Programming with OpenMP
and mixed MPI-OpenMP

Xing Cai

Simula Research Laboratory & University of Oslo

http://heim.ifi.uio.no/"xingca/openmp-lecture.pdf

Programming with OpenMP —p. 1



What will we learn today?

® The most important ingredients of OpenMP programming
® Simple coding examples (in C)
$» Mixed MPI-OpenMP programming

Programming with OpenMP — p. 2



Resources

® B. Chapman, G. Jost, R. van der Pas. Using OpenMP. MIT Press,
2007

® B. Barney. OpenMP tutorial
http://www.lInl.gov/computing/tutorials/openMP/

® OpenMP official web site
http://openmp.org/

Programming with OpenMP —p. 3



What is OpenMP?

OpenMP — a portable standard for shared-memory programming

The OpenMP API consists of

o compiler directives (for insertion into sequential Fortran/C/C++
code)

o afew library routines
® some environment variables

Advantages:

o User-friendly

# Incremental parallelization of a serial code

» Possible to have a single source code for both serial and
parallelized versions

Disadvantages:

» Relatively limited user control

# Most suitable for parallelizing loops (data parallelism)

o Performance?

Programming with OpenMP —p. 4



The programming model of OpenMP

® OpenMP provides high-level thread programming
® Multiple cooperating threads are allowed to run simultaneously

® Threads are created and destroyed dynamically in a fork-join pattern
# An OpenMP program consists of a number of parallel regions
» Between two parallel regions there is only one master thread

# Inthe beginning of a parallel region, a team of new threads is
spawned

# The newly spawned threads work simultaneously with the master
thread

# Atthe end of a parallel region, the new threads are destroyed

Programming with OpenMP —p. 5



Fork-join model

w— —
master
thread

{ parallel region } { parallel region }

—

Z H O 4

https://computing.linl.gov/tutorials/openMP/

Programming with OpenMP — p. 6



OpenMP: first things first

Remember the header file #include <omp.h>

Insert compiler directives (#pragma omp... Iin C/C++ syntax),
possibly also some OpenMP library routines

Compile

» For example, gcc -fopenmp code.c

Execute

» Remember to assign the environment variable OMPNUMTHREADS

» |t specifies the total number of threads inside a parallel region, if
not otherwise overwritten

Programming with OpenMP —p. 7



General code structure

#include <omp.h>
main () {
int varl, var2, var3;

[ » serial code * [

[* ... %/
[ = start of a parallel region * [
#pragma omp parallel private(varl, var2) shared(var3)
[~ ... =]/
}
/ + more serial code * [
[* ... %/
[ = another parallel region * [

#pragma omp parallel

[+ .. x]
}
}

Programming with OpenMP —p. 8



Parallel region

A parallel region is a block of code that is executed by a team of
threads

The following compiler directive creates a parallel region
#pragma omp parallel { ... }

Clauses can be added at the end of the directive

Most often used clauses:

» default(shared) or default(none)
# public(list _of _variables)

o private(list _of _variables)

Programming with OpenMP —p. 9



Hello-world in OpenMP

#include <omp.h>
#include <stdio.h>

int main (int argc, char *argvl])
{
int th_id, nthreads;
#pragma omp parallel private(th_id) shared(nthreads)

th id = omp_get_thread _num();
printf("Hello World from thread %d\n", th_id);

#pragma omp barrier
if (th_id == 0 ) {

nthreads = omp_get num_threads();
printf("There are %d threads\n",nthreads);

}
}

return O;

Programming with OpenMP — p. 10



Important OpenMP library routines

Int omp _get _num.threads ()
returns the number of threads inside a parallel region

int omp _get _thread _num ()
returns the “thread id” for each thread inside a parallel region

void omp _set _num.threads (int)
sets the number of threads to be used

void omp _set _nested (int)
turns nested parallelism on/off

Programming with OpenMP —p. 11



Work-sharing constructs

l master thread l master thread l master thread

FORK FORK

i e | | e | ||

FORK

JOIN JOIN JOIN
l master thread l master thread l master thread
omp for omp sections omp single

https://computing.linl.gov/tutorials/openMP/

Programming with OpenMP —p. 12



Parallel for loop

® |[nside a parallel region, the following compiler directive can be used
to parallelize a for -loop:
#pragma omp for

® Clauses can be added, such as

# schedule(static, chunk _size)

# schedule(dynamic, chunk _size) (non-deterministic
allocation)

o schedule(guided, chunk _size) (non-deterministic
allocation)

o schedule(runtime)

» private(list _of _variables)

# reduction(operator:variable)

& nowait

Programming with OpenMP —p. 13



Example

#include <omp.h>

#define CHUNKSIZE 100
#define N 1000

main ()

int i, chunk;
float a[N], b[N], c[N];

for (i=0; I < N; i++)
afi] = b[i] =1 * 1.0;
chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i)
{

#pragma omp for schedule(dynamic,chunk)
for (i=0; i < N; i++)
cfi] = afi] + bli];

} /| = end of parallel region * [
}

Programming with OpenMP — p. 14



More about parallel for

The number of loop iterations can not be non-deterministic
# break ,return ,exit , goto not allowed inside the for -loop

The loop index is private to each thread

A reduction variable is special

# During the for -loop there is a local private copy in each thread

# Atthe end of the for -loop, all the local copies are combined
together by the reduction operation

Unless the nowait clause is used, an implicit barrier synchronization
will be added at the end by the compiler

#pragma omp parallel and #pragma omp for can be
combined into
#pragma omp parallel for

Programming with OpenMP — p. 15



Example of computing inner-product

N-1
> b
i=0
int I;
double sum = 0;
/ = allocating and initializing arrays 'a’ 'b’ * |
[* ... */
#pragma omp parallel for default(shared) private(i) reduc tion(+:sum)

for (i=0; I<N; i++)
sum += afi] *Dbli];

Programming with OpenMP —p. 16



Parallel sections

Different threads do different tasks independently, each section is
executed by one thread.
#pragma omp parallel

#pragma omp sections

#pragma omp section
funcA ();

#pragma omp section
funcB ();

#pragma omp section
funcC ();

Programming with OpenMP — p. 17



Single execution

® #pragma omp single { ... }
# code executed by one thread only, no guarantee which thread
# an implicit barrier at the end

® #pragma omp master { ... }
# code executed by the master thread, guaranteed
# no implicit barrier at the end

Programming with OpenMP —p. 18



Coordination and synchronization

#pragma omp barrier

# synchronization, must be encountered by all threads in a team (or
none)

#pragma omp ordered { a block of codes }
# another form of synchronization (in sequential order)

#pragma omp critical { a block of codes }

#pragma omp atomic { single assignment statement }
# more efficient than #pragma omp critical

Programming with OpenMP —p. 19



Data scope

® OpenMP data scope attribute clauses:
o shared

private

firstprivate

lastprivate

# reduction

o o @

® Purposes:

» define how and which variables are transferred to a parallel
region (and back)

» define which variables are visible to all threads in a parallel
region, and which variables are privately allocated to each thread

Programming with OpenMP — p. 20



Some remarks

When entering a parallel region, the private  clause ensures each
thread having its own new variable instances. The new variables are
assumed to be uninitialized.

A shared variable exists in only one memory location and all threads
can read and write to that address. It's the programmer’s
responsibility to ensure that multiple threads properly access a
shared variable.

The firstprivate clause combines the behavior of the private
clause with automatic initialization.

The lastprivate clause combines the behavior of the private
clause with a copy back (from the last loop iteration or section) to the
original variable outside the parallel region.

Programming with OpenMP —p. 21



Parallelizing nested for-loops

Serial code
for (i=0; i<100; i++)
for (j=0; j<100; j++)
afilil = blilhl + clill]
Parallelization

#pragma omp parallel for private())
for (i=0; i1<100; i++)
for (j=0; j<100; j++)
afili] = b{lo] + clip]

Why not parallelize the inner loop?

» to save overhead of repeated thread forks-joins
Why mustj be private ?

# to avoid race condition among the threads
Comments

» OpenMP 2.5 allows parallelization of only one loop layer
o OpenMP 3.0 has a new collapse clause

Programming with OpenMP — p. 22



Nested parallelism

When a thread in a parallel region encounters another parallel construct, it

may create a new team of threads and become the master of the new
team.

#pragma omp parallel num_threads(4)
[+ ... * |
#pragma omp parallel num_threads(2)
[+ .. * [

}
}

Programming with OpenMP — p. 23



Parallel tasks

#pragma omp task (starting with OpenMP 3.0)

#pragma omp parallel shared(p_vec) private(i)

{

#pragma omp single

for (i=0; i<N; i++) {
double r = random_number();
if (p_vec[i] > r) {
#pragma omp task
do_work (p_vecli]);
}

}

}
}

Programming with OpenMP — p. 24



Common mistakes

® Race condition

int nthreads;
#pragma omp parallel shared(nthreads)

nthreads = omp_get num_threads();

}
® Deadlock

#pragma omp parallel
#pr'égma omp critical

#prag.r.r'\a omp barrier

}

Programming with OpenMP — p. 25



How about performance?

Factors that influence the performance of OpenMP programs:
®» How the memory is accessed by individual threads
® The fraction of work that is sequential (or replicated)
® The overhead of handling OpenMP constructs
® [oad imbalance
® Synchronization costs

Good programming practices:
® Optimize use of barrier

Avoid ordered construct

Avoid large critical blocks

Maximize parallel regions

Avoid parallel regions in inner loops

© oo 0@

Use schedule(dynamic) or schedule(guided) to address poor
load balance

Programming with OpenMP — p. 26



The issue of NUMA

® Non-uniform memory access (e.g., dual-socket quad-core Nehalem)

QPI towards IOH QPI towards 10H

GTis = Gigatransfers per second

GBis = Gigabytes per second QP16.4GTis

12.8 GB/s per direction

Memory Controller Memory Controller

10.8 GB/s data per channel

Bank 3

if used, max frequency [ DiMmM ] [ DiMM J [ DIMmM J [ DIMM ] [ DiMmM ] [ DIMM ]
is 800 MHz
Bank 2 [ DIMM ] [ DIMM ] [ DIMM ] [ DIMM ] [ DIMM ] l DIMM ]
max frequency 1333 MHz
Bank 1 | omw | [ omw | [ omm | [ DIMM ] [ DIMM ] [ DIMM ]
max frequency 1333 MHz

Channel A Channel B Channel C Channel D Channel E Channel F

® Each thread should, if possible, only work with data close-by
# Use of first touch in data initialization
# Use of static scheduler with fixed chunk size

® Avoid false sharing on ccNUMA architecture

Programming with OpenMP — p. 27



Mixed MPI-OpenMP programming

Mixed MPI-OpenMP programming — p. 28



Motivation from hardware architecture

® There exist distributed shared-memory parallel computers

# High-end clusters of SMP machines
o Low-end clusters of multicore-based compute nodes

® MPI is the de-facto standard for communication between the
SMPs/nodes

» Within each SMP/node
# MPI can be used for intra-node communication, but may not be

aware of the shared memory
» Thread-based programming directly utilizes the shared memory

» OpenMP is the easiest choice of thread-based programming

Mixed MPI-OpenMP programming — p. 29



Multicore-based cluster

Interconnect Network

Core | Core | Core | Core Core | Core | Core | Core
Cache Cache Cache Cache
Bus
Compute Node
Core | Core | Core | Core Core | Core | Core | Core
Cache Cache Cache Cache
Bus
Compute Node
[}
[}
[}
[}
Core | Core | Core | Core Core | Core | Core | Core
Cache Cache Cache Cache
Bus
Compute Node

Mixed MPI-OpenMP programming — p. 30



Motivation from communication overhead

Assume a cluster that has m nodes, each node has k CPUs

If MPI is used over the entire cluster, we have mk MPI processes

# Suppose each MPI process on average sends and receives 4
messages

» Total number of messages: 4mk

If MPI is used only for inter-node parallelism, while OpenMP threads
control intra-node parallelism

o Number of MPI processes: m

# Total number of messages: 4m

Therefore, fewer MPI messages in the mixed MPI-OpenMP approach
# Less probability for network contention

» But the messages are larger

o Total message-passing overhead is smaller

Mixed MPI-OpenMP programming — p. 31



Motivation from granularity and load balance

® |arger grain size (more computation) for fewer MPI processes
o Better computation/communication ratio

® In general, better load balance for fewer MPI processes

» Inthe pure MPI approach, due to the large number of MPI
processes, there is a higher probability for some of the MPI
processes being idle

o In the mixed MPI-OpenMP approach, the MPI processes have a
lower probability of being idle

Mixed MPI-OpenMP programming — p. 32



Advantages

Mixed MPI-OpenMP programming
® can avoid intra-node MPI communication overheads
® can reduce the possibility of network contention

® canreduce the need for replicated data
# data is guaranteed to be shared inside each node

$® may improve a poorly scaling MPI code
# |oad balance can be difficult for a large number of MPI processes

o for example, 1D decomposition by the MPI processes may
replace 2D decomposition

® may adopt dynamic load balancing within one node

Mixed MPI-OpenMP programming — p. 33



Disadvantages

Mixed MPI-OpenMP programming

$ may introduce additional overhead not present in the MPI code
» thread creation, false sharing, sequential sections

$® may adopt more expensive OpenMP barriers than implicit
point-to-point MPI synchronizations

® may be difficult to overlap inter-node communication with
computation

® may have more cache misses during point-to-point MPI
communication
» the messages are larger
# cache is not shared among all threads inside one node

$» may not be able to use all the network bandwidth by one MPI process
per node

Mixed MPI-OpenMP programming — p. 34



Inter-node communication

There are 4 different styles of handling inter-node communication
® “Single”
o all MPlI communication is done by the OpenMP master thread,
# outside the parallel regions

» “Funnelled”

# all MPI communication is done by the master thread inside a
parallel region

# other threads may be doing computations

® “Serialized”
# More than one thread per node carry out MPl communications
# Dbut one thread at a time

» “Multiple”
# More than one thread per node carry out MPl communications
# can happen simultaneously

Mixed MPI-OpenMP programming — p. 35



Simple example of hello-world

#include <mpi.h>
#include <omp.h>
#include <stdio.h>

int main (int nargs, char ** - args)
{
int rank, nprocs, thread id, nthreads;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
#pragma omp parallel private(thread_id, nthreads)
thread id = omp_get thread num ();
nthreads = omp_get _num_threads ();
printf("I'm thread nr.%d (out of %d) on MPI process nr.%d (ou t of %d)\n"
thread_id, nthreads, rank, nprocs);
}
MPI_Finalize ();

return O;

Mixed MPI-OpenMP programming — p. 36



When to use mixed MPI-OpenMP programming?

® Poor scaling with MPI implementation (e.g. due to load imbalance or
too fine granularity)

$» Memory limitation associated with replicated data for MPI
Implementation

® Rule-of-the-thumb: performance of pure OpenMP implementation
must be comparable with pure MPI implementation within one node

Mixed MPI-OpenMP programming — p. 37



	What will we learn today?
	Resources
	What is OpenMP?
	The programming model of OpenMP
	Fork-join model
	OpenMP: first things first
	General code structure
	Parallel region
	Hello-world in OpenMP
	Important OpenMP library routines
	Work-sharing constructs
	Parallel for loop
	Example
	More about parallel for
	Example of computing inner-product
	Parallel sections
	Single execution
	Coordination and synchronization
	Data scope
	Some remarks
	Parallelizing nested for-loops
	Nested parallelism
	Parallel tasks
	Common mistakes
	How about performance?
	The issue of NUMA
	Motivation from hardware architecture
	Multicore-based cluster
	Motivation from communication overhead
	Motivation from granularity and load balance
	Advantages
	Disadvantages
	Inter-node communication
	Simple example of hello-world
	When to use mixed MPI-OpenMP programming?

