB − Max lat: 4719ms
LT − Max lat: 4868ms
mFR − Max lat: 4874ms
All mods − Max lat: 4898ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 100ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4793ms
RDB − Max lat: 4719ms
LT − Max lat: 4868ms
mFR − Max lat: 4874ms
All mods − Max lat: 4898ms

CDF of delivery latency, application layer − CT loss normal − RTT: 100ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
6

0
.9

8
8

0
.9

9
0

0
.9

9
2

0
.9

9
4

0
.9

9
6

0
.9

9
8

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4696ms
RDB − Max lat: 4955ms
LT − Max lat: 4705ms
mFR − Max lat: 4717ms
All mods − Max lat: 4950ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 100ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4696ms
RDB − Max lat: 4955ms
LT − Max lat: 4705ms
mFR − Max lat: 4717ms
All mods − Max lat: 4950ms

CDF of delivery latency, application layer − CT loss normal − RTT: 100ms IAT: 250ms packet size 100 Bytes

D.3. Cross-traffic loss - low loss rate 229

0 200 400 600 800 1000 1200 1400

0
.9

8
8

0
.9

9
0

0
.9

9
2

0
.9

9
4

0
.9

9
6

0
.9

9
8

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4816ms
RDB − Max lat: 4759ms
LT − Max lat: 4812ms
mFR − Max lat: 4802ms
All mods − Max lat: 4756ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 100ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4816ms
RDB − Max lat: 4759ms
LT − Max lat: 4812ms
mFR − Max lat: 4802ms
All mods − Max lat: 4756ms

CDF of delivery latency, application layer − CT loss normal − RTT: 100ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 14000
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4806ms
RDB − Max lat: 4946ms
LT − Max lat: 4675ms
mFR − Max lat: 5006ms
All mods − Max lat: 4645ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 100ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 14000
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4806ms
RDB − Max lat: 4946ms
LT − Max lat: 4675ms
mFR − Max lat: 5006ms
All mods − Max lat: 4645ms

CDF of delivery latency, application layer − CT loss normal − RTT: 100ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
8

0
.9

9
0

0
.9

9
2

0
.9

9
4

0
.9

9
6

0
.9

9
8

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 9472ms
RDB − Max lat: 4746ms
LT − Max lat: 4912ms
mFR − Max lat: 4854ms
All mods − Max lat: 4741ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 100ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 9472ms
RDB − Max lat: 4746ms
LT − Max lat: 4912ms
mFR − Max lat: 4854ms
All mods − Max lat: 4741ms

CDF of delivery latency, application layer − CT loss normal − RTT: 100ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11680ms
RDB − Max lat: 11683ms
LT − Max lat: 6349ms
mFR − Max lat: 11602ms
All mods − Max lat: 11684ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 150ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

4
0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11680ms
RDB − Max lat: 11683ms
LT − Max lat: 6349ms
mFR − Max lat: 11602ms
All mods − Max lat: 11684ms

CDF of delivery latency, application layer − CT loss normal − RTT: 150ms IAT: 100ms packet size 100 Bytes

230 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11680ms
RDB − Max lat: 11683ms
LT − Max lat: 6349ms
mFR − Max lat: 11602ms
All mods − Max lat: 11684ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 150ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

4
0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11680ms
RDB − Max lat: 11683ms
LT − Max lat: 6349ms
mFR − Max lat: 11602ms
All mods − Max lat: 11684ms

CDF of delivery latency, application layer − CT loss normal − RTT: 150ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11529ms
RDB − Max lat: 11708ms
LT − Max lat: 1354ms
mFR − Max lat: 23713ms
All mods − Max lat: 386ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 150ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11529ms
RDB − Max lat: 11708ms
LT − Max lat: 1354ms
mFR − Max lat: 23713ms
All mods − Max lat: 386ms

CDF of delivery latency, application layer − CT loss normal − RTT: 150ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 24251ms
RDB − Max lat: 11842ms
LT − Max lat: 858ms
mFR − Max lat: 11733ms
All mods − Max lat: 6338ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 150ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 24251ms
RDB − Max lat: 11842ms
LT − Max lat: 858ms
mFR − Max lat: 11733ms
All mods − Max lat: 6338ms

CDF of delivery latency, application layer − CT loss normal − RTT: 150ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 23705ms
RDB − Max lat: 11853ms
LT − Max lat: 6346ms
mFR − Max lat: 23708ms
All mods − Max lat: 6350ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 150ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

6
5

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 23705ms
RDB − Max lat: 11853ms
LT − Max lat: 6346ms
mFR − Max lat: 23708ms
All mods − Max lat: 6350ms

CDF of delivery latency, application layer − CT loss normal − RTT: 150ms IAT: 250ms packet size 100 Bytes

D.3. Cross-traffic loss - low loss rate 231

0 200 400 600 800 1000 1200 1400

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11437ms
RDB − Max lat: 6423ms
LT − Max lat: 11429ms
mFR − Max lat: 11429ms
All mods − Max lat: 6448ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 150ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11437ms
RDB − Max lat: 6423ms
LT − Max lat: 11429ms
mFR − Max lat: 11429ms
All mods − Max lat: 6448ms

CDF of delivery latency, application layer − CT loss normal − RTT: 150ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11840ms
RDB − Max lat: 11948ms
LT − Max lat: 6356ms
mFR − Max lat: 11836ms
All mods − Max lat: 787ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 150ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11840ms
RDB − Max lat: 11948ms
LT − Max lat: 6356ms
mFR − Max lat: 11836ms
All mods − Max lat: 787ms

CDF of delivery latency, application layer − CT loss normal − RTT: 150ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11425ms
RDB − Max lat: 11480ms
LT − Max lat: 6346ms
mFR − Max lat: 11527ms
All mods − Max lat: 6457ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 150ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 11425ms
RDB − Max lat: 11480ms
LT − Max lat: 6346ms
mFR − Max lat: 11527ms
All mods − Max lat: 6457ms

CDF of delivery latency, application layer − CT loss normal − RTT: 150ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3893ms
RDB − Max lat: 467ms
LT − Max lat: 3508ms
mFR − Max lat: 3509ms
All mods − Max lat: 466ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 200ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3893ms
RDB − Max lat: 467ms
LT − Max lat: 3508ms
mFR − Max lat: 3509ms
All mods − Max lat: 466ms

CDF of delivery latency, application layer − CT loss normal − RTT: 200ms IAT: 100ms packet size 100 Bytes

232 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3779ms
RDB − Max lat: 1586ms
LT − Max lat: 3424ms
mFR − Max lat: 1825ms
All mods − Max lat: 615ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 200ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3779ms
RDB − Max lat: 1586ms
LT − Max lat: 3424ms
mFR − Max lat: 1825ms
All mods − Max lat: 615ms

CDF of delivery latency, application layer − CT loss normal − RTT: 200ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3404ms
RDB − Max lat: 1553ms
LT − Max lat: 3781ms
mFR − Max lat: 3732ms
All mods − Max lat: 1078ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 200ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

4
0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3404ms
RDB − Max lat: 1553ms
LT − Max lat: 3781ms
mFR − Max lat: 3732ms
All mods − Max lat: 1078ms

CDF of delivery latency, application layer − CT loss normal − RTT: 200ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7008ms
RDB − Max lat: 1490ms
LT − Max lat: 1925ms
mFR − Max lat: 7026ms
All mods − Max lat: 983ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 200ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

4
0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7008ms
RDB − Max lat: 1490ms
LT − Max lat: 1925ms
mFR − Max lat: 7026ms
All mods − Max lat: 983ms

CDF of delivery latency, application layer − CT loss normal − RTT: 200ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3647ms
RDB − Max lat: 529ms
LT − Max lat: 3425ms
mFR − Max lat: 3933ms
All mods − Max lat: 745ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 200ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3647ms
RDB − Max lat: 529ms
LT − Max lat: 3425ms
mFR − Max lat: 3933ms
All mods − Max lat: 745ms

CDF of delivery latency, application layer − CT loss normal − RTT: 200ms IAT: 25ms packet size 100 Bytes

D.3. Cross-traffic loss - low loss rate 233

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7027ms
RDB − Max lat: 3283ms
LT − Max lat: 1363ms
mFR − Max lat: 3344ms
All mods − Max lat: 1448ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 200ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7027ms
RDB − Max lat: 3283ms
LT − Max lat: 1363ms
mFR − Max lat: 3344ms
All mods − Max lat: 1448ms

CDF of delivery latency, application layer − CT loss normal − RTT: 200ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3448ms
RDB − Max lat: 323ms
LT − Max lat: 3828ms
mFR − Max lat: 2157ms
All mods − Max lat: 361ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 200ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3448ms
RDB − Max lat: 323ms
LT − Max lat: 3828ms
mFR − Max lat: 2157ms
All mods − Max lat: 361ms

CDF of delivery latency, application layer − CT loss normal − RTT: 200ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2224ms
RDB − Max lat: 655ms
LT − Max lat: 2374ms
mFR − Max lat: 4119ms
All mods − Max lat: 461ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 250ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2224ms
RDB − Max lat: 655ms
LT − Max lat: 2374ms
mFR − Max lat: 4119ms
All mods − Max lat: 461ms

CDF of delivery latency, application layer − CT loss normal − RTT: 250ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4106ms
RDB − Max lat: 530ms
LT − Max lat: 3777ms
mFR − Max lat: 4315ms
All mods − Max lat: 648ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 250ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4106ms
RDB − Max lat: 530ms
LT − Max lat: 3777ms
mFR − Max lat: 4315ms
All mods − Max lat: 648ms

CDF of delivery latency, application layer − CT loss normal − RTT: 250ms IAT: 150ms packet size 100 Bytes

234 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3812ms
RDB − Max lat: 1676ms
LT − Max lat: 3813ms
mFR − Max lat: 7884ms
All mods − Max lat: 684ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 250ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3812ms
RDB − Max lat: 1676ms
LT − Max lat: 3813ms
mFR − Max lat: 7884ms
All mods − Max lat: 684ms

CDF of delivery latency, application layer − CT loss normal − RTT: 250ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7684ms
RDB − Max lat: 632ms
LT − Max lat: 4134ms
mFR − Max lat: 7802ms
All mods − Max lat: 1026ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 250ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

4
0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 7684ms
RDB − Max lat: 632ms
LT − Max lat: 4134ms
mFR − Max lat: 7802ms
All mods − Max lat: 1026ms

CDF of delivery latency, application layer − CT loss normal − RTT: 250ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2300ms
RDB − Max lat: 2042ms
LT − Max lat: 4138ms
mFR − Max lat: 2379ms
All mods − Max lat: 1316ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 250ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2300ms
RDB − Max lat: 2042ms
LT − Max lat: 4138ms
mFR − Max lat: 2379ms
All mods − Max lat: 1316ms

CDF of delivery latency, application layer − CT loss normal − RTT: 250ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3672ms
RDB − Max lat: 3661ms
LT − Max lat: 1569ms
mFR − Max lat: 3643ms
All mods − Max lat: 2123ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 250ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3672ms
RDB − Max lat: 3661ms
LT − Max lat: 1569ms
mFR − Max lat: 3643ms
All mods − Max lat: 2123ms

CDF of delivery latency, application layer − CT loss normal − RTT: 250ms IAT: 500ms packet size 100 Bytes

D.3. Cross-traffic loss - low loss rate 235

0 200 400 600 800 1000 1200 1400

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4544ms
RDB − Max lat: 330ms
LT − Max lat: 2124ms
mFR − Max lat: 4181ms
All mods − Max lat: 322ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 250ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4544ms
RDB − Max lat: 330ms
LT − Max lat: 2124ms
mFR − Max lat: 4181ms
All mods − Max lat: 322ms

CDF of delivery latency, application layer − CT loss normal − RTT: 250ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2452ms
RDB − Max lat: 435ms
LT − Max lat: 4442ms
mFR − Max lat: 2380ms
All mods − Max lat: 465ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 300ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2452ms
RDB − Max lat: 435ms
LT − Max lat: 4442ms
mFR − Max lat: 2380ms
All mods − Max lat: 465ms

CDF of delivery latency, application layer − CT loss normal − RTT: 300ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4216ms
RDB − Max lat: 520ms
LT − Max lat: 2275ms
mFR − Max lat: 2346ms
All mods − Max lat: 508ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 300ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4216ms
RDB − Max lat: 520ms
LT − Max lat: 2275ms
mFR − Max lat: 2346ms
All mods − Max lat: 508ms

CDF of delivery latency, application layer − CT loss normal − RTT: 300ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4007ms
RDB − Max lat: 730ms
LT − Max lat: 1930ms
mFR − Max lat: 2082ms
All mods − Max lat: 659ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 300ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

4
0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 4007ms
RDB − Max lat: 730ms
LT − Max lat: 1930ms
mFR − Max lat: 2082ms
All mods − Max lat: 659ms

CDF of delivery latency, application layer − CT loss normal − RTT: 300ms IAT: 200ms packet size 100 Bytes

236 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2153ms
RDB − Max lat: 723ms
LT − Max lat: 2201ms
mFR − Max lat: 4296ms
All mods − Max lat: 708ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 300ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

5
0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2153ms
RDB − Max lat: 723ms
LT − Max lat: 2201ms
mFR − Max lat: 4296ms
All mods − Max lat: 708ms

CDF of delivery latency, application layer − CT loss normal − RTT: 300ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2844ms
RDB − Max lat: 1165ms
LT − Max lat: 4681ms
mFR − Max lat: 4453ms
All mods − Max lat: 1275ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 300ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 2844ms
RDB − Max lat: 1165ms
LT − Max lat: 4681ms
mFR − Max lat: 4453ms
All mods − Max lat: 1275ms

CDF of delivery latency, application layer − CT loss normal − RTT: 300ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3786ms
RDB − Max lat: 1713ms
LT − Max lat: 1699ms
mFR − Max lat: 4001ms
All mods − Max lat: 1143ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 300ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3786ms
RDB − Max lat: 1713ms
LT − Max lat: 1699ms
mFR − Max lat: 4001ms
All mods − Max lat: 1143ms

CDF of delivery latency, application layer − CT loss normal − RTT: 300ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3887ms
RDB − Max lat: 355ms
LT − Max lat: 4468ms
mFR − Max lat: 4358ms
All mods − Max lat: 330ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 300ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 3887ms
RDB − Max lat: 355ms
LT − Max lat: 4468ms
mFR − Max lat: 4358ms
All mods − Max lat: 330ms

CDF of delivery latency, application layer − CT loss normal − RTT: 300ms IAT: 50ms packet size 100 Bytes

D.3. Cross-traffic loss - low loss rate 237

0 200 400 600 800 1000 1200 1400

0
.9

9
0

0
.9

9
2

0
.9

9
4

0
.9

9
6

0
.9

9
8

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8144ms
RDB − Max lat: 8144ms
LT − Max lat: 5597ms
mFR − Max lat: 8264ms
All mods − Max lat: 5588ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 50ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8144ms
RDB − Max lat: 8144ms
LT − Max lat: 5597ms
mFR − Max lat: 8264ms
All mods − Max lat: 5588ms

CDF of delivery latency, application layer − CT loss normal − RTT: 50ms IAT: 100ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

9
0

0
.9

9
2

0
.9

9
4

0
.9

9
6

0
.9

9
8

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8498ms
RDB − Max lat: 8364ms
LT − Max lat: 660ms
mFR − Max lat: 8347ms
All mods − Max lat: 5579ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 50ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8498ms
RDB − Max lat: 8364ms
LT − Max lat: 660ms
mFR − Max lat: 8347ms
All mods − Max lat: 5579ms

CDF of delivery latency, application layer − CT loss normal − RTT: 50ms IAT: 150ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

9
0

0
.9

9
2

0
.9

9
4

0
.9

9
6

0
.9

9
8

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8378ms
RDB − Max lat: 16920ms
LT − Max lat: 5588ms
mFR − Max lat: 8621ms
All mods − Max lat: 5588ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 50ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8378ms
RDB − Max lat: 16920ms
LT − Max lat: 5588ms
mFR − Max lat: 8621ms
All mods − Max lat: 5588ms

CDF of delivery latency, application layer − CT loss normal − RTT: 50ms IAT: 200ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

9
0

0
.9

9
2

0
.9

9
4

0
.9

9
6

0
.9

9
8

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8491ms
RDB − Max lat: 8495ms
LT − Max lat: 627ms
mFR − Max lat: 8252ms
All mods − Max lat: 566ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 50ms IAT: 250ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

9
0

0
.9

9
2

0
.9

9
4

0
.9

9
6

0
.9

9
8

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8491ms
RDB − Max lat: 8495ms
LT − Max lat: 627ms
mFR − Max lat: 8252ms
All mods − Max lat: 566ms

CDF of delivery latency, application layer − CT loss normal − RTT: 50ms IAT: 250ms packet size 100 Bytes

238 Appendix D. Complete set of CDFs from TCP laboratory experiments

0 200 400 600 800 1000 1200 1400

0
.9

9
2

0
.9

9
4

0
.9

9
6

0
.9

9
8

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8001ms
RDB − Max lat: 5647ms
LT − Max lat: 5616ms
mFR − Max lat: 8001ms
All mods − Max lat: 5649ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 50ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
0

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8001ms
RDB − Max lat: 5647ms
LT − Max lat: 5616ms
mFR − Max lat: 8001ms
All mods − Max lat: 5649ms

CDF of delivery latency, application layer − CT loss normal − RTT: 50ms IAT: 25ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

9
0

0
.9

9
2

0
.9

9
4

0
.9

9
6

0
.9

9
8

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8388ms
RDB − Max lat: 8239ms
LT − Max lat: 624ms
mFR − Max lat: 8228ms
All mods − Max lat: 622ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 50ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

9
0

0
.9

9
2

0
.9

9
4

0
.9

9
6

0
.9

9
8

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8388ms
RDB − Max lat: 8239ms
LT − Max lat: 624ms
mFR − Max lat: 8228ms
All mods − Max lat: 622ms

CDF of delivery latency, application layer − CT loss normal − RTT: 50ms IAT: 500ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

9
2

0
.9

9
4

0
.9

9
6

0
.9

9
8

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8251ms
RDB − Max lat: 5619ms
LT − Max lat: 5594ms
mFR − Max lat: 8027ms
All mods − Max lat: 5621ms

CDF of delivery latency, transport layer − CT loss normal − RTT: 50ms IAT: 50ms packet size 100 Bytes

0 200 400 600 800 1000 1200 1400

0
.9

7
5

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

Latency above optimal delivery time (ms)

C
D

F

TCP New Reno − Max lat: 8251ms
RDB − Max lat: 5619ms
LT − Max lat: 5594ms
mFR − Max lat: 8027ms
All mods − Max lat: 5621ms

CDF of delivery latency, application layer − CT loss normal − RTT: 50ms IAT: 50ms packet size 100 Bytes

Appendix E

TCP-patch for Linux 2.6.23 kernel

1 d i f f −−g i t a / i n c l u d e / l i n u x / s y s c t l . h b / i n c l u d e / l i n u x / s y s c t l . h

2 index 483050 c . . f 0 edacd 100644

3 −−− a / i n c l u d e / l i n u x / s y s c t l . h

4 +++ b / i n c l u d e / l i n u x / s y s c t l . h

5 @@ −355 ,6 +355 ,11 @@ enum

6 NET_IPV4_ROUTE=18 ,

7 NET_IPV4_FIB_HASH=19 ,

8 NET_IPV4_NETFILTER=20 ,

9 +

10 + NET_IPV4_TCP_FORCE_THIN_RDB=29 , /∗ Added @ Simula ∗ /

11 + NET_IPV4_TCP_FORCE_THIN_RM_EXPB=30 , /∗ Added @ Simula ∗ /

12 + NET_IPV4_TCP_FORCE_THIN_DUPACK=31 , /∗ Added @ Simula ∗ /

13 + NET_IPV4_TCP_RDB_MAX_BUNDLE_BYTES=32 , /∗ Added @ Simula ∗ /

14

15 NET_IPV4_TCP_TIMESTAMPS=33 ,

16 NET_IPV4_TCP_WINDOW_SCALING=34 ,

17 d i f f −−g i t a / i n c l u d e / l i n u x / t c p . h b / i n c l u d e / l i n u x / t c p . h

18 index c6b9f92 . . c11a564 100644

19 −−− a / i n c l u d e / l i n u x / t c p . h

20 +++ b / i n c l u d e / l i n u x / t c p . h

21 @@ −97 ,6 +97 ,10 @@ enum {

22 # d e f i n e TCP_CONGESTION 13 /∗ Conge s t i on c o n t r o l a l g o r i t hm ∗ /

23 # d e f i n e TCP_MD5SIG 14 /∗ TCP MD5 S i g n a t u r e (RFC2385) ∗ /

24

25 +# d e f i n e TCP_THIN_RDB 15 /∗ Added @ Simula − Enable r edundan t da ta bund l i n g ∗ /

26 +# d e f i n e TCP_THIN_RM_EXPB 16 /∗ Added @ Simula − Remove e x p o n e n t i a l b a c k o f f ∗ /

27 +# d e f i n e TCP_THIN_DUPACK 17 /∗ Added @ Simula − Reduce number o f dupAcks needed ∗ /

28 +

29 # d e f i n e TCPI_OPT_TIMESTAMPS 1

30 # d e f i n e TCPI_OPT_SACK 2

31 # d e f i n e TCPI_OPT_WSCALE 4

32 @@ −296 ,6 +300 ,10 @@ s t r u c t t c p_ so ck {

33 u8 nonag l e ; /∗ Di sab l e Nagle a l g o r i t hm ? ∗ /

34 u8 k e e p a l i v e _ p r o b e s ; /∗ num o f a l l owed keep a l i v e probes ∗ /

35

36 + u8 t h i n _ r d b ; /∗ Enable RDB ∗ /

37 + u8 th in_ rm_expb ; /∗ Remove exp . b a c k o f f ∗ /

38 + u8 t h i n_dupa ck ; /∗ Remove dupack ∗ /

39 +

40 /∗ RTT measurement ∗ /

41 u32 s r t t ; /∗ smoothed round t r i p t ime << 3 ∗ /

239

240 Appendix E. TCP-patch for Linux 2.6.23 kernel

42 u32 mdev ; /∗ medium d e v i a t i o n ∗ /

43 d i f f −−g i t a / i n c l u d e / n e t / sock . h b / i n c l u d e / n e t / sock . h

44 index dfeb8b1 . . a f831d1 100644

45 −−− a / i n c l u d e / n e t / sock . h

46 +++ b / i n c l u d e / n e t / sock . h

47 @@ −462 ,7 +462 ,10 @@ s t a t i c i n l i n e void s k_ s t r e am_s e t _ owne r _ r (s t r u c t s k _bu f f ∗skb , s t r u c t sock ∗sk)

48

49 s t a t i c i n l i n e void s k _ s t r e am_ f r e e _ s k b (s t r u c t sock ∗sk , s t r u c t s k _bu f f ∗skb)

50 {

51 − s k b _ t r u e s i z e _ c h e c k (skb) ;

52 + /∗ Mod i f i ed @ Simula

53 + s k b _ t r u e s i z e _ c h e c k c r e a t e s unne c e s s a r y

54 + no i s e when combined w i t h RDB ∗ /

55 + / / s k b _ t r u e s i z e _ c h e c k (skb) ;

56 s o c k _ s e t _ f l a g (sk , SOCK_QUEUE_SHRUNK) ;

57 sk−>sk_wmem_queued −= skb−> t r u e s i z e ;

58 sk−>s k _ f o rw a r d _ a l l o c += skb−> t r u e s i z e ;

59 d i f f −−g i t a / i n c l u d e / n e t / t c p . h b / i n c l u d e / n e t / t c p . h

60 index 54053 de . . 4 1 1 cc9b 100644

61 −−− a / i n c l u d e / n e t / t c p . h

62 +++ b / i n c l u d e / n e t / t c p . h

63 @@ −188 ,9 +188 ,19 @@ ex tern void t c p _ t ime_wa i t (s t r u c t sock ∗sk , i n t s t a t e , i n t t imeo) ;

64 # d e f i n e TCP_NAGLE_CORK 2 /∗ Soc k e t i s corked ∗ /

65 # d e f i n e TCP_NAGLE_PUSH 4 /∗ Cork i s o v e r r i d d e n f o r a l r e ad y queued da ta ∗ /

66

67 + /∗ Added @ Simula − Thin s t r eam suppo r t ∗ /

68 +# d e f i n e TCP_FORCE_THIN_RDB 0 /∗ Thin s t r eams : exp . b a c k o f f d e f a u l t o f f ∗ /

69 +# d e f i n e TCP_FORCE_THIN_RM_EXPB 0 /∗ Thin s t r eams : dynamic dupack d e f a u l t o f f ∗ /

70 +# d e f i n e TCP_FORCE_THIN_DUPACK 0 /∗ Thin s t r eams : sma l l e r minRTO d e f a u l t o f f ∗ /

71 +# d e f i n e TCP_RDB_MAX_BUNDLE_BYTES 0 /∗ Thin s t r eams : L im i t maximum bund led b y t e s ∗ /

72 +

73 ex tern s t r u c t i n e t _ t im ewa i t _ d e a t h _ r ow t cp_dea t h_ row ;

74

75 /∗ s y s c t l v a r i a b l e s f o r t c p ∗ /

76 + ex tern i n t s y s c t l _ t c p _ f o r c e _ t h i n _ r d b ; /∗ Added @ Simula ∗ /

77 + ex tern i n t s y s c t l _ t c p _ f o r c e _ t h i n _ rm_ e x p b ; /∗ Added @ Simula ∗ /

78 + ex tern i n t s y s c t l _ t c p _ f o r c e _ t h i n _ d u p a c k ; /∗ Added @ Simula ∗ /

79 + ex tern i n t s y s c t l _ t c p _ r d b _max_bund l e _ by t e s ; /∗ Added @ Simula ∗ /

80 ex tern i n t s y s c t l _ t c p _ t im e s t amp s ;

81 ex tern i n t s y s c t l _ t c p _w i n d ow_ s c a l i n g ;

82 ex tern i n t s y s c t l _ t c p _ s a c k ;

83 @@ −723 ,6 +733 ,16 @@ s t a t i c i n l i n e unsigned i n t t c p _ p a c k e t s _ i n _ f l i g h t (cons t s t r u c t t c p_ so ck ∗ t p)

84 re turn (tp−>p a c k e t s _ o u t − tp−> l e f t _ o u t + tp−> r e t r a n s _ o u t) ;

85 }

86

87 + /∗ Added @ Simula

88 + ∗

89 + ∗ To de t e rm i n e whe ther a s t r eam i s t h i n or no t

90 + ∗ r e t u r n 1 i f t h i n , 0 o t h e r v i c e

91 + ∗ /

92 + s t a t i c i n l i n e unsigned i n t t c p _ s t r e am _ i s _ t h i n (cons t s t r u c t t c p_ so ck ∗ t p)

93 +{

94 + re turn (tp−>p a c k e t s _ o u t < 4 ? 1 : 0) ;

95 +}

96 +

97 /∗ I f cwnd > s s t h r e s h , we may r a i s e s s t h r e s h t o be ha l f−way t o cwnd .

98 ∗ The e x c e p t i o n i s r a t e h a l v i n g phase , when cwnd i s d e c r e a s i n g towards

99 ∗ s s t h r e s h .

100 d i f f −−g i t a / n e t / i p v4 / s y s c t l _ n e t _ i p v 4 . c b / n e t / i p v4 / s y s c t l _ n e t _ i p v 4 . c

241

101 i n d e x 53 e f 0 f 4 . . 5 8 ac82b 100644

102 −−− a / n e t / i p v4 / s y s c t l _ n e t _ i p v 4 . c

103 +++ b / n e t / i p v4 / s y s c t l _ n e t _ i p v 4 . c

104 @@ −187 ,6 +187 ,38 @@ s t a t i c i n t s t r a t e g y _ a l l o w e d _ c o n g e s t i o n _ c o n t r o l (c t l _ t a b l e ∗ t a b l e , i n t __use r ∗nam

105 }

106

107 c t l _ t a b l e i p v 4 _ t a b l e [] = {

108 + { /∗ Added @ Simula f o r t h i n s t r eams ∗ /

109 + . c t l _name = NET_IPV4_TCP_FORCE_THIN_RDB ,

110 + . procname = " t c p _ f o r c e _ t h i n _ r d b " ,

111 + . d a t a = &s y s c t l _ t c p _ f o r c e _ t h i n _ r d b ,

112 + . maxlen = s i z e o f (i n t) ,

113 + . mode = 0644 ,

114 + . p r o c _ h a n d l e r = &p r o c _ do i n t v e c

115 + } ,

116 + { /∗ Added @ Simula f o r t h i n s t r eams ∗ /

117 + . c t l _name = NET_IPV4_TCP_FORCE_THIN_RM_EXPB ,

118 + . procname = " t c p _ f o r c e _ t h i n _ rm_expb " ,

119 + . d a t a = &s y s c t l _ t c p _ f o r c e _ t h i n _ rm_ e x p b ,

120 + . maxlen = s i z e o f (i n t) ,

121 + . mode = 0644 ,

122 + . p r o c _ h a n d l e r = &p r o c _ do i n t v e c

123 + } ,

124 + { /∗ Added @ Simula f o r t h i n s t r eams ∗ /

125 + . c t l _name = NET_IPV4_TCP_FORCE_THIN_DUPACK ,

126 + . procname = " t c p _ f o r c e _ t h i n _ d u p a c k " ,

127 + . d a t a = &s y s c t l _ t c p _ f o r c e _ t h i n _ d u p a c k ,

128 + . maxlen = s i z e o f (i n t) ,

129 + . mode = 0644 ,

130 + . p r o c _ h a n d l e r = &p r o c _ do i n t v e c

131 + } ,

132 + { /∗ Added @ Simula f o r t h i n s t r eams ∗ /

133 + . c t l _name = NET_IPV4_TCP_RDB_MAX_BUNDLE_BYTES ,

134 + . procname = " t cp_ rdb_max_bund l e_by t e s " ,

135 + . d a t a = &sy s c t l _ t c p _ r db_max_bund l e _by t e s ,

136 + . maxlen = s i z e o f (i n t) ,

137 + . mode = 0644 ,

138 + . p r o c _ h a n d l e r = &p r o c _ do i n t v e c

139 + } ,

140 {

141 . c t l _name = NET_IPV4_TCP_TIMESTAMPS ,

142 . procname = " t c p_ t ime s t amp s " ,

143 d i f f −−g i t a / n e t / i pv4 / t c p . c b / n e t / i pv4 / t c p . c

144 index 7 e74011 . . 8 aeec1b 100644

145 −−− a / n e t / i pv4 / t c p . c

146 +++ b / n e t / i pv4 / t c p . c

147 @@ −270 ,6 +270 ,10 @@

148

149 i n t s y s c t l _ t c p _ f i n _ t i m e o u t __ r e ad_mos t l y = TCP_FIN_TIMEOUT ;

150

151 + /∗ Added @ Simula ∗ /

152 + i n t s y s c t l _ t c p _ f o r c e _ t h i n _ r d b __ r e ad_mos t l y = TCP_FORCE_THIN_RDB ;

153 + i n t s y s c t l _ t c p _ r d b _max_bund l e _ by t e s __ r e ad_mos t l y = TCP_RDB_MAX_BUNDLE_BYTES;

154 +

155 DEFINE_SNMP_STAT(s t r u c t tcp_mib , t c p _ s t a t i s t i c s) __ r e ad_mos t l y ;

156

157 a t om i c _ t t c p_o r ph an_coun t = ATOMIC_INIT (0) ;

158 @@ −658 ,6 +662 ,167 @@ s t a t i c i n l i n e i n t s e l e c t _ s i z e (s t r u c t sock ∗sk)

159 re turn tmp ;

242 Appendix E. TCP-patch for Linux 2.6.23 kernel

160 }

161

162 + /∗ Added a t S imula t o s uppo r t RDB ∗ /

163 + s t a t i c i n t t c p _ t r a n s _me r g e _p r e v (s t r u c t sock ∗sk , s t r u c t s k _bu f f ∗skb , i n t mss_now)

164 +{

165 + s t r u c t t c p_ so ck ∗ t p = t c p_ s k (sk) ;

166 +

167 + /∗ Make su r e t h a t t h i s i s n ’ t r e f e r e n c e d by somebody e l s e ∗ /

168 +

169 + i f (! s kb_c l oned (skb)) {

170 + s t r u c t s k _bu f f ∗p rev_skb = skb−>prev ;

171 + i n t s k b _ s i z e = skb−>l e n ;

172 + i n t o l d _h e a d l e n = 0 ;

173 + i n t ua_da t a = 0 ;

174 + i n t uad_head = 0 ;

175 + i n t u a d_ f r a g s = 0 ;

176 + i n t u a _ n r _ f r a g s = 0 ;

177 + i n t u a _ f r a g s _ d i f f = 0 ;

178 +

179 + /∗ S i n c e t h i s t e c h n i q u e c u r r e n t l y does no t s u ppo r t SACK , I

180 + ∗ r e t u r n −1 i f t h e p r e v i o u s has been SACK ’d . ∗ /

181 + i f (TCP_SKB_CB(p rev_skb)−> sacked & TCPCB_SACKED_ACKED){

182 + re turn −1;

183 + }

184 +

185 + /∗ Curren t skb i s ou t o f window . ∗ /

186 + i f (a f t e r (TCP_SKB_CB(skb)−>end_seq , tp−>snd_una+ tp−>snd_wnd)) {

187 + re turn −1;

188 + }

189 +

190 + /∗TODO: Op t im i z e t h i s p a r t w i t h r ega rd s t o how t h e

191 + v a r i a b l e s are i n i t i a l i z e d ∗ /

192 +

193 + /∗ Ca l c u l a t e s t h e ammount o f unacked da ta t h a t i s a v a i l a b l e ∗ /

194 + ua_da t a = (TCP_SKB_CB(p rev_skb)−>end_seq − tp−>snd_una >

195 + prev_skb−>l e n ? prev_skb−>l e n :

196 + TCP_SKB_CB(p rev_skb)−>end_seq − tp−>snd_una) ;

197 + u a _ f r a g s _ d i f f = ua_da t a − prev_skb−>d a t a _ l e n ;

198 + u ad_ f r a g s = (u a _ f r a g s _ d i f f > 0 ? prev_skb−>d a t a _ l e n : u a_da t a) ;

199 + uad_head = (u a _ f r a g s _ d i f f > 0 ? ua_da t a − u a d_ f r a g s : 0) ;

200 +

201 + i f (u a_da t a <= 0)

202 + re turn −1;

203 +

204 + i f (u a d _ f r a g s > 0){

205 + i n t i = 0 ;

206 + i n t b y t e s _ f r a g s = 0 ;

207 +

208 + i f (u a d _ f r a g s == prev_skb−>d a t a _ l e n){

209 + u a _ n r _ f r a g s = s kb_ s h i n f o (p r ev_skb)−> n r _ f r a g s ;

210 + } e l s e {

211 + f o r (i = s k b_ s h i n f o (p r ev_skb)−> n r _ f r a g s − 1 ; i >=0; i −−){

212 + i f (s k b _ s h i n f o (p r ev_skb)−> f r a g s [i] . s i z e

213 + + b y t e s _ f r a g s == u ad_ f r a g s) {

214 + u a _ n r _ f r a g s += 1 ;

215 + break ;

216 + }

217 + u a _ n r _ f r a g s += 1 ;

218 + b y t e s _ f r a g s += s kb_ s h i n f o (p r ev_skb)−> f r a g s [i] . s i z e ;

243

219 + }

220 + }

221 + }

222 +

223 + /∗

224 + ∗ Do t h e d i f f r e n e t che c k s on s i z e and con t e n t , and r e t u r n i f

225 + ∗ some th ing w i l l no t work .

226 + ∗

227 + ∗ TODO: Suppor t copy ing some b y t e s

228 + ∗

229 + ∗ 1 . Larger than MSS .

230 + ∗ 2 . Enough room f o r t h e s t u f f s t o r e d i n t h e l i n e a r area

231 + ∗ 3 . Enoug room f o r t h e pages

232 + ∗ 4 . I f bo th s kb s have some da ta s t o r e d i n t h e l i n e a r area , and prev_ skb

233 + ∗ a l s o has some s t o r e d i n t h e paged area , t h e y canno t be merged e a s i l y .

234 + ∗ 5 . I f p r e v_ s kb i s l i n e a r , t h en t h i s one has t o be i t as w e l l .

235 + ∗ /

236 + i f ((s y s c t l _ t c p _ r d b _max_bund l e _ by t e s == 0 && ((s k b _ s i z e + ua_da t a) > mss_now))

237 + | | (s y s c t l _ t c p _ r d b _max_bund l e _ by t e s > 0 && ((s k b _ s i z e + ua_da t a) >

238 + s y s c t l _ t c p _ r d b _max_bund l e _ by t e s))) {

239 + re turn −1;

240 + }

241 +

242 + /∗ We need t o know ta i l r oom , even i f i t i s n o n l i n e a r ∗ /

243 + i f (uad_head > (skb−>end − skb−> t a i l)) {

244 + re turn −1;

245 + }

246 +

247 + i f (s k b _ i s _ n o n l i n e a r (skb) && (u ad_ f r a g s > 0)) {

248 + i f ((u a _ n r _ f r a g s +

249 + s kb_ s h i n f o (skb)−> n r _ f r a g s) > MAX_SKB_FRAGS){

250 + re turn −1;

251 + }

252 +

253 + i f (s kb_head l en (skb) > 0){

254 + re turn −1;

255 + }

256 + }

257 +

258 + i f ((u a d _ f r a g s > 0) && skb_head l en (skb) > 0){

259 + re turn −1;

260 + }

261 +

262 + /∗ To avo id d u p l i c a t e c o p i e s (and c o p i e s

263 + where p a r t s have been acked) ∗ /

264 + i f (TCP_SKB_CB(skb)−> seq <= (TCP_SKB_CB(p rev_skb)−>end_seq − ua_da t a)) {

265 + re turn −1;

266 + }

267 +

268 + /∗SYN ’ s are ho l y ∗ /

269 + i f (TCP_SKB_CB(skb)−> f l a g s & TCPCB_FLAG_SYN | | TCP_SKB_CB(skb)−> f l a g s & TCPCB_FLAG_FIN){

270 + re turn −1;

271 + }

272 +

273 + /∗ Copy l i n e a r da ta ∗ /

274 + i f (uad_head > 0){

275 +

276 + /∗ Add r e q u i r e d space t o t h e header . Can ’ t use pu t due t o l i n e a r i t y ∗ /

277 + o l d _h e a d l e n = skb_head l en (skb) ;

244 Appendix E. TCP-patch for Linux 2.6.23 kernel

278 + skb−> t a i l += uad_head ;

279 + skb−>l e n += uad_head ;

280 +

281 + i f (s kb_head l en (skb) > 0){

282 + memmove (skb−>d a t a + uad_head , skb−>da ta , o l d _h e a d l e n) ;

283 + }

284 +

285 + s k b _ c o p y _ t o _ l i n e a r _ d a t a (skb , prev_skb−>d a t a + (skb_head l en (p r ev_skb) − uad_head) , uad_head) ;

286 + }

287 +

288 + /∗Copy paged da ta ∗ /

289 + i f (u a d _ f r a g s > 0){

290 + i n t i = 0 ;

291 + /∗Must move da ta backwards i n t h e ar ray . ∗ /

292 + i f (s k b _ i s _ n o n l i n e a r (skb)) {

293 + memmove (s k b_ s h i n f o (skb)−> f r a g s + ua_n r _ f r a g s ,

294 + s kb_ s h i n f o (skb)−> f r a g s ,

295 + s kb_ s h i n f o (skb)−> n r _ f r a g s∗ s i z e o f (s k b _ f r a g _ t)) ;

296 + }

297 +

298 + /∗Copy i n f o and upda te pages ∗ /

299 + memcpy (s k b_ s h i n f o (skb)−> f r a g s ,

300 + s kb_ s h i n f o (p r ev_skb)−> f r a g s + (s k b_ s h i n f o (p r ev_skb)−> n r _ f r a g s − u a _ n r _ f r a g s) ,

301 + u a _ n r _ f r a g s∗ s i z e o f (s k b _ f r a g _ t)) ;

302 +

303 + f o r (i =0 ; i < u a _ n r _ f r a g s ; i ++){

304 + ge t_page (s k b_ s h i n f o (skb)−> f r a g s [i] . page) ;

305 + }

306 +

307 + s kb_ s h i n f o (skb)−> n r _ f r a g s += u a _ n r _ f r a g s ;

308 + skb−>d a t a _ l e n += u ad_ f r a g s ;

309 + skb−>l e n += u ad_ f r a g s ;

310 + }

311 +

312 + TCP_SKB_CB(skb)−>seq = TCP_SKB_CB(p rev_skb)−>end_seq − ua_da t a ;

313 +

314 + i f (skb−>ip_summed == CHECKSUM_PARTIAL)

315 + skb−>csum = CHECKSUM_PARTIAL;

316 + e l s e

317 + skb−>csum = skb_checksum (skb , 0 , skb−>len , 0) ;

318 + }

319 +

320 + re turn 1 ;

321 +}

322 +

323 i n t t cp_sendmsg (s t r u c t k iocb ∗ iocb , s t r u c t s o c k e t ∗sock , s t r u c t msghdr ∗msg ,

324 s i z e _ t s i z e)

325 {

326 @@ −825 ,6 +990 ,16 @@ new_segment :

327

328 from += copy ;

329 cop i ed += copy ;

330 +

331 + /∗ Added a t S imula t o s uppo r t RDB ∗ /

332 + i f (((tp−> t h i n _ r d b | | s y s c t l _ t c p _ f o r c e _ t h i n _ r d b)) && skb−>l e n < mss_now){

333 + i f (skb−>prev != (s t r u c t s k _bu f f ∗) &(sk)−> sk_wr i t e _queue

334 + && ! (TCP_SKB_CB(skb)−> f l a g s & TCPCB_FLAG_SYN)

335 + && ! (TCP_SKB_CB(skb)−> f l a g s & TCPCB_FLAG_FIN)) {

336 + t c p _ t r a n s _me r g e _p r e v (sk , skb , mss_now) ;

245

337 + }

338 + } /∗ End − S imula ∗ /

339 +

340 i f ((s e g l e n −= copy) == 0 && i o v l e n == 0)

341 goto ou t ;

342

343 @@ −1870 ,7 +2045 ,25 @@ s t a t i c i n t d o _ t c p _ s e t s o c k o p t (s t r u c t sock ∗sk , i n t l e v e l ,

344 t cp_pu sh_pend i ng_ f r ames (sk) ;

345 }

346 break ;

347 −

348 +

349 + /∗ Added @ Simula . Suppor t f o r t h i n s t r eams ∗ /

350 + case TCP_THIN_RDB :

351 + i f (v a l)

352 + tp−> t h i n _ r d b = 1 ;

353 + break ;

354 +

355 + /∗ Added @ Simula . Suppor t f o r t h i n s t r eams ∗ /

356 + case TCP_THIN_RM_EXPB :

357 + i f (v a l)

358 + tp−>th in_ rm_expb = 1 ;

359 + break ;

360 +

361 + /∗ Added @ Simula . Suppor t f o r t h i n s t r eams ∗ /

362 + case TCP_THIN_DUPACK:

363 + i f (v a l)

364 + tp−>th i n_dupa ck = 1 ;

365 + break ;

366 +

367 case TCP_KEEPIDLE :

368 i f (v a l < 1 | | v a l > MAX_TCP_KEEPIDLE)

369 e r r = −EINVAL ;

370 d i f f −−g i t a / n e t / i pv4 / t c p _ i n p u t . c b / n e t / i pv4 / t c p _ i n p u t . c

371 index f893e90 . . f 42 e f 14 100644

372 −−− a / n e t / i pv4 / t c p _ i n p u t . c

373 +++ b / n e t / i pv4 / t c p _ i n p u t . c

374 @@ −89 ,6 +89 ,9 @@ i n t s y s c t l _ t c p _ f r t o __ r e ad_mos t l y ;

375 i n t s y s c t l _ t c p _ f r t o _ r e s p o n s e __ r e ad_mos t l y ;

376 i n t s y s c t l _ t c p _ n om e t r i c s _ s a v e __ r e ad_mos t l y ;

377

378 + /∗ Added @ Simula ∗ /

379 + i n t s y s c t l _ t c p _ f o r c e _ t h i n _ d u p a c k __ r e ad_mos t l y = TCP_FORCE_THIN_DUPACK;

380 +

381 i n t s y s c t l _ t c p _mod e r a t e _ r c v b u f __ r e ad_mos t l y = 1 ;

382 i n t s y s c t l _ t c p _ a b c __ r e ad_mos t l y ;

383

384 @@ −1704 ,6 +1707 ,12 @@ s t a t i c i n t t c p _ t im e _ t o _ r e c o v e r (s t r u c t sock ∗sk)

385 ∗ /

386 re turn 1 ;

387 }

388 +

389 + /∗ Added a t S imula t o mod i f y f a s t r e t r a n sm i t ∗ /

390 + i f ((tp−>th i n_dupa ck | | s y s c t l _ t c p _ f o r c e _ t h i n _ d u p a c k) &&

391 + t c p _ f a c k e t s _ o u t (t p) > 1 && t c p _ s t r e am _ i s _ t h i n (t p)) {

392 + re turn 1 ;

393 + }

394

395 re turn 0 ;

246 Appendix E. TCP-patch for Linux 2.6.23 kernel

396 }

397 @@ −2437 ,30 +2446 ,127 @@ s t a t i c i n t t c p _ c l e a n _ r t x _ q u e u e (s t r u c t sock ∗sk , __s32 ∗ s e q _ r t t _ p)

398 {

399 s t r u c t t c p_ so ck ∗ t p = t c p_ s k (sk) ;

400 cons t s t r u c t i n e t _ c o n n e c t i o n _ s o c k ∗ i c s k = i n e t _ c s k (sk) ;

401 − s t r u c t s k _bu f f ∗skb ;

402 + s t r u c t s k _bu f f ∗skb = t c p_wr i t e _qu eu e_he ad (sk) ;

403 + s t r u c t s k _bu f f ∗nex t_ skb ;

404 +

405 __u32 now = t cp_ t ime_ s t amp ;

406 i n t acked = 0 ;

407 i n t p r i o r _ p a c k e t s = tp−>p a c k e t s _ o u t ;

408 +

409 + /∗ Added a t S imula f o r RDB suppo r t ∗ /

410 + __u8 done = 0 ;

411 + i n t remove = 0 ;

412 + i n t remove_head = 0 ;

413 + i n t r emove_ f r ag s = 0 ;

414 + i n t no_ f r a g s ;

415 + i n t d a t a _ f r a g s ;

416 + i n t i ;

417 +

418 __s32 s e q _ r t t = −1;

419 k t ime_ t l a s t _ a c k t = n e t _ i n v a l i d _ t im e s t amp () ;

420 −

421 − whi le ((skb = t c p_wr i t e _qu eu e_he ad (sk)) &&

422 − skb != t cp_ s end_head (sk)) {

423 +

424 + whi le (skb != NULL

425 + && ((! (tp−> t h i n _ r d b | | s y s c t l _ t c p _ f o r c e _ t h i n _ r d b)

426 + && skb != t cp_ s end_head (sk)

427 + && skb != (s t r u c t s k _bu f f ∗)&sk−>sk_wr i t e _queue)

428 + | | ((tp−> t h i n _ r d b | | s y s c t l _ t c p _ f o r c e _ t h i n _ r d b)

429 + && skb != (s t r u c t s k _bu f f ∗)&sk−>sk_wr i t e _queue))) {

430 s t r u c t t c p_ skb_cb ∗ scb = TCP_SKB_CB(skb) ;

431 __u8 sacked = scb−>sacked ;

432 −

433 +

434 + i f (skb == NULL){

435 + break ;

436 + }

437 +

438 + i f (skb == t cp_ s end_head (sk)) {

439 + break ;

440 + }

441 +

442 + i f (skb == (s t r u c t s k _bu f f ∗)&sk−>sk_wr i t e _queue){

443 + break ;

444 + }

445 +

446 /∗ I f our pa c k e t i s b e f o r e t h e ack sequence we can

447 ∗ d i s c a r d i t as i t ’ s con f i rmed t o have a r r i v e d a t

448 ∗ t h e o t h e r end .

449 ∗ /

450 i f (a f t e r (scb−>end_seq , tp−>snd_una)) {

451 − i f (t c p_ skb_pcoun t (skb) > 1 &&

452 − a f t e r (tp−>snd_una , scb−>seq))

453 − acked | = t c p _ t s o _ a c k e d (sk , skb ,

454 − now , &s e q _ r t t) ;

247

455 − break ;

456 + i f (t c p_ skb_pcoun t (skb) > 1 && a f t e r (tp−>snd_una , scb−>seq))

457 + acked | = t c p _ t s o _ a c k e d (sk , skb , now , &s e q _ r t t) ;

458 +

459 + done = 1 ;

460 +

461 + /∗ Added a t S imula f o r RDB suppo r t ∗ /

462 + i f ((tp−> t h i n _ r d b | | s y s c t l _ t c p _ f o r c e _ t h i n _ r d b) && a f t e r (tp−>snd_una , scb−>seq)) {

463 + i f (! s kb_c l oned (skb) && ! (scb−> f l a g s & TCPCB_FLAG_SYN)) {

464 + remove = tp−>snd_una − scb−>seq ;

465 + remove_head = (remove > skb_head l en (skb) ?

466 + skb_head l en (skb) : remove) ;

467 + remove_ f r ag s = (remove > skb_head l en (skb) ?

468 + remove − remove_head : 0) ;

469 +

470 + /∗ Has l i n e a r da ta ∗ /

471 + i f (s kb_head l en (skb) > 0 && remove_head > 0){

472 + memmove (skb−>da ta ,

473 + skb−>d a t a + remove_head ,

474 + skb_head l en (skb) − remove_head) ;

475 +

476 + skb−> t a i l −= remove_head ;

477 + }

478 +

479 + i f (s k b _ i s _ n o n l i n e a r (skb) && remove_ f r ag s > 0){

480 + no_ f r a g s = 0 ;

481 + d a t a _ f r a g s = 0 ;

482 +

483 + /∗Remove un e c e s s a r y pages ∗ /

484 + f o r (i =0 ; i < s k b_ s h i n f o (skb)−> n r _ f r a g s ; i ++){

485 + i f (d a t a _ f r a g s + s kb_ s h i n f o (skb)−> f r a g s [i] . s i z e

486 + == remove_ f r ag s) {

487 + pu t_page (s k b_ s h i n f o (skb)−> f r a g s [i] . page) ;

488 + no_ f r a g s += 1 ;

489 + break ;

490 + }

491 + pu t_page (s k b_ s h i n f o (skb)−> f r a g s [i] . page) ;

492 + no_ f r a g s += 1 ;

493 + d a t a _ f r a g s += s kb_ s h i n f o (skb)−> f r a g s [i] . s i z e ;

494 + }

495 +

496 + i f (s k b _ s h i n f o (skb)−> n r _ f r a g s > no_ f r a g s)

497 + memmove (s k b_ s h i n f o (skb)−> f r a g s ,

498 + s kb_ s h i n f o (skb)−> f r a g s + no_ f r ag s ,

499 + (s k b_ s h i n f o (skb)−> n r _ f r a g s

500 + − no_ f r a g s)∗ s i z e o f (s k b _ f r a g _ t)) ;

501 +

502 + skb−>d a t a _ l e n −= remove_ f r ag s ;

503 + s kb_ s h i n f o (skb)−> n r _ f r a g s −= no_ f r a g s ;

504 +

505 + }

506 +

507 + scb−>seq += remove ;

508 + skb−>l e n −= remove ;

509 +

510 + i f (skb−>ip_summed == CHECKSUM_PARTIAL)

511 + skb−>csum = CHECKSUM_PARTIAL;

512 + e l s e

513 + skb−>csum = skb_checksum (skb , 0 , skb−>len , 0) ;

248 Appendix E. TCP-patch for Linux 2.6.23 kernel

514 +

515 + }

516 +

517 + /∗Only move forward i f da ta cou ld be removed from t h i s p a c k e t ∗ /

518 + done = 2 ;

519 +

520 + }

521 +

522 + i f (done == 1 | | t c p _ s k b _ i s _ l a s t (sk , skb)) {

523 + break ;

524 + } e l s e i f (done == 2){

525 + skb = skb−>nex t ;

526 + done = 1 ;

527 + cont inue ;

528 + }

529 +

530 }

531 −

532 +

533 /∗ I n i t i a l ou t go i ng SYN ’ s g e t pu t on to t h e wr i t e _queue

534 ∗ j u s t l i k e a n y t h i n g e l s e we t r a n sm i t . I t i s no t

535 ∗ t r u e data , and i f we m i s i n f o rm our c a l l e r s t h a t

536 @@ −2474 ,14 +2580 ,14 @@ s t a t i c i n t t c p _ c l e a n _ r t x _ q u e u e (s t r u c t sock ∗sk , __s32 ∗ s e q _ r t t _ p)

537 acked |= FLAG_SYN_ACKED;

538 tp−>re t r a n s _ s t amp = 0;

539 }

540 −

541 +

542 /∗ MTU prob ing check s ∗ /

543 i f (i c sk −>ic sk_mtup . p r o b e _ s i z e) {

544 i f (! a f t e r (tp−>mtu_probe . p robe_seq_end , TCP_SKB_CB(skb)−>end_seq)) {

545 t cp_m tup_p robe_ suc c e s s (sk , skb) ;

546 }

547 }

548 −

549 +

550 i f (s acked) {

551 i f (s acked & TCPCB_RETRANS) {

552 i f (s acked & TCPCB_SACKED_RETRANS)

553 @@ −2505 ,24 +2611 ,32 @@ s t a t i c i n t t c p _ c l e a n _ r t x _ q u e u e (s t r u c t sock ∗sk , __s32 ∗ s e q _ r t t _ p)

554 s e q _ r t t = now − scb−>when ;

555 l a s t _ a c k t = skb−>t s t amp ;

556 }

557 +

558 + i f ((tp−> t h i n _ r d b | | s y s c t l _ t c p _ f o r c e _ t h i n _ r d b) && skb == t cp_ s end_head (sk)) {

559 + t cp_advance_send_head (sk , skb) ;

560 + }

561 +

562 t cp_dec_pcoun t _ app rox (& tp−>f a c k e t s _ o u t , skb) ;

563 t c p _ p a c k e t s _ o u t _ d e c (tp , skb) ;

564 + nex t_ skb = skb−>nex t ;

565 t c p _ u n l i n k _w r i t e _ q u e u e (skb , sk) ;

566 s k _ s t r e am_ f r e e _ s k b (sk , skb) ;

567 c l e a r _ a l l _ r e t r a n s _ h i n t s (t p) ;

568 + /∗ Added a t S imula t o s uppo r t RDB ∗ /

569 + skb = nex t_ skb ;

570 }

571 −

572 +

249

573 i f (acked&FLAG_ACKED) {

574 u32 pk t s _ a cked = p r i o r _ p a c k e t s − tp−>p a c k e t s _ o u t ;

575 cons t s t r u c t t c p _ c o n g e s t i o n _ o p s ∗ca_ops

576 = i n e t _ c s k (sk)−> i c s k_ c a _op s ;

577 −

578 +

579 t c p _ a c k _ u p d a t e _ r t t (sk , acked , s e q _ r t t) ;

580 t c p _ a c k _ p a c k e t s _ o u t (sk) ;

581 −

582 +

583 i f (ca_ops−>pk t s _ a cked) {

584 s32 r t t _ u s = −1;

585 −

586 +

587 /∗ I s t h e ACK t r i g g e r i n g pa c k e t unambiguous ? ∗ /

588 i f (! (acked & FLAG_RETRANS_DATA_ACKED)) {

589 /∗ High r e s o l u t i o n needed and a v a i l a b l e ? ∗ /

590 d i f f −−g i t a / n e t / i pv4 / t c p _ o u t p u t . c b / n e t / i pv4 / t c p _ o u t p u t . c

591 index 666 d8a5 . . daa580d 100644

592 −−− a / n e t / i pv4 / t c p _ o u t p u t . c

593 +++ b / n e t / i pv4 / t c p _ o u t p u t . c

594 @@ −1653 ,7 +1653 ,7 @@ s t a t i c vo id t c p _ r e t r a n s _ t r y _ c o l l a p s e (s t r u c t sock ∗sk , s t r u c t s k _bu f f ∗skb , i n t m

595

596 BUG_ON(t c p_ skb_pcoun t (skb) != 1 | |

597 t c p_ skb_pcoun t (nex t _ skb) != 1) ;

598 −

599 +

600 /∗ chang ing t r a n sm i t queue under us so c l e a r h i n t s ∗ /

601 c l e a r _ a l l _ r e t r a n s _ h i n t s (t p) ;

602

603 @@ −1702 ,6 +1702 ,166 @@ s t a t i c vo id t c p _ r e t r a n s _ t r y _ c o l l a p s e (s t r u c t sock ∗sk , s t r u c t s k _bu f f ∗skb , i n t m

604 }

605 }

606

607 + /∗ Added a t S imula . V a r i a t i o n o f t h e r e g u l a r c o l l a p s e ,

608 + adap ted t o s uppo r t RDB ∗ /

609 + s t a t i c vo id t c p _ r e t r a n s _me r g e _ r e d u n d a n t (s t r u c t sock ∗sk ,

610 + s t r u c t s k _bu f f ∗skb ,

611 + i n t mss_now)

612 +{

613 + s t r u c t t c p_ so ck ∗ t p = t c p_ s k (sk) ;

614 + s t r u c t s k _bu f f ∗nex t_ skb = skb−>nex t ;

615 + i n t s k b _ s i z e = skb−>l e n ;

616 + i n t new_data = 0 ;

617 + i n t new_data_head = 0 ;

618 + i n t new_da t a _ f r a g s = 0 ;

619 + i n t new_f rags = 0 ;

620 + i n t o l d _h e a d l e n = 0 ;

621 +

622 + i n t i ;

623 + i n t d a t a _ f r a g s = 0 ;

624 +

625 + /∗ Loop th rough as many p a c k e t s as p o s s i b l e

626 + ∗ (w i l l c r e a t e a l o t o f r edundan t data , bu t WHATEVER) .

627 + ∗ The on l y pa c k e t t h i s MIGHT be c r i t i c a l f o r i s

628 + ∗ i f t h i s p a c k e t i s t h e l a s t i n t h e r e t r a n s−queue .

629 + ∗

630 + ∗ Make su r e t h a t t h e f i r s t skb i s n t a l r e ad y i n

631 + ∗ use by somebody e l s e . ∗ /

250 Appendix E. TCP-patch for Linux 2.6.23 kernel

632 +

633 + i f (! s kb_c l oned (skb)) {

634 + /∗ I t e r a t e t h rough t h e r e t r a n sm i t queue ∗ /

635 + f o r (; (n ex t _ skb != (sk)−> sk_send_head) &&

636 + (nex t_ skb != (s t r u c t s k _bu f f ∗) &(sk)−> sk_wr i t e _queue) ;

637 + nex t_ skb = nex t_skb−>nex t) {

638 +

639 + /∗ Re s e t v a r i a b l e s ∗ /

640 + new_f rags = 0 ;

641 + d a t a _ f r a g s = 0 ;

642 + new_data = TCP_SKB_CB(nex t_ skb)−>end_seq − TCP_SKB_CB(skb)−>end_seq ;

643 +

644 + /∗ New da ta w i l l be s t o r e d a t skb−>s t a r t _ a d d + some_o f f s e t ,

645 + in o t h e r words t h e l a s t N b y t e s ∗ /

646 + new_da t a _ f r a g s = (new_data > nex t_skb−>d a t a _ l e n ?

647 + nex t_skb−>d a t a _ l e n : new_data) ;

648 + new_data_head = (new_data > nex t_skb−>d a t a _ l e n ?

649 + new_data − skb−>d a t a _ l e n : 0) ;

650 +

651 + /∗

652 + ∗ 1 . Con ta i n s t h e same da ta

653 + ∗ 2 . S i z e

654 + ∗ 3 . Sack

655 + ∗ 4 . Window

656 + ∗ 5 . Cannot merge w i t h a l a t e r pa c k e t t h a t has l i n e a r da ta

657 + ∗ 6 . The new number o f f r a g s w i l l e xceed t h e l i m i t

658 + ∗ 7 . Enough t a i l r o om

659 + ∗ /

660 +

661 + i f (new_data <= 0){

662 + re turn ;

663 + }

664 +

665 + i f ((s y s c t l _ t c p _ r d b _max_bund l e _ by t e s == 0 && ((s k b _ s i z e + new_data) > mss_now))

666 + | | (s y s c t l _ t c p _ r d b _max_bund l e _ by t e s > 0 && ((s k b _ s i z e + new_data) >

667 + s y s c t l _ t c p _ r d b _max_bund l e _ by t e s))) {

668 + re turn ;

669 + }

670 +

671 + i f (TCP_SKB_CB(nex t_ skb)−> f l a g s & TCPCB_FLAG_FIN){

672 + re turn ;

673 + }

674 +

675 + i f ((TCP_SKB_CB(skb)−> sacked & TCPCB_SACKED_ACKED) | |

676 + (TCP_SKB_CB(nex t_ skb)−> sacked & TCPCB_SACKED_ACKED)) {

677 + re turn ;

678 + }

679 +

680 + i f (a f t e r (TCP_SKB_CB(skb)−>end_seq + new_data , tp−>snd_una + tp−>snd_wnd)) {

681 + re turn ;

682 + }

683 +

684 + i f (s k b _ s h i n f o (skb)−> f r a g _ l i s t | | s k b _ s h i n f o (skb)−> f r a g _ l i s t) {

685 + re turn ;

686 + }

687 +

688 + /∗ Ca l c u l a t e number o f new f r agmen t s . Any new da ta w i l l be

689 + s t o r e d i n t h e back . ∗ /

690 + i f (s k b _ i s _ n o n l i n e a r (n ex t _ skb)) {

251

691 + i = (s k b_ s h i n f o (nex t_ skb)−> n r _ f r a g s == 0 ?

692 + 0 : s k b_ s h i n f o (nex t_ skb)−> n r _ f r a g s − 1) ;

693 + f o r (; i >=0; i −−){

694 + i f (d a t a _ f r a g s + s kb_ s h i n f o (nex t_ skb)−> f r a g s [i] . s i z e ==

695 + new_da t a _ f r a g s) {

696 + new_f rags += 1 ;

697 + break ;

698 + }

699 +

700 + d a t a _ f r a g s += s kb_ s h i n f o (nex t_ skb)−> f r a g s [i] . s i z e ;

701 + new_f rags += 1 ;

702 + }

703 + }

704 +

705 + /∗ I f d e a l i n g w i t h a f ragmen t ed skb , on l y merge

706 + wi t h an skb t h a t ONLY con t a i n f r a g s ∗ /

707 + i f (s k b _ i s _ n o n l i n e a r (skb)) {

708 +

709 + /∗Due t o t h e way p a c k e t s are proce s s ed , no l a t e r da ta ∗ /

710 + i f (s kb_head l en (nex t_ skb) && new_data_head > 0){

711 + re turn ;

712 + }

713 +

714 + i f (s k b _ i s _ n o n l i n e a r (n ex t _ skb) && (new_da t a _ f r a g s > 0) &&

715 + ((s k b_ s h i n f o (skb)−> n r _ f r a g s + new_f rags) > MAX_SKB_FRAGS)) {

716 + re turn ;

717 + }

718 +

719 + } e l s e {

720 + i f (s kb_head l en (nex t_ skb) && (new_data_head > (skb−>end − skb−> t a i l))) {

721 + re turn ;

722 + }

723 + }

724 +

725 + /∗Copy l i n e a r da ta . Th i s w i l l on l y occur i f bo th are l i n e a r ,

726 + or on l y A i s l i n e a r ∗ /

727 + i f (s kb_head l en (nex t_ skb) && (new_data_head > 0)) {

728 + o l d _h e a d l e n = skb_head l en (skb) ;

729 + skb−> t a i l += new_data_head ;

730 + skb−>l e n += new_data_head ;

731 +

732 + /∗ The new da ta s t a r t s i n t h e l i n e a r area ,

733 + and t h e c o r r e c t o f f s e t w i l l t h en be g i v e n by

734 + removing new_data ammount o f b y t e s from l e n g t h . ∗ /

735 + s k b _ c o p y _ t o _ l i n e a r _ d a t a _ o f f s e t (skb , o l d_head l en , nex t_skb−> t a i l −

736 + new_data_head , new_data_head) ;

737 + }

738 +

739 + i f (s k b _ i s _ n o n l i n e a r (n ex t _ skb) && (new_da t a _ f r a g s > 0)) {

740 + memcpy (s k b_ s h i n f o (skb)−> f r a g s + s kb_ s h i n f o (skb)−> n r _ f r a g s ,

741 + s kb_ s h i n f o (nex t_ skb)−> f r a g s +

742 + (s k b_ s h i n f o (nex t_ skb)−> n r _ f r a g s − new_f rags) ,

743 + new_f rags∗ s i z e o f (s k b _ f r a g _ t)) ;

744 +

745 + f o r (i = s k b_ s h i n f o (skb)−> n r _ f r a g s ;

746 + i < s k b_ s h i n f o (skb)−> n r _ f r a g s + new_f rags ; i ++)

747 + ge t_page (s k b_ s h i n f o (skb)−> f r a g s [i] . page) ;

748 +

749 + s kb_ s h i n f o (skb)−> n r _ f r a g s += new_f rags ;

252 Appendix E. TCP-patch for Linux 2.6.23 kernel

750 + skb−>d a t a _ l e n += new_da t a _ f r a g s ;

751 + skb−>l e n += new_da t a _ f r a g s ;

752 + }

753 +

754 + TCP_SKB_CB(skb)−>end_seq += new_data ;

755 +

756 + i f (skb−>ip_summed == CHECKSUM_PARTIAL)

757 + skb−>csum = CHECKSUM_PARTIAL;

758 + e l s e

759 + skb−>csum = skb_checksum (skb , 0 , skb−>len , 0) ;

760 +

761 + s k b _ s i z e = skb−>l e n ;

762 + }

763 +

764 + }

765 +}

766 +

767 /∗ Do a s imp l e r e t r a n sm i t w i t h o u t u s i n g t h e b a c k o f f mechanisms i n

768 ∗ t c p _ t im e r . Th i s i s used f o r pa th mtu d i s c o v e r y .

769 ∗ The s o c k e t i s a l r e ad y l o c k e d here .

770 @@ −1756 ,6 +1916 ,8 @@ vo id t c p _ s i m p l e _ r e t r a n sm i t (s t r u c t sock ∗ sk)

771 /∗ Th i s r e t r a n sm i t s one SKB . Po l i c y d e c i s i o n s and r e t r a n sm i t queue

772 ∗ s t a t e upda t e s are done by t h e c a l l e r . Re t u rn s non−z e ro i f an

773 ∗ e r r o r occu r r ed which p r e v e n t e d t h e send .

774 + ∗ Mod i f i ed a t S imula t o s uppo r t t h i n s t r eam o p t i m i z a t i o n s

775 + ∗ TODO: Update t o use new h e l p e r s (l i k e t c p _w r i t e _ q u e u e _ n e x t ())

776 ∗ /

777 i n t t c p _ r e t r a n sm i t _ s k b (s t r u c t sock ∗sk , s t r u c t s k _bu f f ∗skb)

778 {

779 @@ −1802 ,10 +1964 ,21 @@ i n t t c p _ r e t r a n sm i t _ s k b (s t r u c t sock ∗sk , s t r u c t s k _bu f f ∗skb)

780 (skb−>l e n < (cur_mss >> 1)) &&

781 (t c p _w r i t e _ q u e u e _ n e x t (sk , skb) != t cp_ s end_head (sk)) &&

782 (! t c p _ s k b _ i s _ l a s t (sk , skb)) &&

783 − (s k b _ s h i n f o (skb)−> n r _ f r a g s == 0 && skb_ s h i n f o (t c p _w r i t e _ q u e u e _ n e x t (sk , skb))−> n r _ f r a g s == 0) &&

784 − (t c p_ skb_pcoun t (skb) == 1 && tcp_ skb_pcoun t (t c p _w r i t e _ q u e u e _ n e x t (sk , skb)) == 1) &&

785 − (s y s c t l _ t c p _ r e t r a n s _ c o l l a p s e != 0))

786 + (s k b_ s h i n f o (skb)−> n r _ f r a g s == 0

787 + && skb_ s h i n f o (t c p _w r i t e _ q u e u e _ n e x t (sk , skb))−> n r _ f r a g s == 0)

788 + && (t cp_ skb_pcoun t (skb) == 1

789 + && tcp_ skb_pcoun t (t c p _w r i t e _ q u e u e _ n e x t (sk , skb)) == 1)

790 + && (s y s c t l _ t c p _ r e t r a n s _ c o l l a p s e != 0)

791 + && ! ((tp−> t h i n _ r d b | | s y s c t l _ t c p _ f o r c e _ t h i n _ r d b))) {

792 t c p _ r e t r a n s _ t r y _ c o l l a p s e (sk , skb , cur_mss) ;

793 + } e l s e i f ((tp−> t h i n _ r d b | | s y s c t l _ t c p _ f o r c e _ t h i n _ r d b)) {

794 + i f (! (TCP_SKB_CB(skb)−> f l a g s & TCPCB_FLAG_SYN) &&

795 + ! (TCP_SKB_CB(skb)−> f l a g s & TCPCB_FLAG_FIN) &&

796 + (skb−>nex t != t cp_ s end_head (sk)) &&

797 + (skb−>nex t != (s t r u c t s k _bu f f ∗) &sk−>sk_wr i t e _queue)) {

798 + t c p _ r e t r a n s _me r g e _ r e d u n d a n t (sk , skb , cur_mss) ;

799 + }

800 + }

801

802 i f (i n e t _ c s k (sk)−> i c s k_ a f _op s −>r e b u i l d _ h e a d e r (sk))

803 re turn −EHOSTUNREACH; /∗ Rou t i ng f a i l u r e or s i m i l a r . ∗ /

804 d i f f −−g i t a / n e t / i pv4 / t c p _ t im e r . c b / n e t / i pv4 / t c p _ t im e r . c

805 index e9b151b . . ad8de35 100644

806 −−− a / n e t / i pv4 / t c p _ t im e r . c

807 +++ b / n e t / i pv4 / t c p _ t im e r . c

808 @@ −32 ,6 +32 ,9 @@ i n t s y s c t l _ t c p _ r e t r i e s 1 __ r e ad_mos t l y = TCP_RETR1 ;

253

809 i n t s y s c t l _ t c p _ r e t r i e s 2 __ r e ad_mos t l y = TCP_RETR2 ;

810 i n t s y s c t l _ t c p _ o r p h a n _ r e t r i e s __ r e ad_mos t l y ;

811

812 + /∗ Added @ Simula ∗ /

813 + i n t s y s c t l _ t c p _ f o r c e _ t h i n _ rm_ e x p b __ r e ad_mos t l y = TCP_FORCE_THIN_RM_EXPB ;

814 +

815 s t a t i c vo id t c p _w r i t e _ t im e r (unsigned long) ;

816 s t a t i c vo id t c p _ d e l a c k _ t im e r (unsigned long) ;

817 s t a t i c vo id t c p _ k e e p a l i v e _ t im e r (unsigned long d a t a) ;

818 @@ −368 ,13 +371 ,28 @@ s t a t i c vo id t c p _ r e t r a n sm i t _ t i m e r (s t r u c t sock ∗sk)

819 ∗ /

820 i c sk −> i c s k _ b a c k o f f ++;

821 i c sk −> i c s k _ r e t r a n sm i t s ++;

822 −

823 +

824 o u t _ r e s e t _ t i m e r :

825 − i c sk −> i c s k _ r t o = min (i c sk −> i c s k _ r t o << 1 , TCP_RTO_MAX) ;

826 + /∗ Added @ Simula removal o f e x p o n e n t i a l b a c k o f f f o r t h i n s t r eams

827 + We on l y want t o app l y t h i s f o r an e s t a b l i s h e d s t r eam ∗ /

828 + i f ((tp−>th in_ rm_expb | | s y s c t l _ t c p _ f o r c e _ t h i n _ rm_ e x p b)

829 + && t c p _ s t r e am _ i s _ t h i n (t p) && sk−> s k _ s t a t e == TCP_ESTABLISHED) {

830 + /∗ S i n c e ’ i c s k _ b a c k o f f ’ i s used t o r e s e t t imer , s e t t o 0

831 + ∗ Re c a l c u l a t e ’ i c s k _ r t o ’ as t h i s migh t be i n c r e a s e d i f s t r eam o s c i l l a t e s

832 + ∗ be tween t h i n and t h i c k , t h u s t h e o ld va l u e migh t a l r e ad y be too h igh

833 + ∗ compared t o t h e va l u e s e t by ’ t c p _ s e t _ r t o ’ i n t c p _ i n p u t . c which r e s e t s

834 + ∗ t h e r t o w i t h o u t b a c k o f f . ∗ /

835 + i c sk −> i c s k _ b a c k o f f = 0 ;

836 + i c sk −> i c s k _ r t o = min (((tp−> s r t t >> 3) + tp−> r t t v a r) , TCP_RTO_MAX) ;

837 + } e l s e {

838 + /∗ Use normal b a c k o f f ∗ /

839 + i c sk −> i c s k _ r t o = min (i c sk −> i c s k _ r t o << 1 , TCP_RTO_MAX) ;

840 + }

841 + /∗ End Simula ∗ /

842 i n e t _ c s k _ r e s e t _ xm i t _ t i m e r (sk , ICSK_TIME_RETRANS , i c sk −> i c s k _ r t o , TCP_RTO_MAX) ;

843 i f (i c sk −> i c s k _ r e t r a n sm i t s > s y s c t l _ t c p _ r e t r i e s 1)

844 _ _ s k _ d s t _ r e s e t (sk) ;

845 −

846 +

847 ou t : ;

848 }

849

850 −−

851 1 . 5 . 6 . 3

Appendix F

SCTP-patch for Linux 2.6.16 kernel

1 d i f f −Naur l i nux − 2 . 6 . 1 6 . 1 3 / i n c l u d e / n e t / s c t p / s t r u c t s . h l i nux −2.6.16.13−modSCTP / i n c l u d e / n e t / s c t p / s t r u c t s . h

2 −−− l i n ux − 2 . 6 . 1 6 . 1 3 / i n c l u d e / n e t / s c t p / s t r u c t s . h 2006−05−02 23 :38 :44 . 000000000 +0200

3 +++ l i nux −2.6.16.13−modSCTP / i n c l u d e / n e t / s c t p / s t r u c t s . h 2007−07−16 16 :15 :03 . 000000000 +0200

4 @@ −1,6 +1 ,6 @@

5 /∗ SCTP k e r n e l r e f e r e n c e Imp l emen t a t i o n

6 ∗ (C) Copy r i gh t IBM Corp . 2001 , 2004

7 − ∗ Copy r i gh t (c) 1999−2000 Cisco , I nc .

8 + ∗ Copy r i gh t (c) 1999−2000 , 2007 Cisco , I nc .

9 ∗ Copy r i gh t (c) 1999−2001 Motorola , I n c .

10 ∗ Copy r i gh t (c) 2001 I n t e l Corp .

11 ∗

12 @@ −75 ,6 +75 ,7 @@

13 } ;

14

15 /∗ Forward d e c l a r a t i o n s f o r da ta s t r u c t u r e s . ∗ /

16 + s t r u c t p k t _ s t a t ; / / Added by S imula

17 s t r u c t s c t p _ g l o b a l s ;

18 s t r u c t s c t p _ e n d p o i n t ;

19 s t r u c t s c t p _ a s s o c i a t i o n ;

20 @@ −93 ,6 +94 ,28 @@

21 # i n c l u d e < n e t / s c t p / u l p e v e n t . h>

22 # i n c l u d e < n e t / s c t p / u lpqueue . h>

23

24 +

25 + /∗ S t r u c t u r e f o r ho l d i n g pa c k e t s t a t s , added by S imula ∗ /

26 +

27 + s t r u c t p k t _ s t a t {

28 +

29 + i n t i s _gap_acked ; /∗ I s t h i s p a c k e t r e c e i v e d ? (h i g h e s t TSN i n pa c k e t i s gap acked) ∗ /

30 + i n t marked_ l o s t ; /∗ I s t h i s p a c k e t l o s t ? ∗ /

31 +

32 + /∗ Number o f t im e s t h e da ta chunk w i t h h i g h e s t

33 + TSN in pa c k e t i s i n d i c a t e d l o s t by SACK gap

34 + 3 l o s s i n d i c a t i o n s (as i n f a s t r e t r a n sm i t) marks

35 + pac k e t as l o s t

36 + ∗ /

37 + i n t i n d i c a t e d _ l o s t ;

38 +

39 + unsigned long t imes t amp ; /∗ Timestamp o f when t h i s p a c k e t i s s e n t ∗ /

40 +

41 + __u32 highes tTSN ; /∗ ∗ /

255

256 Appendix F. SCTP-patch for Linux 2.6.16 kernel

42 + s t r u c t p k t _ s t a t ∗next , ∗prev ;

43 +} ;

44 +

45 +

46 /∗ S t r u c t u r e s u s e f u l f o r managing b ind / c onne c t . ∗ /

47

48 s t r u c t s c t p _ b i n d _ b u c k e t {

49 @@ −213 ,8 +236 ,32 @@

50

51 /∗ Flag t o i n d i c a t e i f PR−SCTP i s enab l ed . ∗ /

52 i n t p r s c t p _ e n a b l e ;

53 +

54 +

55 + /∗ Added by S imula :

56 + Turn on / o f f t h i n s t r eam mechanisms

57 + ∗ /

58 +

59 + i n t t h i n _ f r ; / / Fas t r e t r a n sm i t a f t e r 1 SACK

60 + i n t t h i n _m i n r t o ; / / Reduce RTO min t o 200 ms

61 + i n t t h i n _ b u n d l i n g _ o u t s t a n d i n g ; / / Bundle o u t s t a n d i n g da ta chunks

62 + i n t t h i n _ b u n d l i n g _ f r ; / / Bundle i n f a s t r e t r a n sm i t s

63 + i n t t h i n _ e x p b a c k o f f ; / / Avoid exp b a c k o f f i n t h i n s t r eams

64 + i n t t h i n _ r e s t a r t _ t i m e r ; / / R e s t a r t t im e r m o d i f i c a t i o n

65 + i n t t h i n _ d e bug_ t a g _p ay l o a d ; / / T r i g g e r t a gg i n g o f pay load t o be ab l e t o a c c u r a t e l y d e t e rm i n e r e t r a n sm i s s i o n reason

66 +

67 } s c t p _ g l o b a l s ;

68

69 + /∗ Added by S imula : Thin s t r eam proc v a r i a b l e s ∗ /

70 +

71 +# d e f i n e s c t p _ t h i n _ f r (s c t p _ g l o b a l s . t h i n _ f r)

72 +# d e f i n e s c t p _ t h i n _m i n r t o (s c t p _ g l o b a l s . t h i n _m i n r t o)

73 +# d e f i n e s c t p _ t h i n _ b u n d l i n g _ o u t s t a n d i n g (s c t p _ g l o b a l s . t h i n _ b u n d l i n g _ o u t s t a n d i n g)

74 +# d e f i n e s c t p _ t h i n _ b u n d l i n g _ f r (s c t p _ g l o b a l s . t h i n _ b u n d l i n g _ f r)

75 +# d e f i n e s c t p _ t h i n _ e x p b a c k o f f (s c t p _ g l o b a l s . t h i n _ e x p b a c k o f f)

76 +# d e f i n e s c t p _ t h i n _ r e s t a r t _ t i m e r (s c t p _ g l o b a l s . t h i n _ r e s t a r t _ t i m e r)

77 +# d e f i n e s c t p _ t h i n _ d e b u g_ t a g _ p a y l o a d (s c t p _ g l o b a l s . t h i n _ d e bug_ t a g _p ay l o a d)

78 +

79 # d e f i n e s c t p _ r t o _ i n i t i a l (s c t p _ g l o b a l s . r t o _ i n i t i a l)

80 # d e f i n e s c t p _ r t o _m i n (s c t p _ g l o b a l s . r t o_min)

81 # d e f i n e s c t p_ r t o_max (s c t p _ g l o b a l s . r to_max)

82 @@ −732 ,7 +779 ,7 @@

83 /∗ Th i s s t r u c t u r e ho l d s l i s t s o f chunks as we are a s s emb l i ng f o r

84 ∗ t r a n sm i s s i o n .

85 ∗ /

86 −s t r u c t s c t p _ p a c k e t {

87 + s t r u c t s c t p _ p a c k e t {

88 /∗ These are t h e SCTP header v a l u e s (h o s t o rde r) f o r t h e pa c k e t . ∗ /

89 __u16 s o u r c e _ p o r t ;

90 __u16 d e s t i n a t i o n _ p o r t ;

91 @@ −827 ,6 +874 ,12 @@

92 ∗ /

93 __u32 r t t ; /∗ Th i s i s t h e most r e c e n t RTT . ∗ /

94

95 + /∗ Added by S imula t o f i n d t h e min RTT used i n pa c k e t l o s s

96 + r a t e c a l c u l a t i o n .

97 + ∗ /

98 + __u32 m i n _ r t t ;

99 +

100 +

257

101 /∗ RTO : The c u r r e n t r e t r a n sm i s s i o n t im e o u t v a l u e . ∗ /

102 unsigned long r t o ;

103

104 @@ −1335 ,6 +1388 ,20 @@

105 /∗ These are t h o s e a s s o c i a t i o n e l emen t s needed i n t h e c oo k i e . ∗ /

106 s t r u c t s c t p _ c o o k i e c ;

107

108 + /∗ added by S imula t o coun t p a c k e t s i n f l i g h t and pa c k e t l o s s r a t e ∗ /

109 + i n t p a c k e t s _ i n _ f l i g h t ;

110 + i n t p a c k e t s _ l e f t _ n e tw o r k ;

111 + s t r u c t p k t _ s t a t ∗ pk t _ s t a t _ h e a d , ∗ p k t _ s t a t _ t a i l ;

112 +

113 + /∗ Added by S imula : V a r i a b l e s f o r ho l d i n g l o s t p a c k e t s and t o t a l xm i t ed

114 + pa c k e t s used f o r pa c k e t l o s s r a t e c a l c u l a t i o n and ad j u s tmen t o f

115 + t h i n s t r eam t h r e s h o l d f o r t h i s a s s o c i a t i o n .

116 + ∗ /

117 +

118 + i n t l o s t _ p a c k e t s ;

119 + i n t t o t a l _ xm t _ p a c k e t s ;

120 + i n t t h i n _ s t r e am _ t h r e s h o l d ;

121 +

122 /∗ Th i s i s a l l i n f o rma t i o n abou t our peer . ∗ /

123 s t r u c t {

124 /∗ rwnd

125 d i f f −Naur l i n u x − 2 . 6 . 1 6 . 1 3 / n e t / s c t p / a s s o c i o l a . c l i n u x −2.6.16.13−modSCTP / n e t / s c t p / a s s o c i o l a . c

126 −−− l i n u x − 2 . 6 . 1 6 . 1 3 / n e t / s c t p / a s s o c i o l a . c 2006−05−02 23:38 :44 .000000000 +0200

127 +++ l i n u x −2.6.16.13−modSCTP / n e t / s c t p / a s s o c i o l a . c 2007−07−16 15:57 :59 .000000000 +0200

128 @@ −1,6 +1 ,6 @@

129 /∗ SCTP k e r n e l r e f e r e n c e Imp l emen t a t i o n

130 ∗ (C) Copy r i gh t IBM Corp . 2001 , 2004

131 − ∗ Copy r i gh t (c) 1999−2000 Cisco , I nc .

132 + ∗ Copy r i gh t (c) 1999−2000 , 2006 Cisco , I nc .

133 ∗ Copy r i gh t (c) 1999−2001 Motorola , I n c .

134 ∗ Copy r i gh t (c) 2001 I n t e l Corp .

135 ∗ Copy r i gh t (c) 2001 La Monte H. P . Y a r r o l l

136 @@ −112 ,6 +112 ,19 @@

137 ∗ 1000;

138 asoc−>f r a g _ p o i n t = 0;

139

140 + /∗ added by S imula t o i n i t i a l i z e p a c k e t s i n f l i g h t and pa c k e t l o s s d a t a s t r u c t u r e ∗ /

141 +

142 + asoc−>p a c k e t s _ i n _ f l i g h t = 0 ;

143 + asoc−>p a c k e t s _ l e f t _ n e tw o r k = 0 ;

144 + asoc−>p k t _ s t a t _ h e a d = NULL;

145 + asoc−> p k t _ s t a t _ t a i l = NULL;

146 +

147 + asoc−> l o s t _ p a c k e t s = 0 ;

148 + asoc−> t o t a l _ xm t _ p a c k e t s = 0 ;

149 +

150 + p r i n t k (KERN_ALERT " [SCTP] I n i t a s s o c i a t i o n \ n ") ;

151 +

152 +

153 /∗ S e t t h e a s s o c i a t i o n max_re t rans and RTO va l u e s from t h e

154 ∗ s o c k e t v a l u e s .

155 ∗ /

156 d i f f −Naur l i nux − 2 . 6 . 1 6 . 1 3 / n e t / s c t p / o u t p u t . c l i nux −2.6.16.13−modSCTP / n e t / s c t p / o u t p u t . c

157 −−− l i n ux − 2 . 6 . 1 6 . 1 3 / n e t / s c t p / o u t p u t . c 2006−05−02 23 :38 :44 . 000000000 +0200

158 +++ l i nux −2.6.16.13−modSCTP / n e t / s c t p / o u t p u t . c 2007−07−16 15 :57 :59 . 000000000 +0200

159 @@ −1,6 +1 ,6 @@

258 Appendix F. SCTP-patch for Linux 2.6.16 kernel

160 /∗ SCTP k e r n e l r e f e r e n c e Imp l emen t a t i o n

161 ∗ (C) Copy r i gh t IBM Corp . 2001 , 2004

162 − ∗ Copy r i gh t (c) 1999−2000 Cisco , I nc .

163 + ∗ Copy r i gh t (c) 1999−2000 , 2006 Cisco , I nc .

164 ∗ Copy r i gh t (c) 1999−2001 Motorola , I n c .

165 ∗

166 ∗ Th i s f i l e i s p a r t o f t h e SCTP k e r n e l r e f e r e n c e Imp l emen t a t i o n

167 @@ −65 ,6 +65 ,13 @@

168 s t a t i c s c t p _ xm i t _ t s c t p _pac k e t _append_da t a (s t r u c t s c t p _ p a c k e t ∗packe t ,

169 s t r u c t s c t p_ chunk ∗chunk) ;

170

171 +/∗ Rou t i n e s added by S imula ∗ /

172 +

173 +void a d d _ p k t _ i n _ f l i g h t (s t r u c t s c t p _ a s s o c i a t i o n ∗a , __u32 t s n) ;

174 + i n t c a l c u l a t e _ p a c k e t _ l o s s _ r a t e (s t r u c t s c t p _ a s s o c i a t i o n ∗a) ;

175 + i n t c a l c u l a t e _ t h i n _ s t r e am _ t h r e s h o l d (i n t l o s s _ r a t e) ;

176 +

177 +

178 /∗ Con f ig a pa c k e t .

179 ∗ Th i s appears t o be a f o l l owup s e t o f i n i t i a l i z a t i o n s .

180 ∗ /

181 @@ −303 ,6 +310 ,12 @@

182 i n t padd ing ; /∗ How much padding do we need ? ∗ /

183 __u8 h a s _d a t a = 0 ;

184 s t r u c t d s t _ e n t r y ∗ d s t ;

185 +

186 +

187 + /∗ Added by S imula t o keep t r a c k o f h i g h e s t TSN i n pa c k e t ∗ /

188 + __u32 pktHighes tTSN = 0 ;

189 + __u32 cur ren tTSN ;

190 +

191

192 SCTP_DEBUG_PRINTK("%s : p a c k e t :%p \ n " , __FUNCTION__ , p a c k e t) ;

193

194 @@ −396 ,6 +409 ,15 @@

195

196 chunk−>s e n t _ a t = j i f f i e s ;

197 h a s _d a t a = 1 ;

198 +

199 + cur ren tTSN = n t o h l (chunk−>subh . da t a_hd r −> t s n) ;

200 +

201 + /∗ Added by S imula t o f i n d h i g h e s t TSN i n pa c k e t c o n t a i n i n g

202 + da ta chunks : ∗ /

203 + i f (cur ren tTSN > pktHighes tTSN){

204 + pktHighes tTSN = cur ren tTSN ;

205 + }

206 +

207 }

208

209 padd ing = WORD_ROUND(chunk−>skb−>l e n) − chunk−>skb−>l e n ;

210 @@ −475 ,6 +497 ,17 @@

211 i f (! mod_timer (t ime r , j i f f i e s + t imeou t))

212 s c t p _ a s s o c i a t i o n _ h o l d (a soc) ;

213 }

214 +

215 + /∗ added by S imula t o add pa c k e t t o p a c k e t s i n f l i g h t l i s t ∗ /

216 + a d d _ p k t _ i n _ f l i g h t (asoc , pktHighes tTSN) ;

217 + asoc−> t o t a l _ xm t _ p a c k e t s ++;

218 +

259

219 + /∗ added by S imula :

220 + Ra i s e s t h i n s t r eam t h r e s h o l d i f l o s s r a t e i n c r e a s e s . ∗ /

221 + i f (asoc−> t o t a l _ xm t _ p a c k e t s%30 == 0)

222 + asoc−> t h i n _ s t r e am _ t h r e s h o l d = c a l c u l a t e _ t h i n _ s t r e am _ t h r e s h o l d (c a l c u l a t e _ p a c k e t _ l o s s _ r a t e (a soc) / 100) ;

223 +

224 +

225 }

226

227 d s t = tp−>d s t ;

228 @@ −653 ,3 +686 ,75 @@

229 f i n i s h :

230 re turn r e t v a l ;

231 }

232 +

233 +

234 + /∗ added by S imula :

235 + Th i s r o u t i n e adds a new pac k e t w i t h i t s h i g h e s t TSN t o t h e p a c k e t s _ i n _ f l i g h t

236 + l i s t p o i n t e d t o by p k t _ i n _ f l i g h t _ h e a d . F i n a l l y , p a c k e t s _ i n _ f l i g h t i s

237 + inc r emen t e d by one . F i n a l l y , l o s s r e p o r t s and a s end t ime t imes tamp are s e t .

238 +

239 + The f i r s t parame te r i s a p o i n t e r t o t h e c u r r e n t

240 + s c t p _ a s s o c i a t i o n ho l d i n g t h e ’ p a c k e t s i n f l i g h t ’ d a t a s t r u c t u r e .

241 + The second parame te r i s t h e h i g h e s t TSN i n t h e pa c k e t .

242 +

243 +∗ /

244 +void a d d _ p k t _ i n _ f l i g h t (s t r u c t s c t p _ a s s o c i a t i o n ∗a , __u32 t s n){

245 +

246 + s t r u c t p k t _ s t a t ∗ cu r ;

247 +

248 + i f (a−>p k t _ s t a t _ h e a d == NULL){

249 + a−>p k t _ s t a t _ h e a d = (s t r u c t p k t _ s t a t ∗) kma l loc (s i z e o f (s t r u c t p k t _ s t a t) , GFP_KERNEL) ;

250 + a−>pk t _ s t a t _ h e a d −>nex t = NULL;

251 + a−>pk t _ s t a t _ h e a d −>prev = NULL;

252 + a−> p k t _ s t a t _ t a i l = a−>p k t _ s t a t _ h e a d ;

253 +

254 + cu r = a−>p k t _ s t a t _ h e a d ;

255 + }

256 + e l s e {

257 + a−> p k t _ s t a t _ t a i l −>nex t = (s t r u c t p k t _ s t a t ∗) kma l loc (s i z e o f (s t r u c t p k t _ s t a t) , GFP_KERNEL) ;

258 + a−> p k t _ s t a t _ t a i l −>next−>prev = a−> p k t _ s t a t _ t a i l ;

259 + a−> p k t _ s t a t _ t a i l = a−> p k t _ s t a t _ t a i l −>nex t ;

260 + a−> p k t _ s t a t _ t a i l −>nex t = NULL;

261 +

262 + cu r = a−> p k t _ s t a t _ t a i l ;

263 + }

264 +

265 + cur−>highes tTSN = t s n ;

266 + cur−>t imes t amp = j i f f i e s ;

267 + cur−>i s_gap_acked = 0 ;

268 + cur−>ma rk ed_ l o s t = 0 ;

269 + cur−> i n d i c a t e d _ l o s t = 0 ;

270 +

271 + a−>p a c k e t s _ i n _ f l i g h t ++;

272 +}

273 +

274 +

275 + /∗ Th i s r o u t i n e c a l c u l a t e s t h e pa c k e t l o s s r a t e by i n t e g e r

276 + d i v i s i o n . To g e t t h e a c t u a l l o s s r a t e i n pe r c en t ,

277 + d i v i d e t h e l o s s r a t e by 100 .

260 Appendix F. SCTP-patch for Linux 2.6.16 kernel

278 +∗ /

279 +

280 + i n t c a l c u l a t e _ p a c k e t _ l o s s _ r a t e (s t r u c t s c t p _ a s s o c i a t i o n ∗a){

281 +

282 + i n t l p a c k e t s , t o t a l _ xm t ;

283 +

284 + l p a c k e t s = a−> l o s t _ p a c k e t s ∗ 10000 ;

285 + t o t a l _ xm t = a−> t o t a l _ xm t _ p a c k e t s ;

286 +

287 + /∗ p r i n t k (KERN_ALERT " l p a c k e t s : %d , t o t a l _ xm t : %d , r a t e : %d \ n " ,

288 + a−>l o s t _ p a c k e t s , t o t a l _ xm t , (l p a c k e t s / t o t a l _ xm t)) ; ∗ /

289 +

290 + re turn l p a c k e t s / t o t a l _ xm t ;

291 +}

292 +

293 +

294 + i n t c a l c u l a t e _ t h i n _ s t r e am _ t h r e s h o l d (i n t l o s s _ r a t e) {

295 + i n t p i f l i m ;

296 +

297 + p i f l i m = (4 ∗ (1000000 / (10000 − ((l o s s _ r a t e ∗ 10000) / 100))) / 1 0 0) ;

298 +

299 + p r i n t k (KERN_ALERT " l o s s _ r a t e : %i , p i f l i m : %i \ n " ,

300 + l o s s _ r a t e , p i f l i m) ;

301 +

302 + re turn p i f l i m ;

303 +}

304 d i f f −Naur l i nux − 2 . 6 . 1 6 . 1 3 / n e t / s c t p / ou tqueue . c l i nux −2.6.16.13−modSCTP / n e t / s c t p / ou tqueue . c

305 −−− l i n ux − 2 . 6 . 1 6 . 1 3 / n e t / s c t p / ou tqueue . c 2006−05−02 23 :38 :44 . 000000000 +0200

306 +++ l i nux −2.6.16.13−modSCTP / n e t / s c t p / ou tqueue . c 2007−07−16 16 :42 :48 . 000000000 +0200

307 @@ −1,6 +1 ,6 @@

308 /∗ SCTP k e r n e l r e f e r e n c e Imp l emen t a t i o n

309 ∗ (C) Copy r i gh t IBM Corp . 2001 , 2004

310 − ∗ Copy r i gh t (c) 1999−2000 Cisco , I nc .

311 + ∗ Copy r i gh t (c) 1999−2000 , 2006 , 2007 Cisco , I nc .

312 ∗ Copy r i gh t (c) 1999−2001 Motorola , I n c .

313 ∗ Copy r i gh t (c) 2001−2003 I n t e l Corp .

314 ∗

315 @@ −56 ,6 +56 ,25 @@

316 # i n c l u d e <ne t / s c t p / sm . h>

317

318 /∗ Dec lare i n t e r n a l f u n c t i o n s here . ∗ /

319 +

320 + /∗ Packe t l o s s r a t e added by S imula ∗ /

321 +void u p d a t e _ l o s t _ p a c k e t s _ b y _ t im e o u t (s t r u c t s c t p _ t r a n s p o r t ∗ t) ;

322 +void u p d a t e _ l o s t _ p a c k e t s _ b y _ s a c k g a p (s t r u c t s c t p _ a s s o c i a t i o n ∗a , s t r u c t s c t p _ s a c k h d r ∗ sack) ;

323 +void r emo v e _ p k t s _ i n _ f l i g h t (s t r u c t s c t p _ a s s o c i a t i o n ∗a , __u32 sack_cum_tsn) ;

324 +void l o s s _ i n d i c a t i o n _ u p d a t e (s t r u c t s c t p _ a s s o c i a t i o n ∗a , __u32 gap_ t s n) ;

325 +void mark_gap_acked (s t r u c t s c t p _ a s s o c i a t i o n ∗a , __u32 gap_acked_ t sn) ;

326 + / / i n t i s _ s p u r i o u s (s t r u c t s c t p _ t r a n s p o r t ∗ t , s t r u c t p k t _ s t a t ∗c) ;

327 +

328 + /∗ 3 t h i n s t r eam r o u t i n e s added by S imula : ∗ /

329 +void r emo v e _ p k t s _ i n _ f l i g h t (s t r u c t s c t p _ a s s o c i a t i o n ∗a , __u32 sack_cum_tsn) ;

330 + i n t ch e ck_ s t r e am_be f o r e _ add (s t r u c t s c t p _ t r a n s p o r t ∗ t ,

331 + s t r u c t s c t p_chunk ∗chunk , __u8 f a s t _ r e t r a n s m i t) ;

332 +void bund l e _ ou t s t a n d i n g_ c hunk s (s t r u c t s c t p _ p a c k e t ∗packe t ,

333 + s t r u c t s c t p _ t r a n s p o r t ∗ t r a n s p o r t) ;

334 +

335 +

336 +

261

337 +

338 s t a t i c i n t s c t p _ a ck ed (s t r u c t s c t p _ s a c k h d r ∗sack , __u32 t s n) ;

339 s t a t i c vo id s c t p _ c h e c k _ t r a n sm i t t e d (s t r u c t s c t p _ o u t q ∗q ,

340 s t r u c t l i s t _ h e a d ∗ t r a n sm i t t e d _ q u e u e ,

341 @@ −379 ,6 +398 ,38 @@

342 l i s t _ a d d _ t a i l (new , head) ;

343 }

344

345 +

346 + /∗ added by S imula . When t h e s t r eam i s t h i n , t h i s r o u t i n e makes i t p o s s i b l e f o r t h e

347 + sende r t o a l s o bund le o u t s t a n d i n g chunks w i t h chunks marked f o r f a s t r e t r a n sm i t

348 + in a d d i t i o n t o chunks t h a t w i l l g e t r e t r a n sm i t t e d due t o a r e t r a n sm i s s i o n t im e o u t .

349 + I f t h e s t r eam i s t h i c k , o u t s t a n d i n g chunks w i l l on l y g e t bund led w i t h chunks

350 + t h a t w i l l g e t r e t r a n sm i t t e d due t o a r e t r a n sm i s s i o n t im e o u t .

351 +∗ /

352 +

353 + i n t ch e ck_ s t r e am_be f o r e _ add (s t r u c t s c t p _ t r a n s p o r t ∗ t ,

354 + s t r u c t s c t p_chunk ∗chunk ,

355 + __u8 f a s t _ r e t r a n s m i t) {

356 + /∗ Check proc v a r i a b l e ∗ /

357 +

358 + i f (s c t p _ t h i n _ b u n d l i n g _ f r) {

359 +

360 + /∗ Less than t h i n _ s t r e am_ t h r e s h o l d p a c k e t s i n f l i g h t ∗ /

361 + i f (t−>asoc−>p a c k e t s _ i n _ f l i g h t < t−>asoc−> t h i n _ s t r e am _ t h r e s h o l d){

362 + re turn ((f a s t _ r e t r a n s m i t && chunk−> f a s t _ r e t r a n s m i t) | |

363 + ! chunk−>t sn_gap_acked) ;

364 + }

365 + e l s e {

366 + re turn ((f a s t _ r e t r a n s m i t && chunk−> f a s t _ r e t r a n s m i t) | |

367 + (! f a s t _ r e t r a n s m i t && ! chunk−>t sn_gap_acked)) ;

368 + }

369 + }

370 + e l s e {

371 + re turn ((f a s t _ r e t r a n s m i t && chunk−> f a s t _ r e t r a n s m i t) | |

372 + (! f a s t _ r e t r a n s m i t && ! chunk−>t sn_gap_acked)) ;

373 + }

374 +}

375 +

376 +

377 /∗ Mark a l l t h e e l i g i b l e p a c k e t s on a t r a n s p o r t f o r r e t r a n sm i s s i o n . ∗ /

378 void s c t p _ r e t r a n sm i t _ma r k (s t r u c t s c t p _ o u t q ∗q ,

379 s t r u c t s c t p _ t r a n s p o r t ∗ t r a n s p o r t ,

380 @@ −387 ,65 +438 ,156 @@

381 s t r u c t l i s t _ h e a d ∗ l chunk , ∗ l t emp ;

382 s t r u c t s c t p_chunk ∗chunk ;

383

384 − /∗ Walk th rough t h e s p e c i f i e d t r a n sm i t t e d queue . ∗ /

385 − l i s t _ f o r _ e a c h _ s a f e (lchunk , l temp , &t r a n s p o r t −> t r a n sm i t t e d) {

386 − chunk = l i s t _ e n t r y (lchunk , s t r u c t sc tp_chunk ,

387 − t r a n s m i t t e d _ l i s t) ;

388 −

389 − /∗ I f t h e chunk i s abandoned , move i t t o abandoned l i s t . ∗ /

390 − i f (s c tp_chunk_abandoned (chunk)) {

391 − l i s t _ d e l _ i n i t (l chunk) ;

392 − s c t p _ i n s e r t _ l i s t (&q−>abandoned , l chunk) ;

393 − cont inue ;

394 − }

395 −

262 Appendix F. SCTP-patch for Linux 2.6.16 kernel

396 − /∗ I f we are do ing r e t r a n sm i s s i o n due t o a f a s t r e t r a n sm i t ,

397 − ∗ on l y t h e chunk ’ s t h a t are marked f o r f a s t r e t r a n sm i t

398 − ∗ shou l d be added t o t h e r e t r a n sm i t queue . I f we are do ing

399 − ∗ r e t r a n sm i s s i o n due t o a t im e o u t or pmtu d i s c o v e r y , on l y t h e

400 − ∗ chunks t h a t are no t y e t acked shou ld be added t o t h e

401 − ∗ r e t r a n sm i t queue .

402 − ∗ /

403 − i f ((f a s t _ r e t r a n s m i t && (chunk−> f a s t _ r e t r a n s m i t > 0)) | |

404 − (! f a s t _ r e t r a n s m i t && ! chunk−>t sn_gap_acked)) {

405 − /∗ RFC 2960 6 . 2 . 1 P ro c e s s i n g a Rece i v ed SACK

406 − ∗

407 − ∗ C) Any t ime a DATA chunk i s marked f o r

408 − ∗ r e t r a n sm i s s i o n (v i a e i t h e r T3−r t x t im e r e x p i r a t i o n

409 − ∗ (S e c t i o n 6 . 3 . 3) or v i a f a s t r e t r a n sm i t

410 − ∗ (S e c t i o n 7 . 2 . 4)) , add t h e da ta s i z e o f t h o s e

411 − ∗ chunks t o t h e rwnd .

412 − ∗ /

413 − q−>asoc−>pee r . rwnd += s c t p _ d a t a _ s i z e (chunk) ;

414 − q−>o u t s t a n d i n g _ b y t e s −= s c t p _ d a t a _ s i z e (chunk) ;

415 − t r a n s p o r t −> f l i g h t _ s i z e −= s c t p _ d a t a _ s i z e (chunk) ;

416 −

417 − /∗ s c t p impgu ide −05 S e c t i o n 2 . 8 . 2

418 − ∗ M5) I f a T3−r t x t im e r e x p i r e s , t h e

419 − ∗ ’TSN . Mi s s i ng . Repor t ’ o f a l l a f f e c t e d TSNs i s s e t

420 − ∗ t o 0 .

421 − ∗ /

422 − chunk−> t s n _m i s s i n g _ r e p o r t = 0 ;

423

424 − /∗ I f a chunk t h a t i s be ing used f o r RTT measurement

425 − ∗ has t o be r e t r a n sm i t t e d , we canno t use t h i s chunk

426 − ∗ anymore f o r RTT measurements . R e s e t r t o _p end i n g so

427 − ∗ t h a t a new RTT measurement i s s t a r t e d when a new

428 − ∗ da ta chunk i s s e n t .

429 − ∗ /

430 − i f (chunk−> r t t _ i n _ p r o g r e s s) {

431 − chunk−> r t t _ i n _ p r o g r e s s = 0 ;

432 − t r a n s p o r t −>r t o _ p e nd i n g = 0 ;

433 − }

434 + /∗ added by jonped ∗ /

435 + s t r u c t l i s t _ h e a d ∗dchunk , ∗ t t emp ;

436 + s t r u c t s c t p_chunk ∗ t chunk ;

437

438 − /∗ Move t h e chunk t o t h e r e t r a n sm i t queue . The chunks

439 − ∗ on t h e r e t r a n sm i t queue are a lways k e p t i n o rde r .

440 − ∗ /

441 − l i s t _ d e l _ i n i t (l chunk) ;

442 − s c t p _ i n s e r t _ l i s t (&q−>r e t r a n sm i t , l chunk) ;

443 − }

444 + __u32 lowestTSN = 0 ;

445 + __u32 cur ren tTSN = 0 ;

446 +

447 + char ∗da t a_chunk_pay l oad ;

448 + i n t c h u n k _ o f f s e t ;

449 +

450 + /∗

451 + added by S imula :

452 +

453 + Try t o f i n d t h e l ow e s t TSN on t h e t r a n sm i t t e d queue . The t r a n sm i t t e d queue COULD

454 + be unordered as r e t r a n sm i t t e d da ta chunks i s are pu t back on t h e t r a n sm i t t e d queue ,

263

455 + bu t i t i s t h e da ta chunk w i t h t h e l ow e s t TSN t h a t caused t h e r e t r a n sm i s s i o n

456 + t im e ou t .

457 + ∗ /

458 +

459 + i f (! f a s t _ r e t r a n s m i t) {

460 + l i s t _ f o r _ e a c h _ s a f e (dchunk , t temp , &t r a n s p o r t −> t r a n sm i t t e d) {

461 +

462 + tchunk = l i s t _ e n t r y (dchunk , s t r u c t sc tp_chunk ,

463 + t r a n s m i t t e d _ l i s t) ;

464 +

465 + i f (! tchunk−>t sn_gap_acked){

466 +

467 + cur ren tTSN = n t o h l (tchunk−>subh . da t a_hd r −> t s n) ;

468 +

469 + i f (! lowestTSN){

470 + lowestTSN = cur ren tTSN ;

471 + }

472 + e l s e {

473 + i f (cur ren tTSN < lowestTSN){

474 + lowestTSN = cur ren tTSN ;

475 + }

476 + }

477 + }

478 + }

479 }

480 −

481 +

482 + /∗ Walk th rough t h e s p e c i f i e d t r a n sm i t t e d queue . ∗ /

483 + l i s t _ f o r _ e a c h _ s a f e (lchunk , l temp , &t r a n s p o r t −> t r a n sm i t t e d) {

484 + chunk = l i s t _ e n t r y (lchunk , s t r u c t sc tp_chunk ,

485 + t r a n s m i t t e d _ l i s t) ;

486 +

487 + /∗ I f t h e chunk i s abandoned , move i t t o abandoned l i s t . ∗ /

488 + i f (s c tp_chunk_abandoned (chunk)) {

489 + l i s t _ d e l _ i n i t (l chunk) ;

490 + s c t p _ i n s e r t _ l i s t (&q−>abandoned , l chunk) ;

491 + cont inue ;

492 + }

493 +

494 + /∗ I f we are do ing r e t r a n sm i s s i o n due t o a f a s t r e t r a n sm i t ,

495 + ∗ on l y t h e chunk ’ s t h a t are marked f o r f a s t r e t r a n sm i t

496 + ∗ shou l d be added t o t h e r e t r a n sm i t queue . I f we are do ing

497 + ∗ r e t r a n sm i s s i o n due t o a t im e o u t or pmtu d i s c o v e r y , on l y t h e

498 + ∗ chunks t h a t are no t y e t acked shou ld be added t o t h e

499 + ∗ r e t r a n sm i t queue .

500 + ∗ /

501 +

502 + / / Added by S imula t o a l l ow bund l i ng i n f a s t r e t r a n sm i t s :

503 +

504 + i f (c h e ck_ s t r e am_be f o r e _ add (t r a n s p o r t , chunk , f a s t _ r e t r a n s m i t)) {

505 +

506 + /∗

507 + / / Old :

508 + i f ((f a s t _ r e t r a n s m i t && (chunk−>f a s t _ r e t r a n s m i t > 0)) | |

509 + (! f a s t _ r e t r a n s m i t && ! chunk−>tsn_gap_acked)) {

510 + ∗ /

511 +

512 + /∗ RFC 2960 6 . 2 . 1 P ro c e s s i n g a Rece i v ed SACK

513 + ∗

264 Appendix F. SCTP-patch for Linux 2.6.16 kernel

514 + ∗ C) Any t ime a DATA chunk i s marked f o r

515 + ∗ r e t r a n sm i s s i o n (v i a e i t h e r T3−r t x t im e r e x p i r a t i o n

516 + ∗ (S e c t i o n 6 . 3 . 3) or v i a f a s t r e t r a n sm i t

517 + ∗ (S e c t i o n 7 . 2 . 4)) , add t h e da ta s i z e o f t h o s e

518 + ∗ chunks t o t h e rwnd .

519 + ∗ /

520 + q−>asoc−>pee r . rwnd += s c t p _ d a t a _ s i z e (chunk) ;

521 + q−>o u t s t a n d i n g _ b y t e s −= s c t p _ d a t a _ s i z e (chunk) ;

522 + t r a n s p o r t −> f l i g h t _ s i z e −= s c t p _ d a t a _ s i z e (chunk) ;

523 +

524 + /∗ s c t p impgu ide −05 S e c t i o n 2 . 8 . 2

525 + ∗ M5) I f a T3−r t x t im e r e x p i r e s , t h e

526 + ∗ ’TSN . Mi s s i ng . Repor t ’ o f a l l a f f e c t e d TSNs i s s e t

527 + ∗ t o 0 .

528 + ∗ /

529 + chunk−> t s n _m i s s i n g _ r e p o r t = 0 ;

530 +

531 + /∗ Added by S imula :

532 +

533 + Mark f i r s t b y t e i n pay load o f p a c k e t a c co rd i ng t o what

534 + caused t h e r e t r a n sm i s s i o n :

535 +

536 + ’q ’ = Not r e t r a n sm i t t e d y e t

537 + ’ f ’ = Fas t r e t r a n sm i t

538 + ’ t ’ = Timeout

539 + ’b ’ = Bund l i ng caused by t im e o u t

540 + ∗ /

541 +

542 + i f (s c t p _ t h i n _ d e b u g_ t a g _ p a y l o a d){

543 + da t a_chunk_pay l oad = (char ∗) chunk−>skb−>d a t a ;

544 +

545 + /∗

546 + f o r (c h u n k _ o f f s e t = 16;

547 + c h u n k _ o f f s e t < WORD_ROUND(n t oh s (chunk−>chunk_hdr−>l e n g t h))

548 + && data_chunk_pay load [c h u n k _ o f f s e t] != ’ q ’ ;

549 + c h u n k _ o f f s e t ++);

550 + ∗ /

551 +

552 + c h u n k _ o f f s e t = 16 ; / / f i r s t b y t e o f da ta chunk pay load

553 +

554 + i f (f a s t _ r e t r a n s m i t) {

555 + da t a_chunk_pay l oad [c h u n k _ o f f s e t] = ’ f ’ ;

556 + }

557 + e l s e {

558 +

559 + cur ren tTSN = n t o h l (chunk−>subh . da t a_hd r −> t s n) ;

560 +

561 + i f (cur ren tTSN == lowestTSN){

562 + da t a_chunk_pay l oad [c h u n k _ o f f s e t] = ’ t ’ ;

563 + }

564 + e l s e {

565 + da t a_chunk_pay l oad [c h u n k _ o f f s e t] = ’ b ’ ;

566 + }

567 + }

568 + }

569 +

570 + /∗ I f a chunk t h a t i s be ing used f o r RTT measurement

571 + ∗ has t o be r e t r a n sm i t t e d , we canno t use t h i s chunk

572 + ∗ anymore f o r RTT measurements . R e s e t r t o _p end i n g so

265

573 + ∗ t h a t a new RTT measurement i s s t a r t e d when a new

574 + ∗ da ta chunk i s s e n t .

575 + ∗ /

576 + i f (chunk−> r t t _ i n _ p r o g r e s s) {

577 + chunk−> r t t _ i n _ p r o g r e s s = 0 ;

578 + t r a n s p o r t −>r t o _ p e nd i n g = 0 ;

579 + }

580 +

581 + /∗ Move t h e chunk t o t h e r e t r a n sm i t queue . The chunks

582 + ∗ on t h e r e t r a n sm i t queue are a lways k e p t i n o rde r .

583 + ∗ /

584 +

585 + l i s t _ d e l _ i n i t (l chunk) ;

586 + s c t p _ i n s e r t _ l i s t (&q−>r e t r a n sm i t , l chunk) ;

587 + }

588 + }

589 +

590 SCTP_DEBUG_PRINTK("%s : t r a n s p o r t : %p , f a s t _ r e t r a n s m i t : %d , "

591 " cwnd : %d , s s t h r e s h : %d , f l i g h t _ s i z e : %d , "

592 " pba : %d \ n " , __FUNCTION__ ,

593 @@ −453 ,7 +595 ,7 @@

594 t r a n s p o r t −>cwnd , t r a n s p o r t −>s s t h r e s h ,

595 t r a n s p o r t −> f l i g h t _ s i z e ,

596 t r a n s p o r t −>p a r t i a l _ b y t e s _ a c k e d) ;

597 −

598 +

599 }

600

601 /∗ Mark a l l t h e e l i g i b l e p a c k e t s on a t r a n s p o r t f o r r e t r a n sm i s s i o n and f o r c e

602 @@ −468 ,9 +610 ,14 @@

603 sw i t c h (reason) {

604 case SCTP_RTXR_T3_RTX :

605 s c t p _ t r a n s p o r t _ l owe r _ cwnd (t r a n s p o r t , SCTP_LOWER_CWND_T3_RTX) ;

606 +

607 + /∗ Added by S imula ∗ /

608 + u p d a t e _ l o s t _ p a c k e t s _ b y _ t im e o u t (t r a n s p o r t) ;

609 +

610 /∗ Update t h e r e t r a n pa th i f t h e T3−r t x t im e r has e x p i r e d f o r

611 ∗ t h e c u r r e n t r e t r a n pa th .

612 ∗ /

613 +

614 i f (t r a n s p o r t == t r a n s p o r t −>asoc−>pee r . r e t r a n _ p a t h)

615 s c t p _ a s s o c _ u p d a t e _ r e t r a n _ p a t h (t r a n s p o r t −>asoc) ;

616 break ;

617 @@ −483 ,8 +630 ,9 @@

618 break ;

619 }

620

621 − s c t p _ r e t r a n sm i t _ma r k (q , t r a n s p o r t , f a s t _ r e t r a n s m i t) ;

622 −

623 + s c t p _ r e t r a n sm i t _ma r k (q , t r a n s p o r t , f a s t _ r e t r a n s m i t) ;

624 +

625 +

626 /∗ PR−SCTP A5) Any t ime t h e T3−r t x t im e r e x p i r e s , on any d e s t i n a t i o n ,

627 ∗ t h e s ende r SHOULD t r y t o advance t h e " Advanced . Peer . Ack . Po i n t " by

628 ∗ f o l l o w i n g t h e p roc edu r e s o u t l i n e d i n C1 − C5 .

629 @@ −616 ,4 +764 ,3 @@

630

631 /∗ I f we are here due t o a r e t r a n sm i t t im e o u t or a f a s t

266 Appendix F. SCTP-patch for Linux 2.6.16 kernel

632 ∗ r e t r a n sm i t and i f t h e r e are any chunks l e f t i n t h e r e t r a n sm i t

633 − ∗ queue t h a t cou ld no t f i t i n t h e PMTU s i z e d packe t , t h e y need

634 ∗ t o be marked as i n e l i g i b l e f o r a s ub s e qu en t f a s t r e t r a n sm i t .

635 + ∗ queue t h a t cou ld no t f i t i n t h e PMTU s i z e d packe t , t h e y need

636 + ∗ t o be marked as i n e l i g i b l e f o r a s ub s e qu en t f a s t r e t r a n sm i t .

637 ∗ /

638 i f (r t x _ t im e o u t && ! lchunk) {

639 l i s t _ f o r _ e a c h (lchunk1 , l queue) {

640 @@ −642 ,6 +791 ,118 @@

641 re turn e r r o r ;

642 }

643

644 +

645 + /∗ Th i s r o u t i n e i s added by S imula t o bund le o u t s t a n d i n g chunks i n a new pac k e t i f t h e

646 + s t ream i s t h i n and t h e MTU a l l ow s i t . F i r s t , i t c h e c k s i f t h e pa c k e t c o n t a i n s

647 + chunks t h a t w i l l g e t r e t r a n sm i t t e d . I f t h i s i s t r u e , bund l i n g i s no t a l l owed as

648 + bund l i ng a l r e ad y has been per fo rmed .

649 + Then i t t r a v e r s e s t h rough t h e t r a n sm i t t e d queue and bund l e s o u t s t a n d i n g

650 + chunks by add ing them t o an o u t s t a n d i n g chunk l i s t .

651 + At l a s t , t h e o u t s t a n d i n g chunk l i s t i s j o i n e d w i t h t h e pa c k e t chunk l i s t

652 + and t h e pa c k e t s i z e i s upda ted .

653 + The f i r s t paramater i s a p o i n t e r t o t h e pa c k e t t h a t w i l l be s e n t .

654 + The second paramater i s a p o i n t e r t o t h e r e s p e c t i v e t r a n s p o r t .

655 +∗ /

656 +

657 +void bund l e _ ou t s t a n d i n g_ c hunk s (s t r u c t s c t p _ p a c k e t ∗packe t , s t r u c t s c t p _ t r a n s p o r t ∗ t r a n s p o r t) {

658 +

659 + s i z e _ t p a c k e t _ s i z e , pmtu , o u t s t a n d i n g _ c h u n k s _ s i z e = 0 ;

660 + s t r u c t s c t p_chunk ∗chunk ;

661 + s t r u c t l i s t _ h e a d ∗ c h u n k _ l i s t , ∗ l i s t _ h e a d ;

662 + s t r u c t l i s t _ h e a d o u t s t a n d i n g _ l i s t ;

663 + i n t bund l i ng_pe r f o rmed = 0 ;

664 + __u16 chunk_ len ;

665 +

666 + i f (t r a n s p o r t == NULL){

667 + re turn ;

668 + }

669 +

670 + /∗ Trav e r s e t h e pa c k e t ’ s chunk l i s t and l ook f o r da ta chunks

671 + ∗ /

672 + l i s t _ f o r _ e a c h (c h u n k _ l i s t , &packe t−>c h u n k _ l i s t) {

673 + chunk = l i s t _ e n t r y (c h u n k _ l i s t , s t r u c t sc tp_chunk ,

674 + l i s t) ;

675 +

676 + /∗ Find t h e f i r s t da ta chunk i n pa c k e t ∗ /

677 + i f (s c t p _ c h u n k _ i s _ d a t a (chunk)) {

678 +

679 + i f (chunk−>h a s _ t s n){

680 + /∗ I f t h e f i r s t chunk i s a r e t r a n sm i s s i o n , do no t bund l e .

681 + Ou t s t and i ng chunks are a l r e ad y bund led .

682 + ∗ /

683 + re turn ;

684 + }

685 + e l s e {

686 +

687 + /∗ I f t h e f i r s t da ta chunk has no t been g i v e n a TSN ye t , t h en t h i s p a c k e t c o n t a i n s

688 + new chunks and bund l i n g o f o u t s t a n d i n g chunks i s a l l owed .

689 + ∗ /

690 + break ;

267

691 + }

692 + }

693 + }

694 +

695 + p a c k e t _ s i z e = packe t−>s i z e ;

696 +

697 + /∗ Find t h e ne twork MTU ∗ /

698 + pmtu = ((packe t−> t r a n s p o r t −>asoc) ?

699 + (packe t−> t r a n s p o r t −>asoc−>pathmtu) :

700 + (packe t−> t r a n s p o r t −>pathmtu)) ;

701 +

702 + /∗ I n i t i a t e a l i n k e d l i s t t h a t w i l l c o n t a i n o u t s t a n d i n g chunks ∗ /

703 + INIT_LIST_HEAD(& o u t s t a n d i n g _ l i s t) ;

704 +

705 + /∗ Trav e r s e t h e t r a n sm i t t e d queue and bund le o u t s t a n d i n g chunks

706 + as long as s i z e o f chunks i n pa c k e t < MTU.

707 + Olde s t o u t s t a n d i n g chunks (F i r s t i n t r a n sm i t t e d queue) i s bund led f i r s t .

708 + ∗ /

709 +

710 + l i s t _ f o r _ e a c h (l i s t _ h e a d , &t r a n s p o r t −> t r a n sm i t t e d){

711 +

712 + chunk = l i s t _ e n t r y (l i s t _ h e a d , s t r u c t sc tp_chunk ,

713 + t r a n s m i t t e d _ l i s t) ;

714 +

715 + i f (s c t p _ c h u n k _ i s _ d a t a (chunk) && ! chunk−>t sn_gap_acked){

716 + i f (chunk−>h a s _ t s n){

717 +

718 + /∗ Chunk l e n g t h must be a m u l t i p l e o f 4 by t e s , pad l e n g t h i f n e c e s s a r y ∗ /

719 + chunk_ len = WORD_ROUND(n t oh s (chunk−>chunk_hdr−> l e n g t h)) ;

720 +

721 + /∗ I f a l l owed by MTU, bund le t h e o u t s t a n d i n g chunk by add ing

722 + i t t o t h e o u t s t a n d i n g chunks l i s t ∗ /

723 + i f ((p a c k e t _ s i z e + chunk_ len) > pmtu){

724 + break ;

725 + }

726 + e l s e {

727 +

728 + p a c k e t _ s i z e += chunk_ len ;

729 + o u t s t a n d i n g _ c h u n k s _ s i z e += chunk_ len ;

730 + chunk−> t r a n s p o r t = packe t−> t r a n s p o r t ;

731 + l i s t _ a d d _ t a i l (&chunk−> l i s t , &o u t s t a n d i n g _ l i s t) ;

732 + bund l i ng_pe r f o rmed = 1 ;

733 + }

734 + }

735 + }

736 + }

737 +

738 + /∗ I f b und l i n g has been per formed , j o i n t h e o u t s t a n d i n g chunks l i s t a t t h e

739 + head o f t h e pa c k e t ’ s chunk l i s t and upda te pa c k e t s i z e . Th i s way ,

740 + a l l chunks i n a pa c k e t w i l l be i n i n c r e a s i n g order , which i s r e q u i e r e d

741 + by SCTP . Be f o r e t h e pa c k e t i s t r a n sm i t t e d , t h e da ta chunks t h a t were

742 + o r i g i n a l l y s t o r e d i n t h e pa c k e t chunk l i s t w i l l l a t e r g e t TSNs t h a t

743 + are l a r g e r than t h e TSNs o f t h e o u t s t a n d i n g chunks .

744 + ∗ /

745 +

746 + i f (bund l i ng_pe r f o rmed){

747 + l i s t _ s p l i c e (& o u t s t a n d i n g _ l i s t , &packe t−>c h u n k _ l i s t) ;

748 + packe t−>s i z e += o u t s t a n d i n g _ c h u n k s _ s i z e ;

749 + }

268 Appendix F. SCTP-patch for Linux 2.6.16 kernel

750 +}

751 +

752 +

753 +

754 +

755 +

756 /∗

757 ∗ Try t o f l u s h an ou tqueue .

758 ∗

759 @@ −952 ,7 +1213 ,16 @@

760 s end_ready) ;

761 pac k e t = &t−>pac k e t ;

762 i f (! s c t p _ pa c k e t _ emp t y (p a c k e t))

763 − e r r o r = s c t p _ p a c k e t _ t r a n sm i t (p a c k e t) ;

764 +

765 + / / S imula : Try t o bund l e o u t s t a n d i n g chunks

766 +

767 + i f (s c t p _ t h i n _ b u n d l i n g _ o u t s t a n d i n g) {

768 + i f (asoc−>p a c k e t s _ i n _ f l i g h t < asoc−>t h i n _ s t r e am_ t h r e s h o l d) {

769 + bund l e _ ou t s t a n d i n g_ c hun k s (packe t , t) ;

770 + }

771 + }

772 +

773 + e r r o r = s c t p _ p a c k e t _ t r a n sm i t (p a c k e t) ;

774 }

775

776 r e t u r n e r r o r ;

777 @@ −1031 ,6 +1301 ,18 @@

778

779 s a c k _ c t s n = n t o h l (sack−>cum_tsn_ack) ;

780

781 + /∗ added by S imula t o d e t e rm i n e how t o coun t p a c k e t s i n f l i g h t

782 + based on SACK i n f o rma t i o n and de t e rm i n e pa c k e t l o s s r a t e : ∗ /

783 + i f (sack−>num_gap_ack_blocks > 0){

784 +

785 + upd a t e _ l o s t _ p a c k e t s _ b y _ s a c k g a p (asoc , s ack) ;

786 + / / upda ted a l g o r i t hm

787 + }

788 + e l s e {

789 + r emo v e _ p k t s _ i n _ f l i g h t (asoc , s a c k _ c t s n) ;

790 + }

791 +

792 +

793 /∗

794 ∗ SFR−CACC a l g o r i t hm :

795 ∗ On r e c e i p t o f a SACK t h e s ende r SHOULD ex e c u t e t h e

796 @@ −1210 ,6 +1492 ,10 @@

797 __u8 r e s t a r t _ t i m e r = 0;

798 i n t b y t e s _ a c k e d = 0;

799

800 + s t r u c t l i s t _ h e a d ∗ l i s t _ c h u n k ; / / S imula

801 + s t r u c t s c t p_ chunk ∗cur_chunk , ∗ o l d e s t _ o u t s t a n d i n g _ c h u n k ; / / S imula

802 +

803 +

804 /∗ These s t a t e v a r i a b l e s are f o r c oh e r e n t debug ou t p u t . −−xguo ∗ /

805

806 # i f SCTP_DEBUG

807 @@ −1510 ,10 +1796 ,52 @@

808 s c t p _ t r a n s p o r t _ p u t (t r a n s p o r t) ;

269

809 }

810 } e l s e i f (r e s t a r t _ t i m e r) {

811 − i f (! mod_timer (& t r a n s p o r t −>T3_ r t x_ t ime r ,

812 − j i f f i e s + t r a n s p o r t −> r t o))

813 − s c t p _ t r a n s p o r t _ h o l d (t r a n s p o r t) ;

814 +

815 + i f (s c t p _ t h i n _ r e s t a r t _ t i m e r) {

816 +

817 + /∗ added by S imula t o r e s t a r t t h e t im e r such t h a t no more than RTO ms

818 + e l a p s e b e f o r e t h e t im e r e x p i r e s .

819 + ∗ /

820 + o l d e s t _ o u t s t a n d i n g _ c h u n k = NULL;

821 +

822 + l i s t _ f o r _ e a c h (l i s t _ c h u n k , & t l i s t) {

823 + cur_chunk = l i s t _ e n t r y (l i s t _ c h u n k , s t r u c t sc tp_chunk ,

824 + t r a n s m i t t e d _ l i s t) ;

825 +

826 + /∗ Try t o f i n d o l d e s t o u t s t a n d i n g chunk ∗ /

827 + i f (s c t p _ c h u n k _ i s _ d a t a (cur_chunk)) {

828 + i f (! cur_chunk−>t sn_gap_acked){

829 + o l d e s t _ o u t s t a n d i n g _ c h u n k = cur_chunk ;

830 + break ;

831 + }

832 + }

833 + }

834 + i f (o l d e s t _ o u t s t a n d i n g _ c h u n k != NULL){

835 + /∗ S u b t r a c t age o f o l d e s t o u t s t a n d i n g chunk

836 + be f o r e upda t i n g new RTO va l u e .

837 + ∗ /

838 + i f (! mod_timer (& t r a n s p o r t −>T3_ r t x_ t ime r ,

839 + (j i f f i e s −

840 + (j i f f i e s − o l d e s t _ o u t s t a n d i n g _ c h u nk −>s e n t _ a t)

841 + + t r a n s p o r t −> r t o))) {

842 + s c t p _ t r a n s p o r t _ h o l d (t r a n s p o r t) ;

843 + }

844 + }

845 + e l s e {

846 + i f (! mod_timer (& t r a n s p o r t −>T3_ r t x_ t ime r ,

847 + j i f f i e s + t r a n s p o r t −> r t o)) {

848 + s c t p _ t r a n s p o r t _ h o l d (t r a n s p o r t) ;

849 + }

850 + }

851 + } / / i f (s c t p _ t h i n _ r e s t a r t _ t i m e r)

852 + e l s e {

853 + i f (! mod_timer (& t r a n s p o r t −>T3_ r t x_ t ime r ,

854 + j i f f i e s + t r a n s p o r t −> r t o)) {

855 + s c t p _ t r a n s p o r t _ h o l d (t r a n s p o r t) ;

856 + }

857 + }

858 }

859 +

860 }

861

862 l i s t _ s p l i c e (& t l i s t , t r a n sm i t t e d _ q u e u e) ;

863 @@ −1529 ,6 +1857 ,12 @@

864 s t r u c t s c t p_chunk ∗chunk ;

865 s t r u c t l i s t _ h e a d ∗pos ;

866 __u32 t s n ;

867 +

270 Appendix F. SCTP-patch for Linux 2.6.16 kernel

868 + /∗ added by S imula t o ho ld t h e m i s s i n g _ r e p o r t t h r e s h o l d needed t o t r i g g e r

869 + a f a s t r e t r a n sm i t o f a chunk .

870 + ∗ /

871 + i n t f r _ t h r e s h o l d ;

872 +

873 char d o _ f a s t _ r e t r a n sm i t = 0 ;

874 s t r u c t s c t p _ t r a n s p o r t ∗p r ima ry = q−>asoc−>pee r . p r ima r y_pa t h ;

875

876 @@ −1568 ,10 +1902 ,34 @@

877 ∗ r e t r a n sm i s s i o n and s t a r t t h e f a s t r e t r a n sm i t p r o c edu r e .

878 ∗ /

879

880 − i f (chunk−> t s n _m i s s i n g _ r e p o r t >= 3) {

881 + /∗

882 + i f (chunk−>t s n _m i s s i n g _ r e p o r t >= 3) {

883 + chunk−>f a s t _ r e t r a n s m i t = 1;

884 + d o _ f a s t _ r e t r a n sm i t = 1;

885 + }

886 + ∗ /

887 +

888 + /∗ Added by S imula t o t r i g g e r f a s t r e t r a n sm i t s a f t e r 1 SACK

889 + i f s t r eam i s t h i n

890 + ∗ /

891 +

892 + f r _ t h r e s h o l d = 3 ;

893 +

894 + i f (s c t p _ t h i n _ f r) {

895 + i f (q−>asoc−>p a c k e t s _ i n _ f l i g h t < q−>asoc−> t h i n _ s t r e am _ t h r e s h o l d){

896 + f r _ t h r e s h o l d = 1 ;

897 + }

898 + e l s e {

899 + f r _ t h r e s h o l d = 3 ;

900 + }

901 + }

902 +

903 +

904 + i f (chunk−> t s n _m i s s i n g _ r e p o r t >= f r _ t h r e s h o l d) {

905 chunk−> f a s t _ r e t r a n s m i t = 1 ;

906 d o _ f a s t _ r e t r a n sm i t = 1 ;

907 }

908 +

909 }

910

911 i f (t r a n s p o r t) {

912 @@ −1741 ,3 +2099 ,198 @@

913 SCTP_INC_STATS (SCTP_MIB_OUTCTRLCHUNKS) ;

914 }

915 }

916 +

917 + /∗ added by S imula :

918 +

919 + Th i s r o u t i n e removes a l l p a c k e t s from t h e l i s t which have a TSN l e s s e r than

920 + or equa l t o t h e c umu l a t i v e TSN o f a SACK . For each removal , p a c k e t s _ i n _ f l i g h t i s

921 + decremen ted by one . Pack e t s t h a t have a l r e ad y been coun t ed f o r must

922 + no t be coun t ed aga in . T h e r e f o r e p a c k e t s _ i n _ f l i g h t i s i n c r emen t e d

923 + by p a c k e t s _ l e f t _ n e t w o r k b e f o r e p a c k e t s _ l e f t _ n e t w o r k i s r e s e t t o z e ro .

924 + The f i r s t parame te r i s a p o i n t e r t o t h e c u r r e n t s c t p _ a s s o c i a t i o n ho l d i n g

925 + th e ’ p a c k e t s i n f l i g h t ’ d a t a s t r u c t u r e . The second parame te r i s

926 + th e c umu l a t i v e TSN o f t h e SACK .

271

927 +∗ /

928 +

929 +void r emo v e _ p k t s _ i n _ f l i g h t (s t r u c t s c t p _ a s s o c i a t i o n ∗a , __u32 sack_cum_tsn){

930 +

931 +

932 +

933 + s t r u c t p k t _ s t a t ∗pkt , ∗pkt_temp , ∗ pk t _ n e x t ;

934 +

935 + f o r (pk t = a−>p k t _ s t a t _ h e a d ; pk t != NULL; pk t = pk t _ n e x t) {

936 +

937 + i f (pkt−>highes tTSN <= sack_cum_tsn){

938 +

939 + i f (! pkt−>i s_gap_acked) / / upda ted a l g o r i t hm

940 + a−>p a c k e t s _ i n _ f l i g h t −−;

941 +

942 + i f (pk t == a−>p k t _ s t a t _ h e a d){

943 +

944 + /∗ Removing head o f l i s t ∗ /

945 + a−>p k t _ s t a t _ h e a d = pkt−>nex t ;

946 +

947 + i f (a−>p k t _ s t a t _ h e a d != NULL){

948 + a−>pk t _ s t a t _ h e a d −>prev = NULL;

949 + }

950 + pkt−>nex t = NULL;

951 + k f r e e (pk t) ;

952 + pk t _ n e x t = a−>p k t _ s t a t _ h e a d ;

953 + }

954 + e l s e i f (pk t == a−> p k t _ s t a t _ t a i l) {

955 + /∗ Removing t a i l o f l i s t ∗ /

956 + i f (pkt−>prev != NULL){

957 + a−> p k t _ s t a t _ t a i l = pkt−>prev ;

958 + pkt−>prev−>nex t = NULL;

959 + }

960 + pkt−>prev = NULL;

961 + k f r e e (pk t) ;

962 + pk t _ n e x t = NULL;

963 + }

964 + e l s e {

965 + /∗ Removing an i nbe tween e l emen t ∗ /

966 + pkt−>prev−>nex t = pkt−>nex t ;

967 + pkt−>next−>prev = pkt−>prev ;

968 + pkt_ temp = pkt−>nex t ;

969 + pkt−>nex t = NULL;

970 + pkt−>prev = NULL;

971 + k f r e e (pk t) ;

972 + pk t _ n e x t = pkt_ temp ;

973 + }

974 +

975 + }

976 + e l s e {

977 + pk t _ n e x t = pkt−>nex t ;

978 + }

979 + }

980 +

981 +}

982 +

983 +

984 + /∗ Added by S imula :

985 + Th i s r o u t i n e upda t e a l o s s i n d i c a t i o n o f p a c k e t s i n t h e pa c k e t l i s t

272 Appendix F. SCTP-patch for Linux 2.6.16 kernel

986 + a f t e r r e c e i v i n g a SACK . For each gap ack b l o c k and gap i n a SACK

987 + th e pa c k e t l i s t i s t r a v e r s e d t o upda te l o s s i n d i c a t i o n s and

988 + mark p a c k e t s as l o s t or r e c e i v e d .

989 +∗ /

990 +

991 +void u p d a t e _ l o s t _ p a c k e t s _ b y _ s a c k g a p (s t r u c t s c t p _ a s s o c i a t i o n ∗a , s t r u c t s c t p _ s a c k h d r ∗ sack){

992 +

993 + s c t p _ s a c k _ v a r i a b l e _ t ∗ f r a g s = sack−>v a r i a b l e ;

994 + __u32 t sn , s a ck_c t s n , s t a r t B l o c k , endBlock ;

995 + i n t i ;

996 +

997 + s a c k _ c t s n = n t o h l (sack−>cum_tsn_ack) ;

998 +

999 + t s n = s a c k _ c t s n + 1 ;

1000 +

1001 + f o r (i = 0 ; i < n t oh s (sack−>num_gap_ack_blocks) ; i ++){

1002 +

1003 + s t a r t B l o c k = s a c k _ c t s n + n t oh s (f r a g s [i] . gab . s t a r t) ;

1004 + endBlock = s a c k _ c t s n + n t oh s (f r a g s [i] . gab . end) ;

1005 +

1006 + f o r (; t s n < s t a r t B l o c k ; t s n ++){

1007 + l o s s _ i n d i c a t i o n _ u p d a t e (a , t s n) ;

1008 + }

1009 +

1010 + f o r (; t s n <= endBlock ; t s n ++){

1011 + mark_gap_acked (a , t s n) ;

1012 + }

1013 +

1014 + }

1015 +}

1016 +

1017 + /∗ Added by S imula :

1018 + Th i s r o u t i n e gap acks a pa c k e t i n t h e pa c k e t l i s t when a gap acked

1019 + TSN in a SACK matches t h e h i g h e s t TSN i n a pa c k e t .

1020 +∗ /

1021 +

1022 +void mark_gap_acked (s t r u c t s c t p _ a s s o c i a t i o n ∗a , __u32 gap_acked_ t sn){

1023 +

1024 + s t r u c t p k t _ s t a t ∗ cu r ;

1025 +

1026 + f o r (cu r = a−>p k t _ s t a t _ h e a d ; cu r != NULL; cu r = cur−>nex t) {

1027 +

1028 + i f (cur−>highes tTSN == gap_acked_ t sn && ! cur−>i s_gap_acked){

1029 + cur−>i s_gap_acked = 1 ;

1030 + a−>p a c k e t s _ i n _ f l i g h t −−; / / Updated a l g o r i t hm

1031 +

1032 + p r i n t k (KERN_ALERT "TSN : %u i s gap acked , mem l o c a t i o n : %x , t imes t amp : %d , now : %d \ n " ,

1033 + cur−>highestTSN , cur , j i f f i e s _ t o _m s e c s (cur−>t imes t amp) , j i f f i e s _ t o _m s e c s (j i f f i e s)) ;

1034 + }

1035 + }

1036 +}

1037 +

1038 + /∗ Added by S imula :

1039 + Th i s r o u t i n e marks a pa c k e t as i n d i c a t e d l o s t when a gap i n a SACK matches

1040 + th e h i g h e s t TSN o f a pa c k e t i n t h e pa c k e t l i s t .

1041 + I f t h e pa c k e t i s i n d i c a t e d l o s t by 3 SACKs , t h e pa c k e t i s marked l o s t

1042 + and l o s t _ p a c k e t s c oun t e r i s i n c r e a s e d by one .

1043 +

1044 + Able t o f i t t h e r e q u i r emen t s t o t h e s t r eam ’ s c u r r e n t t h i c k n e s s

273

1045 +∗ /

1046 +

1047 +void l o s s _ i n d i c a t i o n _ u p d a t e (s t r u c t s c t p _ a s s o c i a t i o n ∗a , __u32 gap_ t s n){

1048 +

1049 + s t r u c t p k t _ s t a t ∗ cu r ;

1050 +

1051 + f o r (cu r = a−>p k t _ s t a t _ h e a d ; cu r != NULL; cu r = cur−>nex t) {

1052 +

1053 + i f (cur−>highes tTSN == gap_ t s n && ! cur−>ma rk ed_ l o s t && ! cur−>i s_gap_acked){

1054 +

1055 + cur−> i n d i c a t e d _ l o s t ++;

1056 +

1057 + i f (cur−> i n d i c a t e d _ l o s t == 3 | |

1058 + (a−>p a c k e t s _ i n _ f l i g h t < a−> t h i n _ s t r e am _ t h r e s h o l d && cur−> i n d i c a t e d _ l o s t == 1)) {

1059 + cur−>ma rk ed_ l o s t = 1 ;

1060 + a−> l o s t _ p a c k e t s ++;

1061 + }

1062 + }

1063 + }

1064 +}

1065 +

1066 + /∗ Added by S imula :

1067 +

1068 + Th i s r o u t i n e t r a v e r s e s t h e pa c k e t l i s t a f t e r a t im e o u t

1069 + and marks p a c k e t s as l o s t i f no SACK has a r r i v e d

1070 + and gap acked t h e pa c k e t s i n c e t h e t im e o u t occured .

1071 +

1072 + I f t h e pa c k e t were s e n t j u s t b e f o r e a t im e o u t and had

1073 + no chance t o g e t a SACK acco rd i ng t o t h e min RTT + 10 ms ,

1074 + th e pa c k e t i s no t marked as l o s t .

1075 +

1076 +∗ /

1077 +

1078 +void u p d a t e _ l o s t _ p a c k e t s _ b y _ t im e o u t (s t r u c t s c t p _ t r a n s p o r t ∗ t) {

1079 +

1080 + s t r u c t s c t p _ a s s o c i a t i o n ∗a = t−>asoc ;

1081 + s t r u c t p k t _ s t a t ∗ cu r ;

1082 +

1083 + f o r (cu r = a−>p k t _ s t a t _ h e a d ; cu r != NULL; cu r = cur−>nex t) {

1084 +

1085 + i f (! cur−>i s_gap_acked && ! cur−>ma rk ed_ l o s t &&

1086 + (j i f f i e s _ t o _m s e c s (j i f f i e s − cur−>t imes t amp)

1087 + > (j i f f i e s _ t o _m s e c s (t−>m i n _ r t t) + 1 0))) / /&& ! i s _ s p u r i o u s (t , cur))

1088 + {

1089 + cur−>ma rk ed_ l o s t = 1 ;

1090 + a−> l o s t _ p a c k e t s ++;

1091 + }

1092 + }

1093 +

1094 +}

1095 + /∗

1096 + i n t i s _ s p u r i o u s (s t r u c t s c t p _ t r a n s p o r t ∗ t , s t r u c t p k t _ s t a t ∗c) {

1097 +

1098 + s t r u c t p k t _ s t a t ∗cur ;

1099 +

1100 + f o r (cur = c−>prev ; cur != NULL; cur = cur−>prev) {

1101 +

1102 + i f (cur−>mark ed_ l o s t && (c−>highes tTSN == cur−>highes tTSN) &&

1103 + (j i f f i e s _ t o _ m s e c s (c−>t imes tamp − cur−>t imes tamp) < j i f f i e s _ t o _ m s e c s (t−>m i n _ r t t))) {

274 Appendix F. SCTP-patch for Linux 2.6.16 kernel

1104 + r e t u r n 1 ;

1105 + }

1106 +

1107 + }

1108 + r e t u r n 0 ;

1109 +}

1110 +∗ /

1111 d i f f −Naur l i nux − 2 . 6 . 1 6 . 1 3 / n e t / s c t p / p r o t o c o l . c l i nux −2.6.16.13−modSCTP / n e t / s c t p / p r o t o c o l . c

1112 −−− l i n ux − 2 . 6 . 1 6 . 1 3 / n e t / s c t p / p r o t o c o l . c 2006−05−02 23 :38 :44 . 000000000 +0200

1113 +++ l i nux −2.6.16.13−modSCTP / n e t / s c t p / p r o t o c o l . c 2007−07−16 15 :57 :59 . 000000000 +0200

1114 @@ −1069 ,6 +1069 ,14 @@

1115 /∗ I n i t i a l i z e hand l e used f o r a s s o c i a t i o n i d s . ∗ /

1116 i d r _ i n i t (& s c t p _ a s s o c s _ i d) ;

1117

1118 + /∗ Added by S imula : Thin s t r eam mechanisms are t u r n ed o f f by d e f a u l t ∗ /

1119 + s c t p _ t h i n _ f r = 0 ;

1120 + s c t p _ t h i n _m i n r t o = 0 ;

1121 + s c t p _ t h i n _ b u n d l i n g _ o u t s t a n d i n g = 0 ;

1122 + s c t p _ t h i n _ b u n d l i n g _ f r = 0 ;

1123 + s c t p _ t h i n _ e x p b a c k o f f = 0 ;

1124 + s c t p _ t h i n _ r e s t a r t _ t i m e r = 0 ;

1125 +

1126 /∗ S i z e and a l l o c a t e t h e a s s o c i a t i o n hash t a b l e .

1127 ∗ The methodo logy i s s i m i l a r t o t h a t o f t h e t c p hash t a b l e s .

1128 ∗ /

1129 d i f f −Naur l i nux − 2 . 6 . 1 6 . 1 3 / n e t / s c t p / sm_ s i d e e f f e c t . c l i nux −2.6.16.13−modSCTP / n e t / s c t p / sm_ s i d e e f f e c t . c

1130 −−− l i n ux − 2 . 6 . 1 6 . 1 3 / n e t / s c t p / sm_ s i d e e f f e c t . c 2006−05−02 23 :38 :44 . 000000000 +0200

1131 +++ l i nux −2.6.16.13−modSCTP / n e t / s c t p / sm_ s i d e e f f e c t . c 2007−07−16 15 :57 :59 . 000000000 +0200

1132 @@ −449 ,7 +449 ,23 @@

1133 ∗ maximum va l u e d i s c u s s e d i n r u l e C7 above (RTO. max) may be

1134 ∗ used t o p r o v i d e an upper bound t o t h i s doub l i n g o p e r a t i o n .

1135 ∗ /

1136 − t r a n s p o r t −> r t o = min ((t r a n s p o r t −> r t o ∗ 2) , t r a n s p o r t −>asoc−>rto_max) ;

1137 +

1138 + / / o l d :

1139 + / / t r a n s p o r t −>r t o = min ((t r a n s p o r t −>r t o ∗ 2) , t r a n s p o r t −>asoc−>rto_max) ;

1140 +

1141 + /∗ added by S imula :

1142 + I f t h i n s tream , t h en avo id e x p o n e n t i a l b a c k o f f

1143 + o f t h e r e t r a n sm i s s i o n t im e r .

1144 + ∗ /

1145 +

1146 + i f (s c t p _ t h i n _ e x p b a c k o f f) {

1147 + i f (asoc−>p a c k e t s _ i n _ f l i g h t >= asoc−> t h i n _ s t r e am _ t h r e s h o l d){

1148 + t r a n s p o r t −> r t o = min ((t r a n s p o r t −> r t o ∗ 2) , t r a n s p o r t −>asoc−>rto_max) ;

1149 + }

1150 + }

1151 + e l s e {

1152 + t r a n s p o r t −> r t o = min ((t r a n s p o r t −> r t o ∗ 2) , t r a n s p o r t −>asoc−>rto_max) ;

1153 + }

1154 }

1155

1156 /∗ Worker r o u t i n e t o hand l e INIT command f a i l u r e . ∗ /

1157 d i f f −Naur l i nux − 2 . 6 . 1 6 . 1 3 / n e t / s c t p / s y s c t l . c l i n ux −2.6.16.13−modSCTP / n e t / s c t p / s y s c t l . c

1158 −−− l i n ux − 2 . 6 . 1 6 . 1 3 / n e t / s c t p / s y s c t l . c 2006−05−02 23 :38 :44 . 000000000 +0200

1159 +++ l i nux −2.6.16.13−modSCTP / n e t / s c t p / s y s c t l . c 2007−07−16 16 :51 :10 . 000000000 +0200

1160 @@ −1,6 +1 ,6 @@

1161 /∗ SCTP k e r n e l r e f e r e n c e Imp l emen t a t i o n

1162 ∗ (C) Copy r i gh t IBM Corp . 2002 , 2004

275

1163 − ∗ Copy r i gh t (c) 2002 I n t e l Corp .

1164 + ∗ Copy r i gh t (c) 2002 , 2007 I n t e l Corp .

1165 ∗

1166 ∗ Th i s f i l e i s p a r t o f t h e SCTP k e r n e l r e f e r e n c e Imp l emen t a t i o n

1167 ∗

1168 @@ −51 ,6 +51 ,23 @@

1169 s t a t i c long sack_ t ime r_m in = 1;

1170 s t a t i c long sack_ t imer_max = 500;

1171

1172 +

1173 +/∗ Added by S imula : ID f o r p r o c v a r i a b l e s :

1174 + The IDs o f t h e o t h e r proc v a r i a b l e s i s found i n s y s c t l . h

1175 +∗ /

1176 +

1177 +enum{

1178 +

1179 + NET_SCTP_THIN_FR = 18 ,

1180 + NET_SCTP_THIN_MINRTO = 19 ,

1181 + NET_SCTP_THIN_BUNDLING_OUTSTANDING = 20 ,

1182 + NET_SCTP_THIN_BUNDLING_FR = 21 ,

1183 + NET_SCTP_THIN_EXPBACKOFF = 22 ,

1184 + NET_SCTP_THIN_RESTART_TIMER = 23 ,

1185 + NET_SCTP_THIN_DEBUG_TAG_PAYLOAD = 24

1186 + } ;

1187 +

1188 +

1189 s t a t i c c t l _ t a b l e s c t p _ t a b l e [] = {

1190 {

1191 . c t l _name = NET_SCTP_RTO_INITIAL ,

1192 @@ −206 ,6 +223 ,70 @@

1193 . e x t r a 1 = &sack_ t imer_min ,

1194 . e x t r a 2 = &sack_t imer_max ,

1195 } ,

1196 +

1197 + /∗ Added by S imula : Proc v a r i a b l e s t o t u r n t h i n

1198 + s t ream mechanisms on and o f f ∗ /

1199 +

1200 + {

1201 + . c t l _name = NET_SCTP_THIN_FR ,

1202 + . procname = " t h i n _ f r " ,

1203 + . d a t a = &s c t p _ t h i n _ f r ,

1204 + . maxlen = s i z e o f (i n t) ,

1205 + . mode = 0644 ,

1206 + . p r o c _ h a n d l e r = &p r o c _ do i n t v e c

1207 + } ,

1208 + {

1209 + . c t l _name = NET_SCTP_THIN_MINRTO ,

1210 + . procname = " t h i n _m i n r t o " ,

1211 + . d a t a = &s c t p _ t h i n _m i n r t o ,

1212 + . maxlen = s i z e o f (i n t) ,

1213 + . mode = 0644 ,

1214 + . p r o c _ h a n d l e r = &p r o c _ do i n t v e c

1215 + } ,

1216 + {

1217 + . c t l _name = NET_SCTP_THIN_BUNDLING_OUTSTANDING ,

1218 + . procname = " t h i n _ b u n d l i n g _ o u t s t a n d i n g " ,

1219 + . d a t a = &s c t p _ t h i n _ b u n d l i n g _ o u t s t a n d i n g ,

1220 + . maxlen = s i z e o f (i n t) ,

1221 + . mode = 0644 ,

276 Appendix F. SCTP-patch for Linux 2.6.16 kernel

1222 + . p r o c _ h a n d l e r = &p r o c _ do i n t v e c

1223 + } ,

1224 + {

1225 + . c t l _name = NET_SCTP_THIN_BUNDLING_FR ,

1226 + . procname = " t h i n _ b u n d l i n g _ f r " ,

1227 + . d a t a = &s c t p _ t h i n _ b u n d l i n g _ f r ,

1228 + . maxlen = s i z e o f (i n t) ,

1229 + . mode = 0644 ,

1230 + . p r o c _ h a n d l e r = &p r o c _ do i n t v e c

1231 + } ,

1232 +

1233 + {

1234 + . c t l _name = NET_SCTP_THIN_EXPBACKOFF ,

1235 + . procname = " t h i n _ e x p b a c k o f f " ,

1236 + . d a t a = &s c t p _ t h i n _ e x p b a c k o f f ,

1237 + . maxlen = s i z e o f (i n t) ,

1238 + . mode = 0644 ,

1239 + . p r o c _ h a n d l e r = &p r o c _ do i n t v e c

1240 + } ,

1241 +

1242 + {

1243 + . c t l _name = NET_SCTP_THIN_RESTART_TIMER ,

1244 + . procname = " t h i n _ r e s t a r t _ t i m e r " ,

1245 + . d a t a = &s c t p _ t h i n _ r e s t a r t _ t i m e r ,

1246 + . maxlen = s i z e o f (i n t) ,

1247 + . mode = 0644 ,

1248 + . p r o c _ h a n d l e r = &p r o c _ do i n t v e c

1249 + } ,

1250 +

1251 + {

1252 + . c t l _name = NET_SCTP_THIN_DEBUG_TAG_PAYLOAD,

1253 + . procname = " t h i n _d e bug_ t a g _p ay l o a d " ,

1254 + . d a t a = &s c t p _ t h i n _d e bug_ t a g _p ay l o a d ,

1255 + . maxlen = s i z e o f (i n t) ,

1256 + . mode = 0644 ,

1257 + . p r o c _ h a n d l e r = &p r o c _ do i n t v e c

1258 + } ,

1259 +

1260 { . c t l _name = 0 }

1261 } ;

1262

1263 d i f f −Naur l i nux − 2 . 6 . 1 6 . 1 3 / n e t / s c t p / t r a n s p o r t . c l i nux −2.6.16.13−modSCTP / n e t / s c t p / t r a n s p o r t . c

1264 −−− l i n ux − 2 . 6 . 1 6 . 1 3 / n e t / s c t p / t r a n s p o r t . c 2006−05−02 23 :38 :44 . 000000000 +0200

1265 +++ l i nux −2.6.16.13−modSCTP / n e t / s c t p / t r a n s p o r t . c 2007−07−16 15 :57 :59 . 000000000 +0200

1266 @@ −91 ,6 +91 ,9 @@

1267 SPP_SACKDELAY_ENABLE ;

1268 peer−>h b i n t e r v a l = 0 ;

1269

1270 + /∗ Added by S imula ∗ /

1271 + peer−>m i n _ r t t = 0 ;

1272 +

1273 /∗ I n i t i a l i z e t h e d e f a u l t pa th max_re t rans . ∗ /

1274 peer−>pa thmax rx t = s c t p _max_ r e t r a n s _ p a t h ;

1275 peer−>e r r o r _ c o u n t = 0 ;

1276 @@ −333 ,8 +336 ,36 @@

1277 /∗ 6 . 3 . 1 C6) Whenever RTO i s computed , i f i t i s l e s s than RTO . Min

1278 ∗ s econds t h en i t i s rounded up t o RTO . Min seconds .

1279 ∗ /

1280 +

277

1281 + /∗

1282 + / / o l d :

1283 i f (tp−>r t o < tp−>asoc−>r to_min)

1284 − tp−>r t o = tp−>asoc−>r to_min ;

1285 + tp−>r t o = tp−>asoc−>r to_min ;

1286 + ∗ /

1287 +

1288 +

1289 + / / added by S imula t o s e t minimum RTO = 200 ms i f t h e s t r eam i s t h i n .

1290 +

1291 + i f (s c t p _ t h i n _m i n r t o) {

1292 +

1293 + i f (tp−>asoc−>p a c k e t s _ i n _ f l i g h t < tp−>asoc−> t h i n _ s t r e am _ t h r e s h o l d){

1294 + i f (tp−> r t o < m s e c s _ t o _ j i f f i e s (2 0 0)) {

1295 + tp−> r t o = m s e c s _ t o _ j i f f i e s (2 0 0) ;

1296 + }

1297 + }

1298 + e l s e {

1299 + i f (tp−> r t o < tp−>asoc−>r to_min){

1300 + tp−> r t o = tp−>asoc−>r to_min ;

1301 + }

1302 + }

1303 + }

1304 + e l s e {

1305 + i f (tp−> r t o < tp−>asoc−>r to_min){

1306 + tp−> r t o = tp−>asoc−>r to_min ;

1307 + }

1308 + }

1309 +

1310 +

1311

1312 /∗ 6 . 3 . 1 C7) A maximum va l u e may be p l aced on RTO prov i d ed i t i s

1313 ∗ a t l e a s t RTO . max seconds .

1314 @@ −343 ,7 +374 ,20 @@

1315 tp−>r t o = tp−>asoc−>rto_max ;

1316

1317 tp−>r t t = r t t ;

1318 +

1319

1320 + /∗ Added by S imula ∗ /

1321 +

1322 + i f (tp−>m i n _ r t t > 0){

1323 + i f (r t t < tp−>m i n _ r t t)

1324 + tp−>m i n _ r t t = r t t ;

1325 + }

1326 + e l s e {

1327 + tp−>m i n _ r t t = r t t ;

1328 + }

1329 +

1330 + p r i n t k (KERN_ALERT "Min RTT : %d \ n " , j i f f i e s _ t o _m s e c s (tp−>m i n _ r t t)) ;

1331 +

1332 /∗ Re s e t r t o _p end i n g so t h a t a new RTT measurement i s s t a r t e d when a

1333 ∗ new da ta chunk i s s e n t .

1334 ∗ /

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Background and motivation
	Thesis context
	Problem statement
	Contributions
	Outline

	Thin-stream applications
	Games
	Other thin-stream applications
	Remote operation systems
	Sensor networks
	Audio conferences

	Greedy streams vs. thin streams
	Latency-analysis for an interactive thin-stream scenario
	Summary

	Transport
	TCP
	TCP developments culminating in TCP ``New Reno''
	Retransmission timeout calculation
	Delayed acknowledgements
	TCP Vegas
	Selective Acknowledgements
	Duplicate SACK
	Forward acknowledgements
	Congestion control for high-speed links
	Summary

	Evaluation of TCP retransmission delays
	SCTP
	SCTP chunks and bundling
	Acknowledgements in SCTP
	SCTP RTO calculation
	SCTP retransmission strategies
	Other SCTP options

	Evaluation of SCTP retransmission delays
	UDP with application layer reliability
	Analysis of retransmission delays for UDP and application layer reliability
	DCCP
	Related transport protocol mechanisms
	Timer calculation
	Exponential backoff
	Fast retransmit modifications
	RTT estimation and congestion detection
	RTOmin and delayed SACKs
	Unreliable and partially reliable transport
	Latency-sensitive streams

	Thin-stream challenges

	Thin-stream modifications
	TCP modifications and implementation
	TCP thin stream detection
	Switches for enabling the thin-stream modifications
	Linear retransmission time-outs
	Modified fast retransmit
	Redundant Data Bundling

	SCTP modifications and implementation
	Thin stream detection
	Implementation of switches to enable thin-stream modifications
	Modified minimum retransmission timeout
	Correcting the RTO timer reset
	Linear retransmission timeouts
	Modified fast retransmit
	Bundling on fast retransmit
	Other possible avenues of investigation

	Applicability of modifications

	Analysis and evaluation
	Test environment, evaluation setup, tools and metrics
	Alternative evaluation methods
	Laboratory tests with artificial loss
	Laboratory tests with cross-traffic induced loss
	Internet tests
	Test data
	Metrics
	Loss estimation
	Calculation of transmission overhead
	Calculation of delivery delay

	Evaluation of TCP modifications
	Artificial, uniform loss in an emulated network
	Congestion-Caused, variable loss in an emulated network
	Bundle-limit tests
	Internet tests
	Fairness
	Comparison of thin stream performance in different operating systems
	Summary

	Evaluation of SCTP modifications
	RTO calculation
	Artificial, uniform loss in an emulated network
	Congestion-caused, variable loss in an emulated network
	Analysis of which mechanisms triggers retransmissions
	Internet tests
	Fairness
	Summary

	UDP and application layer approaches
	Latency comparison
	Bandwidth consumption

	Summary

	Experienced effect for the users
	Skype user tests
	Secure shell user test
	BZFlag hit probability evaluation
	An interactive demonstration
	Summary

	Conclusions
	Summary
	Contributions
	Critical assessment of the results
	Future work

	Bibliography
	List of abbreviations
	Tools
	Complete set of boxplots from TCP laboratory experiments
	Uniform loss
	Cross-traffic loss - high loss rate
	Cross-traffic loss - low loss rate

	Complete set of CDFs from TCP laboratory experiments
	Uniform loss
	Cross-traffic loss - high loss rate
	Cross-traffic loss - low loss rate

	TCP-patch for Linux 2.6.23 kernel
	SCTP-patch for Linux 2.6.16 kernel

