
Inferring Skill from Tests of Programming Performance:
Combining Time and Quality

Gunnar R. Bergersen
Department of Informatics,

University of Oslo and Simula
Research Laboratory, Norway

gunnab@ifi.uio.no

Jo E. Hannay
Simula Research Laboratory,

P.O. Box 134, NO-1325 Lysaker,
Norway

johannay@simula.no

Dag I. K. Sjøberg
Department of Informatics,

University of Oslo, P.O. Box 1080,
NO-0316 Oslo, Norway

dagsj@ifi.uio.no

Tore Dybå
Department of Informatics,

University of Oslo and
SINTEF, Norway

tore.dyba@sintef.no

Amela Karahasanović
SINTEF and Department of Informatics,

University of Oslo
P.O. Box 124 Blindern, NO-0314 Oslo, Norway

amela@sintef.no

Abstract—The skills of software developers is important to the
success of software projects. Also, when studying the general
effect of a tool or method, it is important to control for
individual differences in skill. However, the way skill is
assessed is often ad hoc, or based on unvalidated methods.
According to established test theory, validated tests of skill
should infer skill levels from well-defined performance mea-
sures on multiple, small, representative tasks. In this respect,
we show how time and quality, which are often analyzed
separately, can be combined as task performance and sub-
sequently be aggregated as an approximation of skill. Our
results show significant positive correlations between our
proposed measures of skill and other variables, such as
seniority, lines of code written, and self-evaluated expertise.
The method for combining time and quality is a promising
first step to measuring programming skill in both industry
and research settings.

Programming; skill; performance; time; quality; productivity

I. INTRODUCTION
The skills of individual software developers have a large
impact on the success of software projects. Also, differences
in programming performance reported in the late 1960s,
indicate that the authors believed levels of performance
varied dramatically. Although more recent research [13,32]
is more conservative in their assertions, companies that
succeed in hiring the best people will nevertheless achieve
great economic and competitive benefits [17,34,37].

Individual differences in skill also affect the outcome of
empirical studies. When evaluating alternative processes,
methods, or tools, the effect of using a specific alternative
may be mediated by skill levels. For example, in an experi-
ment on the effect of a centralized versus delegated control
style, the purportedly most-skilled developers performed
better using a delegated control style than with a centralized
one, while the less-skilled developers performed better with
the centralized style [5]. In another experiment, skill had a
moderating effect on the benefits of pair programming [4].

However, determining the skill level of software devel-
opers is far from a trivial task. In the work life, there are
common-sense guidelines from experienced practitioners on
how to distinguish the good from the bad [37]. But there
seems to be consensus that this crucial human resource
management task remains difficult. Often, job recruitment
personnel use tests that purport to measure a variety of
traits, such as general cognitive abilities (intelligence),
values, interests, and measures of personality, to predict job
performance [11]. Research has, however, established that
work sample tests in combination with General Mental
Ability (GMA) testing are among the best predictors of job
performance [34]. GMA is a general aspect of intelligence
and is best suited for predicting performance on entry-level
jobs or job-training situations. By contrast, work sample
tests are task-specific and are integrated closely with the
concept of job skill [15]. Although the predictive validity of
standardized work samples exceed that of GMA alone,
these predictors seem to yield the best results when
combined [34].

In the context of empirical studies in software engineer-
ing, the notion of programming skill is generally not well
founded. This has led to studies that failed in adequately
correcting for bias in quasi-experimental studies [23]. Often
the more general concept of programming expertise is used,
with little validation. For example, in a recent study [20],
we conceptualized programming expertise as the level of
seniority (junior, intermediate, senior) of the individual
programmer as set by their manager. While bearing some
relevance to the consultancy market, this conceptualization
is not sufficient to capture the skill of individual program-
mers. The concepts of expertise and skill are also operation-
alized in questionable ways in other domains; see [22] for a
survey of operationalizations in IT management.

The focus of this paper is as follows. Given a small set
of programming tasks, how does one infer the candidates’
programming skill from both the quality of the task
solutions and the time spent performing the tasks? It is well
recognized that the combination of task quality and time is

essential to define skill [15,16], but how to combine them in
practice is challenging. For example, how does one rank
programmers who deliver high quality slowly, relative to
those who deliver lesser quality more quickly? This paper
addresses such challenges and proposes a method for
combining quality and solution time into a single ordinal
score of performance (i.e., low, medium, high). Multiple
performance scores are then aggregated to form an ordinal
approximation of programming skill. The method is demon-
strated by using data from two existing experiments.

Section 2 gives the theoretical and analytical back-
ground for skill as a subdomain of expertise and discusses
how quality and time are currently dealt with. Section 3
describes how time and quality were combined as program-
ming performance on tasks. Section 4 reanalyzes two
existing data sets according to the arguments given in the
previous sections. Sections 5 and 6 discuss the results and
conclude the paper.

II. BACKGROUND

A. Expertise
Expertise is one of the classic concepts of social and
behavioral science. Expertise is usually related to specific
tasks within a given domain and does not in general transfer
across domains or tasks [15,35]. Expertise has several
aspects; we present five of these in Fig. 1(a). The aspects
are all related. For example, in the usual descriptions of skill
acquisition [1,14,16], which is a subdomain of expertise, an
individual starts by acquiring declarative knowledge, which
for experts is qualitatively different in representation and
organization compared to novices [15,38]. Next, through
practice, declarative knowledge is transformed into proced-
ural skill, which at first is slow and error-prone [16]. How-
ever, though extended experience, performance improves
and experts tend also to converge on their understanding of
the domain in which they are an expert as well [35,36] (i.e.,
consensual agreement). Experts also regard themselves as
being experts, for example, through the use of self-
assessments. Ultimately, the desired effect of expertise is
superior performance on the tasks in which one is an expert.
In our context, this is performance on real-world program-
ming tasks. However, predicting future job performance by
observing actual job performance is unreliable and ineffici-
ent [11]. It is therefore desirable to design quick tests based
on how well an individual reliably performs on represent-
ative tasks [15].

B. Skill
We generally understand skill as performance on small
representative tasks. Note, though, that inferring skill from a
reliable level of performance on representative tasks is not
the same as defining it by performance on the job.
Representative tasks in our context are those smaller tasks
which merely represent real-world tasks, and for which
there are well-defined measures of performance [15].
Additionally, such measures are typically regarded as situa-
tions of maximum performance, whereas behavior on the
job would constitute typical performance [11]. Motivation

plays a central role in predicting typical performance in a
job situation (see [7] for an overview), whereas potential
positive or negative consequences for a test-taker would
affect a situation demanding maximum performance.

Generalizing from performance on small representative
tasks to performance on the job requires an understanding
of key mechanisms at play shared between tasks in the two
settings. This is theory-driven generalization [33], based on
the economy of artificiality [21]. In the absence of, or as a
complement to, strong theory, it is useful to seek confirm-
ation of how well skill measures coincide with other aspects
of expertise. This is relevant for skill in programming.

Anderson et al. [1,2] investigated programming skill
from a psychological perspective. They reported that both
coding time and the number of programming errors
decreased as skill improved. Further, programming in LISP
required the learning of approximately 500 if-then rules.
The acquisition of these rules followed a power-law
learning curve: the improvement in performance was largest
at first and then decelerated until an asymptote was reached.
Thus, the relationship between amount of practice (extended
experience) and performance was non-linear. However, if
amount of practice and performance were logarithmically
transformed, an approximately linear trend was observed.
This phenomenon is widely observed and is often referred
to as the log-log law of practice [31].

Fitts and Posner [16] have extensively studied skill
acquisition. Within many different domains of expertise,
they found that with increased skill, the number of errors in
performance decreases and the speed with which a task is
executed increases. Regarding measures of skill, they state:

Figure 1 Expertise (a) and skill as one aspect of expertise (b) with relations to
time and qualtiy as variables though the concept of performance. The desired
effect of expertise is superior performance on job tasks.

“[t]he measure should take into account the length of time
taken to perform a skill as well as the accuracy with which
it is performed” [16, p. 85]. Therefore, time and quality (the
latter being a generalization of accuracy) are intimately
linked to skill, and the term performance is linked to all
three concepts. Because skill affects performance [11], we
can hierarchically structure the five concepts expertise, skill,
performance, time, and quality as shown in Fig. 1(b). From
the top, expertise, which should affect job performance, is a
generalization of skill. Beneath, skill is inferred from
performance on multiple tasks where reliably superior
performance is a requirement. At the lowest level, time and
quality, in combination, dictate whether programming per-
formance overall is, say, low or high.

C. Measures of programming performamce
It is common in empirical software engineering to deal with
quality and time separately when analyzing results; that is,
one studies performance first in terms of quality and then in
terms of time, often under the assumption that a solution
meets some particular criterion for correctness (see, for
example, [4,5]). We acknowledge that for many studies, this
is acceptable. However, when the purpose is to characterize
individual differences, problems may occur.

Time is a ratio variable with an inverse relation to per-
formance (i.e., less time implies better performance). Qual-
ity, on the other hand, may consist of a plethora of variables
where each one may have complex relations with each other
and where all often cannot be optimized simultaneously
[30]. Further, depending on how quality is operationalized,
these variables may have different scale properties (i.e.,
nominal, ordinal, interval, or ratio). Therefore, when aiming
to characterize individual differences, one may (a) disregard
quality and report differences only in time spent or (b) only
analyze time for observations surpassing some specific level
of quality (often correctness), thereby adhering to the basic
principle delineated by Thorndike and others in the 1920s:
“the more quickly a person produces the correct response,
the greater is his [ability]” [12, p. 440, emphasis added]. It
is also possible to (c) devise acceptance tests that force
everyone to work until an acceptable solution is achieved.
Generally, we regard this as perhaps the most viable app-
roach today, because variability in performance is expressed
through time spent in total. However, by using (b) or (c),
large portions of the dataset may be excluded from analysis,
in particular when the proportion of correct solutions is low.

At the most fundamental level of the time/quality trade-
off problem, it is not clear how to place programmers who
deliver high quality slowly relative to those who deliver
lesser quality more quickly. In the datasets that are available
to us, correctness and time are often negatively correlated.
This indicates that the longer it takes to submit a solution,
the lower is the likelihood of the solution being correct.
Although this may seem contrary to what may be
expected—that higher quality requires more time while
lower quality requires less—there are two important
distinctions to be made: first, there is a difference between
quality in general and correctness specifically. Second, there
is also a difference between within-subject and between-

subject interpretations [10]; when a correct solution can be
identified, a highly skilled individual can arrive at this sol-
ution in less time and with higher quality than a less capable
individual (between-subject interpretation). But given more
time, a single individual can generally improve an existing
solution (within-subject interpretation).

Another challenge is identifying to what degree indi-
vidual performance in a study is stable at a specific level, or
high/low from one time to another. One way to address such
concerns is to use multiple indicators of performance [6,18].
Based on the same principles for combining time and
quality as performance delineated in this article, we have
already advanced the measurement of skill using multiple
indicators of performance [9]. However, a more detailed
discussion of these principles involved is needed. It is to this
discussion we will now turn.

D. Using the Guttman structure for time and quality
The two-by-two matrix in Fig. 2 has two possible values for
quality (low, high) and two possible values for time (slow,
fast). It is easy to agree that in this simplified example,
“high performance” is represented by the upper right
quadrant (fast and high quality) whereas “low performance”
is represented by the lower left quadrant (slow and low
quality). Further, it should also be straightforward to agree
that the two remaining quadrants lie somewhere between
these two extremes, say, “medium performance.” However,
which one of the two alternatives one would rate as
superior, or whether they should be deemed equal, is a value
judgment: in some instances, “fast and low quality” may be
deemed superior to “slow and high quality.” To address
how performance should relate to different values for time
and quality, we propose to use the principles delineated by
Louis Guttman.

The Guttman scale was originally developed to deter-
mine whether a set of attitude statements is unidimensional
[19]. In Guttman’s sense, a perfect scale exists if a respond-
ent who agrees with a certain statement also agrees with
milder statements of the same attitude. The Guttman-
structured scoring rules that we propose utilize the same
underlying principle as the Guttman scale, although at a
lower level of abstraction (a scale is a formal aggregation of
indicators, whereas the structure we employ refers to the
indicators themselves). The approach utilizes general prin-
ciples as delineated by others [3], but which we have only
addressed somewhat informally so far [8].

Figure 2. An example of scoring time and quality as performance
based on value judgments.

 With a Guttman structure it is possible to rank combin-
ations of quality and time relative to each other as well as
being explicit about how different tradeoffs in time and
quality are scored. Performance on a programming task is
thus determined by a series of well-ordered thresholds.
Combined, these thresholds constitute a set of monotonic-
ally ordered response categories (i.e., an ordinal variable) in
relation to performance. Surpassing a given threshold imp-
lies that all thresholds below it have been passed as well.
For example, for a score of, say 3 (of 5 possible), the thre-
sholds for obtaining scores of 0, 1, and 2 must have been
passed, while the threshold for obtaining score 4 has failed.
Quality can be deliberately emphasized over time (or vice
versa) by adjusting score categories accordingly. A task that
differentiates more on quality aspects may, further, be
scored on multiple quality categories and a task that also
differentiates more on time aspects may have more time
categories.

III. RESEARCH METHODS
This section describes how time and quality were combined
as task performance using multiple indicators. Using two
data sets, we show how scoring rules for tasks were oper-
ationalized and reanalyzed.

A. Data set 1
The first data set we reanalyzed is from a one-day study [5].
In the experiment, 99 consultants from eight software con-
sultancy companies and 59 undergraduate and graduate
students were paid to participate. The independent (treat-
ment) variable in the experiment was the control style of the
code (whether it is centralized or delegated). Five program-
ming tasks were presented in succession to the subjects
during the experiment. The first task i1 (the pretest) was
identical for both experimental groups, and the four next
tasks, i2–i5 involved the independent variable. We analyze
only the first four tasks here due to challenges in applying
the last task to our purpose (see Section 4 C for why).

For a Guttman-structured scoring rule, we used the fol-
lowing approach for each of the tasks i1–i4: Let Q1, T1, T2
and T3 be dichotomous variables, scored as requirement not
met = 0, requirement met = 1. Let Q1 be functional correct-
ness (as reported by the original authors), scored as incor-
rect = 0 or correct = 1. Let T3 be time < 3rd quartile, T2 be
time < median, T1 be time < 1st quartile. A Guttman struct-
ure for an ordinal performance score that applies to a single
task combining quality and time is then defined by the
Cartesian product Q1×T3×T2×T1 as follows (x denotes
either 0 or 1):

(0,x,x,x) = 0 (i.e., incorrect, time is irrelevant)
(1,0,x,x) = 1 (i.e., correct and very slow)
(1,1,0,x) = 2 (i.e., correct and slow)
(1,1,1,0) = 3 (i.e., correct and fast)
(1,1,1,1) = 4 (i.e., correct and very fast)

The matrix representation of this scoring rule is

illustrated in Table 1(a). In using this structure, a solution
must be correct before time is taken into consideration.

Increasing scores for time are, further, only awarded in
order (T3 before T2 and T2 before T1). Additionally, the
precedence of quality in this type of scoring rule reflects the
view that, for this study, we do not consider a non-working
solution to reflect high or medium performance, even when
it is developed quickly.

We also constructed two alternative Guttman-based
scoring rules to Q1×T3×T2×T1 that differentiate less on
time, but that are still based on the same Q1 as above:
Q1×T2×T1 uses three categories for time based on the 33rd
(T2) or 67th (T1) percentile; Q1×T1 only uses two cate-
gories for time—above or below the median. The range of
the overall performance score in all instances is equal to the
number of dichotomous score variables plus one; for
example, Q1×T3×T2×T1 has one variable for quality and
three for time, implying a total of five well ordered per-
formance score categories with a range of 0–4.

The procedure described above was repeated for all four
tasks. Because of different time distribution for each task,
the quartiles and medians for time are calculated on a task-
by-task basis. The resulting score vector consisted of four
Guttman-structured score variables and the sum of these,
the sum score, is the ordinal skill scale.

For comparison, we also devised two alternative scoring
rules that combined quality and time for tasks by addition
(additive scoring rules). On a task-by-task basis, we stand-
ardized quality and time (mean 0 and standard deviation 1)
before adding the standardized variables as a composite
score of performance. This implements treating “slow and
high quality” as roughly equal to “fast and low quality” (as
in Fig. 2), but where the continuous property of time is not
forced into discrete categories. We name these scoring rules
Q+T and Q+lnT. Here, time was negated in both instances,
and for the latter variable, time was also logarithmically
transformed before negation. Finally, we constructed
scoring rules on the four quality variables alone (Q) and the
four time variables alone (T).

It should be noted that the relationship between the
score vector and the overall skill score is a many-to-one
(surjective) function. For example, an individual with cor-
rect but very slow solutions for all four tasks when using
Q1×T3×T2×T1 receives the sum score of 4. An individual
with a single correct solution with very fast time but the
other three tasks incorrect would also receive the same sum
score. Obviously, it is incorrect to characterize the latter
instance as “reliably (superior) performance” because the

TABLE I. SCORE ACCORDING TO TIME AND QUALITY THRESHOLDS

Score T3=0 T3=1 T2=1 T1=1
Q1=1 1 2 3 4
Q1=0 0 0 0 0

(a) Dataset 1

Score T2=0 T2=1 T1=1
Q2=1 2 3 4
Q1=1 1 1 1
Q1=0 0 0 0

(b) Dataset 2

individual exhibits superior performance on only a single
task. We return to this issue in Section 3 C.

B. Data set 2
The second data set stems from three quasi-experiments
which all used the same programming tasks. During a one-
day study, the subjects were required to perform three
different change tasks in a library application system of
3600 LOC, containing 26 Java classes. Two of the studies
used students as subjects; one study used professionals. The
study in [25] investigated the effects of different compre-
hension strategies using 38 subjects; the study in [24] com-
pared feedback collection and think-aloud methods for 34
subjects; and the study in [27] studied the effects of
expertise and strategies on program comprehension for 19
subjects. Additionally, the same pretest task as in Dataset 1
(i1) was used. However, one of the studies had missing data
for the last change task, thereby reducing the number of
available tasks for analysis from four to three. Human
graders scored the quality of each task on a five-point scale:

0: nothing done on the task (no code changes)
1: failure, does not compile or no discernible functional

 progress toward solution
2: functional anomalies, one or more subtasks are

 achieved
3: functionally correct, major visual anomalies
4: functionally correct, only minor cosmetic anomalies
5: functionally correct, visually correct, i.e. “perfect

 solution”

We defined a Guttman structure Q1×Q2×Q3 for the
dimension of quality as follows: The original scoring cate-
gories 0 and 1 should be collapsed into a single category,
because neither might be preferred over the other. Thus,
variable Q1 was defined as “one or more subtasks achi-
eved” (category 2 above). Next, the Q2 variable was
“functionally correct, but with major visual anomalies allo-
wed” (category 3). Finally, we regarded the level of detail
used for separating functionally correct with minor visual
anomalies (category 4) and a “perfect solution” (category 5)
as somewhat arbitrary; these two categories were therefore
combined for Q3. For the time dimension, we used T1×T2
to partition the time for those individuals who passed Q3
into three groups. The matrix representation of this scoring
rule, denoted Q1×Q2×Q3×T1×T2, is provided in Table 1(b).

We also devised alternative scoring rules using one and
two dichotomous quality variables: Q1×Q2×T2×T1 does not
separate between major and minor visual anomalies when
the solution is otherwise correct. And finally, Q1×T2×T1
only separates between functionally correct solutions and
those that are not functionally correct, with no attention
given to visual anomalies. Finally, we devised scoring rules
for Q+T, Q+lnT, Q, and T using the same procedure as in
Dataset 1, but using three tasks instead of four.

C. Analysis method and handling of missing data
The analysis method for the two data sets, each using six
different score operationalizations, included the same four

basic steps. All time variables were negated (for T) or
logarithmically transformed and then negated (for Q+lnT,
QlnT) in order to increase interpretability so that high values
indicate high performance.

1) Using exploratory factor analysis.
We extracted the main signal in the data for each scoring
rule by Principal Component Analysis (PCA) using the
analysis software PASWTM 18.0. We used listwise deletion
of missing variables, regression for calculating the factor
score, and an unrotated (orthogonal) factor solution to
maximize interpretability of each factor.

2) Inspecting external and internal results
Operationalizations of the scoring rules were compared with
several experience variables. We report non-parametric cor-
relations (Spearman’s ρ, “rho”) unless otherwise noted. We
assumed that a valid scoring rule should correlate moderate-
ly and positively with relevant background variables such as
developer category and length of experience. Because such
variables are not influenced by our investigated score oper-
ationalizations, we refer to this analysis as external results.

Conversely, all the reported internal results are influ-
enced by how each scoring rule was constructed. For
internal results, we used the proportion of explained
variance for the first Principal Component (PC), which is
analogous to the sum score, as the signal-to-noise ratio for
each scoring rule. Cronbach’s α was used as an estimate of
the internal consistency of the scores. To ascertain the
applicability of each score operationalization, we used
confirmatory factor analysis. We report the Root Mean
Square Error of Approximation (RMSEA) using AmosTM
18.0. RMSEA is a parsimony-adjusted index, as it favors
models with fewer parameters. Further, RMSEA will be
influenced negatively if level of performance is not
consistent over multiple tasks (see Section 3 A). We used a
tau-equivalent reflective measurement model with multiple
indicators [29]. This implies that all tasks receive the same
weight when calculating the sum score. All scoring rules are
further regarded as ordinal scale approximations of skill.

3) Handling of missing data
Each dataset contain some missing data. For solutions that
were not submitted, we applied the same basic principle as
the authors of Dataset 2: “non-working solutions or no
improvements in code” were equated with “nothing sub-
mitted at all” and scored as incorrect. Additionally Dataset 2
had some missing values for time. We did the same as the
owners of this dataset and removed these observations
altogether. Since missing data poses a threat to validity if
data are not missing at random, we analyzed our results
using data imputation as well. However, because we found
that the same substantive results apply with or without data
imputation, the results are reported without imputation.

IV. RESULTS
In this section, we first report the correlations between the
investigated scoring rules and the subjects’ background
experience variables. Next, we report several indices that
must be inspected together, such as explained variance,
internal consistency and how well the scoring rules fit

confirmatory factor analysis. Finally, we highlight some
selected details about the scoring rules investigated.

A. External correlations
Table 2 shows correlations between experience variables
and the proposed score operationalizations for both datasets.
Developer category was only available for Dataset 1. In the
initial classification scheme (i.e., undergraduate = 1, inter-
mediate = 2, junior = 3, intermediate = 4, senior = 5) insig-
nificant and low correlations were present between develop-
er category and results (rho = 0.05–0.12). However, because
many graduate students performed at levels comparable to
seniors, it is questionable whether this operationalization of
expertise is a monotonically increasing function of per-
formance. When removing the two student categories (1 and
2) from the analysis, the company-assigned developer
category complied with expectations to some extent: all
correlations were significant and positive around 0.3.

The other experience variables were self-assessed. Years
of programming experience (lnProfExp) is an aspect of
extended experience. In general, the correlations for this
variable were low and insignificant for all scoring alterna-
tives, but were slightly improved having been logarithmic-
ally transformed (a justifiable transformation given the log-
log law of practice). Java programming expertise (SEJava-
Exp) is a Likert scale variable ranging from novice = 1 to
expert = 5. This variable was significantly and positively
correlated around 0.3 with all of the scoring alternatives for
Dataset 1. However, for Dataset 2, the correlations were
lower and less systematic; caution should be shown when
interpreting this result, however, due to the low number of
observations (n). Overall, self-assessed Java programming
expertise seems to have a non-linear but monotonically in-
creasing relation to the proposed score operationalizations.
Lines Of Code (lnLOCJava) written in Java is a self-
estimated variable with positive skew and kurtosis, but
approximates a normal distribution after logarithmic trans-
formation. All scoring operationalizations were significantly

and positively correlated with LOC (around rho = 0.3) with
two exceptions: Q in Dataset 1 and T in Dataset 2.

B. Internal fit indices
Table 2 shows the fit indices of the investigated scoring
rules. We used PCA to extract the main signal in the data, as
represented by the first PC. The number of factors (#f) sug-
gested by PCA indicates to what degree our expectations
are present empirically. Q in Dataset 1 indicates a problem,
because two factors are indicated by PCA.

The proportion of explained variance by the first PC
(%E) indicates the signal-to-noise ratio for each score oper-
ationalization. The additive scoring rules (Q+T, Q+lnT)
have the highest proportion of explained variance: logarith-
mic transformation before standardization of time produces
additional explained variance.

Internal consistency is one way to investigate whether
an individual’s performance is stable over multiple tasks.
High values for Cronbach’s alpha (α) are better than low
values (0.60 for group differences and 0.85 for individual
differences are sometimes used). The two additive scoring
rules do well in this respect, followed by Guttman-
structured scoring rules. Further, Q in Dataset 1 and T in
Dataset 2 have lower α than other alternatives.

Finally, we report how the different scoring alternatives
fit according to confirmatory factor analysis. Lower
RMSEA values signify better fit: values less than or equal
to 0.05 indicate close approximate fit, values between 0.05
and 0.08 indicates reasonable error of approximation, and
values above 0.10 suggest poor fit [26]. For Dataset 1,
Q1×T2×T1 and Q1×T3×T2×T1 display reasonable model fit
(< 0.08) whereas T and Q have poor fit. The additive
scoring rules alternatives lie somewhere in between, and the
logarithmically-transformed version (Q+lnT) has better
overall fit than the untransformed version. Q for Dataset 2
has poor fit as well, even though this dataset has better
overall confirmatory fit, despite the lower statistical power
as can be seen by the wider 90% Confidence Intervals (CI).

TABLE II. CORRELATIONS AND CONFIRMATORY MODEL FIT OF SCORING ALTERNATIVES

 Non-parametric Correlations rho (n) Fit indices
Dataset 1 Developer

Category
lnProfExp SEJavaExp lnLOCJava #f %E α RMSEA [lo90, hi90]

Q (99) 0.26** (157) 0.08 (158) 0.25** (158) 0.12 2 33.3 0.45 0.145 [0.086, 0.211]
T (93) 0.33** (152) 0.16* (152) 0.31** (152) 0.38** 1 47.9 0.54 0.189 [0.131, 0.253]
Q+T (93) 0.34** (152) 0.14 (152) 0.30** (152) 0.29** 1 48.7 0.65 0.096 [0.027, 0.166]
Q+lnT (93) 0.35** (152) 0.15 (152) 0.30** (152) 0.29** 1 52.6 0.70 0.093 [0.021, 0.163]
Q1×T1 (99) 0.31** (157) 0.07 (158) 0.33** (158) 0.29** 1 45.0 0.58 0.094 [0.023, 0.164]
Q1×T2×T1 (99) 0.33** (157) 0.11 (158) 0.31** (158) 0.29** 1 47.7 0.63 0.076 [0.000, 0.149]
Q1×T3×T2×T1 (99) 0.35** (157) 0.11 (158) 0.31** (158) 0.30** 1 49.4 0.65 0.074 [0.000, 0.147]

Dataset 2
Q NA (89) 0.12 (19) 0.14 (89) 0.36** 1 52.5 0.54 0.109 [0.000, 0.261]
T NA (89) –0.15 (19) –0.02 (89) 0.19 1 47.6 0.41 0.019 [0.000, 0.212]
Q+T NA (89) –0.01 (19) 0.10 (89) 0.35** 1 59.9 0.66 0.137 [0.000, 0.284]
Q+lnT NA (89) –0.02 (19) 0.10 (89) 0.34** 1 62.9 0.70 0.095 [0.000, 0.250]
Q1×T2×T1 NA (89) 0.01 (19) 0.03 (89) 0.30** 1 52.6 0.55 0.000 [0.000, 0.179]
Q1×Q2×T2×T1 NA (89) 0.05 (19) 0.23 (89) 0.34** 1 54.9 0.59 0.000 [0.000, 0.103]
Q1×Q2×Q3×T2×T1 NA (89) 0.09 (19) 0.22 (89) 0.33** 1 55.7 0.60 0.000 [0.000, 0.153]

N is the number of observations, developer category is junior (3), intermediate (4) or senior (5), lnProfExp is the log-transformed number of years of professional programming experience where part time
experience is counted as 25% of full time experience, SEJavaExp is self-evaluated Java programming expertise on a scale from novice (1) to expert (5), #f is the number of suggested factors by PCA, %E is
percent total variance explained by the first PC, α is Cronbach’s alpha, RMSEA is the Root Mean Square Error of Approximation with 90% low (lo90) and hi (hi90) confidence intervals. Data not available
for analysis are marked NA. Correlations significant at the 0.05 level (two-tailed) are marked * and correlations significant at the 0.01 level are marked **.

Nevertheless, upon inspecting the lower CI of Dataset 1,
there is sufficient statistical power to state that T fits poorly.
However, as is evident by the upper CI of all alternatives,
there is not sufficient statistical power to claim support for a
close model fit for any of these alternatives either;
Q1×Q2×T2×T1 is overall the best fitting alternative with
upper CI slightly above 0.10.

In summary, an analysis of Q and T separately seems
problematic in terms of some correlations, relatively low
explained variance, and problematic confirmatory fit in
three out of four instances. The additive scoring rules show
the highest levels of explained variance and internal consist-
ency, but they display some problems with confirmatory
model fit. Overall we found the best-fitting score oper-
ationalizations to be Q1×T3×T2×T1 for Dataset1 and
Q1×Q2×T2×T1 for Dataset 2.

C. Details for factors in Datasets 1 and 2
Table 3 shows the correlations between all but one of the
investigated scoring rules (Q+lnT was found to be a better
alternative than Q+T and the latter is therefore not reported).
Correlations below the diagonal are in terms of (non-
parametric) Spearman's rho, which does not assume line-
arity between factors and may therefore be used. Parametric
correlations (Pearson's r) are given above the diagonal for
comparison. All correlations are significant at the 0.01 level
(two-tailed).

In both datasets, T and Q have the lowest correlation
with each other. For all Guttman-structured alternatives in
Dataset 1, we may further observe how these scoring rules
migrate from closeness with Q to closeness with T when
additional time categories are added. Similarly, the
Guttman-structured alternatives in Dataset 2 migrate from
closeness with T to closeness with Q when additional qual-
ity categories are added. All proposed scoring alternatives
also have more shared variance with T and Q separately,
than Q and T have with each other. Further, the additive and
Guttman-structured scoring alternatives are also somewhat
similar in their rank ordering of individuals for Dataset 2
(rho > 0.6). For Dataset 1, in fact, they are highly similar in
their rank ordering of individuals (rho > 0.9).

To verify that the scoring rules predict performance on
other programming tasks, we used the Q1×T2×T1 scoring
rule of Dataset 1 to separate individuals into low and high
skill groups. Using the results for task i5, which is not a part
of the investigated scoring rules, as a dependent variable
and above/below mean sum score of tasks i1–i4 as the
independent variable, we found that the high group per-
formed much better than the low group: 67.1% had correct
solutions for i5 while the corresponding results for the low
group was 27.8% correct (time could not be analyzed this
way for i5; see [5] for an explanation). We could further
confirm that the high group had written significantly more
LOC in Java and had more programming and Java
experience as well. Moreover, by using three groups instead
of two (i.e., low, medium and high) in terms of overall skill,
similar results were obtained: the groups are well ordered
according to external background variables, as well as on
performance for i5. For Dataset 2, we performed the same

analysis, using the quality of task i4 as the dependent
variable and the sum score of i1–i3 as the independent
variable. All correlations between the Guttman-structured
scoring rules and the quality of i4 were large (n = 52, rho =
0.51–0.53) and significant (p < 0.001).

We were also able to identify the treatment effect of
Dataset 1. The dichotomous treatment variable was signifi-
cantly and moderately correlated with the second PC of
Q1×T3×T2×T1 (rho = 0.42) and for the two additive scoring
rules as well (rho = 0.36). Further, the treatment effect was
not correlated with any of the first PC of the proposed
scoring rules, suggesting that the effect of the treatment in
this study is less than the individual variability. This implies
that unless some degree of experimental control is available
for individual variability—for example, through the use of
pre-tests [23,33]—an experimenter would require many
more subjects in a study to achieve the same statistical
power. Perhaps worse, effects of practical importance might
go undetected in the early phases of a research project.

V. DISCUSSION
We begin by discussing the implications for research and
practice when combining time and quality in empirical
studies on programmers. Next, we discuss limitations and
address how this work can be expanded in the future.

A. Implications for research and practice
In this reanalysis, we have presented a method for combin-
ing time and quality as an ordinal variable of performance.
Results show that when programming performance on mul-
tiple tasks were aggregated, significant and positive corre-

TABLE III. CORRELATIONS FOR DATASET 1 AND 2

Scoring rule (1) (2) (3) (4) (5) (6)

Q (1) 0.36 0.76 0.82 0.75 0.71

T (2) 0.33 0.82 0.64 0.73 0.74

Q+lnT (3) 0.72 0.85 0.92 0.95 0.94

Q1×T1 (4) 0.80 0.70 0.92 0.96 0.96

Q1×T2×T1 (5) 0.75 0.78 0.96 0.95 0.98

Q1×T3×T2×T1 (6) 0.72 0.81 0.97 0.96 0.98

(a) Dataset 1

Scoring rule (1) (2) (3) (4) (5) (6)

Q (1) 0.42 0.83 0.68 0.85 0.95

T (2) 0.41 0.83 0.53 0.56 0.50

Q+lnT (3) 0.84 0.80 0.70 0.83 0.85

Q1× T2×T1 (4) 0.64 0.49 0.62 0.86 0.75

Q1×Q2×T2×T1 (5) 0.81 0.52 0.79 0.83 0.89

Q1×Q2×Q3×T2×T1 (6) 0.96 0.45 0.84 0.70 0.87

(b) Dataset 2

lations with skill could be obtained with several relevant
expertise-related background variables. The strongest and
most consistent correlations were obtained for LOC (around
0.3), which is highly similar to the value (of 0.29) reported
in [9]. Seniority and self-evaluated expertise indicated more
mixed results. For seniority in Dataset 1, statistical signifi-
cant positive correlations could only be obtained when
students were removed from analysis. For general program-
ming experience, low and insignificant correlations were
present. However, [9] reports a correlation of 0.29 between
skill and months of Java programming experience; this may
indicate that more precision (months instead of years) as
well as specificity (Java experience as opposed to general
programming experience) is required to yield higher corre-
lations for this variable.

Nevertheless, using correlations as the only criteria for
evaluating tests poses a problem; what the actual correlation
is between a test score and a background variable will never
be known for certain [10]. We therefore used confirmatory
factor analysis to investigate whether performance on
multiple tasks could be considered as “reliable (superior)
performance” according to established literature on expert-
ise and skill. We found unacceptable model fit in three of
four instances when analyzing quality or time as separate
variables. Furthermore, the only well-fitting variable (T in
Dataset 2) did not accord with expectations of correlations
with expertise background variables. Therefore, some con-
cerns seem to exist when performance as a dependent vari-
able is operationalized as time alone, or quality alone, in
programming experiments. Such a problem will, however,
remain undetected unless multiple tasks are present to be
compared.

This study also demonstrates the importance of con-
sidering experiment constraints when analyzing individual
variability of performance. For example, when loose time
limits, or no limits, are used in a study and most subjects
solve a task correctly, it is entirely plausible that, when
analyzing correct solutions, between-subject variability is
mostly present in the time variable. Conversely, if strict
time limits are used and few subjects are able to finish on
time, variability will mainly reside in the quality variable
(as they would in, for example, an examination). Hence, the
scoring of time and quality as a combined variable is
dependent on the instrumentation as well as upon empirical
results. This also implies that no universal scoring rule
exists that applies equally well to all tasks in all situations.

For time as a variable, we generally obtained stronger
and more consistent correlations when using non-parametric
correlations and untransformed experience variables or
parametric correlations with logarithmically-transformed
experience. We concede that other transformations may be
applicable as well, such as 1/time. Nevertheless, variables
analyzed in this manner should almost always be plotted
first and verified against theoretical expectations; there is
often little theoretical rationale for expecting a priori that
variables have a linear relation, even if each variable dis-
plays an approximate normal distribution. A similar cau-
tion should be observed when analyzing variables of
quality. For example, for Dataset 2, it is problematic to

assume that an increase in score from 2 to 3 (a difference of
1) amounts to the same increase as from 3 to 4; improving a
correct solution from “major” to “minor visual anomalies”
may require negligible time, whereas the improvement from
one functionally correct subtask to a fully functionally
correct solution may require substantial effort. Hence, qual-
ity variables should be treated as ordinal when in doubt and
they are, further, most likely to have non-linear relations to
other variables. Therefore, non-parametric correlations
should be the first, not last, resort.

For the scoring rules that combine time and quality, we
see two main competing alternatives in the present analysis:
the additive scoring rules treated “slow and high quality”
and “fast and low quality” (Fig. 2) as “medium perform-
ance.” The Guttman-structured alternatives treated “fast and
low quality” differently; quality had to be at an (operation-
ally defined) acceptable level, before additional score points
were awarded for time. Both alternatives demonstrated
highly similar results in terms or correlations as well as rank
order of individuals in terms of skill. Specifically, the two
alternatives were highly similar in terms of the rank order-
ing of individuals in Dataset 1. It is therefore interesting to
note that confirmatory model fit was much stronger in favor
of the Guttman-structured scoring rules in Dataset 2 where
less agreement between the Guttman-structured and additive
scoring rules exist.

Some challenges are also present with using the additive
scoring rules; partial scores of performance are awarded for
fast solutions even though no improvement may be present.
This implies that an individual who chooses not to
participate seriously in a study will receive a higher score
than an individual who seriously attempts all tasks, but fails.

Finally, given that some merit for the use of Guttman
structures is established at this point, a practical issue arises
around the number of score categories for time and quality.
Because neither quality alone, nor time alone, fits the data
particularly well in most instances, a sensible choice is to
start at the extremes and work towards a compromise using
the indices and recommendations reported here. Based on
our experience, each score operationalization will usually
display a peak of overall fit at some point; for example,
when adding Q3 to Q1×Q2×T2×T1 in Dataset 2, confirm-
atory model fit began to decrease while the proportion of
explained variance only marginally improved.

B. Limitations
The weaknesses in the present analysis have to do with the
two sources of data as well as the methods we have used to
analyze time and quality as an aggregated variable.

The experimental treatments in both datasets add noise
to the data, which probably entails that all investigated
scoring rules show worse fit than they would in data sets
without such treatment. However, for this issue, it is at least
true that the conditions were equal throughout our com-
parisons. There are also statistical independency problems
between tasks. When a new task expands upon the solution
of the previous task (i.e., a testlet-structure), this is still held
to constitute one observation. Furthermore, performance in
both studies is affected by motivational components; some

peer pressure was present for most subjects in Dataset 1,
whereas we believe motivation was more variable in Data-
set 2. Finally, we used factor analysis on discrete ordinal
variables as well as on dichotomous variables for quality.
Optimally, one should use Bayesian estimation [28] or poly-
choric correlation matrices if the aim is to conclude more
strongly. It is nevertheless somewhat common to see, for
example, Likert scale variables analyzed using factor
analysis, with a claim that the resulting factor score has
interval-scale properties.

A potential objection to our confirmatory analysis using
tau-equivalence is that relative weights for each task may be
more appropriate for calculating the sum score. We investi-
gated RMSEA from such a perspective as well (i.e., a con-
generic factor model). Although slightly better fit could be
obtained for all scoring alternatives, the same substantive
results nevertheless continue to apply when comparing
alternative ways of combining time and quality.

Other, perhaps, justifiable objections to our approach
may be that multiple-factor (e.g., two rotated factors) or
simplex-structured models should have been investigated.
For Dataset 1, we have already done these analyses, but
with inconclusive overall results and poor confirmatory fit.
Therefore, we have chosen not to report these here. We
could also have used non-linear regression or neural net-
works to maximize explained variance. However, by doing
so, it would have been more difficult to interpret the results
and the implied models for measurement would lack
parsimony. Better, and more recent, models for measure-
ment exist than the one we have used here. We now turn to
such improvements where patterns in the score vector
impose additional constraints on what scoring rules can be
considered well-fitting overall.

C. Reccomendations for future research
In software engineering it is somewhat common to read
about differences in programming performance ranging in
an order of magnitude or more. However, as illustrated in
Fig. 1, these differences pertain to performance per se, and
not necessarily to individuals. For ratio comparisons of indi-
viduals, a quantitative scale is required in which units are
separated by equal distances and where zero is well defined.
This may be attempted though axiomatic measurement,
which is measurement in a stricter sense than the putative
measures discussed here. But it is unlikely that advances in
this direction will happen in the near future (see [10] for
present challenges). Nevertheless, we consider Rasch analy-
sis [3] as a useful intermediary step for obtaining interval-
scale approximations of programming skill. In this model,
task difficulty is also an integral part of the measurement
process, something the current model for measurement we
employ (i.e., classical test theory) is lacking.

We have identified some additional directions for future
work. For example, two or more internally consistent scor-
ing perspectives based on the same data could be devised in
which more score points are awarded either to quality or to
time. By estimating skill for an individual based on these
two approaches separately, it may be possible to make
inferences about an individual’s preferred working style

during a test. If an individual is ranked higher on one score
operationalization than the other, the relative difference may
provide information about the value system an individual
has for “fast and low quality” versus “slow and high qual-
ity” solutions. Further, different scoring rules on a task-by-
task basis should be investigated as well. Although we
applied the same scoring principle to all tasks in this study,
there should be no a priori reason for requiring that a
scoring rule must fit all tasks equally well to be valid.

Future work using Guttman-structured scoring rules for
time and quality may also be directed at how to avoid the
degradation of time as a continuous variable into discrete
categories. However, any solution to this problem must
somehow account for the likelihood that time will have
skewed distributions. Although the additive scoring rule
partially solves this problem by logarithmically transform-
ing time, we would like to see more alternatives in the
future that differ in how quality and time is combined as
well as how measurement is conceptualized.

VI. CONCLUSION
In a reanalysis of two existing studies, we have shown
through multiple score operationalizations how time and
quality for programming task solutions may be meaning-
fully combined as an ordinal variable of performance. By
aggregation of multiple performance variables into an ordi-
nal skill score approximation, we obtained significant and
positive correlations with relevant experience variables for
all score alternatives that combined time and quality. Some
degree of internal consistency was present, but only at a
level high enough to roughly characterize group differences.
We also showed that from correlations alone, it was difficult
to choose what the so-called "best" scoring alternative
might be. However, by using confirmatory factor analysis,
we found some support for the Guttman-structured scoring
rules over other alternatives, such as analyzing time or qual-
ity independently. Statistical power in our reanalysis was,
however, not sufficient to conclude strongly, even though
upper confidence intervals for some scoring alternatives
almost indicate reasonable model fit for some alternatives.

This study implies that if time or quality is analyzed sep-
arately as a dependent variable, and experiment results are
contrary to theoretical expectations, a reanalysis using the
principles delineated here may be warranted. Threats to
validity may further be present if the dependent variable of
a study is not a monotonically increasing function of expert-
ise or if multiple operationalizations of the same treatment
do not indicate similar interpretations of the results. How
individual variability in a study affects time, quality, or the
two variables in combination also warrants closer scrutiny;
instrumentation issues, such as time limits or task difficulty
match with subject population, may also influence results in
unexpected directions. Finally, we recommend the use of
scoring rules that converge in terms of measurement while
being parsimonious and interpretable.

Alternative score operationalizations in which time and
quality are combined often were more similar to each other
than they were to time or quality analyzed separately.
Therefore, more attention is required to analyze how “per-

formance” is operationalized in programming studies. We
call for others to reanalyze their existing datasets where
time and quality variables have been collected, and to score
time and quality as a combined variable of performance.
Such new datasets might even contain relevant background
variables that can be further used to inform the strength of
relations with performance and background variables, there-
by making meta-analytic studies feasible in the future.

ACKNOWLEDGMENT
The authors are grateful to Erik Arisholm, Kaja Kværn,
Annette Levine, Richard Thomas, and Gøril Tømmerberg
for use of their data, and to Jan-Eric Gustafsson for detailed
feedback on an earlier analysis of Dataset 1.

REFERENCES
[1] J. R. Anderson, Acquisition of cognitive skill. Psychol. Rev., vol.

89, 1982, pp. 369–406.
[2] J. R. Anderson, F. G. Conrad, and A. T. Corbett, Skill acquisition

and the LISP tutor. Cognitive Sci., vol. 13, 1989, pp. 467–505.
[3] D. Andrich, Rasch models for measurement. Beverly Hills, CA:

Sage Publications, 1988.
[4] E. Arisholm, H. Gallis, T. Dybå, and D. I. K. Sjøberg, “Evaluating

pair programming with respect to system complexity and program-
mer expertise,” IEEE T. Software Eng., vol. 33, 2007, pp. 65–86.

[5] E. Arisholm and D. I. K. Sjøberg, Evaluating the effect of a dele-
gated versus centralized control style on the maintainability of
object-oriented software. IEEE T. Software Eng., vol. 30, 2004, pp.
521–534.

[6] A. Basilevsky, Statistical factor analysis and related methods:
Theory and applications. New York: John Wiley & Sons, 1994.

[7] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp,
“Motivation in software engineering: A systematic literature
review”, J. Inform. Software Tech., vol. 50, 2008, pp. 860–878.

[8] G. R. Bergersen, “Combining time and correctness in the scoring of
performance on items,” Proc. Probabilistic Models for Measurement
in Education, Psychology, Social Science and Health, Copenhagen
Business School and the University of Copenhagen, Jun. 2010.
http://tiny.cc/pl1i1.

[9] G. R. Bergersen and J.-E. Gustafsson. “Programming skill, know-
ledge and working memory among professional software developers
from an investment theory perspective,“ J. Indiv. Diff, in press.

[10] D. Borsboom, Measuring the mind: Conceptual issues in contemp-
orary psychometrics. New York: Cambridge University Press, 2005.

[11] J. P. Campbell, “Modeling the performance prediction problem in
industrial and organizational psychology,” in Handbook of industrial
and organizational psychology, vol. 1, 2nd ed., M. D. Dunnette and
L. M. Hough, Eds. Palo Alto, CA: Consulting Psychologists Press,
1990, pp. 687–732.

[12] J. B. Carroll, Human cognitive abilities: A survey of factor-analytic
studies. Cambridge: Cambridge University Press, 1993.

[13] T. DeMarco and T. Lister, Peopleware: Productive projects and
teams, 2nd ed. New York: Dorset House Publishing Company, 1999.

[14] H. L. Dreyfus, S. E. Dreyfus, and T. Athanasiou, Mind over
machine: The power of human intuition and expertise in the era of
the computer. New York: The Free Press, 1988.

[15] K. A. Ericsson, N. Charness, P. J. Feltovich, and R. R. Hoffman,
Eds., The Cambridge handbook of expertise and expert performance.
Cambridge: Cambridge University Press, 2006.

[16] P. M. Fitts and M. I. Posner, Human performance. Belmont, CA:
Brooks/Cole, 1967.

[17] R. L. Glass, Facts and fallacies of software engineering. Boston:
Addison-Wesley Professional, 2003.

[18] R. L. Gorsuch, Factor analysis, 2nd ed. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1983.

[19] L. L. Guttman, “The basis for scalogram analysis,” in Scaling: A
sourcebook for behavioral scientists, G. M. Maranell, Ed. Chicago:
Aldine Pub. Co., 2007, pp. 142–171.

[20] J. E. Hannay, E. Arisholm, H. Engvik, and D. I. K. Sjøberg,
“Personality and pair programming,” IEEE T. Software Eng., vol.
36, 2010, pp. 61–80.

[21] J. E. Hannay and M. Jørgensen, “The role of deliberate artificial
design elements in software engineering experiments,” IEEE T.
Software Eng., vol. 34, 2008, pp. 242–259.

[22] T. Hærem, Task complexity and expertise as determinants of task
perceptions and performance: Why technology structure research
has been unreliable and inconclusive. PhD diss., Norwegian School
of Management BI, 2002.

[23] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K. Sjøberg, “A
systematic review of quasi-experiments in software engineering,”
Inform. Software Tech., vol. 51, 2009, pp. 71–82.

[24] A. Karahasanović, A. K. Levine, and R. C. Thomas, “Comprehen-
sion strategies and difficulties in maintaining object-oriented
systems: An explorative study,” J. Syst. Software, vol. 80, 2007, pp.
1541–1559.

[25] A. Karahasanović and R. C. Thomas, “Difficulties experienced by
students in maintaining object-oriented systems: An empirical
study,” Proc. Ninth Australasian Computing Education Conference
(ACE2007), Australian Computer Society, 2007, pp. 81–87.

[26] R. B. Kline, Principles and practice of structural equation modeling,
2nd ed. New York: Guilford Press, 2005.

[27] K. Kværn, Effects of expertise and strategies on program com-
prehension in maintenance of object-oriented systems: A controlled
experiment with professional developers. Master thesis, Department
of Informatics, University of Oslo, 2006.

[28] S.-Y. Lee, Structural Equation Modeling: A Bayesian approach.
Chichester: John Wiley, 2007.

[29] J. C. Loehlin, Latent variable models: An introduction to factor,
path, and structural equation analysis, 4th ed. Mahwah, NJ:
Lawrence Erlbaum Associates, 2004.

[30] J. McCall, “Quality factors,” in Encyclopedia of software engineer-
ing, vol. 2, J. J. Marciniak, Ed., 1994, pp. 958–969.

[31] A. Newell and P. Rosenbloom, “Mechanisms of skill acquisition and
the law of practice,” in Cognitive skills and their acquisition, J. R.
Anderson, Ed. Hillsdale, NJ: Erlbaum, 1981, pp. 1–56.

[32] L. Prechelt, “The 28:1 Grant/Sackman legend is misleading, or: How
large is interpersonal variation really?”, University of Karlsruhe,
Technical report, 18, 1999.

[33] W. R. Shadish, T. D. Cook, and D. T. Campbell, Experimental and
quasi-experimental designs for generalized causal inference. Boston:
Houghton Mifflin, 2002.

[34] F. L. Schmidt and J. E. Hunter, “The validity and utility of selection
methods in personnel psychology: Practical and theoretical impli-
cations of 85 years of research findings,” Psychol. Bull., vol. 124,
1998, pp. 262–274.

[35] J. Shanteau, “Competence in experts: The role of task character-
istics,” Organ. Behav. Hum. Dec., vol. 53, 1992, pp. 252–266.

[36] J. Shanteau, D. J. Weiss, R. P. Thomas, and J. C. Pounds,
“Performance-based assessment of expertise: How to decide if
someone is an expert or not,” Eur. J. Oper. Res., vol. 136, 2002, pp.
253–263.

[37] J. Spolsky, Smart and gets things done: Joel Spolsky’s concise guide
to finding the best technical talent. Berkeley, CA: Apress, 2007.

[38] S. Wiedenbeck, V. Fix, and J. Scholtz, “Characteristics of the mental
representations of novice and expert programmers: An empirical
study,” Int. J. Man-Machine Studies, vol. 39, 1993, pp. 793–812.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

