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Abstract—The skills of software developers is important to the 
success of software projects. Also, when studying the general 
effect of a tool or method, it is important to control for 
individual differences in skill. However, the way skill is 
assessed is often ad hoc, or based on unvalidated methods. 
According to established test theory, validated tests of skill 
should infer skill levels from well-defined performance mea-
sures on multiple, small, representative tasks. In this respect, 
we show how time and quality, which are often analyzed 
separately, can be combined as task performance and sub-
sequently be aggregated as an approximation of skill. Our 
results show significant positive correlations between our 
proposed measures of skill and other variables, such as 
seniority, lines of code written, and self-evaluated expertise. 
The method for combining time and quality is a promising 
first step to measuring programming skill in both industry 
and research settings. 
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I. INTRODUCTION 
The skills of individual software developers have a large 
impact on the success of software projects. Also, differences 
in programming performance reported in the late 1960s, 
indicate that the authors believed levels of performance 
varied dramatically. Although more recent research [13,32] 
is more conservative in their assertions, companies that 
succeed in hiring the best people will nevertheless achieve 
great economic and competitive benefits [17,34,37]. 

Individual differences in skill also affect the outcome of 
empirical studies. When evaluating alternative processes, 
methods, or tools, the effect of using a specific alternative 
may be mediated by skill levels. For example, in an experi-
ment on the effect of a centralized versus delegated control 
style, the purportedly most-skilled developers performed 
better using a delegated control style than with a centralized 
one, while the less-skilled developers performed better with 
the centralized style [5]. In another experiment, skill had a 
moderating effect on the benefits of pair programming [4]. 

However, determining the skill level of software devel-
opers is far from a trivial task. In the work life, there are 
common-sense guidelines from experienced practitioners on 
how to distinguish the good from the bad [37]. But there 
seems to be consensus that this crucial human resource 
management task remains difficult. Often, job recruitment 
personnel use tests that purport to measure a variety of 
traits, such as general cognitive abilities (intelligence), 
values, interests, and measures of personality, to predict job 
performance [11]. Research has, however, established that 
work sample tests in combination with General Mental 
Ability (GMA) testing are among the best predictors of job 
performance [34]. GMA is a general aspect of intelligence 
and is best suited for predicting performance on entry-level 
jobs or job-training situations. By contrast, work sample 
tests are task-specific and are integrated closely with the 
concept of job skill [15]. Although the predictive validity of 
standardized work samples exceed that of GMA alone, 
these predictors seem to yield the best results when 
combined [34]. 

In the context of empirical studies in software engineer-
ing, the notion of programming skill is generally not well 
founded. This has led to studies that failed in adequately 
correcting for bias in quasi-experimental studies [23]. Often 
the more general concept of programming expertise is used, 
with little validation. For example, in a recent study [20], 
we conceptualized programming expertise as the level of 
seniority (junior, intermediate, senior) of the individual 
programmer as set by their manager. While bearing some 
relevance to the consultancy market, this conceptualization 
is not sufficient to capture the skill of individual program-
mers. The concepts of expertise and skill are also operation-
alized in questionable ways in other domains; see [22] for a 
survey of operationalizations in IT management. 

The focus of this paper is as follows. Given a small set 
of programming tasks, how does one infer the candidates’ 
programming skill from both the quality of the task 
solutions and the time spent performing the tasks? It is well 
recognized that the combination of task quality and time is 



 

 

essential to define skill [15,16], but how to combine them in 
practice is challenging. For example, how does one rank 
programmers who deliver high quality slowly, relative to 
those who deliver lesser quality more quickly? This paper 
addresses such challenges and proposes a method for 
combining quality and solution time into a single ordinal 
score of performance (i.e., low, medium, high). Multiple 
performance scores are then aggregated to form an ordinal 
approximation of programming skill. The method is demon-
strated by using data from two existing experiments.  

Section 2 gives the theoretical and analytical back-
ground for skill as a subdomain of expertise and discusses 
how quality and time are currently dealt with. Section 3 
describes how time and quality were combined as program-
ming performance on tasks. Section 4 reanalyzes two 
existing data sets according to the arguments given in the 
previous sections. Sections 5 and 6 discuss the results and 
conclude the paper. 

II. BACKGROUND 

A. Expertise 
Expertise is one of the classic concepts of social and 
behavioral science. Expertise is usually related to specific 
tasks within a given domain and does not in general transfer 
across domains or tasks [15,35]. Expertise has several 
aspects; we present five of these in Fig. 1(a). The aspects 
are all related. For example, in the usual descriptions of skill 
acquisition [1,14,16], which is a subdomain of expertise, an 
individual starts by acquiring declarative knowledge, which 
for experts is qualitatively different in representation and 
organization compared to novices [15,38]. Next, through 
practice, declarative knowledge is transformed into proced-
ural skill, which at first is slow and error-prone [16]. How-
ever, though extended experience, performance improves 
and experts tend also to converge on their understanding of 
the domain in which they are an expert as well [35,36] (i.e., 
consensual agreement). Experts also regard themselves as 
being experts, for example, through the use of self-
assessments. Ultimately, the desired effect of expertise is 
superior performance on the tasks in which one is an expert. 
In our context, this is performance on real-world program-
ming tasks. However, predicting future job performance by 
observing actual job performance is unreliable and ineffici-
ent [11]. It is therefore desirable to design quick tests based 
on how well an individual reliably performs on represent-
ative tasks [15]. 

B. Skill 
We generally understand skill as performance on small 
representative tasks. Note, though, that inferring skill from a 
reliable level of performance on representative tasks is not 
the same as defining it by performance on the job. 
Representative tasks in our context are those smaller tasks 
which merely represent real-world tasks, and for which 
there are well-defined measures of performance [15]. 
Additionally, such measures are typically regarded as situa-
tions of maximum performance, whereas behavior on the 
job would constitute typical performance [11]. Motivation 

plays a central role in predicting typical performance in a 
job situation (see [7] for an overview), whereas potential 
positive or negative consequences for a test-taker would 
affect a situation demanding maximum performance. 

Generalizing from performance on small representative 
tasks to performance on the job requires an understanding 
of key mechanisms at play shared between tasks in the two 
settings. This is theory-driven generalization [33], based on 
the economy of artificiality [21]. In the absence of, or as a 
complement to, strong theory, it is useful to seek confirm-
ation of how well skill measures coincide with other aspects 
of expertise. This is relevant for skill in programming. 

Anderson et al. [1,2] investigated programming skill 
from a psychological perspective. They reported that both 
coding time and the number of programming errors 
decreased as skill improved. Further, programming in LISP 
required the learning of approximately 500 if-then rules. 
The acquisition of these rules followed a power-law 
learning curve: the improvement in performance was largest 
at first and then decelerated until an asymptote was reached. 
Thus, the relationship between amount of practice (extended 
experience) and performance was non-linear. However, if 
amount of practice and performance were logarithmically 
transformed, an approximately linear trend was observed. 
This phenomenon is widely observed and is often referred 
to as the log-log law of practice [31]. 

Fitts and Posner [16] have extensively studied skill 
acquisition. Within many different domains of expertise, 
they found that with increased skill, the number of errors in 
performance decreases and the speed with which a task is 
executed increases. Regarding measures of skill, they state: 

 
Figure 1 Expertise (a) and skill as one aspect of expertise (b) with relations to 
time and qualtiy as variables though the concept of performance. The desired 
effect of expertise is superior performance on job tasks. 



 

 

“[t]he measure should take into account the length of time 
taken to perform a skill as well as the accuracy with which 
it is performed” [16, p. 85]. Therefore, time and quality (the 
latter being a generalization of accuracy) are intimately 
linked to skill, and the term performance is linked to all 
three concepts. Because skill affects performance [11], we 
can hierarchically structure the five concepts expertise, skill, 
performance, time, and quality as shown in Fig. 1(b). From 
the top, expertise, which should affect job performance, is a 
generalization of skill. Beneath, skill is inferred from 
performance on multiple tasks where reliably superior 
performance is a requirement. At the lowest level, time and 
quality, in combination, dictate whether programming per-
formance overall is, say, low or high. 

C. Measures of programming performamce 
It is common in empirical software engineering to deal with 
quality and time separately when analyzing results; that is, 
one studies performance first in terms of quality and then in 
terms of time, often under the assumption that a solution 
meets some particular criterion for correctness (see, for 
example, [4,5]). We acknowledge that for many studies, this 
is acceptable. However, when the purpose is to characterize 
individual differences, problems may occur. 

Time is a ratio variable with an inverse relation to per-
formance (i.e., less time implies better performance). Qual-
ity, on the other hand, may consist of a plethora of variables 
where each one may have complex relations with each other 
and where all often cannot be optimized simultaneously 
[30]. Further, depending on how quality is operationalized, 
these variables may have different scale properties (i.e., 
nominal, ordinal, interval, or ratio). Therefore, when aiming 
to characterize individual differences, one may (a) disregard 
quality and report differences only in time spent or (b) only 
analyze time for observations surpassing some specific level 
of quality (often correctness), thereby adhering to the basic 
principle delineated by Thorndike and others in the 1920s: 
“the more quickly a person produces the correct response, 
the greater is his [ability]” [12, p. 440, emphasis added]. It 
is also possible to (c) devise acceptance tests that force 
everyone to work until an acceptable solution is achieved. 
Generally, we regard this as perhaps the most viable app-
roach today, because variability in performance is expressed 
through time spent in total. However, by using (b) or (c), 
large portions of the dataset may be excluded from analysis, 
in particular when the proportion of correct solutions is low.  

At the most fundamental level of the time/quality trade-
off problem, it is not clear how to place programmers who 
deliver high quality slowly relative to those who deliver 
lesser quality more quickly. In the datasets that are available 
to us, correctness and time are often negatively correlated. 
This indicates that the longer it takes to submit a solution, 
the lower is the likelihood of the solution being correct. 
Although this may seem contrary to what may be 
expected—that higher quality requires more time while 
lower quality requires less—there are two important 
distinctions to be made: first, there is a difference between 
quality in general and correctness specifically. Second, there 
is also a difference between within-subject and between-

subject interpretations [10]; when a correct solution can be 
identified, a highly skilled individual can arrive at this sol-
ution in less time and with higher quality than a less capable 
individual (between-subject interpretation). But given more 
time, a single individual can generally improve an existing 
solution (within-subject interpretation). 

Another challenge is identifying to what degree indi-
vidual performance in a study is stable at a specific level, or 
high/low from one time to another. One way to address such 
concerns is to use multiple indicators of performance [6,18]. 
Based on the same principles for combining time and 
quality as performance delineated in this article, we have 
already advanced the measurement of skill using multiple 
indicators of performance [9]. However, a more detailed 
discussion of these principles involved is needed. It is to this 
discussion we will now turn. 

D. Using the Guttman structure for time and quality 
The two-by-two matrix in Fig. 2 has two possible values for 
quality (low, high) and two possible values for time (slow, 
fast). It is easy to agree that in this simplified example, 
“high performance” is represented by the upper right 
quadrant (fast and high quality) whereas “low performance” 
is represented by the lower left quadrant (slow and low 
quality). Further, it should also be straightforward to agree 
that the two remaining quadrants lie somewhere between 
these two extremes, say, “medium performance.” However, 
which one of the two alternatives one would rate as 
superior, or whether they should be deemed equal, is a value 
judgment: in some instances, “fast and low quality” may be 
deemed superior to “slow and high quality.” To address 
how performance should relate to different values for time 
and quality, we propose to use the principles delineated by 
Louis Guttman. 

The Guttman scale was originally developed to deter-
mine whether a set of attitude statements is unidimensional 
[19]. In Guttman’s sense, a perfect scale exists if a respond-
ent who agrees with a certain statement also agrees with 
milder statements of the same attitude. The Guttman-
structured scoring rules that we propose utilize the same 
underlying principle as the Guttman scale, although at a 
lower level of abstraction (a scale is a formal aggregation of 
indicators, whereas the structure we employ refers to the 
indicators themselves). The approach utilizes general prin-
ciples as delineated by others [3], but which we have only 
addressed somewhat informally so far [8]. 

 

Figure 2. An example of scoring time and quality as performance 
based on value judgments. 



 

 

 With a Guttman structure it is possible to rank combin-
ations of quality and time relative to each other as well as 
being explicit about how different tradeoffs in time and 
quality are scored. Performance on a programming task is 
thus determined by a series of well-ordered thresholds. 
Combined, these thresholds constitute a set of monotonic-
ally ordered response categories (i.e., an ordinal variable) in 
relation to performance. Surpassing a given threshold imp-
lies that all thresholds below it have been passed as well. 
For example, for a score of, say 3 (of 5 possible), the thre-
sholds for obtaining scores of 0, 1, and 2 must have been 
passed, while the threshold for obtaining score 4 has failed. 
Quality can be deliberately emphasized over time (or vice 
versa) by adjusting score categories accordingly. A task that 
differentiates more on quality aspects may, further, be 
scored on multiple quality categories and a task that also 
differentiates more on time aspects may have more time 
categories.  

III. RESEARCH METHODS 
This section describes how time and quality were combined 
as task performance using multiple indicators. Using two 
data sets, we show how scoring rules for tasks were oper-
ationalized and reanalyzed. 

A. Data set 1 
The first data set we reanalyzed is from a one-day study [5]. 
In the experiment, 99 consultants from eight software con-
sultancy companies and 59 undergraduate and graduate 
students were paid to participate. The independent (treat-
ment) variable in the experiment was the control style of the 
code (whether it is centralized or delegated). Five program-
ming tasks were presented in succession to the subjects 
during the experiment. The first task i1 (the pretest) was 
identical for both experimental groups, and the four next 
tasks, i2–i5 involved the independent variable. We analyze 
only the first four tasks here due to challenges in applying 
the last task to our purpose (see Section 4 C for why).  

For a Guttman-structured scoring rule, we used the fol-
lowing approach for each of the tasks i1–i4: Let Q1, T1, T2 
and T3 be dichotomous variables, scored as requirement not 
met = 0, requirement met = 1. Let Q1 be functional correct-
ness (as reported by the original authors), scored as incor-
rect = 0 or correct = 1. Let T3 be time < 3rd quartile, T2 be 
time < median, T1 be time < 1st quartile. A Guttman struct-
ure for an ordinal performance score that applies to a single 
task combining quality and time is then defined by the 
Cartesian product Q1×T3×T2×T1 as follows (x denotes 
either 0 or 1): 

 
(0,x,x,x) = 0 (i.e., incorrect, time is irrelevant) 
(1,0,x,x) = 1 (i.e., correct and very slow) 
(1,1,0,x) = 2 (i.e., correct and slow) 
(1,1,1,0) = 3 (i.e., correct and fast) 
(1,1,1,1) = 4 (i.e., correct and very fast) 
 
The matrix representation of this scoring rule is 

illustrated in Table 1(a). In using this structure, a solution 
must be correct before time is taken into consideration. 

Increasing scores for time are, further, only awarded in 
order (T3 before T2 and T2 before T1). Additionally, the 
precedence of quality in this type of scoring rule reflects the 
view that, for this study, we do not consider a non-working 
solution to reflect high or medium performance, even when 
it is developed quickly.  

We also constructed two alternative Guttman-based 
scoring rules to Q1×T3×T2×T1 that differentiate less on 
time, but that are still based on the same Q1 as above: 
Q1×T2×T1 uses three categories for time based on the 33rd 
(T2) or 67th (T1) percentile; Q1×T1 only uses two cate-
gories for time—above or below the median. The range of 
the overall performance score in all instances is equal to the 
number of dichotomous score variables plus one; for 
example, Q1×T3×T2×T1 has one variable for quality and 
three for time, implying a total of five well ordered per-
formance score categories with a range of 0–4. 

The procedure described above was repeated for all four 
tasks. Because of different time distribution for each task, 
the quartiles and medians for time are calculated on a task-
by-task basis. The resulting score vector consisted of four 
Guttman-structured score variables and the sum of these, 
the sum score, is the ordinal skill scale. 

For comparison, we also devised two alternative scoring 
rules that combined quality and time for tasks by addition 
(additive scoring rules). On a task-by-task basis, we stand-
ardized quality and time (mean 0 and standard deviation 1) 
before adding the standardized variables as a composite 
score of performance. This implements treating “slow and 
high quality” as roughly equal to “fast and low quality” (as 
in Fig. 2), but where the continuous property of time is not 
forced into discrete categories. We name these scoring rules 
Q+T and Q+lnT. Here, time was negated in both instances, 
and for the latter variable, time was also logarithmically 
transformed before negation. Finally, we constructed 
scoring rules on the four quality variables alone (Q) and the 
four time variables alone (T).  

It should be noted that the relationship between the 
score vector and the overall skill score is a many-to-one 
(surjective) function. For example, an individual with cor-
rect but very slow solutions for all four tasks when using 
Q1×T3×T2×T1 receives the sum score of 4. An individual 
with a single correct solution with very fast time but the 
other three tasks incorrect would also receive the same sum 
score. Obviously, it is incorrect to characterize the latter 
instance as “reliably (superior) performance” because the 

TABLE I. SCORE ACCORDING TO TIME AND QUALITY THRESHOLDS 

Score T3=0 T3=1 T2=1 T1=1 
Q1=1 1 2 3 4 
Q1=0 0 0 0 0 

(a) Dataset 1 
 

Score T2=0 T2=1 T1=1 
Q2=1 2 3 4 
Q1=1 1 1 1 
Q1=0 0 0 0 

(b) Dataset 2 



 

 

individual exhibits superior performance on only a single 
task. We return to this issue in Section 3 C. 

B. Data set 2 
The second data set stems from three quasi-experiments 
which all used the same programming tasks. During a one-
day study, the subjects were required to perform three 
different change tasks in a library application system of 
3600 LOC, containing 26 Java classes. Two of the studies 
used students as subjects; one study used professionals. The 
study in [25] investigated the effects of different compre-
hension strategies using 38 subjects; the study in [24] com-
pared feedback collection and think-aloud methods for 34 
subjects; and the study in [27] studied the effects of 
expertise and strategies on program comprehension for 19 
subjects. Additionally, the same pretest task as in Dataset 1 
(i1) was used. However, one of the studies had missing data 
for the last change task, thereby reducing the number of 
available tasks for analysis from four to three. Human 
graders scored the quality of each task on a five-point scale: 
 

0: nothing done on the task (no code changes) 
1: failure, does not compile or no discernible functional 

 progress toward solution 
2: functional anomalies, one or more subtasks are 

 achieved 
3: functionally correct, major visual anomalies  
4: functionally correct, only minor cosmetic anomalies 
5: functionally correct, visually correct, i.e. “perfect 

 solution” 
 

We defined a Guttman structure Q1×Q2×Q3 for the 
dimension of quality as follows: The original scoring cate-
gories 0 and 1 should be collapsed into a single category, 
because neither might be preferred over the other. Thus, 
variable Q1 was defined as “one or more subtasks achi-
eved” (category 2 above). Next, the Q2 variable was 
“functionally correct, but with major visual anomalies allo-
wed” (category 3). Finally, we regarded the level of detail 
used for separating functionally correct with minor visual 
anomalies (category 4) and a “perfect solution” (category 5) 
as somewhat arbitrary; these two categories were therefore 
combined for Q3. For the time dimension, we used T1×T2 
to partition the time for those individuals who passed Q3 
into three groups. The matrix representation of this scoring 
rule, denoted Q1×Q2×Q3×T1×T2, is provided in Table 1(b). 

We also devised alternative scoring rules using one and 
two dichotomous quality variables: Q1×Q2×T2×T1 does not 
separate between major and minor visual anomalies when 
the solution is otherwise correct. And finally, Q1×T2×T1 
only separates between functionally correct solutions and 
those that are not functionally correct, with no attention 
given to visual anomalies. Finally, we devised scoring rules 
for Q+T, Q+lnT, Q, and T using the same procedure as in 
Dataset 1, but using three tasks instead of four. 

C. Analysis method and handling of missing data 
The analysis method for the two data sets, each using six 
different score operationalizations, included the same four 

basic steps. All time variables were negated (for T) or 
logarithmically transformed and then negated (for Q+lnT, 
QlnT) in order to increase interpretability so that high values 
indicate high performance.  

1) Using exploratory factor analysis.  
We extracted the main signal in the data for each scoring 
rule by Principal Component Analysis (PCA) using the 
analysis software PASWTM 18.0. We used listwise deletion 
of missing variables, regression for calculating the factor 
score, and an unrotated (orthogonal) factor solution to 
maximize interpretability of each factor. 

2) Inspecting external and internal results 
Operationalizations of the scoring rules were compared with 
several experience variables. We report non-parametric cor-
relations (Spearman’s ρ, “rho”) unless otherwise noted. We 
assumed that a valid scoring rule should correlate moderate-
ly and positively with relevant background variables such as 
developer category and length of experience. Because such 
variables are not influenced by our investigated score oper-
ationalizations, we refer to this analysis as external results.  

Conversely, all the reported internal results are influ-
enced by how each scoring rule was constructed. For 
internal results, we used the proportion of explained 
variance for the first Principal Component (PC), which is 
analogous to the sum score, as the signal-to-noise ratio for 
each scoring rule. Cronbach’s α was used as an estimate of 
the internal consistency of the scores. To ascertain the 
applicability of each score operationalization, we used 
confirmatory factor analysis. We report the Root Mean 
Square Error of Approximation (RMSEA) using AmosTM 
18.0. RMSEA is a parsimony-adjusted index, as it favors 
models with fewer parameters. Further, RMSEA will be 
influenced negatively if level of performance is not 
consistent over multiple tasks (see Section 3 A). We used a 
tau-equivalent reflective measurement model with multiple 
indicators [29]. This implies that all tasks receive the same 
weight when calculating the sum score. All scoring rules are 
further regarded as ordinal scale approximations of skill. 

3) Handling of missing data 
Each dataset contain some missing data. For solutions that 
were not submitted, we applied the same basic principle as 
the authors of Dataset 2: “non-working solutions or no 
improvements in code” were equated with “nothing sub-
mitted at all” and scored as incorrect. Additionally Dataset 2 
had some missing values for time. We did the same as the 
owners of this dataset and removed these observations 
altogether. Since missing data poses a threat to validity if 
data are not missing at random, we analyzed our results 
using data imputation as well. However, because we found 
that the same substantive results apply with or without data 
imputation, the results are reported without imputation. 

IV. RESULTS 
In this section, we first report the correlations between the 
investigated scoring rules and the subjects’ background 
experience variables. Next, we report several indices that 
must be inspected together, such as explained variance, 
internal consistency and how well the scoring rules fit 



 

 

confirmatory factor analysis. Finally, we highlight some 
selected details about the scoring rules investigated. 

A. External correlations 
Table 2 shows correlations between experience variables 
and the proposed score operationalizations for both datasets. 
Developer category was only available for Dataset 1. In the 
initial classification scheme (i.e., undergraduate = 1, inter-
mediate = 2, junior = 3, intermediate = 4, senior = 5) insig-
nificant and low correlations were present between develop-
er category and results (rho = 0.05–0.12). However, because 
many graduate students performed at levels comparable to 
seniors, it is questionable whether this operationalization of 
expertise is a monotonically increasing function of per-
formance. When removing the two student categories (1 and 
2) from the analysis, the company-assigned developer 
category complied with expectations to some extent: all 
correlations were significant and positive around 0.3.  

The other experience variables were self-assessed. Years 
of programming experience (lnProfExp) is an aspect of 
extended experience. In general, the correlations for this 
variable were low and insignificant for all scoring alterna-
tives, but were slightly improved having been logarithmic-
ally transformed (a justifiable transformation given the log-
log law of practice). Java programming expertise (SEJava-
Exp) is a Likert scale variable ranging from novice = 1 to 
expert = 5. This variable was significantly and positively 
correlated around 0.3 with all of the scoring alternatives for 
Dataset 1. However, for Dataset 2, the correlations were 
lower and less systematic; caution should be shown when 
interpreting this result, however, due to the low number of 
observations (n). Overall, self-assessed Java programming 
expertise seems to have a non-linear but monotonically in-
creasing relation to the proposed score operationalizations. 
Lines Of Code (lnLOCJava) written in Java is a self-
estimated variable with positive skew and kurtosis, but 
approximates a normal distribution after logarithmic trans-
formation. All scoring operationalizations were significantly 

and positively correlated with LOC (around rho = 0.3) with 
two exceptions: Q in Dataset 1 and T in Dataset 2. 

B. Internal fit indices 
Table 2 shows the fit indices of the investigated scoring 
rules. We used PCA to extract the main signal in the data, as 
represented by the first PC. The number of factors (#f) sug-
gested by PCA indicates to what degree our expectations 
are present empirically. Q in Dataset 1 indicates a problem, 
because two factors are indicated by PCA. 

The proportion of explained variance by the first PC 
(%E) indicates the signal-to-noise ratio for each score oper-
ationalization. The additive scoring rules (Q+T, Q+lnT) 
have the highest proportion of explained variance: logarith-
mic transformation before standardization of time produces 
additional explained variance. 

Internal consistency is one way to investigate whether 
an individual’s performance is stable over multiple tasks. 
High values for Cronbach’s alpha (α) are better than low 
values (0.60 for group differences and 0.85 for individual 
differences are sometimes used). The two additive scoring 
rules do well in this respect, followed by Guttman-
structured scoring rules. Further, Q in Dataset 1 and T in 
Dataset 2 have lower α than other alternatives. 

Finally, we report how the different scoring alternatives 
fit according to confirmatory factor analysis. Lower 
RMSEA values signify better fit: values less than or equal 
to 0.05 indicate close approximate fit, values between 0.05 
and 0.08 indicates reasonable error of approximation, and 
values above 0.10 suggest poor fit [26]. For Dataset 1, 
Q1×T2×T1 and Q1×T3×T2×T1 display reasonable model fit 
(< 0.08) whereas T and Q have poor fit. The additive 
scoring rules alternatives lie somewhere in between, and the 
logarithmically-transformed version (Q+lnT) has better 
overall fit than the untransformed version. Q for Dataset 2 
has poor fit as well, even though this dataset has better 
overall confirmatory fit, despite the lower statistical power 
as can be seen by the wider 90% Confidence Intervals (CI). 

TABLE II. CORRELATIONS AND CONFIRMATORY MODEL FIT OF SCORING ALTERNATIVES 

 Non-parametric Correlations rho (n) Fit indices 
Dataset 1 Developer 

Category  
lnProfExp  SEJavaExp lnLOCJava #f %E α RMSEA [lo90, hi90] 

Q  (99) 0.26** (157) 0.08  (158) 0.25** (158) 0.12 2 33.3 0.45 0.145 [0.086, 0.211] 
T (93) 0.33** (152) 0.16* (152) 0.31** (152) 0.38** 1 47.9 0.54 0.189 [0.131, 0.253] 
Q+T (93) 0.34** (152) 0.14 (152) 0.30** (152) 0.29** 1 48.7 0.65 0.096 [0.027, 0.166] 
Q+lnT (93) 0.35** (152) 0.15 (152) 0.30** (152) 0.29** 1 52.6 0.70 0.093 [0.021, 0.163] 
Q1×T1 (99) 0.31** (157) 0.07 (158) 0.33** (158) 0.29** 1 45.0 0.58 0.094 [0.023, 0.164] 
Q1×T2×T1 (99) 0.33** (157) 0.11 (158) 0.31** (158) 0.29** 1 47.7 0.63 0.076 [0.000, 0.149] 
Q1×T3×T2×T1 (99) 0.35** (157) 0.11 (158) 0.31** (158) 0.30** 1 49.4 0.65 0.074 [0.000, 0.147] 

Dataset 2         
Q NA (89) 0.12 (19) 0.14 (89) 0.36** 1 52.5 0.54 0.109 [0.000, 0.261] 
T NA (89) –0.15 (19) –0.02 (89) 0.19 1 47.6 0.41 0.019 [0.000, 0.212] 
Q+T NA (89) –0.01 (19) 0.10 (89) 0.35** 1 59.9 0.66 0.137 [0.000, 0.284] 
Q+lnT NA (89) –0.02 (19) 0.10 (89) 0.34** 1 62.9 0.70 0.095 [0.000, 0.250] 
Q1×T2×T1 NA (89) 0.01 (19) 0.03 (89) 0.30** 1 52.6 0.55 0.000 [0.000, 0.179] 
Q1×Q2×T2×T1 NA (89) 0.05 (19) 0.23 (89) 0.34** 1 54.9 0.59 0.000 [0.000, 0.103] 
Q1×Q2×Q3×T2×T1 NA (89) 0.09 (19) 0.22 (89) 0.33** 1 55.7 0.60 0.000 [0.000, 0.153] 

N is the number of observations, developer category is junior (3), intermediate (4) or senior (5), lnProfExp is the log-transformed number of years of professional programming experience where part time 
experience is counted as 25% of full time experience, SEJavaExp is self-evaluated Java programming expertise on a scale from novice (1) to expert (5), #f is the number of suggested factors by PCA, %E is 
percent total variance explained by the first PC, α is Cronbach’s alpha, RMSEA is the Root Mean Square Error of Approximation with 90% low (lo90) and hi (hi90) confidence intervals. Data not available 
for analysis are marked NA. Correlations significant at the 0.05 level (two-tailed) are marked * and correlations significant at the 0.01 level are marked **. 



 

 

Nevertheless, upon inspecting the lower CI of Dataset 1, 
there is sufficient statistical power to state that T fits poorly. 
However, as is evident by the upper CI of all alternatives, 
there is not sufficient statistical power to claim support for a 
close model fit for any of these alternatives either; 
Q1×Q2×T2×T1 is overall the best fitting alternative with 
upper CI slightly above 0.10. 

In summary, an analysis of Q and T separately seems 
problematic in terms of some correlations, relatively low 
explained variance, and problematic confirmatory fit in 
three out of four instances. The additive scoring rules show 
the highest levels of explained variance and internal consist-
ency, but they display some problems with confirmatory 
model fit. Overall we found the best-fitting score oper-
ationalizations to be Q1×T3×T2×T1 for Dataset1 and 
Q1×Q2×T2×T1 for Dataset 2.  

C. Details for factors in Datasets 1 and 2 
Table 3 shows the correlations between all but one of the 
investigated scoring rules (Q+lnT was found to be a better 
alternative than Q+T and the latter is therefore not reported). 
Correlations below the diagonal are in terms of (non-
parametric) Spearman's rho, which does not assume line-
arity between factors and may therefore be used. Parametric 
correlations (Pearson's r) are given above the diagonal for 
comparison. All correlations are significant at the 0.01 level 
(two-tailed).  

In both datasets, T and Q have the lowest correlation 
with each other. For all Guttman-structured alternatives in 
Dataset 1, we may further observe how these scoring rules 
migrate from closeness with Q to closeness with T when 
additional time categories are added. Similarly, the 
Guttman-structured alternatives in Dataset 2 migrate from 
closeness with T to closeness with Q when additional qual-
ity categories are added. All proposed scoring alternatives 
also have more shared variance with T and Q separately, 
than Q and T have with each other. Further, the additive and 
Guttman-structured scoring alternatives are also somewhat 
similar in their rank ordering of individuals for Dataset 2 
(rho > 0.6). For Dataset 1, in fact, they are highly similar in 
their rank ordering of individuals (rho > 0.9). 

To verify that the scoring rules predict performance on 
other programming tasks, we used the Q1×T2×T1 scoring 
rule of Dataset 1 to separate individuals into low and high 
skill groups. Using the results for task i5, which is not a part 
of the investigated scoring rules, as a dependent variable 
and above/below mean sum score of tasks i1–i4 as the 
independent variable, we found that the high group per-
formed much better than the low group: 67.1% had correct 
solutions for i5 while the corresponding results for the low 
group was 27.8% correct (time could not be analyzed this 
way for i5; see [5] for an explanation). We could further 
confirm that the high group had written significantly more 
LOC in Java and had more programming and Java 
experience as well. Moreover, by using three groups instead 
of two (i.e., low, medium and high) in terms of overall skill, 
similar results were obtained: the groups are well ordered 
according to external background variables, as well as on 
performance for i5. For Dataset 2, we performed the same 

analysis, using the quality of task i4 as the dependent 
variable and the sum score of i1–i3 as the independent 
variable. All correlations between the Guttman-structured 
scoring rules and the quality of i4 were large (n = 52, rho = 
0.51–0.53) and significant (p < 0.001). 

We were also able to identify the treatment effect of 
Dataset 1. The dichotomous treatment variable was signifi-
cantly and moderately correlated with the second PC of 
Q1×T3×T2×T1 (rho = 0.42) and for the two additive scoring 
rules as well (rho = 0.36). Further, the treatment effect was 
not correlated with any of the first PC of the proposed 
scoring rules, suggesting that the effect of the treatment in 
this study is less than the individual variability. This implies 
that unless some degree of experimental control is available 
for individual variability—for example, through the use of 
pre-tests [23,33]—an experimenter would require many 
more subjects in a study to achieve the same statistical 
power. Perhaps worse, effects of practical importance might 
go undetected in the early phases of a research project.  

V. DISCUSSION 
We begin by discussing the implications for research and 
practice when combining time and quality in empirical 
studies on programmers. Next, we discuss limitations and 
address how this work can be expanded in the future. 

A. Implications for research and practice 
In this reanalysis, we have presented a method for combin-
ing time and quality as an ordinal variable of performance. 
Results show that when programming performance on mul-
tiple tasks were aggregated, significant and positive corre-

TABLE III. CORRELATIONS FOR DATASET 1 AND 2 

Scoring rule (1) (2) (3) (4) (5) (6) 

Q (1)  0.36 0.76 0.82 0.75 0.71 

T (2) 0.33  0.82 0.64 0.73 0.74 

Q+lnT (3) 0.72 0.85  0.92 0.95 0.94 

Q1×T1 (4) 0.80 0.70 0.92  0.96 0.96 

Q1×T2×T1 (5) 0.75 0.78 0.96 0.95  0.98 

Q1×T3×T2×T1 (6) 0.72 0.81 0.97 0.96 0.98  

(a) Dataset 1 

 

Scoring rule (1) (2) (3) (4) (5) (6) 

Q (1)  0.42 0.83 0.68 0.85 0.95 

T (2) 0.41  0.83 0.53 0.56 0.50 

Q+lnT (3) 0.84 0.80  0.70 0.83 0.85 

Q1× T2×T1 (4) 0.64 0.49 0.62  0.86 0.75 

Q1×Q2×T2×T1 (5) 0.81 0.52 0.79 0.83  0.89 

Q1×Q2×Q3×T2×T1 (6) 0.96 0.45 0.84 0.70 0.87  

(b) Dataset 2 



 

 

lations with skill could be obtained with several relevant 
expertise-related background variables. The strongest and 
most consistent correlations were obtained for LOC (around 
0.3), which is highly similar to the value (of 0.29) reported 
in [9]. Seniority and self-evaluated expertise indicated more 
mixed results. For seniority in Dataset 1, statistical signifi-
cant positive correlations could only be obtained when 
students were removed from analysis. For general program-
ming experience, low and insignificant correlations were 
present. However, [9] reports a correlation of 0.29 between 
skill and months of Java programming experience; this may 
indicate that more precision (months instead of years) as 
well as specificity (Java experience as opposed to general 
programming experience) is required to yield higher corre-
lations for this variable.  

Nevertheless, using correlations as the only criteria for 
evaluating tests poses a problem; what the actual correlation 
is between a test score and a background variable will never 
be known for certain [10]. We therefore used confirmatory 
factor analysis to investigate whether performance on 
multiple tasks could be considered as “reliable (superior) 
performance” according to established literature on expert-
ise and skill. We found unacceptable model fit in three of 
four instances when analyzing quality or time as separate 
variables. Furthermore, the only well-fitting variable (T in 
Dataset 2) did not accord with expectations of correlations 
with expertise background variables. Therefore, some con-
cerns seem to exist when performance as a dependent vari-
able is operationalized as time alone, or quality alone, in 
programming experiments. Such a problem will, however, 
remain undetected unless multiple tasks are present to be 
compared. 

This study also demonstrates the importance of con-
sidering experiment constraints when analyzing individual 
variability of performance. For example, when loose time 
limits, or no limits, are used in a study and most subjects 
solve a task correctly, it is entirely plausible that, when 
analyzing correct solutions, between-subject variability is 
mostly present in the time variable. Conversely, if strict 
time limits are used and few subjects are able to finish on 
time, variability will mainly reside in the quality variable 
(as they would in, for example, an examination). Hence, the 
scoring of time and quality as a combined variable is 
dependent on the instrumentation as well as upon empirical 
results. This also implies that no universal scoring rule 
exists that applies equally well to all tasks in all situations.  

For time as a variable, we generally obtained stronger 
and more consistent correlations when using non-parametric 
correlations and untransformed experience variables or 
parametric correlations with logarithmically-transformed 
experience. We concede that other transformations may be 
applicable as well, such as 1/time. Nevertheless, variables 
analyzed in this manner should almost always be plotted 
first and verified against theoretical expectations; there is 
often little theoretical rationale for expecting a priori that 
variables have a linear relation, even if each variable dis-
plays an approximate normal distribution. A similar cau-
tion should be observed when analyzing variables of 
quality. For example, for Dataset 2, it is problematic to 

assume that an increase in score from 2 to 3 (a difference of 
1) amounts to the same increase as from 3 to 4; improving a 
correct solution from “major” to “minor visual anomalies” 
may require negligible time, whereas the improvement from 
one functionally correct subtask to a fully functionally 
correct solution may require substantial effort. Hence, qual-
ity variables should be treated as ordinal when in doubt and 
they are, further, most likely to have non-linear relations to 
other variables. Therefore, non-parametric correlations 
should be the first, not last, resort. 

For the scoring rules that combine time and quality, we 
see two main competing alternatives in the present analysis: 
the additive scoring rules treated “slow and high quality” 
and “fast and low quality” (Fig. 2) as “medium perform-
ance.” The Guttman-structured alternatives treated “fast and 
low quality” differently; quality had to be at an (operation-
ally defined) acceptable level, before additional score points 
were awarded for time. Both alternatives demonstrated 
highly similar results in terms or correlations as well as rank 
order of individuals in terms of skill. Specifically, the two 
alternatives were highly similar in terms of the rank order-
ing of individuals in Dataset 1. It is therefore interesting to 
note that confirmatory model fit was much stronger in favor 
of the Guttman-structured scoring rules in Dataset 2 where 
less agreement between the Guttman-structured and additive 
scoring rules exist. 

Some challenges are also present with using the additive 
scoring rules; partial scores of performance are awarded for 
fast solutions even though no improvement may be present. 
This implies that an individual who chooses not to 
participate seriously in a study will receive a higher score 
than an individual who seriously attempts all tasks, but fails. 

Finally, given that some merit for the use of Guttman 
structures is established at this point, a practical issue arises 
around the number of score categories for time and quality. 
Because neither quality alone, nor time alone, fits the data 
particularly well in most instances, a sensible choice is to 
start at the extremes and work towards a compromise using 
the indices and recommendations reported here. Based on 
our experience, each score operationalization will usually 
display a peak of overall fit at some point; for example, 
when adding Q3 to Q1×Q2×T2×T1 in Dataset 2, confirm-
atory model fit began to decrease while the proportion of 
explained variance only marginally improved. 

B. Limitations 
The weaknesses in the present analysis have to do with the 
two sources of data as well as the methods we have used to 
analyze time and quality as an aggregated variable. 

The experimental treatments in both datasets add noise 
to the data, which probably entails that all investigated 
scoring rules show worse fit than they would in data sets 
without such treatment. However, for this issue, it is at least 
true that the conditions were equal throughout our com-
parisons. There are also statistical independency problems 
between tasks. When a new task expands upon the solution 
of the previous task (i.e., a testlet-structure), this is still held 
to constitute one observation. Furthermore, performance in 
both studies is affected by motivational components; some 



 

 

peer pressure was present for most subjects in Dataset 1, 
whereas we believe motivation was more variable in Data-
set 2. Finally, we used factor analysis on discrete ordinal 
variables as well as on dichotomous variables for quality. 
Optimally, one should use Bayesian estimation [28] or poly-
choric correlation matrices if the aim is to conclude more 
strongly. It is nevertheless somewhat common to see, for 
example, Likert scale variables analyzed using factor 
analysis, with a claim that the resulting factor score has 
interval-scale properties. 

A potential objection to our confirmatory analysis using 
tau-equivalence is that relative weights for each task may be 
more appropriate for calculating the sum score. We investi-
gated RMSEA from such a perspective as well (i.e., a con-
generic factor model). Although slightly better fit could be 
obtained for all scoring alternatives, the same substantive 
results nevertheless continue to apply when comparing 
alternative ways of combining time and quality. 

Other, perhaps, justifiable objections to our approach 
may be that multiple-factor (e.g., two rotated factors) or 
simplex-structured models should have been investigated. 
For Dataset 1, we have already done these analyses, but 
with inconclusive overall results and poor confirmatory fit. 
Therefore, we have chosen not to report these here. We 
could also have used non-linear regression or neural net-
works to maximize explained variance. However, by doing 
so, it would have been more difficult to interpret the results 
and the implied models for measurement would lack 
parsimony. Better, and more recent, models for measure-
ment exist than the one we have used here. We now turn to 
such improvements where patterns in the score vector 
impose additional constraints on what scoring rules can be 
considered well-fitting overall. 

C. Reccomendations for future research 
In software engineering it is somewhat common to read 
about differences in programming performance ranging in 
an order of magnitude or more. However, as illustrated in 
Fig. 1, these differences pertain to performance per se, and 
not necessarily to individuals. For ratio comparisons of indi-
viduals, a quantitative scale is required in which units are 
separated by equal distances and where zero is well defined. 
This may be attempted though axiomatic measurement, 
which is measurement in a stricter sense than the putative 
measures discussed here. But it is unlikely that advances in 
this direction will happen in the near future (see [10] for 
present challenges). Nevertheless, we consider Rasch analy-
sis [3] as a useful intermediary step for obtaining interval-
scale approximations of programming skill. In this model, 
task difficulty is also an integral part of the measurement 
process, something the current model for measurement we 
employ (i.e., classical test theory) is lacking.  

We have identified some additional directions for future 
work. For example, two or more internally consistent scor-
ing perspectives based on the same data could be devised in 
which more score points are awarded either to quality or to 
time. By estimating skill for an individual based on these 
two approaches separately, it may be possible to make 
inferences about an individual’s preferred working style 

during a test. If an individual is ranked higher on one score 
operationalization than the other, the relative difference may 
provide information about the value system an individual 
has for “fast and low quality” versus “slow and high qual-
ity” solutions. Further, different scoring rules on a task-by-
task basis should be investigated as well. Although we 
applied the same scoring principle to all tasks in this study, 
there should be no a priori reason for requiring that a 
scoring rule must fit all tasks equally well to be valid. 

Future work using Guttman-structured scoring rules for 
time and quality may also be directed at how to avoid the 
degradation of time as a continuous variable into discrete 
categories. However, any solution to this problem must 
somehow account for the likelihood that time will have 
skewed distributions. Although the additive scoring rule 
partially solves this problem by logarithmically transform-
ing time, we would like to see more alternatives in the 
future that differ in how quality and time is combined as 
well as how measurement is conceptualized. 

VI. CONCLUSION 
In a reanalysis of two existing studies, we have shown 
through multiple score operationalizations how time and 
quality for programming task solutions may be meaning-
fully combined as an ordinal variable of performance. By 
aggregation of multiple performance variables into an ordi-
nal skill score approximation, we obtained significant and 
positive correlations with relevant experience variables for 
all score alternatives that combined time and quality. Some 
degree of internal consistency was present, but only at a 
level high enough to roughly characterize group differences. 
We also showed that from correlations alone, it was difficult 
to choose what the so-called "best" scoring alternative 
might be. However, by using confirmatory factor analysis, 
we found some support for the Guttman-structured scoring 
rules over other alternatives, such as analyzing time or qual-
ity independently. Statistical power in our reanalysis was, 
however, not sufficient to conclude strongly, even though 
upper confidence intervals for some scoring alternatives 
almost indicate reasonable model fit for some alternatives. 

This study implies that if time or quality is analyzed sep-
arately as a dependent variable, and experiment results are 
contrary to theoretical expectations, a reanalysis using the 
principles delineated here may be warranted. Threats to 
validity may further be present if the dependent variable of 
a study is not a monotonically increasing function of expert-
ise or if multiple operationalizations of the same treatment 
do not indicate similar interpretations of the results. How 
individual variability in a study affects time, quality, or the 
two variables in combination also warrants closer scrutiny; 
instrumentation issues, such as time limits or task difficulty 
match with subject population, may also influence results in 
unexpected directions. Finally, we recommend the use of 
scoring rules that converge in terms of measurement while 
being parsimonious and interpretable.  

Alternative score operationalizations in which time and 
quality are combined often were more similar to each other 
than they were to time or quality analyzed separately. 
Therefore, more attention is required to analyze how “per-



 

 

formance” is operationalized in programming studies. We 
call for others to reanalyze their existing datasets where 
time and quality variables have been collected, and to score 
time and quality as a combined variable of performance. 
Such new datasets might even contain relevant background 
variables that can be further used to inform the strength of 
relations with performance and background variables, there-
by making meta-analytic studies feasible in the future. 
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