
Programming with OpenMP
and mixed MPI-OpenMP

Xing Cai

Simula Research Laboratory & University of Oslo

http://heim.ifi.uio.no/˜xingca/openmp-lecture.pdf

Programming with OpenMP – p. 1

What will we learn today?

The most important ingredients of OpenMP programming

Simple coding examples (in C)

Mixed MPI-OpenMP programming

Programming with OpenMP – p. 2

Resources

B. Chapman, G. Jost, R. van der Pas. Using OpenMP. MIT Press,
2007

B. Barney. OpenMP tutorial
http://www.llnl.gov/computing/tutorials/openMP/

OpenMP official web site
http://openmp.org/

Programming with OpenMP – p. 3

What is OpenMP?

OpenMP — a portable standard for shared-memory programming

The OpenMP API consists of
compiler directives (for insertion into sequential Fortran/C/C++
code)
a few library routines
some environment variables

Advantages:
User-friendly
Incremental parallelization of a serial code
Possible to have a single source code for both serial and
parallelized versions

Disadvantages:
Relatively limited user control
Most suitable for parallelizing loops (data parallelism)
Performance?

Programming with OpenMP – p. 4

The programming model of OpenMP

OpenMP provides high-level thread programming

Multiple cooperating threads are allowed to run simultaneously

Threads are created and destroyed dynamically in a fork-join pattern
An OpenMP program consists of a number of parallel regions
Between two parallel regions there is only one master thread
In the beginning of a parallel region, a team of new threads is
spawned
The newly spawned threads work simultaneously with the master
thread
At the end of a parallel region, the new threads are destroyed

Programming with OpenMP – p. 5

Fork-join model

https://computing.llnl.gov/tutorials/openMP/

Programming with OpenMP – p. 6

OpenMP: first things first

Remember the header file #include <omp.h>

Insert compiler directives (#pragma omp... in C/C++ syntax),
possibly also some OpenMP library routines

Compile
For example, gcc -fopenmp code.c

Execute
Remember to assign the environment variable OMPNUMTHREADS

It specifies the total number of threads inside a parallel region, if
not otherwise overwritten

Programming with OpenMP – p. 7

General code structure

#include <omp.h>

main () {

int var1, var2, var3;

/ * serial code * /
/ * ... * /

/ * start of a parallel region * /
#pragma omp parallel private(var1, var2) shared(var3)

{
/ * ... * /

}

/ * more serial code * /
/ * ... * /

/ * another parallel region * /
#pragma omp parallel

{
/ * ... * /

}
}

Programming with OpenMP – p. 8

Parallel region

A parallel region is a block of code that is executed by a team of
threads

The following compiler directive creates a parallel region
#pragma omp parallel { ... }

Clauses can be added at the end of the directive

Most often used clauses:
default(shared) or default(none)

public(list of variables)

private(list of variables)

Programming with OpenMP – p. 9

Hello-world in OpenMP

#include <omp.h>
#include <stdio.h>

int main (int argc, char * argv[])
{

int th_id, nthreads;

#pragma omp parallel private(th_id) shared(nthreads)
{

th_id = omp_get_thread_num();
printf("Hello World from thread %d\n", th_id);

#pragma omp barrier

if (th_id == 0) {
nthreads = omp_get_num_threads();
printf("There are %d threads\n",nthreads);

}
}

return 0;
}

Programming with OpenMP – p. 10

Important OpenMP library routines

int omp get num threads ()
returns the number of threads inside a parallel region

int omp get thread num ()
returns the “thread id” for each thread inside a parallel region

void omp set num threads (int)
sets the number of threads to be used

void omp set nested (int)
turns nested parallelism on/off

Programming with OpenMP – p. 11

Work-sharing constructs

omp for omp sections omp single

https://computing.llnl.gov/tutorials/openMP/

Programming with OpenMP – p. 12

Parallel for loop

Inside a parallel region, the following compiler directive can be used
to parallelize a for -loop:
#pragma omp for

Clauses can be added, such as
schedule(static, chunk size)

schedule(dynamic, chunk size) (non-deterministic
allocation)
schedule(guided, chunk size) (non-deterministic
allocation)
schedule(runtime)

private(list of variables)

reduction(operator:variable)

nowait

Programming with OpenMP – p. 13

Example

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000

main ()
{

int i, chunk;
float a[N], b[N], c[N];

for (i=0; i < N; i++)
a[i] = b[i] = i * 1.0;

chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(dynamic,chunk)

for (i=0; i < N; i++)
c[i] = a[i] + b[i];

} / * end of parallel region * /
}

Programming with OpenMP – p. 14

More about parallel for

The number of loop iterations can not be non-deterministic
break , return , exit , goto not allowed inside the for -loop

The loop index is private to each thread

A reduction variable is special
During the for -loop there is a local private copy in each thread
At the end of the for -loop, all the local copies are combined
together by the reduction operation

Unless the nowait clause is used, an implicit barrier synchronization
will be added at the end by the compiler

#pragma omp parallel and #pragma omp for can be
combined into
#pragma omp parallel for

Programming with OpenMP – p. 15

Example of computing inner-product

N−1∑

i=0

ai bi

int i;
double sum = 0.;

/ * allocating and initializing arrays ’a’ ’b’ * /
/ * ... * /

#pragma omp parallel for default(shared) private(i) reduc tion(+:sum)
for (i=0; i<N; i++)

sum += a[i] * b[i];
}

Programming with OpenMP – p. 16

Parallel sections

Different threads do different tasks independently, each section is
executed by one thread.
#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
funcA ();

#pragma omp section
funcB ();

#pragma omp section
funcC ();

}
}

Programming with OpenMP – p. 17

Single execution

#pragma omp single { ... }

code executed by one thread only, no guarantee which thread
an implicit barrier at the end

#pragma omp master { ... }

code executed by the master thread, guaranteed
no implicit barrier at the end

Programming with OpenMP – p. 18

Coordination and synchronization

#pragma omp barrier

synchronization, must be encountered by all threads in a team (or
none)

#pragma omp ordered { a block of codes }

another form of synchronization (in sequential order)

#pragma omp critical { a block of codes }

#pragma omp atomic { single assignment statement }

more efficient than #pragma omp critical

Programming with OpenMP – p. 19

Data scope

OpenMP data scope attribute clauses:
shared

private

firstprivate

lastprivate

reduction

Purposes:
define how and which variables are transferred to a parallel
region (and back)
define which variables are visible to all threads in a parallel
region, and which variables are privately allocated to each thread

Programming with OpenMP – p. 20

Some remarks

When entering a parallel region, the private clause ensures each
thread having its own new variable instances. The new variables are
assumed to be uninitialized.

A shared variable exists in only one memory location and all threads
can read and write to that address. It’s the programmer’s
responsibility to ensure that multiple threads properly access a
shared variable.

The firstprivate clause combines the behavior of the private
clause with automatic initialization.

The lastprivate clause combines the behavior of the private
clause with a copy back (from the last loop iteration or section) to the
original variable outside the parallel region.

Programming with OpenMP – p. 21

Parallelizing nested for-loops

Serial code
for (i=0; i<100; i++)

for (j=0; j<100; j++)
a[i][j] = b[i][j] + c[i][j]

Parallelization
#pragma omp parallel for private(j)
for (i=0; i<100; i++)

for (j=0; j<100; j++)
a[i][j] = b[i][j] + c[i][j]

Why not parallelize the inner loop?
to save overhead of repeated thread forks-joins

Why must j be private ?
to avoid race condition among the threads

Comments
OpenMP 2.5 allows parallelization of only one loop layer
OpenMP 3.0 has a new collapse clause

Programming with OpenMP – p. 22

Nested parallelism

When a thread in a parallel region encounters another parallel construct, it
may create a new team of threads and become the master of the new
team.

#pragma omp parallel num_threads(4)
{

/ * * /

#pragma omp parallel num_threads(2)
{

/ * * /
}

}

Programming with OpenMP – p. 23

Parallel tasks

#pragma omp task (starting with OpenMP 3.0)

#pragma omp parallel shared(p_vec) private(i)
{
#pragma omp single

{
for (i=0; i<N; i++) {

double r = random_number();
if (p_vec[i] > r) {

#pragma omp task
do_work (p_vec[i]);

}
}

}
}

Programming with OpenMP – p. 24

Common mistakes

Race condition
int nthreads;
#pragma omp parallel shared(nthreads)
{

nthreads = omp_get_num_threads();
}

Deadlock
#pragma omp parallel
{

...
#pragma omp critical

{
...

#pragma omp barrier
}

}

Programming with OpenMP – p. 25

How about performance?

Factors that influence the performance of OpenMP programs:

How the memory is accessed by individual threads

The fraction of work that is sequential (or replicated)

The overhead of handling OpenMP constructs

Load imbalance

Synchronization costs

Good programming practices:

Optimize use of barrier

Avoid ordered construct

Avoid large critical blocks

Maximize parallel regions

Avoid parallel regions in inner loops

Use schedule(dynamic) or schedule(guided) to address poor
load balance

Programming with OpenMP – p. 26

The issue of NUMA

Non-uniform memory access (e.g., dual-socket quad-core Nehalem)

Each thread should, if possible, only work with data close-by
Use of first touch in data initialization
Use of static scheduler with fixed chunk size

Avoid false sharing on ccNUMA architecture

Programming with OpenMP – p. 27

Mixed MPI-OpenMP programming

Mixed MPI-OpenMP programming – p. 28

Motivation from hardware architecture

There exist distributed shared-memory parallel computers
High-end clusters of SMP machines
Low-end clusters of multicore-based compute nodes

MPI is the de-facto standard for communication between the
SMPs/nodes

Within each SMP/node
MPI can be used for intra-node communication, but may not be
aware of the shared memory
Thread-based programming directly utilizes the shared memory
OpenMP is the easiest choice of thread-based programming

Mixed MPI-OpenMP programming – p. 29

Multicore-based cluster

Memory

Core Core CoreCore

Cache Cache

Core Core CoreCore

Cache Cache

Bus

Compute Node

Memory

Core Core CoreCore

Cache Cache

Core Core CoreCore

Cache Cache

Bus

Compute Node

Memory

Core Core CoreCore

Cache Cache

Core Core CoreCore

Cache Cache

Bus

Compute Node
In

te
rc

on
ne

ct
 N

et
w

or
k

Mixed MPI-OpenMP programming – p. 30

Motivation from communication overhead

Assume a cluster that has m nodes, each node has k CPUs

If MPI is used over the entire cluster, we have mk MPI processes
Suppose each MPI process on average sends and receives 4
messages
Total number of messages: 4mk

If MPI is used only for inter-node parallelism, while OpenMP threads
control intra-node parallelism

Number of MPI processes: m
Total number of messages: 4m

Therefore, fewer MPI messages in the mixed MPI-OpenMP approach
Less probability for network contention
But the messages are larger
Total message-passing overhead is smaller

Mixed MPI-OpenMP programming – p. 31

Motivation from granularity and load balance

Larger grain size (more computation) for fewer MPI processes
Better computation/communication ratio

In general, better load balance for fewer MPI processes
In the pure MPI approach, due to the large number of MPI
processes, there is a higher probability for some of the MPI
processes being idle
In the mixed MPI-OpenMP approach, the MPI processes have a
lower probability of being idle

Mixed MPI-OpenMP programming – p. 32

Advantages

Mixed MPI-OpenMP programming

can avoid intra-node MPI communication overheads

can reduce the possibility of network contention

can reduce the need for replicated data
data is guaranteed to be shared inside each node

may improve a poorly scaling MPI code
load balance can be difficult for a large number of MPI processes
for example, 1D decomposition by the MPI processes may
replace 2D decomposition

may adopt dynamic load balancing within one node

Mixed MPI-OpenMP programming – p. 33

Disadvantages

Mixed MPI-OpenMP programming

may introduce additional overhead not present in the MPI code
thread creation, false sharing, sequential sections

may adopt more expensive OpenMP barriers than implicit
point-to-point MPI synchronizations

may be difficult to overlap inter-node communication with
computation

may have more cache misses during point-to-point MPI
communication

the messages are larger
cache is not shared among all threads inside one node

may not be able to use all the network bandwidth by one MPI process
per node

Mixed MPI-OpenMP programming – p. 34

Inter-node communication

There are 4 different styles of handling inter-node communication

“Single”
all MPI communication is done by the OpenMP master thread,
outside the parallel regions

“Funnelled”
all MPI communication is done by the master thread inside a
parallel region
other threads may be doing computations

“Serialized”
More than one thread per node carry out MPI communications
but one thread at a time

“Multiple”
More than one thread per node carry out MPI communications
can happen simultaneously

Mixed MPI-OpenMP programming – p. 35

Simple example of hello-world

#include <mpi.h>
#include <omp.h>
#include <stdio.h>

int main (int nargs, char ** args)
{

int rank, nprocs, thread_id, nthreads;

MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

#pragma omp parallel private(thread_id, nthreads)
{

thread_id = omp_get_thread_num ();
nthreads = omp_get_num_threads ();
printf("I’m thread nr.%d (out of %d) on MPI process nr.%d (ou t of %d)\n",

thread_id, nthreads, rank, nprocs);
}

MPI_Finalize ();

return 0;
}

Mixed MPI-OpenMP programming – p. 36

When to use mixed MPI-OpenMP programming?

Poor scaling with MPI implementation (e.g. due to load imbalance or
too fine granularity)

Memory limitation associated with replicated data for MPI
implementation

Rule-of-the-thumb: performance of pure OpenMP implementation
must be comparable with pure MPI implementation within one node

Mixed MPI-OpenMP programming – p. 37

	What will we learn today?
	Resources
	What is OpenMP?
	The programming model of OpenMP
	Fork-join model
	OpenMP: first things first
	General code structure
	Parallel region
	Hello-world in OpenMP
	Important OpenMP library routines
	Work-sharing constructs
	Parallel for loop
	Example
	More about parallel for
	Example of computing inner-product
	Parallel sections
	Single execution
	Coordination and synchronization
	Data scope
	Some remarks
	Parallelizing nested for-loops
	Nested parallelism
	Parallel tasks
	Common mistakes
	How about performance?
	The issue of NUMA
	Motivation from hardware architecture
	Multicore-based cluster
	Motivation from communication overhead
	Motivation from granularity and load balance
	Advantages
	Disadvantages
	Inter-node communication
	Simple example of hello-world
	When to use mixed MPI-OpenMP programming?

