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Abstract—This paper develops novel mechanisms for recover-
ing from failures in IP networks with proactive backup path
calculations and IP tunneling. The primary scheme provides
resilience for up to two link failures along a path. The highlight
of the developed routing approach is that a node re-routes a
packet around the failed link without the knowledge of the second
link failure. The proposed technique requires three protection
addresses for every node, in addition to the normal address.
Associated with every protection address of a node is a protection
graph. Each link connected to the node is removed in at least one
of the protection graphs and every protection graph is guaranteed
to be two-edge connected. The network recovers from the first
failure by tunneling the packet to the next-hop node using one of
the protection addresses of the next-hop node; and the packet is
routed over the protection graph corresponding to that protection
address. We prove that it is sufficient to provide up to three
protection addresses per node to tolerate any arbitrary two link
failures in a three-edge connected graph. An extension to the
basic scheme provides recovery from single node failures in the
network. It involves identification of the failed node in the packet
path and then routing the packet to the destination along an
alternate path not containing the failed node. The effectiveness
of the proposed techniques were evaluated by simulating the
developed algorithms over several network topologies.

Index Terms—IP fast reroute, failure recovery, multiple link
failures, node failure, network protection, independent trees

I. INTRODUCTION

The Internet has evolved into a platform with applications
having strict demands on robustness and availability, like trad-
ing systems, online games, telephony, and video conferencing.
For these applications, even short service disruptions caused
by routing convergence can lead to intolerable performance
degradations. As a response, several mechanisms have been
proposed to give fast recovery from failures at the Internet
Protocol (IP) layer [2], [3], [4], [5], [6]. In these schemes,
backup next-hops are prepared before a failure occurs, and the
discovering router handles a component failure locally, without
signaling to the rest of the network. Using one of these fast-
rerouting methods, the recovery time is mainly decided by
the time it takes to discover the failure. This can typically
be done in a few milliseconds, using signalling from the
physical layer or a failure detection protocol like BFD [7].
This is a significant improvement over the recovery times
achieved by a normal routing re-convergence, which typically
takes several seconds. Recovery times can be reduced by
aggressive timer settings [8], but this comes at the risk of
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triggering unwanted routing convergence due to e.g. flapping
links. Often, proactive recovery schemes are thought of as
a first line of defense against component failures. They are
used to maintain valid routing paths between the nodes in
the network, until the routing protocol converges on a new
global view of the topology. Such a strategy is particularly
germane when facing transient failures, which are common in
IP networks today.

While single link failures are the most common failure type,
it is also interesting to explore methods that protect against
two simultaneous link failures. Measurement studies indicate
that about 30% of unplanned failures affect more than one
link [9]. Half of these affect links that are not connected to
the same node. It is sometimes possible to identify Shared
Risk Link Groups (SRLG) of links that are likely to fail
simultaneously, by a careful mapping of components that share
the same underlying fiber infrastructure. This might, however,
be a complex and difficult task, since the dependencies in the
underlying transport network might not be fully known, and
can change over time. A recovery method that can recover
from two independent and simultaneous link failures will
greatly reduce the need for such a mapping.

The goal of this paper is to enhance the robustness of
the network to - a) dual link failures; and b) single node
failures. To this end, we develop techniques that combine the
positive aspects of the various single-link and node failure
recovery techniques. In the developed approach, every node
is assigned up to four addresses – one normal address and
up to three protection addresses. The network recovers from
the first failure using IP-in-IP tunneling (RFC2003 [10]) with
one of the “protection addresses” of the next node in the
path. Packets destined to the protection address of a node
are routed over a protection graph where the failed link
is not present. Every protection graph is guaranteed to be
two-edge connected by construction, hence is guaranteed to
tolerate another link failure. We develop an elegant technique
to compute the protection graphs at a node such that each
link connected to the node is removed in at least one of
the protection graphs, and every protection graph is two-edge
connected. The highlight of our approach is that we prove
that every node requires at most three protection graphs, hence
three protection addresses. When a tunneled packet encounters
multiple link failures connected to the same next-hop node, we
conclude that the next-hop node has failed. The packet is then
forwarded to the original destination from the last good node
in the protection graph along a path which does not contain
the failed node.

The rest of the paper is organized as follows: Section II
surveys the techniques developed for fast recovery from single
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link failures. Section III describes the network model. Sec-
tion IV describes our approach for dual link failure recovery,
proves the requirement of up to three protection addresses per
node, and discusses two different approaches to route using
colored trees in the protection (auxiliary) graphs. Section V
explains the extension of the recovery scheme to identify a
node failure and routing around the failed node. We evaluate
the effectiveness of the proposed approach on several networks
and present our results in Section VI. Our conclusions are
presented in Section VII.

II. RELATED WORK - FAST RECOVERY FROM SINGLE
LINK FAILURES

Traditional routing in IP networks involves computing a
forwarding link for each destination, referred to as the primary
(preferred) forwarding link. When a packet is received at
a node, it is forwarded along the primary forwarding link
corresponding to the destination address in the packet. To
recover from the failure of the forwarding link, a node must re-
route the packet over a different link, referred to as the backup
forwarding link. The backup forwarding link at different nodes
in the network must be chosen in a consistent manner to avoid
looping.

Equal cost multi-path (ECMP) [11] is a technique employed
in IP networks today that allows multiple forwarding links for
a specific destination as long as the cost of the paths through
each forwarding link is the same as the shortest path cost to
the destination. A more general approach is to allow the use of
any downstream path [12] as a forwarding link. The presence
of several downstream paths can be exploited to give fast
recovery from failures, as specified in [13]. With this approach,
every packet, whether forwarded along the primary or backup
forwarding link, will be forwarded to a node with a lower cost
to the destination than the current node. This monotonicity
property of the multiple paths keeps the routing algorithm
simple, where a packet need not be identified whether it was
a re-routed packet or not. In addition, the failure of a link
need not be advertised in the network. However, the obvious
drawback of such a method is that it cannot offer recovery
from all single link or node failures, since it is not always
possible to find alternate downstream paths for all destinations.

In [14], Iselt et al. establish virtual links in the network
using Multi-Protocol Label Switching (MPLS) with a specific
cost that would enable every node in the network to have
equal-cost multi-paths to a destination node. Narvaez et al.
[15] develop a method that relies on multi-hop repair paths
to route around a failed link. This approach requires message
exchanges among nodes within a local neighborhood around
the failed link, in order to avoid looping and achieve local re-
convergence of routing table. In [16], a similar approach that
considers dynamic traffic engineering is developed. Reichert et
al. [17] propose a routing scheme named O2, where all routers
have two or more valid loop-free next hops to any destination.
However, the technique does not guarantee single link failure
recovery in any two-edge connected network.

The IETF community is also showing interest in a so-
lution for fast rerouting in IP networks. Shand and Bryant

[18] present a framework for IP fast reroute, where they
mention three candidate solutions for IP fast reroute that all
have gained considerable attention. These are multiple routing
configurations (MRC) [3], failure insensitive routing (FIR)
[4], [19], and tunneling using Not-via addresses (Not-via)
[2]. The common feature of all these approaches is that they
employ multiple routing tables. However, they differ in the
mechanisms employed to identify which routing table to use
for an incoming packet.

The MRC approach divides the network into multiple aux-
iliary graphs, such that each link is removed in at least one
of the auxiliary graphs and each auxiliary graph is connected.
Every node maintains one routing table entry corresponding
to each auxiliary graph for every destination. If the primary
forwarding link fails, a packet is routed over the auxiliary
graph where the primary link was removed. The routing table
to use (or equivalently the auxiliary graph over which the
packet is forwarded) is carried in the header of every packet.
The drawback of this approach is that it does not bound the
number of auxiliary graphs employed. For example, a ring
network with n nodes would require n auxiliary graphs, thus
requiring dlog ne bits to specify the routing table to use.
The MRC approach has been extended to handle multiple
failures [20]. The auxiliary graphs are constructed such that
for any combination of two component failures, there exists an
auxiliary graph that does not use the two failed components.
With this approach, the number of auxiliary graphs needed
increases. In [20], medium-sized networks require as much
as 12 auxiliary graphs to guarantee recovery from two link
failures.

The number of routing tables to be maintained at a node
may be reduced by observing that several auxiliary graphs may
have the same forwarding link to a destination, which is the
key idea behind the FIR approach. In FIR, the forwarding link
at a node is computed based on the destination address and the
incoming link over which the packet was received. Therefore,
every node will maintain as many routing table entries as the
number of links incident at the node. The advantage of this
approach is that there is no additional information carried in
the packet header. To the best of our knowledge, there are no
FIR-based approaches that guarantee recovery from dual link
failures.

In the Not-via approach, the network is divided into L
auxiliary graphs, where L is the number of links in the
network, such that in each auxiliary graph only one link is
removed. In the auxiliary graph where link ` is removed, nodes
x and y that are connected by link ` are assigned “not-via”
addresses, referred to as x` and y`, respectively. Every node
computes the route to nodes x and y in the auxiliary graph.
When the primary forwarding link ` fails, node x tunnels the
packet to node y using the not-via address y`. Tunneling may
be implemented using any standard encapsulation protocol,
such as IP-in-IP (RFC2003 [10]), GRE (RFC1701 [21]) or
L2TPv3 (RFC3931 [22]). Once the packet arrives at node y,
the packet continues along its original path. Observe that the
number of not-via addresses required for a node will be the
same as the degree of the node, and the network employs as
many addresses as the number of links in the network. The size
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of the routing table at a node may be reduced by aggregating
the entries for those auxiliary graphs for which the forwarding
node for a corresponding destination are identical [23]. The
idea of tunneling is elegant as routing in the auxiliary graphs
is independent of the routing in the original graph. However,
as a not-via address has to be assigned for every link at a node,
the number of not-via addresses assigned to a node will vary.
The scalability issue is even more pronounced when multiple
links may fail as a not-via address would be required for every
possible failure scenario.

Extending not-via to deal with Shared Risk Link Groups
(SRLG) is relatively straightforward [24]. Instead of calculat-
ing the recovery routes “not-via” a single protected link, one
can simply exclude all links in the same SRLG when con-
structing the auxiliary graph. However, guaranteeing recovery
from two arbitrary link failures cannot be easily done with not-
via alone, since this would require a separate not-via address
for each combination of link failures. An efficient solution for
this problem is the focus of this paper.

A. Colored trees

An efficient approach to route packets along link- or node-
disjoint paths in packet-switched networks with minimum
routing table overhead and lookup time is to employ colored
trees (CTs) [25], [26]. In this approach, two trees, namely red
and blue, are constructed rooted at a destination such that the
paths from any node to the destination on the two trees are
link- or node-disjoint. Figure 1 shows an example network
with red and blue trees rooted at node A. It is necessary and
sufficient for a network to be two-edge (vertex) connected to
compute colored trees such that the paths from a node to the
root on the two trees are link-disjoint (node-disjoint).

A

B C D E

F G H K

A

B C D E

F G H K

(a) Red Tree rooted at A (b) Blue tree rooted at A
Fig. 1. Example network with colored trees rooted at node A.

The colored trees approach provides two forwarding links
(red and blue) at every node for a destination, thus falls into the
class of techniques that employ multiple routing tables. While
it resembles MRC, the colored tree approach employs only two
routing tables, thus requiring one overhead bit to be carried
in the packet header. This overhead bit may be eliminated
by computing the forwarding link based on input link. The
packets received on a red (blue) link may be forwarded to the
red (blue) neighbors. The packets received over links that are
not on either tree may be forwarded on any of the outgoing
links. The colored trees may also be employed for tunneling,
where if the preferred forwarding link fails, the packet is
tunneled to the next node. If the failed forwarding link is
present on the red (blue) tree, then the packet is tunneled using
blue (red) tree. If the failed forwarding link is not present on
any of the trees, the packet may be tunneled to the next node

on either tree. However, with colored trees, the packet may be
redirected directly to the destination, while still employing any
desired routing algorithm when there are no failures. Under
this approach, every packet carries a one-bit overhead that
specifies if the packet has seen a failure or not. If this bit
is set to 0, the packet is forwarded based on the destination
address only. If this bit is set to 1, the packet is routed based
on the destination address and incoming link.

III. NETWORK MODEL

Consider a network represented as a graph G(N ,L), where
N denotes the set of nodes and L denotes the set of links
in the network. The links are assumed to be bidirectional. An
edge x→ y represents a directed link from node x to node y.
A link failure is assumed to affect the edges on both directions.
The link failures are known only to nodes connected to the
failed link and the information is not propagated to the rest
of the network. We assume that the network employs a link-
state protocol (such as OSPF or IS-IS) by which every node
is aware of the network topology. We make no assumptions
about symmetric link weights in the networks.

A network must be three-edge connected in order to be
resilient to two arbitrary link failures, irrespective of the recov-
ery strategy employed. We assume that the given network is
three-edge-connected. Verification of three-edge connectivity
and determination of three-vertex connected components have
been extensively studied [27], [28], [29], and the complexities
of verification and decomposition algorithms are O(|L|). A
network must be two-vertex connected in order to be resilient
to any single node failure.

Figure 2 provides notations that are used in this paper.

Notation Comment
u0 Default (normal) IP address associated with node u.
ui Alias address associated with node u for group i,

where i = 1, 2, 3.
Nu Set of neighbors of node u.
Su
i Subset of neighbors of node u, i = 1, 2, 3.

and
⋃

Su
i = Nu.

Gui Auxiliary graph associated with node u, i = 1, 2, 3.
Nui Set of nodes associated with graph Gui.
Lui Set of links associated with graph Gui.
Sui Set of nodes whose link to u are removed in Gui.

Fig. 2. Notations employed in the paper.

IV. RECOVERY FROM DUAL LINK FAILURES USING
TUNNELING

In order to recover from arbitrary dual link failures, we
assign up to four addresses per node – one normal address and
up to three protection addresses. These addresses are used to
identify the endpoints of the tunnels carrying recovery traffic
around the protected link. The default (normal) address of a
node u ∈ N is denoted by u0. This acts as the primary address
for the routing protocol. In addition, there are three backup
addresses denoted by u1, u2, and u3 which are employed
whenever a link failure is encountered.

The links connected to node u are divided into three
protection groups, denoted by Lu1, Lu2, and Lu3. Node
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u is associated with three protection (auxiliary) graphs –
Gui(N ,L\Lui), where i = 1, 2, 3. The protection graph Gui is
obtained by removing the links in Lui from the original graph
G. The highlight of our approach is that each of the three
protection graphs is two-edge connected by construction. We
prove in Section IV-A that such a construction is guaranteed in
any three-edge connected graph. Let Sug = {v | u–v ∈ Lug}
denote those nodes that are connected to u through a link that
belongs to Lug . Nodes in Sug are the only nodes that will
initiate tunneling of packets (to protection address ug) upon
failure of the link connecting node u.

A. Computing Protection Graphs
The decomposition of the graph into three protection graphs

for every node u ∈ G is achieved by temporarily removing
node u and obtaining the connected components in the re-
sultant network. If the network is two-vertex connected, then
removal of any one node will keep the remaining network con-
nected. However, if the network is only one-vertex-connected,
removal of node u may split the network into multiple
connected components. In such a scenario, we consider every
connected component individually. We assign the links from a
connected component to node u into different groups based on
further decomposition and compute the protection groups. We
then combine the corresponding protection groups obtained
from multiple connected components.

The procedure for constructing the protection graphs for
node u is shown in Figure 3.

Theorem 1: Given a 3-edge connected graph G(N ,L), the
procedure in Figure 3 constructs at most three protection
graphs for every node u such that each protection graph is two-
edge connected and every link connected to u is not present
in at least one of the protection graphs.

Proof: Consider the three protection graphs obtained as
outlined in Figure 3. We now show that each protection graph
is two-edge connected. Note that we split the graph G in step
1 and merge the link groups obtained from the different con-
nected components in step 3. It is sufficient to prove the two-
edge connectivity for protection graphs obtained for a single
component subgraph Guc because if every protection graph
for Guc is two-edge-connected, the union with corresponding
protection graphs across all components also results in two-
edge connected graphs. Therefore, we consider a connected
component c and its subgraph Guc to demonstrate the two-
edge connectivity of its protection graphs. Steps 2.c.i, 2.c.ii
and 2.d are the three cases which handle the distribution of
links in Guc to protection groups.

Let us first consider the three protection graphs obtained by
links distributed for case 2.c.i. Since G is three-edge connected,
the removal of any single link will result in a graph that
is at least two-edge connected. Therefore, each of the three
protection graphs obtained is clearly two-edge connected.

Consider the second case of 2.c.ii where the component
c consists of only one two-edge connected component. The
groups Lu1c and Lu2c have at least two links each. Since c is
two-edge connected, the addition of node u and links in Lu2c

to form Gu1c maintains the two-edge connectivity for Gu1c.
The same is true for Gu2c.

Procedure Protection Graphs Construction
1. Remove node u and all the links connected to node u.

The remnant graph will consist of one or more connected
components. Let C denote the set of connected components.

2. For every connected component c ∈ C, we denote the set of
links in G connecting node u and nodes in c by Luc. For
component c, perform the following steps:
2.a) Decompose the connected component c into two-edge-

connected components. Let Dc denote the set of two-
edge-connected components.

2.b) Reintroduce node u and its links to component c, while
retaining the two-edge-connected components. We de-
note this new subgraph of G by Guc. We denote the
link protection groups associated with this component
by Luic (i = 1, 2, 3).

2.c) If the number of two-edge connected components in c is
exactly 1, i.e., |Dc| = 1, then

2.c.i) If |Luc| = 3, i.e., there are exactly three links from
node u connecting to nodes in the component, then
assign one link each to the three groups Lu1c, Lu2c

and Lu3c.
2.c.ii) If |Luc| > 3, of all the edges from node u in Guc,

assign at least two edges to group Lu1c and the
remaining edges to group Lu2c. The third group does
not have any links associated with it.

2.d) If |Dc| > 1, then
2.d.i) As G is three-edge connected, every two-edge-

connected component d ∈ Dc that is connected to
only one other component d′ ∈ Dc has at least two
links connecting to node u from the nodes in d.
Therefore, for every such component d ∈ Dc, divide
the links connecting the component to u into two
groups Lu1c and Lu2c such that each group has at
least one link.

2.d.ii) For every link connected to u in Guc that is not
considered in step 2.d.i, assign it randomly to either
Lu1c or Lu2c.

3. Combine the corresponding groups obtained across different
connected components to obtain the final protection groups.

Lui =
⋃
c∈C

Luic

4. Obtain the three protection graphs as:
Gui(N ,L \ Lui), i = 1, 2, 3

Fig. 3. Procedure to construct protection graphs for node u.

Finally, we consider the case of step 2.d. Observe that
the graph of c obtained by treating the two-edge-connected
components in Dc as nodes results in a one-edge-connected
graph, which has the structure of a tree. Every leaf node of this
tree (i.e., a two-edge-connected component which is connected
to only one other two-edge-connected component) must have
at least two links connecting the component to node u. The
division of links connecting a leaf node to u guarantees at
least one link to the first two groups, while the third group
is empty. Thus, considering the above tree structure of the
network and the addition of only one of the group of links,
Lu1c or Lu2c, connects every leaf node to node u, resulting
in a two-edge-connected network.

Consider the example network in Figure 1. The network
is three-edge and two-vertex connected. To obtain the pro-
tection graphs for node A, we remove node A and obtain
the decomposition of the network into connected components.
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In this case, we have only one connected component. We
decompose the connected component into two-edge-connected
components. In this case, we obtain two two-edge-connected
components that are connected to each other. Figure 4 shows
the two-edge connected components identified (shown in
dashed square). Based on Step 2d of the protection graph
construction algorithm, we obtain the protection groups as
LA1 = {A–B, A–E}, LA2 = {A–C, A–D}, and LA3 = φ.
Observe that the network remains two-edge connected after
the removal of each LA1, LA2, and LA3.

A

B C D E

F G H K

Fig. 4. Example network showing the two-edge connected components when
obtaining the protection groups for node A.

Now, consider the three-edge and one-vertex connected
network in Figure 5(a). In order to obtain the protection
groups at a node, say E, we remove node E and obtain
the connected components. We further compute the two-edge
connected components in each of the connected components.
In this case, each connected component is two-edge-connected
within itself, as shown in Figure 5(b). As both components
have exactly three links to E, both components will have three
protection groups. The final protection groups are obtained by
combining corresponding groups from the two components.
One possible result is as follows: LE1 = {E–A, E–B},
LE2 = {E–D, E–F} and LE3 = {E–H, E–K}.

A B

D
E

H K

C

F
G

L

(a) A 3-edge and 1-vertex connected network.

A B

D
E

H K

C

F
G

L

c1 c2

(b) Decomposition into two connected components
c1 and c2 after removing node E.

Fig. 5. An example 3-edge connected network and its decomposition into
two connected components c1 and c2 after removing node E. Both the
components are in fact two-edge-connected in themselves.

B. Packet Forwarding

By default, all packets are forwarded towards the destination
prefix decided by the destination address in the packet header.
Traffic is routed on graph G towards the selected egress node.
A packet destined to d is transmitted with address d0, and
is routed on graph G. The network is assumed to employ

any desired routing algorithm under no failure scenario. Every
node is assumed to route the packet based on the destination
address and the interface (incoming link) over which the
packet was received. For every destination-interface pair, the
routing table at a node specifies the interface (outgoing link)
over which the packet has to be forwarded. Note that if the
network employs shortest path routing, the outgoing link for
default destination address for a node would be the same,
irrespective of the incoming interface.

Consider a packet destined to egress node d that has
forwarding link as x–y at node x. Let link x–y belong to
group g (∈ {1, 2, 3}) at node y. In the event that link x–y
is not available, node x stacks a new header to the packet
with destination address as yg . The packet is now routed on
the protection graph Gyg, where it may encounter at most
one additional link failure. Given that the protection graph
is two-edge connected, we employ the colored tree technique
to route the packet. Under the colored tree approach, in every
protection graph Gyg, we construct two trees, namely red and
blue, rooted at yg such that the path from every node to yg are
link-disjoint. Observe that an incoming link in the protection
graph may either be red or blue. Therefore, the tree on which a
packet is routed is identified based on the incoming link. Thus,
it is not necessary to explicitly specify the tree in the packet
header. Without loss of generality assume that the packet is
routed on the red tree. Given that the packet experiences a
failure in the protection graph, it is simply forwarded along
the blue tree. Once the packet reaches the desired node yg ,
the top header is removed, and the packet continues on its
original path in G. It is worth noting that the neighbors of y
whose link to y are removed in Gyg are the only nodes that
will transmit packets to the protection address yg .

C. Forwarding Tree Selection in a Protection Graph

Consider a packet, destined to egress node d, that encounters
a failure at node x, where the default forwarding link is x–y.
Node x stacks a new header to the packet with the destination
address as yg . The packet may now be transferred either along
the red or blue tree. There are two approaches to select the
default tree over which the packet is routed.

The first approach is referred to as the red tree first (RTF),
where every packet is forwarded along the red tree. Upon
failure of a red forwarding link in the protection graph, the
packet will be forwarded along the blue tree. When a blue
forwarding link fails, the packet is simply dropped as it
indicates that the packet has already experienced two link
failures1. Note that if the RTF approach is employed, we may
construct the red and blue trees such that the path on the red
tree is minimized, as studied in [30] and [31].

The second approach is referred to as the shortest tree first
(STF), where a packet is forwarded along that tree which
provides the shortest path to the root of the tree. As the packets
are first forwarded on the shortest tree, the packets experience
lower delays under single link failure scenarios. While the red

1The fact that the packet is destined to the alias address of a node indicates
the first link failure, while the reception of the packet along the blue tree
indicates that the packet has experienced the second failure.
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tree may offer the shortest path for node x in the protection
graph Gyg, the blue tree may offer the shortest path for another
node x′ in the same protection graph, where x, x′ ∈ Syg . A
packet that is forwarded on the red (blue) tree will be re-routed
to the blue (red) tree upon a red (blue) forwarding link failure.
The limitation of this approach is that it may result in perennial
looping if more than two links fail in the network. Unlike the
RTF approach, where a packet to be forwarded on the blue
link implies that it has already experienced two link failures,
the STF approach does not provide any implicit indication on
the number of failures experienced by the packet. We employ
an additional bit that denotes the number of failures in the
protection graph (NFPG) encountered by the packet, referred
to as the NFPG bit. When forwarded on the shortest-path tree,
the NFPG bit is set to 0. Upon the failure of a forwarding link
on the first tree, the packet is forwarded on the other tree with
the NFPG bit set to 1. Upon failure of a forwarding link in
the protection graph, a packet is dropped if the NFPG bit is
set to 1.

D. Example

Figure 6 shows the normal path for a packet in our example
network without any failures. To recover from a possible
failure of link B–A in that path (and sustain one more link
failure in the backup path) we obtain the protection graph of
the network after removing the protection group LA1 (which
contains link B–A and E–A as shown in Fig. 4) and construct
the red-blue trees. Figure 7 shows the protection graph with
the red and blue trees rooted at node A. As earlier, note the
link disjointedness in the red and blue paths from any node to
the root A in the graph. As an example, if the network employs
STF, node B chooses the blue tree as the backup path for B–A
and then a packet arriving at node B will be tunneled on the
path B → C → A to the appropriate protection address of A.

A

B C D E

F G H K

Fig. 6. Example network where the normal path from F to A follows F–B–A.

A

B C D E

F G H K

A

B C D E

F G H K

(a) Red Tree with root A (b) Blue tree with root A

Fig. 7. Colored trees rooted at node A obtained in protection graph after
removing links B–A and E–A.

Note that the packet may experience a second failure along
the path, which will then be handled in exactly the same way
as the first failure. The maximum number of deflections a
packet may experience (with two failed links in the network)
is bounded by four, which happens when the network has two

failed links, both of which are present in the normal path of
a packet. In addition, each failed link is also present on the
first recovery path of the other failed link. We illustrate this
scenario through another example.

Consider node B in the example network in Figure 6. As the
node has degree three, each one of its links will be assigned
to a distinct protection group. Consider the protection graph
where link F–B is removed. The red and blue trees rooted at
node B corresponding to the protection graph where link F–B
is removed as shown in Figure 8. Note the presence of edge
A → B in the red tree in this protection graph and edge B →
F in the red tree in the protection graph of Figure 7.

Consider the packet to be routed from F to A along the
path shown in Figure 6. Assume that both F–B and B–A have
failed and the network employs the RTF approach. The packet
is tunneled from F to B along the red path F → G → H → D
→ A → B. However, as link A–B has also failed, the packet
will be re-routed over the blue tree at node A along A →
C → B. At node B, the tunneled packet is decapsulated and
the packet must be forwarded on link B–A. As link B–A has
failed, node B tunnels the packet to A along the red path. As
the forwarding link on the red path from B to A is B–F (which
has also failed), the packet is re-routed along the blue path, B
→ C → A.

A

B C D E

F G H K

A

B C D E

F G H K

(a) Red Tree with root B (b) Blue Tree with root B
Fig. 8. Example network with colored trees in protection graph after
removing link F–B and rooted at node B.

An IGP routing table in a typical ISP network may contain
tens of thousands of routable destination prefixes, while the
number of nodes in the network is rarely more than a few
hundred. Hence, adding up to three protection addresses
per node in the network does not constitute any significant
overhead.

E. Populating Routing Tables

Every node is aware of the network topology obtained using
the link-state protocol employed in the network. Every node
is assumed to follow the same deterministic procedure, hence
the decisions made by every node will be consistent, assuming
a consistent view of the network topology. The steps taken
by node u to compute its routing table entries are shown in
Figure 9.

The decomposition of a graph into two-edge connected
components is achieved by employing DFS numbering [32]
rooted at an arbitrary node and computing lowpoint for every
node. A network is two-edge connected if the lowpoint of
every node is less than or equal to the DFS-index of its parent.
A node which does not have a lowpoint less than or equal to
the DFS-parent forms the boundary of another component. The
link connecting such a node and its parent adds to the degree
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Steps to compute routing table entries at node u

1. For every node v ∈ G compute the three protection graphs,
Gvg where g = {1, 2, 3}.

2. For every node v, compute the red and blue trees rooted at
node v, referred to as Rvg and Bvg .

3. If node u ∈ Svg or node u is an intermediate node for any
source s ∈ Svg in Rvg and/or Bvg , then a routing table entry
for node vg and the corresponding incoming links are added
to the routing table at u.

Fig. 9. Steps to compute the routing table entries at node u.

of both components. The network may be divided into two
components by considering the node and the successors along
that node as one component and the rest of the nodes as the
second component. This procedure is repeated successively to
obtain the two-edge connected components of the graph. Once
the decomposition is complete, the lowpoint of every node in
a component (except the root node of the component) will
be less than or equal to the DFS-index of the parent. The
DFS numbering and lowpoint computation requires O(|L|)
time, hence the decomposition requires the same time as well.
Computing the protection groups for all the nodes, therefore,
requires O(|N ||L|).

The computation of colored trees requires O(|L|) time for
specific node as root. Thus, the computation of colored trees
for a maximum of 3|N | protection graphs requires O(|N ||L|).

Finally, the routing table entries at a node may be derived
from each colored tree in O(|N |) time. Therefore, the com-
plexity for computing the routing table entries from every
colored tree requires O(|N |2). The total complexity of the
algorithm is O(|N ||L|), determined by steps 1 and 2.

Every node in the network will have one routing table entry
for its normal address and two routing table entries for each
protection address. As a node is assigned a minimum of two
protection addresses and a maximum of three, depending on
its connectivity, every node will have a minimum of five and
a maximum of seven routing table entries at each node.

F. Application to Less Than Three-Edge-Connected Networks

Several real-life networks may not be three-edge-connected,
which makes it impossible to guarantee recovery from any
two arbitrary link failures. However, the network may have
enough redundant links to tolerate most dual link failures.
In such cases, we may still employ the above developed
technique with a minor modification. We divide the links
incident at a node into at most three groups, however the
removal of the links in one or more groups may leave the
network just one-edge-connected. In each protection graph,
we first divide the graph into two-edge-connected components.
We identify the root node2 in each of these components and
construct red and blue trees to that node. We obtain the final
tree by merging corresponding trees from each component.
Observe that when the protection graph is divided into two-
edge-connected components, there may be edges that connect

2The root node is the node through which any path from a node in the
component to the destination must traverse.

two components. Such edges will be used in both red and blue
edges in the same direction, i.e., a directed edge x→y will be
on the red and blue trees in the protection graph. Therefore, a
failure of link x→y in the protection graph will result in the
failure of both red and blue trees, consequently resulting in
the dropping of packets when two links have failed.

V. FAST RECOVERY FROM SINGLE NODE FAILURES

In a network, the failure of a node causes the failure of all
the links connected to it. For a neighbor u of a failed node v,
the node failure will appear as a failure of link u − v. Thus,
further information is required at node u to correctly identify
the node failure. As node failures are rare compared to link
failures, we develop a mechanism to recover from single node
failures by enhancing the dual-link failure recovery mechanism
discussed thus far. We consider the first or second link failures
encountered around a particular node are just link failures and
the node itself is operational. We assume the failure of at least
three links connected to a node is sufficient to conclude the
failure of the node. In order to identify a possible node failure,
we introduce the PNF bit. Upon encountering the first link
failure, a packet would have this bit set to 0. When the packet
encounters the second link failure (or first link failure in the
protection graph), this bit is set to 1 if the failed forwarding
link is connected to the root of the tree, thus indicating that two
links connected to the same node have failed. The packet will
be rerouted to the other tree in the protection graph. When the
packet encounters the third failure, the packet will be dropped
if the third failed link is not connected to the root of the tree.
If the third failed link is connected to the root of the tree (and
the PNF bit is set), then we infer a node failure.

We assume that the given network is three-edge and two-
vertex connected. As explained in Section IV, for every node
v, we construct up to three protection graphs and compute two
colored trees in each graph to recover from dual link failures.
In addition to these protection graphs, for every node d, we
construct two colored trees rooted at d, referred to as Rd and
Bd, such that the path from any node to the root of the tree
are node-disjoint. We will employ these two trees in order to
route the packet directly towards the destination prefix when a
node failure is inferred. Thus, a total of four pairs of colored
trees with each node as root are employed when two-link or
single-node failure recovery is required.

Some destination prefixes are announced by more than one
egress node in the network (these are referred to as multihomed
prefixes). Traffic to these destinations can be recovered even
when the default egress node has failed. To achieve this, Rd

and Bd must be calculated for a pseudo-node that is connected
to all egress nodes announcing the destination prefix.

A. Packet Forwarding

The steps involved in routing a packet at a node are
described in Figure 10 using the STF and RTF approaches.
A node would first verify if the packet is destined to itself
or not, prior to executing the steps shown in the figure. If
the packet is destined for the node and carries the protection
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address, the node would decapsulate and process the original
IP packet.

The PNF bit is used to distinguish rerouted packets that
have encountered a node failure from normal traffic to the
same destination prefix d. Packets with the PNF bit set will not
be forwarded on the normal next-hop towards d, but instead
follow Rd or Bd. Since Rd and Bd are node disjoint, they will
never share the same incoming interface at a node. Hence, the
incoming interface can be used to infer the correct tree. In
addition, the PNF bit is used to avoid looping, since it is used
in combination with the destination address to determine when
a packet should be dropped.

The dual link recovery scheme and the node recovery
scheme rely on the NFPG and PNF bits for correct forwarding.
In a typical router implementation, these bits can be interpreted
by a filter in the forwarding engine to decide which action
should be taken. In an IPv4 setting, the NFPG and PNF bits
can be taken from the Type of Service/DSCP field in the packet
header.

B. Example

We consider the example network of Figure 6 from Section
IV. A packet is routed along the path F–B–A when there are no
failures. The protection graph of our example network without
link F–B and the red-blue trees rooted at node B are as shown
in Figure 8. Figure 11 shows the red and blue trees rooted
at node A for the example network (with no links removed),
where the paths from any node to the root on the two trees
are node-disjoint.

The failure of node B results in the failure of links F–
B, C–B, and A–B. The packet from F is then tunneled
in the protection graph shown in Figure 8. When the RTF
approach is employed, the tunneled packet will traverse the
path F → G → H → D → A on the red tree before it
encounters the link failure A–B at node A. At this point, the
tunneled packet header carries protection address of node B
as the destination. The packet is rerouted on the blue tree,
maintaining the protection address of node B as the destination
with the PNF bit set. When the packet reaches node C, it
encounters a third link failure. As the PNF bit is set, node C
assumes that the intermediate destination (node B) has failed.
Therefore, the original IP packet from the payload is extracted
and the original destination address is used to route further.
We observe that among the two trees rooted at A in Figure
11, node B is a neighbor of C on the red tree. So the packet
is routed along the blue tree path to A, which in this case is
the link C → A.

In the above scenario, consider the failure of link G–H in
addition to the failure of node B. The tunneled packet traverses
F → G. As link G–H has failed, the packet is switched to the
blue tree and is routed on G→C. As the failed link G-H is
not connected to the root of the tree (node B), the PNF bit
is not set. Thus, when the packet reaches node C along the
blue tree with PNF bit set to 0 and the blue forwarding link
is unavailable, it is dropped.

The routing table at every node will thus contain two extra
entries per destination prefix to handle a single node failure

Address: Normal, PNF Bit: 0
Action: Forward the packet to the default preferred neighbor.
Backup Action: Encapsulate the packet and forward it to the
protection address of the default preferred neighbor. If using STF
approach, set the NFPG Bit to 0.

Address: Normal, PNF Bit: 1
Action: Identify the colored tree (for node-disjoint paths) on which
the packet was received on from the input link. Route the packet to
the next node on this tree.
Backup Action: Drop the packet.

STF Approach:
Address: Protection, PNF Bit: 0, NFPG Bit: 0
Action: Identify the colored tree (on the protection graph) on which
the packet was received. Forward the packet to the neighbor on that
tree.
Backup Action: Forward the packet to the neighbor on the other
tree after setting the NFPG Bit to 1. If the failed forwarding link
is connected to the node indicated by the protection address in the
packet, set the PNF Bit.

Address: Protection, PNF Bit: 0, NFPG Bit: 1
Action: Identify the colored tree (on the protection graph) on which
the packet was received. Forward the packet to the neighbor on that
tree.
Backup Action: Drop the packet.

Address: Protection, PNF Bit: 1, NFPG Bit: 1
Action: Identify the colored tree (on the protection graph) on which
the packet was received. Forward the packet to the neighbor on that
tree.
Backup Action: If the failed forwarding link is not connected
to the node indicated by the protection address, drop the packet.
Otherwise, decapsulate the packet. Set the PNF Bit in the header to
1 and forward this packet to the original destination (corresponding
to the destination) on which the failed node is not present.

RTF Approach:
Address: Protection, PNF Bit: 0
Action: Identify the colored tree (on the protection graph) on which
the packet was received. Forward the packet to the neighbor on that
tree.
Backup Action: If the forwarding link on the red tree is not
available, forward on the blue tree. If the failed red forwarding link
is connected to the node indicated by the protection address in the
packet, set the PNF Bit. If the forwarding link on the blue tree is
not available drop the packet.

Address: Protection, PNF Bit: 1
Action: Forward the packet to the neighbor on the blue tree.
Backup Action: If the failed forwarding link is not connected
to the node indicated by the protection address, drop the packet.
Otherwise, decapsulate the packet. Set the PNF Bit in the header to
1 and forward this packet to the original destination (corresponding
to the destination) on which the failed node is not present.

Fig. 10. Forwarding a packet under different scenarios.

in the network. The computation of node-disjoint colored
trees requires O(|L|) time for specific a node as root. Thus,
the computation of colored trees for of |N | nodes requires
O(|N ||L|). Together with the computations for handling two
link failures, the overall complexity of our entire algorithm is
still retained to be O(|N ||L|).
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Fig. 12. Networks considered for performance evaluation.

TABLE I
AVERAGE BACKUP PATH LENGTH FOR A LINK UNDER SINGLE AND DUAL LINK FAILURES USING THE RTF AND STF APPROACHES.

Metric
ARPANET NSFNET Node-16 Node-28 Mesh-4x4

RTF STF RTF STF RTF STF RTF STF RTF STF

A1: Average backup path 
length (single link failure)

6.25 2.64 4.63 2.61 5.38 2.08 8.27 2.27 4.06 2.81

M1: Maximum backup path 
length (single link failure)

16 8 11 6 14 6 24 8 11 5

A2: Average backup path 
length (dual link failure)

7.35 8.20 5.84 6.49 7.94 8.27 12.02 12.38 5.30 6.51

M2: Maximum backup path 
length (dual link failure)

21 22 15 14 20 14 37 24 15 17

A

B C D E

F G H K

A

B C D E

F G H K

(a) Red Tree with root A (b) Blue Tree with root A
Fig. 11. Example network with colored trees rooted at node A providing
node-disjoint paths.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the developed routing
schemes through simulations. We consider five networks, as
shown in Figure 12: (a) ARPANET; (b) NSFNET3; (c) Node-
16; (d) Node-28; and (e) Mesh-4x4. The Node-16 and Node-
28 networks are hypothetical minimally 3-connected networks
such that all nodes have exactly three links connected to
them. We describe the evaluations for the two schemes in the
following subsections.

A. Fast recovery under dual-link failures

For the dual-link failure recovery scheme, the performance
metrics that we use for evaluation are: (1) average length of
the recovery path (on the default protection tree) for every
removed link in the protection graph; (2) maximum length of
the recovery path (on the default protection tree) computed
over all links; (3) average length of the backup path under a
single link failure in the protection graph averaged over every
link failure that affects the default path; and (4) maximum
length of the backup path under a single link failure in the
protection graph over all protection graphs.

3The NSFNET network considered here has been modified from the original
network with the addition of link NE–GA to keep the network three-edge-
connected.

Consider a link ` that connects nodes u and v. When there
are no failures, the path length from u to v is 1 hop. When
link ` fails, both edges u → v and v → u fail. Consider the
edge u→ v. Let Gvg denote the protection graph at node v in
which link ` was removed. Let Pvg,uv denote path from u to
v on the default path in the protection graph Gvg . Note that,
this path denotes the path on the red tree in the RTF approach,
while it will denote the path with the minimum path length
among the two trees in the STF approach. We compute the
average backup path length between a node pair when the
link connected between them has failed as:

A1 =
1

2|L|
∑
`∈L

(|Pvg,uv|+ |Pug,vu|)

where |P∗| denotes the length of the path P∗.
The maximum backup path length under single link failure

scenario is obtained as:

M1 = max
`∈L

[ max (|Pvg,uv|, |Pug,vu|) ]

We compute the path length from u to v under two link
failures, assuming that link u–v has failed; and that the second
failure affects the default path in the protection graph. Assume
that the second failure occurs at node x ∈ Pvg,uv . Let P ′vg,xv
denote the path from x to v in the tree that is not the default
tree on the protection graph Gvg . In case of RTF, P ′vg,xv
denotes the path from x to v on the blue tree. In case of STF,
it denotes the path with the maximum length of the two paths
in the protection graph. Let Pvg,ux denote the path from u to
x on the default tree in the protection graph. The complete
backup path, denoted by P̈u,v,x, has length equal to the sum
of the hops on the two paths and given as:

|P̈u,v,x| = |Pvg,ux|+ |P ′vg,xv|
The average and maximum path lengths from u to v under

a link failure in the default path, denoted by Huv and Muv

respectively, are computed as:
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Huv =
1

|Pvg,uv|
∑

x∈Pvg,uv,x 6=v

|P̈u,v,x|

Muv = max
x∈Pvg,uv

|P̈u,v,x|

The average and maximum path lengths between two nodes
that were connected by a failed link and that the second failure
affects the default path in the protection graph is computed as
the average of Huv (maximum of Muv) over all u, v pairs that
have a link between them, denoted by A2 and M2, respectively.

A2 =
1

2|L|
∑
`∈L

(Huv +Hvu) M2 = max
`∈L

[max (Muv,Mvu)]

Table I shows the average backup path lengths for a link un-
der single and two link failure scenarios for the five networks
using the RTF and STF strategies. As expected, STF performs
much better than RTF in terms of the backup path lengths
under single link failures. However, the advantage of choosing
the shortest path after the first failure may be offset by the
second failure producing longer paths during the recovery, as
seen in the case of NSFNET and Mesh-4x4 networks. The
recovery path from the second failure may have some nodes
in common with the first recovery path, however the length of
the recovery path under the two link failure scenario is still
much smaller than the total number of links in the network.
Because we employ the SimCT algorithm from [26] for the
construction of the red-blue trees, we reap the benefits of that
algorithm in our scheme as well4.

Figure 13 shows the distribution of backup paths for links
in ARPANET using both RTF and STF approaches. The figure
shows the ratio of the recovery path lengths, compared to
the shortest possible detour around the failed link, which is
equal to the recovery paths obtained by the Not-via approach
[2]. We observe under single link failure scenarios, the STF
approach provides significantly reduced path lengths to all
links compared to the RTF approach. Under dual link failure
scenarios, the distribution of the average path lengths under the
RTF and STF approaches appear to be quite similar. However,
the computation of the recovery path length of a link under
two link failure scenarios is averaged over only those scenarios
where the second failure affects the first recovery path. As
the first recovery path is shorter in the STF approach, the
probability that the second failure affects the first recovery
path is smaller compared to the RTF approach.

B. Fast recovery under single node failures

In case of a node failure, the backup path in our recovery
scheme depends on the neighbor which first receives the packet
to be forwarded to the next-hop failed node. Thus, unlike the
single link failure, the length of the backup path varies under
single node failure depending on the actual path of the packet.
So to measure the effectiveness of our proposed scheme, we

4The paper employs the concept of “generalized lowpoint” and “preferred
ancestor” techniques to achieve shorter path lengths on the trees. A discussion
of these concepts is beyond the scope of this paper, and the readers are referred
to [26].

use Dijkstra’s algorithm to obtain shortest paths between all
possible node pairs and then consider single node failures
affecting these shortest paths.

Consider the shortest path for a node pair u, v, represented
as u → ... → m → n → p → ... → v. When the node n
fails, edges m→ n, n→ p and all other links connected to n
fail. According to our scheme, let us suppose the packet gets
tunneled in the protection graph of n along the path m →
x1 → x2 → ... → xk using either RTF or STF, before it
encounters the edge failure xk → n. At this point, the packet
is further tunneled along the alternate path in the protection
graph xk → y1 → y2 → ...→ yj before it encounters the third
failure of edge yj → n. The failure of node n is concluded at
node yj and the packet is finally forwarded along a tree path
(obtained in tree rooted at node v) which does not contain n.
In addition to the path notations described earlier, we denote
Punv,m as the path from u to last good node m in the shortest
path from u to v which contains failed node n. Also, let P ′v,y,n
denote the path from y to v which does not contain n, in the
tree rooted at v. Then, the modified path from u to v with
single failed node n in its shortest path, is denoted as

...
Puv,n,

and its length can be computed as:

|
...
Puv,n| = |Punv,m|+ |Png,mxk

|+ |Png,xkyj |+ |P ′v,yj ,n|

The average (maximum) modified path length for the node
pair u, v, denoted by Auv (Muv) is then computed as:

Auv =

∑
n∈

∗
Puv

|
...
Puv,n|

|
∗
Puv|

Muv = max
n∈

∗
Puv

|
...
Puv,n|

The average (maximum) modified path length between any
two nodes that had a failed node which affects the shortest
path between the two nodes in the graph is computed as the
average of Auv (maximum of Muv) over all u, v pairs, denoted
by A3 (M3).

A3 =
1

|N | ∗ (|N | − 1)

∑
u,v∈N

(Auv +Avu)

M3 = max
u,v∈N

[ max (Muv,Mvu) ]

Table II shows the results for the five networks to be resilient
to a single node failure affecting the shortest path between
two arbitrary nodes and the recovery path employing either
RTF or STF approaches. We observe that STF gives shorter
recovery paths in all but one case and the average length of
the recovery path is approximately 4 times the average of the
shortest path lengths. This is understandable as the recovery
includes traversal over two paths in the protection graph until
the node failure is identified.

As in the case of single link failure recovery analysis, we
obtain a plot of the average modified path lengths and expected
path lengths against the shortest path lengths for node failures.
If h̃i denotes the average calculated over modified path lengths
under node failures for node pairs having shortest path length
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(a) (b) (c) (d)

Fig. 13. Distribution of path length ratios after single link failure and average path length after two link failures (where the second link failure affects the
first recovery path): (a), (b) RTF approach; (c), (d) STF approach. Note that the link numbers here refer to directed links. (a) and (c) refer to single link
failure scenario. (b) and (d) refer to two-link failure scenario.

TABLE II
AVERAGE AND MAXIMUM MODIFIED PATH LENGTHS FOR SINGLE NODE FAILURES USING THE RTF AND STF APPROACHES.

Metric
ARPANETARPANET NSFNETNSFNET Node-16Node-16 Node-28Node-28 Mesh-4x4Mesh-4x4

Metric
RTF STF RTF STF RTF STF RTF STF RTF STF

A3: Average failure path 
length (node failure)

11.87 10.74 8.58 7.97 13.21 9.57 21.01 15.38 8.37 9.15

M3: Maximum failure path 
length (node failure)

28 29 23 19 28 23 49 38 27 25

Average shortest path 
length

2.802.80 2.082.08 2.512.51 3.573.57 2.132.13

value hi, then the expected value of the path length considering
probability of node failures is calculated as:

hi =
h̃i ∗ hi
|N |

+
hi ∗ (|N | − hi)

|N |
Figure 14 shows the distribution of Average Shortest Path

Length (ASPL) and Average Failure Path Length (AFPL) for
ARPANET where the recovery scheme employs (a) RTF and
(b) STF. ASPL for a node n refers to the average of the
length of all the shortest paths which contain node n as an
intermediate node (neither source nor destination) between
all possible nodes in the graph. The AFPL is the average of
the total failure recovered path lengths, when the node n has
failed in the graph. The results are similar to the single link
failure analysis but the difference between AFPL and ASPL
values for any node is more pronounced compared to the
single link failure scenario. This is expected as the failed node
causes the failure of all links connected to it and the recovery
path involves the determination of the node failure by first
traversing the single and dual link failure path and then final
path to the destination.
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Fig. 14. Distribution of the Average Shortest Path Length (ASPL) and
Average Failure Path Length (AFPL) for single node failures in ARPANET
employing RTF and STF schemes.

VII. CONCLUSION

The paper develops two novel schemes to provide failure
resilience in IP networks using IP-in-IP encapsulation based
tunneling. The first scheme handles up to two link failures. The

first failure is handled by routing the packet in a protection
graph, where each protection graph is designed to handle an-
other link failure. The paper develops the necessary theory to
prove that the links connected to a node may be grouped such
that at most three protection graphs are needed per node. All
backup routes are constructed a priori using three protection
addresses per node, in addition to the normal address, making
the scheme scalable with the size of the network with minimal
overhead. The paper uses aspects from established schemes
as intermediate steps and does not impose restrictions on the
routing protocol handling the normal failure-free scenario. The
paper discusses two approaches, namely RTF and STF, to
forward the tunneled packet in the protection graph, describing
the benefit of shorter paths in STF at the cost of an extra
overhead bit. The second scheme extends the first scheme so
that it provides recovery from dual link failures or a single
node failure. A node failure is assumed when three separate
links connected to the same node are unavailable. The packet
is then forwarded along a path to the destination avoiding
the failed node. The performance of the schemes is evaluated
by applying the algorithms to five networks and comparing
the path lengths obtained with the two approaches. Through
simulations, we show that the average recovery path lengths
are significantly reduced with the STF approach as compared
to the RTF approach.
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