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Introduction

Heart failure (HF) is a progressive and chronic disease, characterized by an impaired
ability of the heart to fill and pump blood. HF remains a serious health problem
throughout the industrialized world [1]. For instance, in the United States alone, over
5 million people currently suffer with HF, and over 600,000 new cases are diagnosed
each year [2]. Patients with heart failure suffer severely from the symptoms, and the
available treatments are often insufficient.

The precise mechanisms underlying the failing phenotype remain unclear. However,
there is general agreement that decreased myocardial function in this condition involves
depressed contractility of heart cells (cardiomyocytes). Alterations in cellular Ca*"
homeostasis are believed to be central to these alterations [3]. Experimental models of
HF is commonly used to study the physiological conditions behind HF [4], and medical
treatments can be tested using such models. In recent years, computational studies
have emerged as a complement to the experimental ones. Using laws from physics
and chemistry, modelers have been able to describe physiological phenomena using
mathematical and statistical equations [5]. The computational models can be used to
test hypotheses about the function of cardiomyocytes and possible treatments, which
cannot be done using experimental models.

In this thesis I will focus on a computational model of Ca®" dynamics in an intracellular
sub-domain of a cardiomyocyte that is inaccessible for direct experimental measurements:
The dyadic cleft. The thesis consists of this introduction, and three papers. In Paper
I, two different models of the diffusion dynamics in the cleft are compared. In Paper
I a hybrid stochastic and deterministic approach to model the Ca*" dynamics in the
dyadic cleft is presented. In the second part of Paper II I also present a solver that can
be used to simulate coupled stochastic and deterministic models: diffsim. Finally, in
Paper 111, results obtained applying this solver to a computational model of the dyadic
cleft are presented.

In this introduction of the thesis, I first give a brief physiological background for the
Ca?" dynamics in the dyadic cleft. Secondly I review some published computational
studies, which models the Ca®" dynamics in the dyadic cleft. In the last part, I present
the papers and point to future work. The presentation of the papers will focus on the
main findings, and where appropriate, also discuss the results with respect to some of
the reviewed studies. In the future work section I discuss how the work can be extended
in future studies of the field of modelling the local Ca?** dynamics in the dyadic cleft.
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Figure 1: The figure shows the relationship between the T'T, the SR and the jSR. The volume between
the jSR and the TT defines the dyadic cleft. The black structures in the cleft are Ryanodine receptors.
These are large channel proteins from which the Ca?* from the SR is released from.

1 Physiological background

The contraction of a cardiomyocyte is triggered by an electric signal that, for each beat,
travels through the heart. This signal propagates using both passive (diffusion) and
active (excitation of single cells) properties of the heart tissue. The electric signal lives
in the tissue as a potential difference (the membrane potential) between the intra- and
extracellular domain of a cardiomyocyte. The membrane potential has a resting value
that is negative and commonly found in the range [-85,-60] mV. A negative membrane
potential is labelled hyperpolarized, while a positive such is labelled depolarized. The
membrane potential is called an action potential (AP) when it is sustained with active
properties of the membrane. When an AP arrives a cardiomyocyte, it activates ion
channels at the cell membrane (sarcolemma). These ion channels let different ion species
either in or out when the channel is open. Most ion channels are ion specific and only
let a single type of ion through. The direction of the current is dependent on the
electro-chemical gradient across the membrane. The gradient is defined in terms of
the membrane potential and the concentration gradients of the particular ion species.
The cell membrane of ventricular cardiomyocytes has pipe-like invaginations called
transverse tubule (TT). These perforate the cardiomyocyte and, loosely speaking brings
the cell membrane into the cell. Ion channels that reside on the TT have direct access,
and therefore more effective access, to the interior of the cardiomyocyte.

One particular ion type, Ca?", is central for the function of the cardiomyocyte. Ca*"
controls the force that makes the cardiomyocyte contract and relax during a heart
beat. When the Ca*" concentration in the cytosol (the main intracellular domain) is
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high, Ca®" binds to contractile proteins and thus contraction is triggered. When the
Ca*" concentration is reduced, Ca*" unbinds from the contractile proteins and the
cardiomyocyte relaxes. These two phases correlate with the heart functions of systole
(contraction) and diastole (relaxation), and they are equally important for the pumping
function. The systolic function controls how well the blood is ejected from the heart
and the diastolic function controls how much blood the heart can refill with. The
main source of Ca*™ to the cytosol is from an internal Ca®" container, the sarcoplasmic
reticulum (SR). The SR forms a network inside the cardiomyocyte that wraps the
contractile proteins. By this arrangement, the distance the Ca?' need to diffuse, is
minimized. At the TT, the network like SR, forms larger containers, called junctional
SR (jSR). These wrap the TT, as illustrated in Fig.1. The volume between the jSR and
the TT defines the narrow (~ 15 nm [6, 7]) dyadic cleft (also called just a dyad).

Ca®" release from SR is facilitated by a channel called the Ryanodine receptor (RyR).
The RyRs are gathered in clusters of up to hundreds of single channels [7]. The opening
of these channels is induced by single Ca®" ions attaching to them [8, 9]. This process
is commonly known as the Ca®" induced Ca*" release (CICR) [10]. The triggering Ca®*
mostly come from the L-type Ca®" channel (LCC). The CICR is tightly controlled in the
small volume of the dyadic cleft, known as the local control model [11]. Here, LCCs are
situated at the TT opposing the RyRs at the SR. Recent results show that many LCCs
need to open several times to trigger a release [12]. This thesis is mostly concerned
with the triggering of the Ca*" release. But equally important is the termination of the
release, which is not yet well understood [13, 14]. The Ca®" release from a single dyad
defines a release event and is commonly called a spark [15]. A single cardiomyocyte
consists of tens of thousands of dyads and during the systolic phase, a concerted Ca?"
release from these discrete units sums up to the whole cell Ca®" transient, which
triggers the contraction of the cardiomyocyte. In a healthy cardiomyocyte, the regularly
organized T'T network will ensure spatial synchrony of the sparks.

During HF, the cardiomyocyte’s ability to contract and relax is impaired. This
is caused by an altered Ca®' regulation in the cell [16]. HF leads to a progressive
reorganization of the TT, while the cardiomyocyte undergoes hypotrophy [17]. The
result is a dyssynchronous and delayed Ca®* activation. Louch et al. [17] correlate areas
of disrupted and absent TTs, with areas of delayed Ca®" release. In paper III, we use a
detailed computational model to investigate causes of such Ca®" release patterns.

An important modulator of the Ca*" dynamics in the dyadic cleft is a Ca®" buffer
and the electric field, both caused by the negatively charged phospholipid head-groups
at the sarcolemma [18-20]. The buffer and the electric field do not alter the qualitative
understanding of the CICR, but they alter the quantitative modeling of the Ca?*
dynamics in the cleft [21, 22]. In paper II, T show how the electric field can be resolved
in a computational model of the dyadic cleft.

A second possible modulator of the Ca®* dynamics in the dyad is the Na®/Ca®*
exchanger (NCX). The NCX is a protein that exchanges one Ca*" with three Na™.
NCX is the main Ca®' extractor during the relaxation phase [23]. When the NCX
extracts Ca?" from the cell, the NCX is working in forward mode, or in Ca?" efflux
mode. In the context of the dyad, it has been proposed that the NCX working in Ca*"
influx mode can modulate the timing of the RyR release[24, 25]. In paper I1I, we use a
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computational model to investigate the ability of a single NCX that works in reverse
mode, to trigger Ca*" release. It has also been shown that NCXs positioned in the dyad
will extract more Ca?' than cytosolic NCXs, due to the higher local Ca*t concentration
in the dyad during release [26, 27].

2 Review of computational models

In this section, a brief overview of some of the published models of the Ca*" dynamics
in the dyadic cleft is given, together with an explanation of their findings that correlates
with the work of this thesis. The models will be presented in chronological order and
the list together with each presentation is not exhaustive.

Computational models that are used in studies of the Ca** dynamics in the dyadic
cleft can roughly be categorized into two types: integrative and standalone models. The
former type couples the Ca*" dynamics in a single dyad with that of the whole cell.
These models are often called multi-scale models as they combine the length and time
scales of the Ca®" dynamics in the dyad, to that of a whole cell. These models have
been used to couple the discrete nature of spark generation to the continuous nature of
whole cell dynamics. The standalone models only model the Ca®" dynamics of a single
dyad. In this manner, they can often be more detailed than the integrative models.
In this thesis, I have focused on the standalone models. However, the importance of
integrative models should also be recognized. In the last section of this introduction, I
will discuss strategies for how the standalone model I have considered, can be coupled
to a larger intracellular domain.

The models reviewed in this section, can further be divided into discrete and continuous
models, depending on how the Ca*" diffusion in the dyad is modeled. Unless otherwise
stated, I assume that the diffusion is modeled continuously. In the presentation of Paper
I, T will take a closer look at the discrete versus continuous modeling of Ca®" diffusion
in the dyad.

Standalone models

Peskoff et al. 1992

To the best of my knowledge, the first standalone model was developed by Peskoff et al.
[26]. They models the effect of sarcolemmal binding sites to the Ca*" dynamics in the
dyad. The above reference is the second part of a companion study. The first part
experimentally quantifies the presence of two different low and high affinity Ca®" buffers
at the sarcolemma [20]. For different values of the diffusion constant, they investigate
the effect, of including or not including the sarcolemmal buffers, on the RyR release.
To be able to solve their equations they reduce the problem to a 1D problem. An
interesting observation that is relevant for Paper III, is the effect of using the buffer
together with an included NCX. Peskoff et al. [26] show that when sarcolemmal buffers
are used in their model, the [Cazﬂ stays at an elevated level longer than if the buffer
is not included. This increases the amount of Ca®" extracted from the cardiomyocyte
by any present NCX. Even if their model of the NCX and RyR release is simplistic, the
results corresponds to some recent model results [27], see below. Peskoff et al. [26] also
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conclude that the time constant for the inactivation process of the RyR must be larger
than for the activation process. The Ca®" release would otherwise finish to fast.

Langer and Peskoff 1996

Langer and Peskoff [28] consider an updated version of the model from Peskoff et al.
[26], with new experimental findings of the sarcolemmal buffers. They also include
simulations of the time before the release, using Ca?" influx through both the LCC
and from the NCX working in Ca*" influx mode. They claim that a single LCC can
raise the Ca®" level to 1 uM within a distance of 50 nm, which should be sufficient to
trigger Ca" release from a cluster of 9 RyRs within 0.5 ms. They further claim that
the NCX working in Ca*" influx mode elevates the [Ca2+] in the cleft to 0.5 uM which
should be sufficient to trigger release from the same 9 RyRs within 10 ms. However if
the RyRs would be this sensitive to cytosolic [Ca2+], they would statistically open too
often to be functional. Their updated version of the sarcolemmal buffers includes a very
slow unbinding rate, causing a relaxation to diastolic [Ca2ﬂ (~ 0.1 uM) to take 150
ms. This is a long time and has to our knowledge not been repeated in any subsequent
studies.

Soeller and Cannell 1997 and Cannell and Soeller 1997

The next two studies come from the companion papers of Soeller and Cannell [21] and
Cannell and Soeller [29]. In the first paper, they study the Ca®" response in the cleft
from an open LCC channel prior to the RyR release. In their second paper, they study
the dynamics of the CICR using stochastic modelling of the RyRs. In the first study,
they use and develop a previously published model for the electric field in the dyad [30].
They show that the inclusion of the electric field has dramatic effects on the Ca?t level
in the dyadic cleft. Without the electric field the steady state Ca*" response from an
open LCC at the closest RyR is 158 uM, and with the electric field only 63 M. The
rise time of the [Cazﬂ is also five fold increased with the electric field. They also run
simulations using different parameters for the amplitude of the constant LCC current
and they vary the size of the cleft.

In their second study, the different [Ca“] responses from an open LCC from their
first study are used to investigate under what circumstances this responses can trigger
Ca®" release from the RyRs [29]. They derive a model for the probability that a RyR
will open given the transient [CaZJr] response from an open LCC, and by this include
the discrete and stochastic nature of the RyR channel. Their dyad includes a single
LCC and a different number of RyRs at different positions. The [Ca2+] dependency of
the opening kinetics of the RyR model is of second order. They find that it is crucial
that the RyR is juxtapositional to the LCC for reliable releases. The cumulative open
probability for a RyR facing an open LCC raises towards 1 quite fast: after 0.2 ms, it
is already at 0.8. This might be a too high value considering the recent results from
Poldkové et al. [12], where the coupling fidelity between an open LCC and a RyR is
low: ~ 0.15.

Rice et al. 1999
In this study, the integrative behaviour of several dyads (500) is studied. In this
sense this study could be classified as an integrative model but it does not provide
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any feedback system. They use stochastic models for the included channels. Their
model features so called graded release of Ca*" and high gain. The graded release
is a feature attributed to local control models, which so called common pool models
cannot have [11]. In a common pool model, the volumes of all dyads are lumped into a
single compartment. Due to the regenerative nature of CICR, common pool models
will respond in an all or nothing manner. However, in cardiomyocytes the Ca" release
is graded with respect to the triggering LCC current. The local control of CICR is
introduced to solve this paradox. The gain is the ratio between the Ca’" coming in
from the RyRs over the amount of Ca?' coming from the LCCs. In the local control
model, the CICR is controlled by the stochastic activation of the RyRs in the thousands
of dyads contained within a cardiomyocyte. Here, each dyad can respond in a more or
less all or nothing manner and the graded release is attributed to a graded number of
recruited dyads in a release.

Rice et al. [31] use a single compartment to model [Ca%} in each dyad, assuming
no spatial gradients in the cleft. Each cleft has a single LCC and 8 RyRs. They use
an LCC model featuring a Ca?* mode that models the Ca®" inactivation developed in
a previous study [32]. They use a model for the RyRs that features adaptation [33],
which means that the RyRs get less sensitive after consecutive openings [34]. Their
model is robust with respect to varying a set of parameters which is a good feature of a
complex model.

Lines et al. 2006

In a detailed model of a dyad, Lines et al. [25] show that under certain circumstances
an NCX working in Ca?" influx mode can precede the LCC in triggering CICR. Their
model is a 2-dimensional model of the dyad where a Ca>" and a Na™ domain is coupled
by the nonlinear NCX fluxes. They include local LCC and Na™ channel fluxes to the
dyad by distributing the corresponding whole cell currents, to local channels in the
domain. The whole cell currents are acquired from a simultaneously solved cell model
of the AP. They find that when a Na* channel and an NCX is colocalized and the
diffusion constant is small, modeling the crowdedness of a dyad, Ca*" from the NCX
can precede the LCC in triggering Ca*" release from the RyR. In Paper III, an attempt
was made to reproduce the results with a more detailed model of the Ca®*" and Na™
dynamics, without success. This is probably due to differences in the modelling, which
is elaborated in the paper.

Koh et al. 2006

The issue of representing few diffusing ions using a continuous representation of the
[Ca®*] is addressed in the study of Koh et al. [35]. They use MCell [36, 37], a Random
walk simulator to model the Ca?* diffusion inside the cleft. They develop their own
model of the LCC and adapt a published model for the RyR dynamics [38]. The
geometry of the cleft is varied and the effect on the spark is registered. They find that
the generation and the shape of the spark is not very sensitive to the width of the
cleft but highly sensitive to the height. Koh et al. 2006 also show that the number of
participating ions in a cleft is highly variable between single runs, together with the
time length of a single spark. The cardiomyocyte needs a reliable Ca®" transient each
beat, and they argue that the noise in the signal from each spark has to be integrated.
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They therefore investigate how many dyads that has to be employed to get a reliable
and noise free Ca®" signal. The number of participating ions in the dyad is used as a
measure for this signal. As will be discussed in our paper presentation below, I argue
that it is not the number of participating ions that defines the stochasticity of a dyad,
but rather the discrete and stochastic states of the included channels.

Tanskanen et al. 2007
The Ca?" dynamics of a dyad is highly dependent on the structure of the dyad. Previous
studies has shown that the height of the cleft and the relative position of the channels
in the cleft can dramatically alter the Ca®* response from an open Ca?* source in the
cleft. Recently we have also got a more precise understanding of the structure of the
large proteins in the dyad, both the LCC [39] and the RyR [40]. In a study of the
Ca®" dynamics in the dyad, Tanskanen et al. [22] include the structural information
of the LCC and RyR proteins in the geometry of the cleft. Similar to Koh et al. [35]
they use a fully stochastic and discrete model for the Ca?" dynamics in the whole dyad.
Instead of using MCell that does not support electro diffusion, they use a simulator
based on a discretized version of the Fokker-Planck equation [41]. In this manner, they
include single ion interaction and ion interaction with an external electric field (from the
sarcolemma). A dyad with 5 LCCs and 20 RyRs is used in their model. The integrated
response from several hundred of such dyads shows the known features of local control
of Ca?", such as graded release and high gain. The integrated gain from several dyads,
is used as a measure of the impact of several changes in the model. They show that
moving the binding site of Ca®" at the RyRs from the rim of the RyR to the center
increases the gain. The gain is also reduced when the proteins structures and the electric
field is removed. These two findings are interesting as they point to the importance of
local gradients in the dyad, which also will be emphasized in Paper III in this thesis.
Similar to the study of Koh et al. [35] they also show that the amount of Ca*" ions
in the cleft varies considerably during a single run. They use this result to demonstrate
the stochastic nature of the Ca®" diffusion in such a small volume, and argue that it is
more appropriate to use a discrete and stochastic description of the Ca®" diffusion. This
argument is also complemented with the results from clever experiments: the gain is
measured while scaling the diffusion coefficient together with the amplitude of the Ca?"
current from the LCCs and the RyRs. They show that the gain is actually dependent
on the scaling factor. If the same experiments were done using a continuous model of
diffusion, one would expect the gain not to be dependent on the scaling factor. This
is because the continuous [Ca%} would stay the same under the scaling. Tanskanen
et al. [22] describe this as a subtle, but potentially significant difference in predicted
macroscopic behavior arising from the underlying stochastic simulation of Ca®™ motion
in the dyad [22]. T will address this issue further in the presentation of paper I below.

Integrative models

Stern et al. 1999
Stern et al. [42] follow up on the work of Stern [11] where the paradox of graded Ca*"
release was first explained and thoroughly examined. With their present study, they
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present a model that uses local control of Ca?t demonstrating graded Ca®" release.
The model does not integrate a full set of membrane currents, nor does it include a full
AP, but it does integrate the whole cell Ca®" handling with the local control of Ca®"
release. They model the gating of the LCCs and RyRs stochastically. The states of these
channels are collected in a local state vector defining the discrete state of the whole dyad.
The diffusional process inside the cleft is described using a partial differential equation
which is discretized using a coarse grid (Az = 10nm). To reduce computational cost,
steady state [Ca%} is assumed inside the cleft, reducing the local dynamics of the dyad
to a set of discrete states. The number of RyRs they use in each dyad is either 25 or
121. In the more computationally intensive runs, the former number is used.

In their study they test six different models for the RyR gating. Four of the models
were taken from the literature of isolated RyRs in lipid bi-layers. None of these schemes
seem to work satisfactory, as the RyR did not close in a reliable way, nor opened enough
when activated. This points out a still unsettled problem of reconciling RyR models
from bi-layer experiments [43] with local control models of Ca*" release. They point out
that two features are required to achieve local and global stability: strong inactivation
and cooperative activation by binding of more than one Ca®". The model they finally
use is a phenomenological model with a second order [Ca2ﬂ dependent activation
kinetics. Stern [11] also present a solution to the published bi-layer models. They argue
that there might be alosteric interaction between RyRs in a cluster. Based on this
assumption, they introduced collaborative interaction between the nearest neighbours in
a RyR cluster. This addition stabilize a previously unstable model. Interestingly they
also point out that using higher order kinetics of the RyR model, hence introducing
collaboration at a single RyR level, would also stabilize the model. Note that newer
studies also support this assumption [44, 45]. In Paper III we use a fourth order kinetics
for the RyR model.

Greenstein and Winslow 2002

Greenstein and Winslow [46] present the first study that integrates local control of
Ca’" release in a whole cell model of the canine AP. Each dyad is divided into four
equally sized sub domains, with one LCC, five RyRs and one Ca*" dependent transient
outward chloride current (Ito2) in each. The four subdomains experience the same
lumped [Ca2+]. Their model features both macroscopic (as in single cell) phenomena
such as modulation of AP duration by SR Ca?" release, and detailed properties that
need local control of Ca?* such as graded release and high gain. In a full model study
they use 12500 dyads, but most of their simulations were run using 2500 dyads.

Hinch et al. 2004

In this study, Hinch et al. [47] use a previously developed mathematical model of the
spark generation [48] to reduce the heavy stochastic computations of the local control
from Greenstein and Winslow [46]. Roughly this is done by reducing the number of
channels in a single dyad to one LCC and one RyR. The Markov models describing
the dynamics of these channels are reduced to only having two states each, open and
closed. The number of discrete states of a single dyad is then given by the number of
distinct combinations of the LCC and RyR model states: in total, four states. The
[Ca“] in the dyadic cleft is assumed being in quasi steady state, depending on only
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global parameters ([Ca2+] in cytosol and in SR), and the discrete state of the dyad.
With these assumptions, they have created a representation of a single dyad using only
one Markov model, which is dependent on only global variables. This model is then
evaluated as a continuous model of the average response of all dyads in a cell. Their
model features graded release and high gain, which is typical for local control models.

Greenstein et al. 2006

The reduced model of local control from Hinch et al. [47], is used in the whole cell model
from Greenstein and Winslow [46]. Greenstein et al. [49] use a more detailed model of
the LCC and RyR, creating a Markov model of the dyad consisting of 40 states instead
of 4. They also assume that a single dyad has 5 RyRs. But these are modelled using
only one RyR model. They compensate by increasing the Ca?" activation time and
single RyR flux by 5. The model has the features of local control models with high gain
and graded release.

Williams et al. 2007

In this study, Williams et al. [50] develop a whole cell probability density based model of
the local Ca*" control. They propose a multivariate probability density function for the
state of a single dyad in a cell. The density function is dependent on the discrete state
of the included channels of a dyad, the Ca>" concentration of the dyad, and the Ca*"
concentration of the jSR. In their presentation of the model they choose to include one
LCC and one RyR, each which could be either open or closed. The number of discrete
states of a dyad is then four, which is analogue to the assumptions in Hinch et al. [47].
However, Williams et al. [50] also include a dependency of the local Ca?" concentration
of the dyad and the jSR. It is important to note the distinction between the probability
density approach this study chooses, and the common pool models of the CICR. The
common pool model can also model the Ca?" concentration in the dyadic space and
in jSR. However, the common pool model has one Ca®" concentration for all dyads,
while the probability density approach, models the probability that a single dyad has
a certain local Ca?" concentration. Hence, the model depends on the assumption of
modelling the stochastic state of many dyads in the cell, which they show is a reasonable
assumption.

With their model, Williams et al. [50] show common features of local control models
such as high gain and graded release. They also couples the local Ca?" dynamics to
the whole cell [Ca2+] of the cytosol and network SR. This step makes the model an
integrative model. The model they use for the local Ca*" dynamics is from a previous
study of the effect of local depletion of Ca*" in jSR to the termination of Ca*" release
from SR [51]. This model features reliable terminations of the release only based on
depletion of jSR and stochastic attrition of the RyRs. It is therefore important for
Williams et al. [50] to include the local [Ca“] of the jSR, so this feature is preserved
in their integrative model. Last in their study they show that the Ca?" concentration
in the dyad is slaved by the present discrete state of the dyad and of the present Ca?*
concentration of jSR. This means that they can remove the dependency of the dyadic
[Ca“] from the probability density function. This reduction greatly speed up the
simulations. I think the approach of modelling the spark termination with jSR depletion
and slaving the dyadic [Ca2+} to jSR [Ca2+} is nice. It is probably an approach I would
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look into if I would continue the work on modelling the dyadic Ca?* dynamics.

Sher et al. 2008

The question of the role of NCX in the dyadic cleft is investigated by Sher et al. [27].
They use the whole cell model of Greenstein et al. [49] and modify it by including
the [Ca“} in the dyad. They split the whole cell NCX current into two parts: one
that senses the [Ca2+] in the cytosol and one that senses the elevated [Ca“] of the
dyadic cleft. Different fractions of the NCX distribution are investigated. With their
modification they find that the NCX is working in reverse mode during the very first
part of the AP. During the notch, the high Ca®* level of the dyad forces the NCX to
work in forward mode. During the plateau phase, it turns to reverse mode again, and
during relaxation, it returns to the forward mode. This is corresponds to early findings
by Peskoff et al. [26], who also show that NCXs in the dyad promotes the forward
mode of NCX. Even though the Ca*" release is controlled locally, Sher et al. [27] use
a common pool model to control the local NCX current. With this model choice, the
NCX will not sense a real local [Ca%], but rather a mean local [Cazﬂ for all dyads in
the cell. The NCX is non-linearly dependent on the [Ca2+} so this might not be a valid
assumption. They also model the effect of an elevated local [Naﬂ in the dyad. They
apply a constant elevated [Naﬂ of 30 mM during the first 5 ms and 20 mM during the
first 40 ms of the AP. They show that the first elevation has large effect on the strength
of the initial reverse mode NCX phase. The longer and more modest elevation does not
effect the early reverse mode, but rather modifies the forward mode during the notch of
the AP. In Paper I1I, we tried to elevate the Na™ concentration in the dyad to levels
where it could have impact on the reverse mode NCX. However, we where not able to
raise the mean [Naﬂ in the dyad to such high levels, as 30 mM. We could raise the
local [Naﬂ to such levels but not for the whole cleft.

3 Summary of the papers

The work I have done in this thesis is collected in the three papers that I will briefly
present in the following. The first paper is a methodological paper that compares a
discrete and stochastic model of diffusion with a continuous and deterministic model of
diffusion. As mentioned in the review above, this study relates to an ongoing issue about
discrete versus continuous modelling of diffusion in small intracellular domains. In the
second paper I present a model of the Ca®" dynamics in the dyadic cleft. Following the
results from the first paper, I model the [Ca“} as a continuous field, and the channel
dynamics with discrete and stochastic Markov models. Simplistic but runnable code
that discretise and solve the problem is presented, together with a software, diffsim,
that can be used to solve more complex models. In the third paper we have used
diffsim to create a complex model of the dyadic cleft. The model is used to study
potential causes of the delayed and dyssynchronous Ca** release during heart failure.
We also study the effect of local Na™ gradients on the reverse mode NCX.

10
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Paper I:
Stochastic binding of Ca®" ions in the dyadic cleft; continuous
versus random walk description of diffusion

A continuous approach to spatially resolved biochemical systems based
on reaction-diffusion PDFEs provides a deterministic description in
terms of average species concentration. This description is accurate
and effective so long as the number of molecules in a system is macro-
scopically large.

Slepchenko et al. [52]

Continuous systems make sense when dealing with a very large num-
ber of particles for all reactive species, or when considering average
population behavior.

Lemerle et al. [53]

The number of signaling molecules in these microdomains is small
enough to render the notion of continuous concentration changes in-
valid

Koh et al. [35]

The Ca?" dynamics of the dyadic cleft is fundamentally stochastic. The channels
regulating the CICR open and close stochastically and the small volume of the dyad
makes the number of participating Ca®" ions a highly variable quantity. Most of the
time during diastole, there are no Ca®" ions in the cleft. During systole, the variation
of the number of Ca®" ions is of the same magnitude as the averaged number. As
mentioned in the model review above, this has been addressed in two recent studies
of the Ca*" dynamics of the dyadic cleft [22, 35]. However, the number of Ca®* ions
in the cleft varies at a much smaller time scale than the number of Ca®" ions binding
to receptors in the cleft. We therefore hypothesize that a continuous description of
Ca?* diffusion can be used together with a stochastic, and discrete representation of
the event of single Ca?" ions binding to receptors in the cleft. In paper I, we investigate
the difference between a continuous model of diffusion and a discrete, and stochastic
model. The comparison is performed with respect to stochastic bindings of single Ca®*
ions in the dyadic cleft.

We developed our own Random walk simulator implemented in MatLab (The Math-
Works, Natick, MA). The positions of the included ions are updated at each time
step, using a standard Random walk algorithm [37, 54]. For the reaction process, we
developed our own bi-molecular binding algorithm. The algorithm is analytical and
depends on the diffusion constant, the time step, and the distance between the two
molecules. The time step and diffusion constant is known a priori. Therefore the
binding probabilities could be precomputed with respect to the distance. We use the
bi-molecular binding algorithm to calculate the binding probabilities between diffusing
particles too.

The comparison tests were done by collecting single binding events from 4 tentative
RyRs, distributed at even distances from the center to the rim of the dyad. We did this

11
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for three different type of simulations, i) steady state [Ca”] from one open LCC, ii)
steady state [(]a2Jr during diastole (where there are on average 0.02 ions in the cleft),
and 74i) transient Caer], the response from three LCCs that switched between open
and closed states. We did the same type of simulations using a continuous model of
the concentration in the cleft, but without collecting binding events, just recording the
[Ca2+] response. This response was used to test whether the collected binding events
from the Random walk model could have been collected using the continuous model.
We did this by evaluating the continuous model goodness-of-fit. With the parameters
we used, we could not discriminate between the two models.

During our work with this paper, the study of Tanskanen et al. [22] was published.
As previously discussed, they registered a difference between the macroscopic quantity
of gain in their model, while scaling the strength of the fluxes into the dyad together
with the diffusion constants. In a continuous model, this would not change the gain,
however they did indeed register a change in gain. This change can be tracked down
to the fundamental difference in the registering of single bind events. We also scaled
our model correspondingly and found that we could reproduce their reported difference,
when we scaled the Ca>" influx and the diffusion constant. However we also needed to
reduce the spatial length scale of the Random walk model. This length scale is defined
by:

o = V2DAt, (1)

where D is the diffusion constant and At is the time step of the simulation. This
length scale is the averaged distance an ion moves each time step in each of the spatial
directions. This gave us a Random walk model that behaved differently with respect to
the binding process, when both D and ¢ is changed. We also found a third parameter
that could be tuned to get this different behaviour, namely the binding rate of the
receptor, kT. Previously in the study we have used a dimensionless version of the
binding rate, k™, in a validation study of the Random walk model. The dimensionless
binding rate is expressed by:

kt* =k /(4rDoNa) (2)

where kT is the binding rate of the receptor and Na Avogadro’s number. This one
parameter can be used to find what combinations of the three parameters that will
cause the different behaviour of the two models. We found that if 5™ < 0.013, it was
not possible to register any difference between the two models.

The rate k**, gives us the time scale of diffusion divided by the time scale of binding,
for an ion close to a receptor. When £* is small, the diffusional process is dominant and
a close ion will then mostly move away from the receptor. Interestingly, the closeness of
an ion is dependent on the discretization parameter o of the Random walk process. If
k** was only dependent on model parameters, it would have made the decision of what
method to use more straight forward. However, it makes sense that it is dependent
on a discretization parameter if one consider the binding of an ion as a first passage
process. It is well known that we need to adjust escape rates for absorbing boundaries
in Random walk processes [55]. We do not adjust the escape rate in our Random walk
model and hence the difference. This is illustrated by our numerical experiments when
we do not remove a bound ion from the solution, see Fig. 12 C. Here, we see that the

12
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binding rate predicted by the continuous model is within the 95 % confidence interval
of the discrete model. This logic implies that one hypothetically could make o as small
as one would like, hence forcing a difference between the two models. However it does
not make any sense to reduce it to a size smaller than the physical size of the ion or
water molecule.

With this study we moderate the strong opinions (see the quotes in the beginning
of this presentation), about the use of a continuous model of diffusion, when a small
number of particles are involved. We assume that the discreteness of a dyad is not
determined by how many ions there are in a cleft, or their exact position, but rather
whether they are bound to discrete receptors or not. With this assumption, we show
that if the diffusional process is fast compared to the reaction process one can use a
continuous model of diffusion.

Paper 1I:
A coupled stochastic and deterministic model of Ca?" dynamics
in the dyadic cleft

In the first paper, we found that one can capture the stochasticity of a dyad using a
continuous description of the diffusional process. This statement is true as long as the
diffusional process is fast compared to the reactional process. In paper II, I develop a
more complex model of a single dyad than the one used in the first study. A continuous
description of the diffusional process is used, which is describe with an advection-diffusion
partial differential equation (PDE). The advection term comes from the electric field
from the sarcolemma in the model. Channel dynamics are described using discrete
and stochastic Markov chain models. Runnable Python code, which discretise and
solves the PDE is provided. The system is discretized using a finite element method
implemented using PyDOLFIN (www.fenics.org/dolfin). A time stepping scheme that
can be used to couple the discrete and continuous models is also presented. Last in
this paper, I introduce a software, diffsim, which lets a modeler use a high level
declarative language to define coupled systems of continuous and discrete variables.
More specifically, diffsim lets a user define arbitrary diffusional domains with several
different diffusive ligands, and couple these with discrete stochastic Markov models.
diffsim uses PyDOLFIN together with NumPy to discretise and solve the diffusional
problem, and NumPy to solve the stochastic problem, using a modified Gillespie method
[56, 57].

The continuous problem is advection dominated close to the sarcolemma, where
the electric field is strongest. Ordinary finite element techniques fails to discretise
such problems properly: the solution can oscillate or fail to converge [58]. T adopt an
upwind technique to stabilize the linear system. This technique emphasize upwind
contributions in the spatial discretization of the problem, with the result of stabilizing
the system. When analyzed, such techniques can be viewed as introducing an upwind
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artificial diffusion. The streamline-upwind/Petrov-Galerkin method is used to stabilize
our problem [58]. This method adds the upwind diffusion as a discontinuous contribution
to the testfunction in the streamline direction.

The system is stabilized using the SUPG method. However, the electric field creates a
steep gradient in the Ca®" concentration close to the sarcolemma. To be able to resolve
the solution properly, higher resolution of the mesh in this area is needed. Unfortunately
this creates quite large mesh, and quality has to be compromised to obtain solvability.
The quality of the numerical solutions from three different meshes, are investigated in
paper II. The meshes are created with a finer resolution at the point where the field is
the strongest, but each with a different grade of refinement. Numerical solutions are
computed and compared to an analytical solution, by computing the error measured
in an L2-norm. For each mesh, an optimal stabilization parameter 7, is found. The
optimal 7 for each mesh, is defined as the one that minimize the error. Not surprisingly,
the mesh with the finest resolution gives the smallest error.

The solution of our test problem can qualitatively be divided into two different regions.
A small part close to the TT, where the electric field is strongest, and a larger region
where the electric field is diminutive. The solution has a steep spatial gradient in the
first region, and it is more or less constant in the second one. Given a certain value of
the stabilization parameter 7, the method cannot resolve both of these regions correctly.
This results in either a good approximation of the Ca®" concentration at the TT or
at the SR. This observation is interesting, because it is at these two points the Ca*"
field interacts with stochastic boundaries, and sarcolemmal buffers. This introduces
an uncertainty with respect to any parameters used to model these interactions, an
uncertainty a modeler needs to be aware of.

I am not aware of any studies that solves the advection-diffusion equation in 3
dimensions for the dyadic cleft. Neither am I aware of any studies that couples the
continuous Ca®" field with stochastic and discrete Markov models for the dyadic cleft.
With this paper I have described a method using publicly available tools: PyDOLFIN
together with diffsim (www.fenics.org/apps), that does this. The computational
effort of the model is unfortunately quite large. This is because the method requires
high mesh resolution close to the TT.

In this paper summary, I think it is natural to emphasize the use of Python in scientific
computing. In the first paper I used MatLab, as this was the language I was acquainted
with, when I started my PhD. MatLab is also a natural choice for many scientific
programmers. However Python is a programming language that is emerging as a natural
choice in the scientific computing community. Together with NumPy (numpy.scipy.org),
and SciPy (www.scipy.org), Python provides a high level programming language with
similar abilities as MatLab. With MatPlotLib (matplotlib.sourceforge.net) we get
a plotting program for 2D plots, which is able to produce figures with printing quality.
High performance computing libraries such as PETSc (www.mcs.anl.gov/petsc) and
Trilinos (trilinos.sandia.gov) are also accessible through the Python interface. In
this thesis I have used PyDOLFIN, the python interface to DOLFIN, for Paper II and
ITI. DOLFIN is an acronym for Dynamic Object-oriented Library for FINite element
computation, and is a part of the software packages provided by the FEniCS project
(www.fenics.org).
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Paper 111I:

Mechanisms underlying delayed and dyssynchronous Ca’" re-
lease in failing cardiomyocytes examined by computer model-
ing

In our third paper we use diffsim, the software presented in paper II, to create
a complex computational model of the Ca®t dynamics in the dyadic cleft. We use
the computational model to investigate possible contributions to the delayed and
dyssynchronous Ca®" release of a cardiomyocyte during HF. The model is also used to
investigate if a single NCX, working in reverse mode, can trigger Ca?" release when it
is co-localized with a Na™ channel (NaC) in the dyad.

In many of the integrative models reviewed above, a crucial assumption about the
[Ca“] in the dyadic cleft is made: it is homogeneous inside a single dyad. All local
ion gradients in the dyad is ignored, and the LCCs and RyRs in a single dyad sense
the same [Ca2+]. The assumption is made so the computational cost of the integrative
models can be reduced. However, we think that important aspects of the ion dynamics
of the dyadic cleft may be is lost. Previously it has been shown that large local ion
gradients are created in the dyad when ion channels are open [21]. Local receptors sense
these gradients and act accordingly. In Paper IIT we exploits the local gradients created
in the dyad in both our two studies. In the first study we show that the sharp Ca®*
gradient, created from an open LCC, can be used to reduce the computational cost of a
large dyad. In the second study we co-localize an NCX with an open NaC. Here we see
how the local Na® gradient influence the reverse mode of the NCX.

In the first study we investigate the timing of the Ca*" release of a dyad and two
possible contributions to delayed and dyssynchronous release during HF'. In this study
we assume that the release is triggered only by Ca?" from the LCCs. The timing of
Ca”" release is then determined by the kinetics of the LCC and the RyR, the strength
of the [Caﬂ} response from a single LCC, and the number of LCCs and RyRs in the
dyad. A recent study claims that there are many, between 20-40 LCCs in a single dyad
[12]. We chose 20 LCC in our dyad. The number of RyRs follows from this number,
as five RyRs for each LCC [22, 59], which give us a dyad with 100 RyRs. We used a
published Markov model scheme for the LCC [32], and adjust the rates so the model
fit the experimental data provided by Poldkova et al. [12]. The electrical field from
the sarcolemma is included as presented in Paper II, and the amplitude of an LCC is
also fitted to published values. The size of the dyad follows from the number of the
included RyRs. This is because the RyRs are aligned in a regular 2D lattice grid [60],
see Fig. 1B in paper III. A cylindrical dyad with 100 RyRs, must have radius of ~ 200
nm. With this size of the domain we are unfortunately not able to resolve the transient
[Ca2+]. Instead we use a quasi steady state solution, as an approximation of the Ca**
response for an open LCC.

We apply two different APs to drive the model. One AP comes from a healthy
cardiomyocyte and the other one comes from a failing cardiomyocyte. A simplistic
model of the RyR kinetics is used. The activation rate of this model is fitted so the Ca?*
release time of the first RyR, using the healthy AP, fits experimental results provided in
the study. We show that changes in AP shape can delay the time to release and increase
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dyssynchrony. This is because the HF AP reduces the driving force to the Ca®" current
from an open LCC. HF alters the structure of the dyad. We investigate how potential
changes in the the geometry of a dyad, here modeled as an increase of the cleft height,
contributes to the delayed and dyssynchronous release of a dyad. We find that small
increase in the height of the dyad, can cause delayed and dyssynchronous release.

High level of cytosolic [Naﬂ will contribute to the Ca*" influx during reverse mode
of an NCX. In the second study of this paper, we use our model to see if a strong local
Na™ gradient from an open NaC, could be utilized by a co-localized NCX, to trigger
Ca?" release. In a previous study we have shown that this is the case [25]. In this study
we used a scaled version of the whole cell current for the local NaC. In our model we
represent a single current as being either on or off. We hypothesised that modelling
the current from the NaC in this way, we would get a larger local Na™ current and
hence larger reverse mode NCX current. Somewhat surprisingly we got the opposite
result. We measured the Na™ and Ca®" response at the mouth of the NCX, while
applying a voltage ramp, from -50 to 50 mV. We see that during the hyperpolarized
membrane potentials we get a strong [Naﬂ response. At these potentials are the NCX
current held at a low level. During the depolarized membrane potentials we see a
stronger reverse mode NCX, but the [Naﬂ response from the open NaC is small at
these membrane potentials. These results indicate that Ca*" influx from a single NCX
working in reverse mode, cannot trigger CICR alone. We also control a side effects of a
key model assumption in the study of Lines et al. [25]. Here they model the crowdedness
of a dyad by lowering the diffusion coefficient of Na™ dramatically. In this way they
managed to hold onto a high [Naﬂ close to an NCX. The diffusion constant of Na™ is
believed to be half that of the diffusion constant of Ca®* [28]. We use a varying Ca*"
diffusion constant and registered the potential response in the dyad for an open RyR.
We show that a low Ca*" diffusion constants will cause un-physiological high [CaQﬂ in
the cleft.

With this study we have quantified possible contributions to the delayed and dyssyn-
chronous release observed during HF [17], using a detailed computational model of
the dyadic cleft. We have also used the model to study possible effects of local Na™
gradients to the reverse mode NCX. In both of the studies in Paper III, we utilised the
local ion gradients established in the cleft after an open ion channel.

4 Future work

It is my belief that the results presented in this thesis may shed light on some important
aspects of the computational modeling of the Ca>" dynamics in the dyadic cleft. However,
there is a number of issues I would like to investigate further.

The choice of what model to use to represent the [Caﬂ} in the dyadic cleft has to be
based on quantitative measures rather than qualitative measures. In our first study,
we show that the discreteness of a dyad can be captured by a model using continuous
representation of the [Ca%ﬂ and stochastic and discrete representation of the binding of
single Ca*" ions to receptors. This assumption holds for the parameter regime we have
chosen in our study. However we show that with different discretization parameters for
the Random walk process, we can force a difference. In this introduction we hypothesise
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that this is because the first passage process is modelled more correctly using a smaller
discretization parameter. This is illustrated by not removing a bound ion from the
solution in the Random walk model. Then we get the same amount of bound ions
using the two models. It would have been interesting to include a binding flux to
the continuous model. In this way we model the removal of an ion from the solution.
This might revert the differences between the two models for small o. It would also
be interesting to ask the modellers of the Tanskanen et al. [22] study, to reduce their
discretization parameter from 1 nm to let say 0.5 nm, to see if this would alter their
results.

In paper I, I use a finite element method together with a streamline-upwind /Petrov-
Galerkin stabilizing method to discretise and solve an advection-diffusion PDE. Sta-
bilizing methods are a large research field in the finite element method community,
and other methods exists [61]. A family of finite element methods are discontinuous-
Galerkin methods, which can be used to enforce the upwind contribution at the element
interface level [62]. I successfully used discontinuous Galerkin methods on our test
problem (result not shown), but unfortunately it introduce a number of extra degrees
of freedom to the linear problem. A recent study combines the attractive low numbers
of degrees of freedom from the continuous methods, with the upwinding abilities of the
discontinuous method [63]. Labeur and Wells [63] claim that for linear elements, only
minor modifications are required to existing continuous finite element codes, which sound
very attractive. I also recognize that I can do a minor modification to our stabilizing
parameters, 7.. In this parameter, the local mesh size is included. We have just used
the diameter of the sphere that circumscribes the local tetrahedron, as our local mesh
size. Instead we could use the a length based on the size of the element in the direction
of the field [64].

In the last paper, we use a detailed computational model to investigate the dyssyn-
chronous and delayed release in failing cardiomyocytes. Our study limits to the activation
time of the RyRs. A natural extension would be to also include the release flux from
SR, hence including the spark generation. With this extension, it would make it easier
to evaluate the model, and to create predictions that have further relevance for the
experimental community. Such an extension would require a better model for the RyR.
We would also need to resolve the Ca?' gradients from the open RyRs. It might be
possible to use a similar method as we did for the LCC flux, that is to say a quasi steady
state approach. We could for example record the steady state Ca®' response from an
open RyR. This response is dependent on the [Ca%} in jSR, which would then be the
dependent variable for the recorded Ca*" response. The response can then be applied
to the neighbouring RyR, triggering further release. We should be able to evaluate how
well this quasi-steady state approach is, by making numerical experiments on a reduced
system.

By assuming a quasi steady state Ca®" response we over-estimates the [Cazﬂ at the
included RyRs, as the transient raise to the steady state value is not included. We
show that the error is not big as the steady state is established fast. However, we have
not included the sarcolemmal buffers in our model. This would prolong the time to
steady state and make our quasi steady state approximation worse. It would be natural
to quantify the error made with the quasi steady state approach, with and without
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sarcolemmal buffers.

It would also be interesting to try to reduce our model so it could be included in
an integrative model of the whole cardiomyocyte. However we probably have to take
another approach to reduce the computational effort, than the two studies presented
above, that is to say Greenstein et al. [49] and Williams et al. [50]. Both of these studies
assume that the [Ca%} in the dyadic cleft is homogeneous. With this assumption
all LCCs and RyRs in the dyad sense the same [Cazﬂ. This is clearly not true. We
show that the gradients are important, as it is only the juxtapositional LCC that can
trigger release from a RyR. We use this observation to reduce the computational effort
of our model. This reduction might be taken further, reducing the whole dyad to a
single discrete Markov model. Such reduction will need thorough mathematical analysis
together with numerical experiments.

A strength of the finite element methods is that it let us solve the advection-diffusion
equation on a unstructured mesh, capable of describing almost arbitrary geometry.
Therefore it would be natural to extend our computational mesh with the current
knowledge of the geometrical structure of the included channel proteins. Tanskanen
et al. [22] do include this information in their model. They show that it does make a
difference on the gain of their model, when the structure of the proteins is included. We
should try using our quasi steady state approach for the [Ca2+], on such meshes too.

There are some uncertainties in the modeling of the possible contribution of Ca®"
release from the NCX, we would like to pursue. The actual NCX model we have used is
from a whole cell model of rabbit [65]. The model is tuned for the whole cell intracellular
environment of a rabbit. Our model is of a mouse, which has a higher resting [Naﬂ.
We are also utilizing local concentration gradients, which can be higher than the whole
cell concentration. Hence it would be appropriate to tune the rates of the NCX model
according to the intracellular environment of a mouse model and to the higher local ion
gradients in the dyad.

Last but certainly not least, we anticipate a follow up study on the model for the
electric field from the sarcolemma. The development of the model that defines the
strength and the shape of the field comes mainly from two studies: Bers et al. [30] and
Soeller and Cannell [21]. During the implementation of our model we found discrepancies
between the two presentations and obvious errors. We were also not able to reproduce
the field strength reported by Soeller and Cannell [21]. We had to tune the charge
density parameter to get the same strength as they got. The importance of the electric
field is not only for the study of numerical methods, but rather the effect it has on the
local [CaQﬂ. A small change in the strength has large effect on the [Ca“] . The model
also assume a monovalent 1-1 electrolyte which is clearly wrong. The negative charge in
a cell comes mainly from negatively charged proteins. These does not have the same
access to the dyadic cleft as the C17. This might not have a large impact but our belief
in the current model of the electric field is not strong.
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Abstract:

Ca”" signalling in the dyadic cleft in ventricular myocytes is funda-
mentally discrete and stochastic. We study the stochastic binding of
single Ca®" ions to receptors in the cleft using two different models
of diffusion: a stochastic and discrete Random Walk (RW) model,
and a deterministic continuous model. We investigate whether the
latter model, together with a stochastic receptor model, can repro-
duce binding events registered in fully stochastic RW simulations. By
evaluating the continuous model goodness-of-fit, for a large range of
parameters, we present evidence that it can. Further, we show that
the large fluctuations in binding rate observed at the level of single
time steps are integrated and smoothed at the larger time scale of
binding events, which explains the continuous model goodness-of-fit.
With these results we demonstrate that the stochasticity and discrete-
ness of the Ca?" signalling in the dyadic cleft, determined by single
binding events, can be described using a deterministic model of Ca*"
diffusion together with a stochastic model of the binding events, for a
specific range of physiological relevant parameters. Time-consuming
RW simulations can thus be avoided. We also present a new analytical
model of bi-molecular binding probabilities, which we use in the RW
simulations and the statistical analysis.
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PAPER 1 1. INTRODUCTION

1 Introduction

It is an important and contentious issue whether diffusion in signalling micro domains
can be modelled deterministically and continuously, or if stochastic and discrete Random
Walk (RW) methods should be employed [1-6]. Signalling micro domains are used by
the cell to convey information and it is important to use accurate and reliable simulation
methods when these processes are studied. Traditionally, they have been studied using
Fick’s second law of diffusion together with macroscopic rate laws, where the latter are
used to model chemical reactions. These laws provide a deterministic prediction of the
changes of the average number of molecules in a process over time. The solutions are
continuous functions of both space and time. Reaction diffusion processes in macroscopic
environments, where fluctuations from the predicted average number of particles in a
solution are small, are modelled successfully by these laws. The laws were originally
empirical but they are also well-founded in statistical physics [7]. In recent years, as
smaller and smaller sub-cellular domains have been studied, researchers have focused
on the discreteness and stochasticity of the physiological processes. This has raised
issues for the deterministic models [4, 8]. In sub-cellular micro domains, the number
of involved molecules is small and the fluctuations from the predicted average number
of molecules involved become dominant. Three dimensional (3D) RW simulators have
been developed to incorporate the discreteness and stochasticity of the signalling in
intracellular micro domains. One well-established simulator is MCell [9, 10], which
has been used in some recent studies of sub-cellular signalling. The results of these
studies illustrate clearly the fundamental discreteness and stochasticity of the studied
processes [1, 11, 12]. Another approach to modelling the discreteness and stochasticity
of a sub-cellular process is to model the diffusion and possible buffer dynamic with
a deterministic and continuous model together with a stochastic model of receptors
that switch states randomly according to the concentration at the receptor site, i.e.,
modelling the binding of single molecules to a receptor stochastically. Different versions
of this method have recently been used to study the functionality of the well-studied
signalling micro domain of the dyadic cleft, in ventricular myocytes [13-15], and also in
a whole cell study of the Ca®" dynamics in the endoplasmic reticulum [16]. Although
this method is already in use, the fundamental problem of using a continuous and
deterministic representation of a small number of diffusing molecules has not been
addressed. This issue is of great concern when signalling in the dyadic cleft is studied,
because the volume of this domain is in the magnitude of atto litres. This concern is
illustrated by the fact that during diastole, when the myocyte is relaxing, the cytosolic
[Ca2+] is as low as 0.1 uM, leaving, on average, 0.02 Ca*" ions present in the cleft.
Hereafter, we will relate to this model, i.e., the continuous and deterministic description
of Ca®" diffusion together with a stochastic and discrete description of single receptors,
as “the continuous model”.

The dyadic cleft is a signalling micro domain in which the Ca®* induced Ca*" release
mechanism is controlled tightly [17, 18]. A travelling action potential triggers the influx
of external Ca®t through the L-type Ca®t channels (LCCs). From the mouth of a LCC,
which are located at the membrane of a T-tubule (TT), Ca*" diffuses into the cleft.
The cleft is narrow, about 15 nm wide [19, 20], and a unitary LCC current creates a
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very high Ca*" concentration in the cleft, ~ 10 — 200uM [21], compared to the value
at rest , ~ 0.1uM. This Ca®" signal triggers both the inactivation of the LCC current
and further Ca®* release from the opposing Ryanodin receptors (RyRs) [22, 23], which
are attached to the sarcoplasmic reticulum (SR), an intracellular Ca?" store. What
causes the reliable termination of Ca®* release from the RyR is still a debated issue [24].
However, among the proposed explanatory hypotheses, inactivation due to binding of
single Ca*" ions to receptors in the dyadic cleft, is well-established [25, 26]. For a recent
review of the Ca>" dynamics in the cleft, see Bers and Guo [27], and the references
therein.

For a long time, continuous and deterministic models have been used to study Ca**
dynamics in the dyadic cleft [21, 28-31], and its role in the release of Ca*". Two recent
studies of Ca®" dynamics use a discrete RW model to describe the Ca?* diffusion in
the cleft [12, 32]. Koh et al. [12] uses MCell and argues that few Ca®" ions in a small
volume cannot properly be simulated with a continuous model of diffusion. However,
they do not present any results that support this claim. Tanskanen et al. [32] present
an impressive study that includes physiological details on a micro-scale level, such as
the electrostatic force from the sarcolemmar and the geometrical structures of the large
membrane proteins in the cleft, while integrating the Ca®' release from many clefts,
and thus obtaining a measure of the Ca®" release from the whole cell. In contrast
to Koh et al. [12], they explicitly address the difference between their model and an
equivalent model that uses a deterministic description of Ca*" diffusion. They do
this by measuring the effect on the excitation-contraction coupling (ECC) gain when
they vary the diffusion constant of Ca*", together with the parameters that determine
the influx of Ca®" ions to the cleft. They show that the ECC gain varies with the
parameters [see Fig. 12 in 32]. This result points to a “subtle but potentially significant
difference in predicted macroscopic behaviour arising from the underlying stochastic
simulation of Ca®" motion in the dyad.” The rationale for this statement is that if
they had changed the same parameters in an equivalent model using a deterministic
description of Ca?' diffusion, they would not have registered any differences in ECC
gain because the receptors situated in the cleft would have experienced the same level
of Ca®" concentration. In our study we examine the discrete events in the cleft that are
actually modelled differently in a continuous vs a RW model of diffusion in the dyadic
cleft; namely, the binding of single Ca®" ions to single receptors. By doing this, we strip
the model of Ca®' dynamics in the dyadic cleft of many important physiological details
that affect the generation and termination of a spark [12, 21, 32], but the comparison
between the actual differences between the two diffusion models become clearer.

We also present what is, to our knowledge, a novel model of bi-molecular binding
probabilities between single diffusive ligands and single stationary or mobile receptors
that are used in our RW simulator. The model is analytical. It depends only on the
diffusion constant of the ligand, the macroscopic binding rate, the time step of the
RW algorithm, and the distance between the two molecules at the beginning of the
time step. The first three parameters are all known before a simulation starts and the
binding probabilities are precomputed with respect to distance for the reactions that
are included in the simulation. During a simulation, look-up tables are used. The error
introduced by the model is studied thoroughly for a large set of parameters. We find
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that for a given time step, the error introduced by the bi-molecular interaction model
is much smaller than the error introduced by the RW simulation, due to an absorbing
boundary in our model. Hence, we can use larger time steps for the time-consuming
reaction process.

The results of the statistical goodness-of-fit tests reveal that the continuous model,
for a specific parameter range, can reproduce the registered binding events from the
RW simulations. This is somewhat unexpected, because the binding probability in the
continuous model is linear with respect to the [Caﬂ} at a single receptor and is also
constant during steady-state simulations. This is in contrast to the binding probabilities
in the RW model, which depend directly on the distance between a RyR and any nearby
Ca”" ions. We find that the large variations in binding rates at the time scale of a
single time step, ~ 1.25 x 10~* ms, are integrated and smoothed at the time scale of
binding events, ~ 0.5 ms. These results refine the statements made in a number of
recent studies [2, 6, 10, 12|, which claim that when the number of participating particles
in a volumes falls, a deterministic description of concentration is invalid or does not
make sense, and fully stochastic methods have to be employed. Our study reveals that
the extra discreteness and stochasticity that a full RW model introduce are integrated
at the time scale of binding events, to the same value given by the continuous model.
This also explain why the average description of the [Ca%} in the cleft, given by the
continuous model, is sufficient when the registration of single binding events is studied.
The result is parameter-dependent. For small values of the diffusion constant, we find a
difference between the two models similar to that which Tanskanen et al. [32] find. We
further investigate the cause of this difference and the quantitative dependency of the
parameters.

This paper is divided into five main sections. The introduction is followed by a
theory section in which we describe the models and how we solve them. Also in the
theory section, we derive and analyze the model of bi-molecular binding probabilities.
In the next section, Methods, we explain how we performed our simulations and which
statistical tests we used. The results of our simulations and tests are presented in the
Results section and then discussed in the Discussion section.

2 Theory

2.1 Continuous model

Ca*" diffusion in the continuous model is described by a well-known reaction-diffusion
model, which consists of a set of coupled partial differential equations (PDEs) [33, 34].
Symmetry in the angular and z direction were assumed, thus reducing the full 3D
model to a 1D model in the radial direction. If ¢, B,, and By denote, respectively, the
concentration of Ca>", mobile buffer and stationary buffer, the full system is given by
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gc = D.NV?%c+ R, (c,B,) + Rs(c, By),
aB(?t re(0,R)CR,t>0 (1)
8—tm = DmV$Bm + R,.(c, Bn),
By
aa_t = Rg(c, By), re[0,R]CR,t>0, (2)

(3)

The reaction terms are given by

Rn(c,B,) = —k! Bnc+k (BL - B,),

4
Ry(c,B,) = —kf B,c+k (B - B,), (4)
where B! and B? are the total concentration of the two buffer types. D, and D, are
the diffusion constants of Ca?" and the mobile buffer, respectively. V2 is the radial
diffusion operator

9?2 10
Vie — 4 -, 5
" Or? + ror (5)
The initial conditions are given by
c(r,0) = 0,
B (r,0) = ng rel0,R] CR,t=0, (6)
By(r,0) = BT,

and the boundary conditions are given by

oc 0B,,
—D,— = J, —D,,—2 = =
Car J’LTLJ m ar 07 ,r 07 t > 07 (7)
c(r,t) = C,, B, (r,t) = B, r=R,t>0, (8)

where J;, is the LCC line source, C, the Ca®" concentration in cytosole, and R the
radius of the cleft. The actual values of the parameters we used in the simulations are
given in the Method section below. The full system was solved using explicit finite
different schemes [35].

The binding of single Ca®" ions could not be modelled literally in the continuous
model, because single Ca*" ions do not exist in the model. However, in a Markov
chain model of a RyR, the Ca>"-dependent transition between one state to another is
an indirect model of the physiological event of a Ca®" ion binding to a receptor at a
channel [36, 37]. Given that we did not want to simulate the dynamics of the whole
RyR, but only the transition between two [Caﬂ}-dependen’c states, we reduced the
channel model to only include two states: one with Ca*" bound, c¢R, and one with Ca*"

unbound, R,
ckt

R = cR. 9)
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The total binding rate depends on the Ca*" concentration, ¢, at the position of the
receptor together with the on rate, k™. The unbinding rate depends only on the off rate
k= and is thus Ca*"-independent. The independency of [Ca2+} in the off rate makes the
transition from the bound state to the unbound state model-independent, and we could
therefore exclude it from our study because we were only interested in the differences.
Effectively, this meant that we removed the bound state, cR, from the receptor model,
thus reducing the receptor model to a one-state model that serves as an indicator of
Ca*" binding events.

With this reduction of the channel model, we were able to represent the registration of
single Ca®" binding events at a RyR, in the continuous model, with a Poisson processes,
determined only by the rate or intensity function \(¢) = ¢(t)k* [38]. The probability
that one Ca?" ion would bind to a RyR was modelled as 1 minus the probability of zero
bindings:

P (t) =1— e AL (10)

We had to retain the quantity A(¢)At, which represents the expected number of binding
events during a time step, much smaller than 1, and by that minimizing the probability
of getting more than one binding event during a time step. When the [Caﬂ} was fixed
at each receptor, i.e., during the steady-state, we had a homogeneous Poisson process
with constant rate A = ck™. In the transient simulation, where the [Ca%} varied at
each receptor, the Poisson process was inhomogeneous with rate A(t) = ¢(t)k™. The
model reduction, together with the observation that the registration of binding events
could be represented by a Poisson process, were used in the goodness-of-fit tests, as
shown in the Methods section below.

2.2 Random Walk model

Our discrete model of diffusion is based on a RW description of Brownian motion [39].
The model is a simple, but powerful stochastic model of diffusion. In a simulation, the
position of each diffusive ligand in the cleft is tracked. For each ligand and time step,
a random displacement, Ar = (Ax, Ay, Az), is sampled from a trivariate probability
density and added to the position of the ligand. The distribution is a solution to Fick’s
second law of diffusion for a point source [33]. With homogeneous diffusion constant,
D, and a fixed time step, At, the trivariate probability density is given by

1 _A12+Ay2+Az2

f(araLp) = e” 4pAt | (11)

(47D Ab)3

The expected radial displacement of a single RW step is 7, = v6DAt. The spatial scale
of the simulation is hence set by D and At. Three different types of diffusive ligands
were simulated in the RW model: Ca?', and a diffusive buffer with and without bound
Ca*". We used the same diffusion constant for the two buffer molecules, D,. Two
different types of boundary were used: one reflective and one absorbing, 0€2xo and 9€)p
in Fig. 6. If a particle, Ca>" or mobile buffer, crossed one of the reflective boundaries it
was mirrored into the volume again. If a Ca®" ion crossed the absorbing boundary it was
removed from the simulation, to allow the modelling of a Ca®* concentration in cytosole
that was assumed to be zero. During a simulation, we kept the total concentration of the
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mobile buffer constant in the cleft. This was achieved by not allowing a buffer molecule
cross to the 9Q2p boundary, i.e., if a buffer molecule ended outside the boundary a new
displacement was sampled until it was inside. In addition, if the buffer molecule had a
Ca?" ion attached to it when it ended outside the boundary, the Ca®*" was removed,
due to the assumed zero [Ca“] in the Cytosole.

We implemented two different possible sources of Ca®" ions in the cleft: 7) one or more
LCC, or ii) passive influx from the cytosole. The Ca*" ions that entered through a LCC
were introduced into the centre of the cleft at a random height, to mimic the line source
used in the continuous model; see above. The number of Ca®' ions entering the cleft
through the current per ms is given by J,cc = No ipce/(2€), where N, is the number of
open channels, e the elementary charge, and z the valence of the Ca?" ion. The number
of Ca®" ions entering the cleft from the cytosole is given by Jeyt = Coyt Na'V/t. These
ions were placed at a random position at the boundary d€)p. Here, C.y; is the Ca?**
concentration in cytosole, Na Avogadro’s number, and V' the volume of the cleft. ¢ is
the average time each Ca®" ion spent in the cleft, given that it entered at the boundary
OQp. When there were no buffers in the cleft, this value was found to be t ~ 3.6 x 10~*
ms.

Stochastic modelling of single receptors

In addition to handling the RW of single Ca®" ions in a continuous 3D space, we wanted
to let these ions bind to single receptors and study the resulting binding statistics.
We did not find any software that was able to do this when we started our study, e.g.
MCell 2 only supported single binding events to a density of receptors at the membrane.
Therefore, we decided to develop our own model of bi-molecular interactions.

Not only RyRs were treated as single receptors in the discrete RW model, but also all
buffer molecules, so we had to deal with Ca?" unbinding from receptors too. This was
in contrast to the continuous case, in which only the event of Ca*" binding to single
RyR receptors was treated stochastically. The probability that a Ca*" ion will unbind
from a receptor during a time step depends solely on the unbinding rate k= for the
receptor and the size of the time step and is given by

Pyy=1—e" A (12)

The probability that a Ca** ion and a receptor will bind was calculated using the
same macroscopic rate law that was used in the continuous case; see Eq. 9. It is counter
intuitive to use a macroscopic law between single discrete molecules, because these do
not have the macroscopic property of concentration. However, because the position of a
diffusive ligand is given by a probability distribution between the time steps, we used
this distribution to calculate the average number density of a single diffusive particle at
a certain distance and time [7]. This quantity is deterministic and predicts the expected
density or concentration of a particle.

Despite the fact that the concept of average number density has been used before
[7] we argue that a single diffusive particle is described more appropriately in terms
of its expected concentration, which is given in Molar and can thus be used in the
macroscopic rate law, as intended. The word expected also reflects the deterministic a
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priori knowledge of the contribution to the average concentration that a particle would
make if the position were sampled many times.

We derived the concept of expected concentration by dividing the entire spatial
domain that surrounds the diffusive ligand into N equally spaced shells. Each shell had
a volume of AV; = 4rAS?ds, where AS; = ids, ds oc 1/N and i = 1... N. Fixing the
time to t < At, we sampled the position of the diffusive ligand K times. Let N; be
the number of times the ligand occurred in the shell at AS;. Dividing this by K, we
obtained the averaged number of times the ligand occurred in the ith shell. Then, the
average number density of the particle in the same shell is given by

N;

n; = . 13
= (13)

Dividing this by Avogadro’s number, Na, we arrived at the average concentration given
in Molar. Given that we were sampling a deterministic probability distribution K times,
we used this information to express the expected number of times a particle occurred in
the ith shell, after time ¢:

N, =K x P(as;t) = K x f(ast) x AV;. (14)

Substituting N; in Eq. 13 with this value, and letting N — oo, we obtain the expected
concentration that this ligand exsert after ¢ ms at distance AS,

N

1 1
AstD) = — f(ast) = ———
¢ (8540) Na (8s2) Na(47rDt)%e

>

S

IS
)

(15)

Here we have divided by Avogadro’s constant to obtain the concentration in Molar. We
see that the c,, is directly proportional to the probability distribution in Eq. 11, which
makes sense. The expected concentration of a single Ca®' ion after ¢ = 45 ns, with
D = D, = 10° nm?ms~1, is plotted against AS in the left panel of Fig. 1, solid line.

The expected concentration, c,, a Ca®" ion exsert to a nearby receptor, AS nm away
after 7 ms, was used to calculate the probability of not binding during a tiny time
interval A7 < At. For this we used the macroscopic rate law from Eq. 9 together with
the Poisson probability distribution for zero events,

Pu(asrpar) = e Fep(asmpIAT (16)

The probability of not binding during the whole time step At, equals the product of
this quantity evaluated for 7, = A7(i + 1/2), where ¢ = 0,..., N, and N = At/Ar.
Keeping D, At, k™ and AS constant, this probability is

N
P = e—k+CE(Ti)AT — e—k‘+ 27{\;0 CE(’TZ')A’T — e_k+EEAt (17)
NB ,
=0

where ¢, equals the average value of c,, the receptor experience during a time step. In
the limit where A7 — 0 and N — o0, ¢, becomes

1 1 At
¢c. = lim — E VAT = — ) 1
Cp im A7 OCE<7'Z) T At/o e, (T)dT (18)
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Figure 1: The left panel shows the expected [Ca®t], as given by Eq. 15, experienced by a receptor
situated a distance AS from it, at ¢ = 45 ns. The diffusion constant of Ca®* is D, = 105 nm?ms 1.
The solid line represents the [Ca%ﬂ experienced by a stationary receptor and the dashed line represents
the [CaQ+] experienced by a mobile receptor, with D, = D./2, as given by Eq. 26. The right panel
shows the corresponding probabilities that a Ca?T ion will bind to a stationary receptor, solid line,
and to a mobile receptor, dashed line, as given by Eq. 24, where At = 45 ns and k+ = 30 uM s,
The probabilities are plotted against the distance between the Ca?' ion and the receptor. Note the
logarithmic scale used for AS in the right panel.

Using the function for ¢, from Eq. 15, in this equation we get

1 At 3 _ AS?
C, = —3/ T 2e 1D7dT. (19)
(47 D)2 NaAt Jg

With change of variables, the integral on the right hand side can be represented by the
upper incomplete gamma function [40]. The lower part of such a function is defined as

1 x
Dine(z,0) = — [ t* e dt (20)
I'(a) Jo

and the upper part is defined from this

1 o0
FuppeT'(x, Oé) = _/ t*teTtdt =1 — ch(f, a>‘ <21>

inc
(o) Jy

After the change of variables, the integral in Eq. 19 becomes

At 2 Vvip [~ VD
|t tar =22 [ hea =g (22)
0 as ) as? AS

where the identity of (1) = /7 has been used. Using this in Eq. 19, we obtained an
analytical expression of the average expected concentration that a receptor experiences
during a time step from a nearby ligand:

B 1
e (1 — Tine (255.3)] - (23)
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Figure 2: The figure shows the coordinate used to integrate the [Ca“] experienced by the buffer
molecules, b. The position of the Ca?" ion defines the origin and the distance between the two particles

is AS.

Assuming that the quantity k*¢, At < 1, we can write the probability of registering
only one binding event as

P,=1-P,, =1-—e" (24)
where A = k*¢_. This equation is analogous to Eq. 10, applied only to a single ligand.
The expected number of binding events during a time step is (N,) = AAt. For the
continuous case, we had to keep this value much smaller than one, in order to minimize
the probability of getting two or more binding events during a time step. See also the
validity study below.

The binding probability for a Ca*" ion near to a mobile receptor, i.e. a mobile buffer,
was modelled in the same way as for the stationary receptor, with one exception. A
mobile buffer moves during a time step, which leads to a difference in the expected
concentration experienced by the buffer from a nearby Ca®" ion. Instead of evaluating
c, at a single point, as for the stationary receptor, we evaluated it for all possible
positions, ¢, (r,t), and weighted these with the probability, p,,(r,t), that the buffer was
present. For an arbitrary spatial point r, this quantity is

fe(r,t)
Na

& (r,t) =cy(r,t) X pp(r,t) = fn(r, ) AV (1), (25)

where f, and f,, are the values of the probability density for the Ca®" and the mobile
buffer molecule, respectively. The superscript, p, denotes the concentration at a single
spatial position. Using angular symmetry, a cylindrical coordinate system was chosen
to integrate, c¢? ~over all spatial points. The Cartesian coordinate line, z, was placed
in line with the two particles; see Fig. 2, and the position of the Ca>" ion defines the
origin. The distance between the two particles is AS. The result of the integration was
the expected Ca®" concentration experienced by a nearby mobile receptor, at time, ¢,
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Figure 3: The figures show the results of our study of the validity of the model of the bi-molecular
binding probability in Eq. 24. The left and the middle panels show the probability of registering
two or more binding events at a receptor. The left panel shows the probability generated by a single
ligand, with respect to the dimensionless quantities, AS * and k**, whereas the centre panel shows
the overall probability of registering two or more binding events at a receptor in an infinite medium
with constant concentration, ¢, for different values of k7*. The right panel shows the absolute value
of the relative difference between the probability of registering a binding event from the continuous
model and the RW model. The curves in the centre and right panels were computed using 0 = 5 nm
and D = 10° nm? ms—!. These curves would be shifted downwards if a smaller ¢ were chosen.

separated by a distance AS,

1 o0 o0 _7"2+22 7T2+<AS—Z)2
Cp(ASE) = g re et e Dt drdz,
47r2Na(4DcDbt2)7 —0 J0
1

_ As?
_ o WD By)E (26)
Na(4m(Dc+Dy)t) 2

Here, D, and D, are the diffusion constants of the Ca®" ion and the mobile buffer.
Notice that this expression is identical to the expected concentration experienced by a
stationary receptor, i.e. Eq. 15, with D = D. + D,. This result made it possible to use
Eq. 24 to calculate the binding probability of a Ca®" ion to a nearby mobile receptor,
merely by setting the diffusion constant, D, to the sum of the diffusion constants of the
two particles. In Fig. 1, left panel, dashed line, the expected concentration of a Ca*"
ion experienced by a nearby tentative mobile buffer is plotted. In the same figure, right
panel, dashed line, the calculated probability of a nearby Ca®* ion to bind to the same
mobile buffer, during a time step of At = 45 ns, with D, = 10° nm?ms™', D, = D,/2
and k* = 30uMs~!, is plotted.

Validity study of bi-molecular binding probability

The model of the bi-molecular binding probability requires that a single receptor registers
only one binding event per time step. In the continuous model, this could be controlled
by keeping the expected number of binding events during a time step, (N,) = c(t)kTAt,
much smaller than one. The corresponding probability of getting two or more binding
events per time step is then small. Using the Poisson probability distribution, this

37



PAPER 1 2. THEORY

equals 1 minus the sum of the probabilities of 0 and one binding per time step:
P,=1- <e_<NB> —|—<NB>e_<NB>) ) (27)

Using typical large values for the physical parameters, [Ca2+] ~ 1 mM and k* = 100
uM~1s7! and a small value for the time step At = 1.25 x 10~* ms, we obtained a small
expected number of bindings per time step (N,) = 1.25 x 1072 and a very small value
for the probability of two or more binding events, P., ~ 8 x 1075,

A similar analysis for the bi-molecular binding model was not straightforward. The
expected number of binding events during a time step for a single ligand, (N,) = ¢, kTAt,
depends on the stochastic AS-variable, and we must ensure that the probability for
more than one nearby ligand to bind to the receptor is small. The latter probability
depends on the local density of ligands nearby the receptor and is also a stochastic
entity.

Depending on the parameters, (V) can well exceed 1, which increases the probability
of registering two or more binding events from a single diffusive ligand. To study this
probability with arbitrary parameters, we expressed the expected number of binding
events per time step, (N, ) using dimensionless units. We let the expected displacement of
a single ligand in one spatial direction, o = v/2DAt, define the length scale AS = c AS™.
The expected number of binding events per time step in dimensionless units is then

(Np) = kT [1 = Dine (257.3)] /257, (28)

where

kt* =k /(4rDoNa) (29)

and represents the dimensionless version of k*. Note that At is redundant because it
follows D and o. Using this in Eq. 27, we obtained the probability of getting two or
more binding events from a single diffusive ligand nearby a receptor. This quantity is
plotted for different values of k** and AS* in the left panel of Fig. 3. The probability
is sensitive to ligands that are very close to the receptor and to large values of k™*.

In an infinite medium with a constant concentration, the probability that a ligand
will be r dimensionless units away from a receptor is P(r) = 2wo® ¢ Nar?Ar, where
¢ is the concentration and Ar a small distance chosen to ensure that P(r) < 1. The
probability of not getting a binding event from a distance r equals the probability that a
ligand will not be at that distance plus the probability that a ligand will be there times
the probability of not binding from that distance. Keeping k™* and ¢ constant we get
P? =1— P(r)+ Pys(r)P(r), where Py, = e_<NB>, and (N,) is distance-dependent; see
Eq. 28. We chose a cutoff distance of r = 5 that defines our domain and computed the
probability of not registering any binding events from this volume, P =[], P?, where
r; = iAr. The probability of getting one binding from a distance r is P! = Py(r)P(r),
where P! = (n,) e~ (V5) . The probability of registering only one binding event from the
distance 7 and not from any other distances equals P° x P!/PY. Finally, the probability
of registering only one binding event from the whole domain is the sum of all these
probabilities:

P =pP"> P./P). (30)
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Figure 4: The figure illustrates how the reflection of a receptor near a membrane is modelled. 0Qn2
is the reflecting boundary of the membrane, r and r’ are the position of the receptor at its actual
position and at its mirrored position. AS and AS’ is the distance between the Ca®" ion and the actual
position of the receptor and the position of the mirrored one.

The probability of registering two or more binding events from the whole domain is
then P., =1 — (P°+ P'). This quantity is plotted for different values of ¢ and k™ in
the centre panel of Fig.3. Because it is not straight forward to interpret a dimensionless
[Ca2+], we chose to plot this variable with physical values. To do this we had to choose
physical values for D and o for the figure. These parameters were set to 0 = 5 nm
and D = 10° nm? ms™! and yielded the result shown in the plot. A smaller o, i.e.,
a smaller time step, will result in the curves shifting downwards. We see that the
probability of registering more than one binding event per time step is quite large for
high concentrations; more than 1 mM for the largest values of k™*. In this particular
case, the solid and dashed line represents an on rate of, respectively, 3800 and 380
pM~'s~! which are quite large values.

We were able to define the probability of registering a binding event from our test
domain during a time step as P =1 — P° and compare this with the continuous
equivalence from Eq. 10, for convenience here named P{. Using the same values for
the parameters as above, we computed the absolute value of the relative difference
between these two models, |PM" — P¢ ’ /P¢. The result is shown in the right panel
of Fig. 3. We see that the difference is very small and is more or less constant for
different values of ¢. The downward bend seen for the largest values of k** represents
the difference between the two models in a parameter range in which both models
produce erroneous probabilities and should, therefore, be ignored. These results indicate
clearly the similarities in registered binding events between the two models for a large
parameter range.

Reflecting boundaries

The reflecting property of a membrane increases the expected concentration of a nearby
Ca®*" jon. A receptor at or close to the membrane will therefore experience a higher
concentration from a single Ca?" ion and hence a larger probability of binding. The
increase was included by mirroring the location of a receptor close to a membrane, to the
opposite side, as illustrated in Fig. 4. The probability of binding was then calculated
for this mirrored position and added to the initial probability,

P, =1—1[1— Py(a9)][1 — Ps(as')] =~ Ps(as) + Ps(as) (31)
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Figure 5: The figure illustrates a time step in the RW algorithm. The upper part, above the dashed
line, shows the reaction loop and the lower part shows the diffusion loop. The reaction loop is simulated
with a coarser time step, Dt = 125 ns, than the diffusion loop, dt = 5 ns.

Here, AS is the distance between the Ca*" ion and the actual position of the receptor
and AS’ is the distance between the ion and the mirrored receptor. The approximation
in Eq. 31 holds for probabilities much smaller than 1. If the receptor is situated at the
membrane, we have AS =AS’. For simplicity, we mirrored all buffers in the upper part
of the cleft to the opposite side of the SR membrane and all buffers in the lower part of
the cleft to the opposite side of the T'T membrane.

Monte Carlo simulation of binding

To speed up the Monte Carlo simulations of the reaction, we precomputed the probability
of unbinding and binding of a single Ca®" ion for each type of receptor included in
the simulation. The unbinding probability for each buffer type was very small, which
allowed us to assume that only one Ca?" ion could unbind during a full time step. With
this assumption, we only had to sample one uniform random number per time step for
the unbinding reactions. This number was compared to a lumped unbinding probability
that is given by

P(lJB =1—(1—-F5)", (32)
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where P, is given by Eq. 12 and N is the number of buffer molecules that have a Ca®"
ion bound to it.

The probabilities of binding were precomputed with respect to AS and a look-up
table was used during the simulation. To speed up this process even more, only Ca’"
ions within a certain maximal distance to the receptor were considered. This distance
was chosen so that the probability of binding at this distance equalled 1075, The actual
Monte Carlo sampling was performed as follows: i) traversing the empty receptors in a
random order each time step, i) for each empty receptor, calculating the probability of
binding for all Ca?" ions within the maximal distance, iii) distributing these probabilities
in a cumulative distribution, 0 < C; < Cpe... < Cpny < 1, where N is the number of
Ca®* ions within the maximal distance and C,; is the cumulative binding probability
of the ith Ca?* ion, and finally, iv) drawing a uniformly distributed random number
between 0 and 1. No Ca?* ion was bound if the random number was larger than Cponv. If
the random number was in between Cp;_1) and C;, the ith Ca?" ion was bound to the
receptor. By choosing a small enough time step, At, we ensured that both the single
binding probability and the sum of all binding probabilities always was much smaller
than 1. This minimized the error made in assuming that only one Ca?" ion could bind
to one receptor during a time step.

Random Walk algorithm

A full step in our RW algorithm is presented schematically in Fig. 5. First, any Ca**

that is scheduled to enter the cleft at the present time step, is added to the variable that
keeps track of all Ca®" ions. After that, we check whether any Ca?" ions were bound
to mobile or stationary buffers or to the included RyRs, using the precomputed binding
probabilities from Eq. 24. Then, we update the mobile buffers and the Ca®*" ions with
new positions, using the Monte Carlo method presented above. The first procedure (the
reaction loop) operated on a larger timescale than the second (the diffusion loop). A
single step in the reaction loop took much longer and the accuracy was not so sensitive
to the time step, which allowed us to simulate this procedure at a larger time scale.
The sampling of new displacement in the diffusion loop was cheap, but the escape rate
of the Ca*" ions leaving the cleft by the absorbing boundary 9€)p, was underestimated
[41]. This error was time-step dependent and was therefore minimized by using smaller
time steps in this loop.

3 Methods

All simulations, plots, and statistical tests were done using Matlab [42] on a GNU/Linux
laptop, with 1 GB Ram and a 2.1 GHz Pentium M processor.

3.1 Morphology and boundaries

Following Ref. [21] we modelled the dyadic cleft as a disk (see Fig. 6), with h = 15 nm
and R = 100 nm. The diffusion constant of Ca®" was set to D, = 10> nm?>ms~" [29].
The single LCC current amplitude was chosen to be i, = 0.3 pA [43], and was released
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Figure 6: The figure shows the geometry of the disk that we used to model the dyadic cleft. The
LCC ion source is included in the centre of the disk as a line source.

in the centre of the disk along the dashed line in Fig. 6. In one of the simulations, we
included both mobile and stationary endogenous buffers, using rates and concentrations
parameters from a previous study [44]; see Table 1. The diffusion constant of the mobile
buffer, calmoduline, was set to D,, = 0.1 x D, [21]. Several open LCCs were modelled
by multiplying the source amplitude by the number of open channels. The binding rate
for the RyRs was set to 5 uM~'s™!, which corresponds to binding rates previously used
in models for both RyR and LCC [36, 45]. The TT and SR membranes were modelled
as reflective, no-flux, boundaries, 9€)x2 in Fig. 6. The cytosole was included in the
model either as a zero concentration boundary, when a LCC Ca*" source was used, or
as a constant level corresponding to diastolic [CaQﬂ of 0.1 uM; see 9€)p in Fig. 6.

3.2 Simulation setups and binding event registrations

As mentioned in the Introduction, we considered the event of a single Ca*" ion binding
to a receptor to be the stochastic event that determines the functional properties of the
dyadic cleft. We tested how well the continuous model fits the equivalent binding events
registered from the RW model. We used four tentative RyRs, positioned from the centre
of the cleft to the rim, to test whether the radial position of single receptors had any
effect on the event registrations. We performed three different set of simulations, in
which binding events were registered under different physiological conditions. These
conditions were as follows: i) steady-state [Ca%} response due to one open LCC, i)
uniform [Ca2+} due to passive diffusion from cytosole, using very low diastolic [Caﬂ} =
0.1 uM, and 4ii) transient [Cazﬂ response from three different LCCs, which alternated
between closed and open during the simulations. The statistical results from these three
sets of simulations are presented in Figs. 8-10.

Each set of simulations had different deterministic Ca*" influxes, corresponding to
each physiological situation, and was run 100 times. Stochastic binding events from
four different RyRs were registered. The RyRs were located along the same axis at
radial distances of 10, 30, 50, and 70 nm.
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Table 1: Ca’" buffer parameters

kt k~ BT
Ca’T buffer [iM~1s—1] [s71] [uM]
Calmoduline 100 38 24
SL membrane 115 1000 1124

One open LCC, steady-state [CaQﬂ

In the first set of RW simulations, we registered the binding events from the steady-state
response of a single open LCC in the cleft. The Ca?" influx in these simulations consisted
of one open LCC situated at the centre of the cleft. Initially, the cleft had zero Ca*"
ions, so registration was started after 0.2 ms, after the steady-state was achieved, and
the runs were stopped after 30 ms. In these runs, we were only interested in the binding
events during the steady-state [CaQﬂ in the cleft, so we excluded both stationary and
mobile buffers from the simulations, thereby achieving a significant gain in speed. The
mobile buffer actually lowers the steady-state [Cazﬂ . Therefore, it could be argued that
it should have been included in these simulations [21]. However, neither its inclusion
nor exclusion would influence the results of the comparison study, which was the main
focus. The steady-state solution of [Ca“] from the continuous model, which was used
in the comparison study (see below) is presented in the inset of Fig. 8 A.

Diastolic steady-state [CaQﬂ

In the second set of RW simulations, we tested the effect on the binding events when
[CaQ+] was extremely low. Instead of Ca®" influx through a channel, we had passive
Ca*" influx from the cytosole. The value of the [Caﬂ} that we used corresponded to a
diastolic concentration of 0.1 uM. In these simulations, we did not include any buffers,
because the Ca?" response was stationary. Due to the small number of Ca?" ions in the
cleft, about 0.02 on average, each run had to be long (30 s) to produce reliable statistics
for the tests.

Transient [Ca2+]

In the third and last set of RW simulations, we studied binding events that were
registered during a transient response in the cleft. Both stationary and mobile buffers
were included in these simulations. The Ca?' influx came through three LCCs that
alternated between open and closed; see inset of Fig. 10 A for the resulting LCC current.
Each run lasted for 22 ms.

3.3 Comparison methods

Two different hypotheses about the statistical outcome of the binding events were
formed for each RyR and for each set of simulations: ¢) the mean number of events
during a simulation run are the same for both models, and i) the inter-event intervals
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(IEIs) of the registered binding events are the same for both models. Each of these
hypotheses was tested for each RyR and for each set of simulations.

To perform the tests, we needed the solution of the continuous concentrations at
cach RyR. In the first set of simulations, Ca®" entered the cleft from one single LCC
and no buffers were present. Setting B and B to zero in Eq. 8-4, the steady-state
solution could be solved analytically with respect to r; see the inset of Fig. 8 A. In the
second case, in which Ca?" entered the cleft passively through the cytosole, we fixed
the concentration at the same level as for the cytosole, 0.1 M for all RyRs. In the
third case, we needed the [Ca“} at every time step, ¢, for each RyR. We simulated the
full system in Eq. 8-4 with the same input current as was used in the RW simulations.
The [CaQﬂ for the ith RyR and nth time step, ¢, was registered.

Test of mean number of events

Using the central limit theorem, we compared the mean number of binding events from
each RyR against the expected number of binding events from the continuous model,
with a one-sample Student’s t-test. The continuous solution of [Cazﬂ was used to
compute the expected number of binding events, p, of a whole run for each RyR. We
calculated a 95 % confidence interval for the expected mean from the data collected
from the RW simulations, together with the corresponding p-values for the Student’s
t-test. The expected number of binding events during a run of length 7" simulated with
a homogeneous Poisson with rate A\ is given by

ple =NT =Fktc'T, (33)

where ¢ is the [Ca®"] at the ith receptor and k* the macroscopic binding rate [38]. In
the last simulation setup, where the [Ca2+} varied, we had to integrate the rate function
to get the expected number of binding events, which is given by

T T N
/jT:/ A(t)dt:k*/ c(t) dt ~ kTALY cl. (34)
0 0

n=1

Here, ¢!, is the value of the [Ca”] in the nth time step and At the length of each step.

Test of same inter event intervals

[EIs were calculated from the binding event data from each RyR in of RW simulations.
All TEIs from one RyR collected during one set of simulations were combined to form
one distribution. The equivalent expected distributions from the continuous model were
computed for each RyR, for all three simulation setups. The goodness-of-fit of the
expected distributions was tested against the registered IEI distributions collected from
the RW simulations, using a Kolmogorov-Smirnov (KS) test [46].

In the first two simulation setups, the [Ca2+] at each RyR was fixed and the resulting
binding rates for each RyR were constant, forming homogeneous Poisson processes. The
IEIs from an homogeneous Poisson process are distributed exponentially with the same
rate as the Poisson process itself [38]. The expected IEI distribution for the ith RyR is
given by

IET'(t) = XNexp (—X\'t) = k" exp (—k* 't). (35)
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These were used to compute the p-values of the KS tests; see Table 2. In the third
simulation setup, the [Ca2+] at each RyR was not fixed yielding inhomogeneous Poisson
processes. The resulting IEI distribution from such a process does not follow an
exponential distribution.

A useful method for evaluating models of point processes in neural spike train data
analysis, the Time-rescaling theorem ,was introduced by Brown et al. [47]. They used
this theorem to transform registered event times from an inhomogeneous Poisson process
to represent realizations of a homogeneous Poisson processes with unit rate. Given
a serie of time events 0 < t; < ty <,...,< t, < T that realizes an inhomogeneous
Poisson process with rate A(t) > 0 for all ¢ € (0,77, the transformed realization of a
homogeneous Poisson process with unit rate is

t s N
A (ty,) :/ Ai(t)dt:l#/ c"(t)dt:l#Ath;, (36)
0 0

n=1

for k = 1,...,n. The IEIs of this process are 7, = A(tx) — A(tx—1) and they are
exponentially distributed with unit rate. We used the rate from the continuous model
to transform the IEIs registered from the RW model. These were then used in a
goodness-of-fit test of an exponential function with unit rate.

Bonferroni procedure

We performed three different sets of RW simulations, collected binding events from four
different RyRs, and performed two different statistical tests for each receptor. This
left us with a total of 24 statistical hypotheses. For every test, the Hy hypothesis was
that the continuous model either predicted the mean number of binding events or fitted
the IEI distributions with an appropriate exponential function. The overall hypothesis
of how well the continuous model fitted the sampled binding event data from the full
RW model had to be determined on the basis of these tests. The number of binding
events during a run was not independent of the IEI distributions. If an IEI distribution
is known to follow an exponential distribution, the expected number of events follows
directly from the rate of this distribution, thus reducing the number of independent
tests to 12. Given that we were doing 12 independent tests, each at o = 5%, there was
a probability P = 1 — 0.95'2 = 0.46, of getting at least one false rejection. The « level
for each subtest was therefore adjusted such that our main hypothesis was tested at
the 5 % level by using the conservative but simple Bonferroni procedure [46]. The new
a level for each subtest was acquired by dividing the total « level by the number of
subtests. This gave us an « level of 0.42 % for each subtest.

4 Results

4.1 Random Walk vs Continuous solutions

To confirm that the solution from the continuous model coincided with the mean
concentrations from the RW model, we did one run with the continuous model and
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Table 2: Binding event statistics

RyR Student’s t-test KS-test

positions  p 95 % CI  p-values p-values

One open LCC, steady-state [Ca2+]
10 nm 56.8 (54.3, 57.3) 0.22 0.17
30 nm  29.8 (28.4, 30.8) 0.74 *0.042
50nm  17.1 (15.6,17.2)  0.059 0.56
70 nm 879 (8.29,9.41) 0.83 0.060
Diastolic steady-state [Ca2+]
10 nm 15.0 (14.0, 15.5) 0.51 0.10
30 nm  15.0 (14.1,15.4) 0.49 0.54
50 nm  15.0 (14.0, 15.5) 0.48 0.055
70 nm  15.0 (13.8,15.3) 0.25 0.56
Transient [Ca2+]
10 nm  68.3 (66.5, 70.1) 0.96 0.31
30nm  35.6 (33.7,36.1) 0.27 0.39
50 nm 204 (19.2, 21.0) 0.52 0.64
70nm 104 (9.75, 10.8) 0.52 0.087
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Figure 7: The figure presents simulation results from the continuous model (black lines) and from
the Random Walk (RW) model (colored lines). The results represent the average concentrations
from the whole cleft. The same simulation setup was used for the two models, including buffers from
Table 1. One LCC is open from the start. After 2 ms one more opens. Then, after 4 ms, both
close. The black lines are the results from one simulation of the continuous model. Each line, solid,
dashed, and dash-dotted, represents the concentration of, Ca?*, mobile buffer and stationary buffer,
respectively. The right y-axis shows the scale for the stationary buffer. The coloured lines are the
mean concentrations from 40 runs of the RW model (red lines), and the concentrations from a single

RW simulation (green lines).
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40 runs of the RW model, using the same parameters. The result is presented in Fig.
7. The black lines are the concentration in the cleft given by the continuous model
of, respectively, Ca", (solid line) mobile buffer, (dashed line) and stationary buffer
(dash-dotted line). The coloured lines, partly covered by the black lines, are i) the
concentration results from a single RW simulation (green lines), and i) the average
results from 40 RW runs (red lines). Note that the scale for the stationary buffer traces
is given in the right y-axis. One LCC was opened at t=0, to act as a Ca>" source in
the cleft. After about 1 ms, the steady-state, in which most of the stationary buffers
were bound to Ca”*", was achieved. After 2 ms, a second LCC was opened. This time,
the steady-state occurred more quickly, due to the fact that less stationary buffer was
available. We see that the [Ca%} in the single RW run fluctuates a great deal in the
steady-state period, but the mean concentration does not. After 4 ms, both LCCs
were turned off and the Ca*" left the cleft quickly. Some Ca®" remained, due to the
unbinding of Ca?* from the stationary buffer.

The result confirms what others have pointed out, that the continuous solution
coincides with the mean result from several RW simulations [1-3]. We did see a
difference between the mean concentration of the stationary buffer registered from the
RW runs, and the corresponding concentration from the continuous solution. This
error was introduced in the RW model, because we did not account for the absorbing
boundary when calculating the probabilities that Ca®" ions and the stationary buffer
molecules near the rim would bind. By placing the RyRs well inside the cleft, the
outermost being 30 nm from the rim, we avoided this error when binding probabilities
for the receptors were calculated.

It is interesting to note that the large Ca®" flux to the buffers, primarily to the
stationary buffer, fluctuates significantly less than the out-flux of Ca®" ions from the
cleft. This is an effect of the low binding rate compared to the exit rate. The latter is
approximately equal to the influx from the LCC during the steady-state, not including
the small out-flux through the mobile buffer. The influx when two channels were open,
between 2 and 4 ms, was approximately J, .- =~ 1870 ions per ms, and the binding rate
to the stationary buffer during the same steady-state was Jsp = cgs X kT ~ 20 ions per
ms. This means that the out-flux is 100 times larger than the flux to the buffers.

4.2 Statistics of single binding events

As seen in Table 2, where the results of the Student’s t-tests and the KS-tests are
presented, the predicted distributions of binding events from the continuous model fit the
corresponding distributions of registered binding events from the RW model. p-values
and 95 % CI are included for the ¢-tests and the p-values are included for the KS-tests.
We found only one significant difference at the 5 % level and none at our Bonferonni
adjusted 0.4 % level. Statistics of the binding event data are also presented graphically
in Fig. 8-10. These figures also visually support the results from the statistical tests
presented in Table 2.

All three figures present the data in the same manner. In panel A, the number of
binding events is presented in one box-plot for each RyR, together with a 95 % CI of the
true mean (red horizontal lines) and the expected number of binding events predicted
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Figure 8: The figures present statistical data for binding events registered from Random Walk
simulations with one open LCC, which acted as the Ca?t source, situated in the centre of the cleft.
The binding events are registered at four different RyRs, positioned at 10, 30, 50, and 70 nm from the
centre of the cleft. Binding events are collected from 100 simulation runs. The registration started
when the [Cazﬂ had reached the steady-state. The total time simulated was 30 ms. The figure in A
shows a box-plot of the number of binding events from the runs at each receptor, together with a 95
% confidence interval for the true means (red horizontal lines). The blue filled circles represent the
expected number of binding events predicted by the continuous model. These values were computed
on the basis of the fixed [Ca2+] at each receptor; see inset. In the box-plot, the green line represents
the median of the data and the blue horizontal lines the limit of the upper and lower quartiles. The
whiskers represent the rest of the data up to a maximum length of 1.5 times the size of the two centre
quartiles. The green plus signs are outliers. The figures in B1-B4 show the inter-event intervals (IEIS)
from all runs presented in scaled histogram plots, corresponding to the receptor at positions 10, 30, 50,
and 70 nm from the centre of the cleft. The heights of the bars are scaled so the total area of a whole
histogram equals 1. The red lines show the probability distribution of the IEI from an homogeneous
Poisson distribution with a rate based on the steady-state value of the [Ca2+] at the receptor. The blue
star indicates a significant difference, at 5 % level, between the collected IEIs and the corresponding
exponential function using a Kolmogorov-Smirnov test.

by the continuous model (blue filled circles). The distributions of IEI, for each RyR,
are presented in scaled histograms in the small figures of B1-B4, in each of the three
figures. The heights of the bars are scaled so that the total area of the histograms
equals 1. This scaling enabled us to compare the distributions of IEIs with the expected
distributions from the continuous model (red lines). Fig. 8 shows the results from the
first set of simulations, where the Ca*" source was one LCC that was open constantly.
The inset in Fig. 8 A, shows the steady-state [Ca%} in the cleft from the continuous
model, where the concentration at each RyR is marked by filled blue circles. Fig. 9
presents the results from the the second set of simulations, where the Ca®" source was
a passive influx from cytosole, which resulted in a [Ca2+] in the cleft that corresponds
to a diastolic value of 0.1 uM. The last figure, Fig. 10 presents the results from the last
set of simulations. Here, the Ca?" source was three LCCs, which alternated between
open and closed in the same manner during all simulations. The inset of Fig. 10 A
shows the varying [Ca2+] from the continuous model, at the RyR positioned at 70 nm
from the centre (red line), together with the shifting LCC current.
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Figure 9: The figures present statistical data for binding events that are registered from Random
Walk simulations. The Ca?" source was passive diffusion from the cytosole during diastole, i.e., the
resulting [Ca2+] was in average 0.1 uM. The binding events are registered at four different RyRs,
positioned at 10, 30, 50, and 70 nm from the centre of the cleft. The binding events were collected
from 100 simulation runs. The total time simulated was 20 s. The figure in A shows a box-plot of the
number of binding events from the runs at each receptor, together with a 95 % confidence interval
for the true means (red horizontal lines). The blue filled circles represent the expected number of
binding events predicted by the continuous model. These values were computed on the basis of the
fixed [Ca2+] at each receptor. For an explanation of the box-plot, see the legend of Fig. 8. The figures
in B1-B4 show the inter-event intervals from all runs presented in scaled histogram plots, corresponding
to the receptor at positions 10, 30, 50, and 70 nm from the centre of the cleft. For an explanation of
the histogram see the legend of Fig. 8.

We observe that the number of binding events and the expected IEI distributions
depend on the radial positions of the RyRs, for the first and third set of simulations,
both of which are driven by a LCC current. This is not surprising, because the [Cazﬂ
are higher the closer they are to the channel. Perhaps more interesting, the RyRs in the
cleft actually discriminate the [Ca%] from a single Ca*" source. This is important for
accounting for when the cleft is treated as a single compartment with the same lumped
average [Ca®"| [15]. There is also no over- or under- registration of binding events on
a certain RyR within each set of simulations. This means that the continuous model
reproduces the binding events from the RW model independently of the radial position
of the RyRs.

4.3 Mean binding rate registered at a single receptor

Our goodness-of-fit tests revealed that there are no significant differences between the
registration of stochastic binding events in the two models. This is not an average result,
but a result that holds on the level of single runs and at the level of IEI. To acquire a
better understanding of how this could be true, we examined what we called a lumped
binding rate, A*(t), registered by a single RyR positioned 10 nm from the centre during
a run with one constantly open LCC.

Each Ca*" ion within a maximum distance of the receptor contributes, to a small
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Figure 10: The figures present statistical data for binding events registered from Random Walk
simulations. The Ca?T source is zero to three open LCCs, situated in the centre of the cleft; see inset
of A. The binding events are registered at four different RyRs, positioned at 10, 30, 50, and 70 nm
from the centre of the cleft. The binding events were collected from 100 simulation runs. The total
time simulated was 16 ms. The figure in A shows a box-plot of the number of binding events from
the runs at each receptor, together with a 95 % confidence interval for the true means (red horizontal
lines). The blue filled circles represent the expected number of binding events predicted by the varying
[Ca®"] from the continuous model at each receptor. See the inset for the [Ca®*] at the RyR at 70
nm. No significant differences, at 5 % level, were detected. For an explanation of the box-plot, see
the legend of Fig. 8. The figures in B1-B4 show the transformed inter-event intervals from all runs
presented in scaled histogram plots, corresponding to the receptor at positions 10, 30, 50, and 70 nm
from the centre of the cleft. For an explanation of the histogram, see the legend of Fig. 8.

extent, to the probability that a binding event will occur. This allows us to formulate
the overall probability that a binding event will occur as a sum of small probabilities,
where each is of the form P; = 1 — e M2 gee Eq. 24. Again, given small binding
probabilities, this formulation can be approximated with P; ~ MNAt. The resulting
lumped binding probability is then P}f =At), X = AtAL, where AL represents the
lumped binding rate.

During one simulation, we registered A" at each time step. These values are plotted
against time in Fig. 11 A. The right y-axis gives the corresponding binding probabilities.
The stochastic and discrete nature of the rates may be seen clearly in these chaotic
data. The rate varies from time step to time step, as shown in the enlargement of the
figure for ¢ = [0, 0.01] ms, shown in Fig. 11 B. The mean rate registered for the whole
run was A¥ = 1.90 ms~!. In 80 % of the time steps, the rate was smaller than this
value, and in 11 % of the time steps, the rate equalled zero. In only 4.1 % of the time
steps was the rate larger than 10 ms™! and the maximal registered rate for this run was
414 ms~!. These rates seem large but the resulting binding probabilities, P;J = \At,
were, as seen in the right y-axis, all << 1. We used the same size of time step as earlier,
At = 1.25 x 10~* ms. The binding probability that corresponded with the mean rate for
the whole run was 2.4 x 10~*. To be able to take the average of the binding rates over
several time steps, it has to make sense to take the sum of several binding rates. This
measure is justified by the small binding probabilities that each receptor experiences
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every time step; see Fig. 11 A and B. The crucial issue was how the average binding
rate fluctuates on a larger time scale, i.e., do the large variations in binding rates in
each time step average out at a larger time scale and if so, how small can this time scale
be?

The averaged binding rate did not vary much from run to run. The mean averaged
rate from 100 runs was [1.904 £ 0.019] ms™!. This value did not differ significantly from
the constant rate from the continuous model, A\, = 1.91 ms™!, p-value = 0.74. This
result corresponds to the failure of detecting a significant difference between the average
number of binding events that was registered in the RW simulations and the number
given by the continuous model (see the results of the the Student’s ¢-tests in Table
2). The variations in the binding rate at the time scale of a whole simulation run thus
averaged out and were statistically indistinguishable from the continuous constant rate.

On a smaller time scale, we would expect the averaged rate to fluctuate more. For
example, the mean rate for the interval shown in Fig. 11 B, i.e., t = [0, 0.01], was
2.70 ms~!. This is greater than the average rate for the whole run, which was 1.90
ms~'. However, the fluctuation at this time scale does not tell us much, because the
expected number of binding events with this rate at this time scale is 0.027. In order to
investigate the effect on the actual binding events, we have to take the average on a
larger time scale. A proper scale would be the mean IEI registered in the simulation
runs. This was found to be 0.52 ms; see Fig. 8 B1. We filtered the registered rate with
a Gaussian filter, which act as a weighted mean over a certain time window defined
by the width of the filter, o [48]. This width was set to half the size of the mean IEI,
0.26 ms. The result is presented in Fig. 11 C, together with the constant rate from the
continuous model. The filtered rate is a continuous function of time and does not vary
nearly as much as the unfiltered rate in Fig. 11 A. The maximal value of the filtered
signal was 2.1 ms™!, the minimal was 1.7 ms™!, and the standard deviation from the
mean, which of course was the same as the unfiltered rate, was 0.1 ms™!. This small
variation explains why the IEIs of the registered binding events from the RW model
were statistically indistinguishable from those of the continuous model.

4.4 Parameter sensitivity

To check the dependency of some of the parameters we have used, we made five runs in
which we altered the diffusion constant, D., together with the maximal input current
from one open LCC, 7,¢¢, in the same manner as Tanskanen et al. [32] did. We scaled the
D, and i, by factors of [5,2,1,0.5,0.1] and ran 100 runs of the steady-state condition,
in which one LCC was open. The spatial resolution for the registration of binding events
was set to 0 = 5 nm for every run. We compared the number of registered binding
events with the expected number from the continuous model. The number for the latter
was constant in all runs, because the concentrations at the receptors were the same
under the scaling. The result is shown in Fig. 12 A. The figure shows a box-plot of the
number of binding events registered at the receptor 30 nm from the centre of the cleft vs
the scale on the x-axis. There are no significant differences for scale = [5,2,1,0.5], but
for scale = 0.1, there is. To investigate the dependency of the parameters further, we
also altered 0. We used [5,2,1,0.5] for o and also did 100 runs for each different value.
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Figure 11: The figures A and B present the lumped binding rates for each time step, registered
from one RyR during a single Random Walk simulation. In the simulation, one constantly open LCC
channel was used and the RyR was positioned 10 nm from the centre of the cleft. The figure in B
shows an enlargement of A for ¢ = [0, 0.01] ms. The mean binding rate fluctuates a lot for each time
step. The figure in C shows a filtered version of the binding rate. A Gaussian kernel with ¢ = 0.26 ms,
corresponding to the scale of the registered IEls, was chosen for the filtering. In all figures, A- C, the
corresponding binding probabilities are given by the right y-axis. For the ith time step, this quantity
is computed by, P, =1 — e At ~ \; At.

The result is presented in a similar box plot in Fig. 12 B. Note that the leftmost data
points in this figure are identical to the rightmost data points from the previous figure.
From the figure, we see that the number of registered binding events falls steadily. This
illustrates that the binding event registration depends, not only on physical parameters,
but also on the spatial resolution of the RW method. This observation coincide with
the parameters used in the dimensionless on rate Eq. 29.

One large difference between the continuous model and the RW model is that in the
RW model a binding event actually leads to a removal of an ion from the cleft, in contrast
to the continuous model where nothing happens. To test if this difference is crucial for
the registered difference between the two models as seen in Fig. 12 B, we performed
the same simulations, but without registering any binding events. Instead we registered
the mean binding rate from each run and compared this with the rate predicted from
the continuous model. In Fig. 12 C, the red lines represent 95 % confidence intervals of
the true mean binding rate from the 100 runs. The rate predicted from the continuous
model is represented by the blue filled circles. We cannot differentiate statistically
between the collected mean binding rates and those of the continuous model. We also
collected the mean binding rates from the simulations we did in B, in which ions were
removed from the solution after they were bound. The 95 % confidence interval of the
true mean for these binding rates is represented by the blue horizontal lines. Here, we
see that the binding rates follow the number of registered binding events from B, and
not the predicted rate from the continuous model. These results illustrate why the RW
model starts to differ from the continuous model for low values of the diffusion constant
together with small values of the spatial resolution.
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Figure 12: Figures A and B present the number of registered binding events from 100 runs each,
where we altered different parameters. The data were collected from a receptor 30 nm from the centre
and are represented by the box plots together with a 95 % confidence interval for the true means
(red horizontal lines). The blue filled circles represent the expected number of binding events that
are predicted by the continuous model. In A we scaled the number of Ca?" ions that enter the cleft,
i.e., .00, together with the diffusion constant D, with a factor represented by the x-axis. The spatial
resolution was constant for these simulations, ¢ = 5 nm. The blue star denotes a statistical difference
between the continuous model and the RW model for scale = 0.1. In B, we kept the scale constant at
0.1, but altered the spatial resolution (see the x-axis). Here, the difference between the RW model and
the continuous model increased as the mean value of the collected binding events declined with the
spatial resolution. In C, we ran the simulation 100 times. We collected the mean binding rates for
each run, the receptor were exposed to. The data from each set of 100 runs are presented as 95 %
confidence intervals for the true means. The blue horizontal lines represent the binding rates collected
from runs in which we registered binding events, as in B. The red horizontal lines represent binding
rates collected from runs in which we did not register binding events, only the rate. In these runs we
could not differentiate statistically between the registered binding rates and the rates predicted from
the continuous model.

As discussed above, the difference between the two models is parameter sensitive.
This sensitivity can be expressed by the dimensionless on rate, k™, from Eq. 29. This
value depends on the diffusion constant, D, the macroscopic on rate, k™ and the spatial
resolution, o. For the simulations for which we registered a difference between the RW
model and the continuous model, i.e., for scale = 0.1 in Fig. 12 A, k™ = 0.013. This
value indicates an upper limit for when the two models start to diverge. The spatial
resolution is, in a sense, a free parameter. One could, in theory, make it as small as one
likes, thus forcing a difference between the two models. Alternatively, one could make it
large to smooth out a potential difference. In practice, the value of this parameter is
determined by the level of spatial detail that is required in the simulation.

5 Discussion

We have compared a RW model and a continuous model of Ca** diffusion in the dyadic
cleft, using the distributions of stochastic events of single Ca®" ions binding to single
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receptors as the measurement. We showed that for a large range of physiologically
relevant parameters, there are no significant differences between the continuous model
and the RW model with respect to these binding events. This is a somewhat unexpected
result, considering the small number of ions included in the discrete model of [Ca“] and
the inherent variation in their position. In one set of simulations, the average number
of Ca" ions in the cleft is 0.02, corresponding to a diastolic [Ca”] of 0.1 uM. Thus,
most of the time, there are no Ca®" ions in the cleft. In spite of this, the corresponding
constant binding rate from the continuous model can reproduce the binding events
registered in the RW model.

5.1 New method for computing bi-molecular binding proba-
bilities

We present a method for bi-molecular binding probabilities that is, to the best of our
knowledge, novel. The proposed model is based on a macroscopic rate law that we use
in our RW simulations. The model is analytical and gives the binding rate between
two molecules exactly. To obtain this result, it is necessary only to ensure that the
probability that more than one binding event per time step will be registered is small.
The method is used to calculate the probability that a diffusive ligand will bind to a
receptor, which can be stationary or mobile. The binding rate depends only on the
on rate, kT, the diffusion constant(s), D, (D,,), the size of the time step, At, and the
distance between the two molecules, AS. The only parameter not known before a
simulation is AS, and our knowledge of the other parameters allows us to precompute
the binding probabilities with respect to AS. The method also lets us use larger
time steps for the computationally expensive reaction process. We also investigated
thoroughly the physical parameters for which the model is applicable.

5.2 Comparison method from hazard analysis and neuroscience

RW methods and continuous methods are models of diffusion at two different levels. They
have been compared before, but here we used a quantitative goodness-of-fit measurement
in the comparison study. The statistical method that we used was originally developed
for the evaluation of point process models, e.g., errors in industrial processes, so-called
hazard analysis [49]. The method has also recently been used in neuroscience for
evaluating models in the analysis of data for neural spike trains [47]. The method is
straightforward to use and could be employed in similar studies where discrete and
stochastic models are compared.

5.3 Stochastic Random Walk vs deterministic continuous mod-
elling of [Ca”]

A number of recent publications claim that when the number of participating particles
in a volume falls, a deterministic description of concentration is invalid or does not make
sense, and fully stochastic methods have to be employed [2, 6, 10, 12]. Our conclusion
refines these statements.
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The continuous model predicts the average number of particles involved in a process.
For processes that involve a small number of particles, RW simulations show that the
variation in the number of particles can be of the same magnitude or larger than this
average, in a single simulation [1-3, 7]. This is a strong argument against using a
continuous description of [Ca2+] in small volumes such as the dyadic cleft, but only
if the precise position of a certain diffusive ligand is important for the physiological
process. We show that this is not the case for ligands with sufficiently large diffusion
constants. The important receptors in the cleft that register the Ca** signal do not
switch states according to whether there are Ca*" ions close to them or not, but rather
according to whether there are any Ca*" ions bound to them or not. These events set
the right time scale for the discreteness and stochasticity of the signalling in the cleft. In
our study, we showed that these events can be simulated perfectly well by a continuous
model of [Caﬂ} , for a given range of model parameters. The binding events occur on a
larger time scale, hiding the huge variations in the single binding rates connected to
each diffusing Ca?" ion in the RW simulations, as illustrated in Fig. 11 A-C. A and B
show the strongly fluctuating binding rates. C shows the same rate but filtered through
a Gaussian filter, with o equalling half the mean IEI, the time scale for the binding
events. Here we see that the fluctuations on the scale of IEIs are small and follow the
constant rate of the continuous model. In this way, the receptor acts as an integrator
of the fluctuations in the binding rates. We also show that the radial positions of the
receptors are important for determining the rate of binding events at each receptor.
This is important to bear in mind when, as in some models, the dyadic cleft is treated
as one compartment with the same lumped [Caﬂ} [15]. The concentration may reach
a steady-state level quickly, but not all receptors sense the same [Ca%} inside the cleft.

Tanskanen et al. [32] present results where their RW model shows a different result
for the ECC gain, when the diffusion constant of Ca?" and the influx of Ca®" ions in
the cleft are varied with the same amount. This difference is most probably caused by a
different number of Ca" ions binding to the RyRs in the different runs. If the same had
been done in a simulation in which the Ca*" diffusion was modelled deterministically,
a significant difference would not have been noticed, because the [Ca2+] at the RyR
would have been the same, or more precisely, would have varied with the same mean, in
each run. The authors claim that this is a “subtle but potentially significant difference
in predicted macroscopic behaviour arising from the underlying stochastic simulation
of Ca*" motion in the dyad.” We scaled the parameters in the same way as they did
and we also recognized a difference, but only for the smallest value of the scaling, i.e.,
scale = 0.1; see Fig. 12 A. In addition, we changed the spatial resolution of the RW
simulation and found that the number of binding events also depends on this parameter;
see Fig. 12 B. Finally, we showed that the difference between the models depends on
the fact that an ion is removed from the solution after it is bound; see Fig. 12 C. The
difference become significant for large values of the dimensionless k™* parameter (see
Eq. 29), i.e., small values of D and o, and large values of k™. When k™ is too large, a
single ion’s contribution to the total binding rate becomes significant and the removal
of the ion after a binding event will thus alter the total rate. We found that when
kT > 0.013, the two models registered different numbers of binding events. This is
probably a conservative measure, because in our simulations we did not close a receptors
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for registration after an ion was bound. This made the effect of removing an ion from
the vicinity of an unbound receptor larger than it would have been if the receptor had
been in a bound state. For example, when k** = 0.026 for the binding of Ca®' ions
to the stationary buffer in the transient simulation, we did not register any difference
between the two models. It is important to bear in mind that the on rate k™ for the
RyRs is difficult to measure, and thus is often a free parameter. This makes the actual
difference between the two models more fuzzy in real modelling, because one probably
could fit the two models’ macroscopic behaviour to the same data, just by using slightly
different parameters.

There are limitations in the continuous model that relate to the representation of
more details. Such details could, for example, be the electrostatic interaction between
single molecules [50], diffusion limitations due to excluded volumes [51], or diffusion
in environments with large tortuosity and with possible molecule traps [52]. However,
the introduction of these extra details must be accompanied by an argument for the
necessity of their inclusion. The study by Nicholson et al. [52] actually incorporates the
micro-level effects into an effective diffusion constant. The authors thereby sanction the
use of a macroscopic model of a micro-level phenomenon.

5.4 Limitations in our model of the dyadic cleft and Ca®" dy-
namics

Our study of the dyadic cleft is limited, because it only examined the distribution of
binding events and not the result of this event, i.e., the whole physiological signalling
pathway of the Ca®" induced Ca*" release. However, these extra dynamics have nothing
to do with diffusion. Thus, their inclusion would only introduce redundant information
into our comparison study. We did include the dramatic event of a channel opening
and closing during the simulation; see Fig. 10.

Our physiological model of the cleft does not incorporate all present knowledge about
the cleft, e.g., the electrostatic effect on diffusion due to the charged phospholipids
in the membrane [53, 54], or the obstructing effect that the large feet of the RyRs
obviously have in the cleft [55]. However, the aim of the study was not to present a
state-of-the-art model of the dyadic cleft, but rather to use the cleft as a well-studied
model system for our comparison study between the RW model and the continuous
model. The effects of these extra details can, however, be included in both models,
again only introducing redundant information. The electrostatic effect of the membrane
is probably the easiest to include in the continuous model, as Soeller and Cannell [21]
have done in their study of Ca?" diffusion in the cleft. Our cleft model is also one
dimensional. Others have simulated the Ca*" dynamics in the cleft using both two
and three dimensions [12, 21, 31]. We could have expanded our study to both two and
three dimensions and added the geometric effects of the large feet of the RyRs, but our
intention was not to present the most accurate model of the cleft. The dimension we
included in our study was in the radial direction, because it is in this direction that the
gradient in [Ca%} is largest when a channel is open.

Neither did we include the effect of crowding [56, 57] in the small and fuzzy cleft space
[58]. However, a Ca®" ion is much smaller than the other diffusing macromolecules that
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are supposed to be in the cleft [59]. A single Ca®' ion can thus probably utilize most of
the volume, making the excluded volume argument regarding crowded environments
[51] less forceful for Ca®*.

The binding of single Ca®" ions to the RyRs are not reflected in the solution of
the continuous model. Each RyR should introduce a small Ca®" sink to the nearby
environment when an external Ca®" source is turned on, and introduce a small source
when the external Ca®" source is turned off. Due to the large diffusion constant to
Ca*", and the low affinity of the RyR, this sink is very small compared to the out-flux
of Ca?" ions from the cleft. We performed RW simulations in which a Ca®" ion was
removed from the solution when it was registered as bound to a RyR, and the same
simulation where the Ca?' ion was not removed. We could not distinguish between the
results. This sink is also only present during a transient face of a [Ca2+]. During the
steady state, the bind flux is balanced by the unbind flux from the receptors.

6 Conclusion

The discrete and stochastic Ca®" signalling in the physiological important dyadic cleft
can be modelled accurately using a deterministic model of [Cazﬂ together with a
discrete and stochastic receptor model, for a certain range of parameters. Our study is
the first to use the discrete binding event of single Ca®" ions as a direct quantitative
measure in a comparison study between a RW model and a continuous model of [CaQﬂ
in a small signalling micro domain. We also contribute a model of bi-molecular binding
probabilities that can be used in RW simulations. This model is, to the best of our
knowledge, novel. The model is analytical; hence, the results do not depend on the
size of the time step. The study as a whole contributes both to the development of
intracellular reaction-diffusion simulators [6], and to the fundamental understanding of
what the models actually represent [2].
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1 Introduction

From the time we are children, we are told that we should drink milk because it is an
important source of calcium (Ca*"), and that Ca®" is vital for a strong bone structure.
What we do not hear as frequently, is that Ca** is one of the most important cellular
messengers in the human body [1]. In particular, Ca?" controls cell death, neural
signaling, secretion of different chemical substances to the body, and the focus of this
chapter: the contraction of cells in the heart.

In this chapter, we will present a computational model that can be used to model
Ca*" dynamics in a small sub-cellular domain called the dyadic cleft. The model
includes Ca®" diffusion, which is described by an advection-diffusion partial differential
equation, and discrete channel dynamics, which is described by stochastic Markov
models. Numerical methods implemented in PyDOLFIN solving the partial differential
equation will also be presented. In the last section, we describe a time stepping scheme
that is used to solve the stochastic and deterministic models. We will also present a
solver framework, diffsim, that implements the time stepping scheme together with
the numerical methods solving the computational model described above.

2 Biological background

In a healthy heart, every heart beat originates in the sinusoidal node, where pacemaker
cells trigger an electric signal. This signal is a difference in electric potential between
the interior and exterior of the heart cells. These two domains are separated by the
cell membrane. The difference in the electric potential between these domains is called
the membrane potential. The membrane potential propagates through the whole heart
using active conductances at the cell membrane. The actively propagating membrane
potential is called an action potential. When an action potential arrives at a heart
cell, it triggers the L-type Ca*" channels (LCCs). These channels bring Ca** into the
cell. Some of the Ca®" diffuse over a small cleft, called the dyadic cleft, and cause
further Ca?" release from an intracellular Ca?' storage, the sarcoplasmic reticulum
(SR), through a channel called the ryanodine receptor (RyR). The Ca" ions then
diffuse to the main intracellular domain of the cell, the cytosole, in which the contractile
proteins are situated. The Ca®" ions attach to these proteins and trigger contraction.
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Figure 1: A: A diagram showing the relationship between the T'T, the SR, and the jSR. The volume
between the flat jSR and the T'T is the dyadic cleft. The black structures in the cleft are Ryanodine
receptors, which are large channel proteins. B: The geometry used for the dyadic cleft. The top of
the disk is the cell membrane of the SR or jSR. The bottom is the cell membrane of the TT, and the
circumference of the disk is the interface to the cytosole. The elevations in the TT membrane models
two ions channels.

The strength of the contraction is controlled by the strength of the Ca®" concentration
([CaQﬂ) in cytosole. The contraction is succeeded by a period of relaxation, which is
caused by the extraction of Ca®' from the intracellular space by various proteins.

This chain of events is labelled the Excitation Contraction (EC) coupling [2]. Several
severe heart diseases can be related to impaired EC coupling. By broadening the
knowledge of the coupling, it may be possible to develop better treatments for such
diseases. Although the big picture of EC coupling is straightforward to grasp, it involves
the nonlinear action of hundreds of different protein species. Computational methods
have emerged as a natural complement to experimental studies to better understand the
intriguing coupling. In this chapter, we focus on the initial phase of the EC coupling,
the stage where Ca*" flows into the cell and triggers further Ca®" release.

3 Mathematical models

In this section we describe the computational model for the early phase of the EC
coupling. We first present the morphology of the cleft, and how we model this in our
study. Then we describe the mathematical equation for the diffusion of Ca?" inside the
cleft together with the boundary fluxes. Finally, we discuss the stochastic models that
govern the discrete channel dynamics of the LCCs and RyRs.

Morphology

The dyadic cleft is the volume between a structure called the t-tubule (TT) and the SR.
The TT is a network of pipe-like invaginations of the cell membrane that perforate the
heart cell [3]. In Fig. 1 A, a sketch of a small part of a single TT together with a piece
of SR is presented. Here we see that the junctional SR (jSR) is wrapped around the TT.
The small volume between these two structures is the dyadic cleft. The space is not well
defined as it is crowded with channel proteins, and its size also varies. In computational
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studies, it is commonly approximated as a disk or a rectangular slab [4-7]. In this study
a disk with height, h = 12 nm and radius, » = 50 nm has been used for the domain {2,
see Fig. 1 B. The diffusion constant of Ca*" is set to o = 10° nm? ms™! [§].

Ca’t Diffusion

Electro-Diffusion

We will use Fick’s second law to model the diffusion of Ca*" in the dyadic cleft. Close
to the cell membrane, the ions are affected by an electric potential. The potential is
caused by negative charges on the membrane [9, 10]. The potential attenuates fast as
it is screened by the ions in the intracellular solution. We will describe the electric
potential using the Gouy-Chapman method [11]. This theory introduces an advection
term to the standard diffusion equation, which makes the resulting equation harder to
solve. To simplify the presentation we will use a non-dimensional electric potential 1,
which is the electric potential scaled by a factor of e/kT. Here e is the electron charge,
k is Boltzmann’s constant and 7" is the temperature. We will also use a non-dimensional
electric field which is given by:

E = —Vi. (1)

The Ca’" flux in a solution in the presence of an electric field is governed by the
Nernst-Planck equation,

J=—0(Vec—2cE), (2)

where ¢ = ¢(z, t) is the [Ca’*] (z € Q and ¢ €[0,T]), o the diffusion constant, E = E(z)
the non-dimensional electric field and 2 is the valence of Ca*". Assuming conservation
of mass, we arrive at the advection-diffusion equation,

¢=0(Ac—V-(2¢ckE)). (3)

Here ¢ is the time derivative of c.

The strength of v is defined by the amount of charge at the cell membrane and by
the combined screening effect of all the ions in the dyadic cleft. In addition to Ca®*, the
intracellular solution also contains K™, Na™, C17, and Mg**. Following the previous
approach by Langner et al. [10] and Soeller and Cannell [5], these other ions will be
treated as being in steady state. The cell membrane is assumed to be planar and
effectively infinite. This assumption allows us to use an approximation of the electric
potential in the solution,

U(z) =thoe ™. (4)
Here 1)y is the non-dimensional potential at the membrane, x the inverse Debye length
and z the distance from the cell membrane. We will use )9 = —2.2 and x = 1 nm.

Boundary fluxes

The boundary, 02, is divided into 4 disjoint boundaries, 0§, for k = 1,...,4, see Fig. 1
B. To each boundary we associate a flux, Jjso, = Ji. The SR and T'T membranes are
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Figure 2: A: State diagram of the discrete LCC Markov model from Jafri et al. [13]. Each channel
can be in one of the 12 states. The transitions between the states are controlled by propensities. The «,
and [ are voltage dependent, -y is [Ca2+] dependent and f, a, b, and w are constant, see Jafri et al. [13]
for further details. The channels operate in two modes: Mode normal, represented by the states in the
upper row, and Mode Ca, represented the states in the lower row. In state 6 and 12 the channel is open,
but state 12 is rarely entered as f’ < f, effectively making Mode Ca an inactivated mode. B: State
diagram of an RyR from Stern et al. [14]. The o and « propensities are Ca’* dependent, representing
the activation and inactivation dependency of the cytosolic [Ca2+]. The 3 and & propensities are
constant.

impermeable for ions, effectively making 0€2,, in Fig. 1 B, a no-flux boundary, giving
us,

J, =0. (5)

We include 2 LCCs in our model. The Ca®t flows into the cleft at the 9, boundaries,
see Fig. 1 B. Ca*" entering these channels then diffuse to the RyRs triggering Ca*"
release from the SR. This additional Ca*" flux will not be included in the simulations.
However, the stochastic dynamics of the opening of the channel will be included. Further
detailes are presented in Section 3 below. The Ca®" that enters the dyadic cleft diffuses
into the main compartment of cytosole, introducing a third flux. This flux is included
in the model at the 0€2; boundary.

The LCC is a stochastic channel that takes the state of either open or closed. When
the channel is open, Ca®" flows into the cleft. The dynamic that describe the stochastic
behaviour is presented in Section 3 below. The current amplitude of an open LCC

channel is modelled to -0.1 pA [12]. The LCC flux is then,

0 : closed channel
Jm] = { (6)

—ﬁ, open channel
where i is the amplitude, 2 the valence of Ca?", F' Faraday’s constant and A the area
of the channel. Note that an inward current is by convention negative.
The flux to the cytosole is modeled as a concentration dependent flux,
C— Cp

J, = —0o Ay (7)

where ¢ is the concentration in the cleft at the boundary, ¢y the concentration in the
cytosole, and As is an approximation of the distance to the center of the cytosole. In
our model we have used As = 50 nm.
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Stochastic models of single channels

Discrete and stochastic Markov chain models are used to describe single channel
dynamics. Such models are described by a certain number of discrete states. Each
channel can be in either one of these states. A transition between two states is a
stochastic event. The frequency of these events are determined by the propensity
functions associated with each transition. These functions, which may vary with time,
characterize the probability per unit time that the corresponding transition event occurs.
Each Markov model defines its own propensity functions.

L-type Ca’" channel

The LCC opens when an action potential arrives at the cell. The channel inactivates
when single Ca®" ions bind to binding sites on the intracellular side of the channel. An
LCC is composed of a complex of four transmembrane subunits. Each of these can be
permissive or non-permissive. For the whole channel to be open, all four subunits need
to be permissive and the channel then has to undergo a last conformational change
to an opened state [15]. In this chapter we are going to use a Markov model of the
LCC that incorporates a voltage dependent activation together with a Ca®" dependent
inactivation [13, 16]. The state diagram of this model is presented in Fig. 2 A. It consists
of 12 states, where state 6 and 12 are the only conducting states, hence defineing the
open states. The transition propensities are defined by a set of functions and constants,
which are all described in Greenstein and Winslow [16].

Ryanodine Receptors

RyRs are Ca”*" specific channels that are gathered in clusters at the SR membrane in
the dyadic cleft. These clusters can consist of several hundreds of RyRs [17, 18]. They
open by single Ca*" ions attaching to the receptors at the cytosolic side. We will use
a modified version of a phenomenological RyR model that mimics the physiological
functions of the channel [14]. The model consists of four states where only one is
conducting, state 2, see Fig. 2 B. The a and ~ propensities are Ca?* dependent,
representing the activation and inactivation dependency of cytosolic [Ca”] . The # and
0 propensities are constants. For specific values for the propensities, see Stern et al.
[14].

4 Numerical methods for the continuous system

In this section, we will describe the numerical methods used to solve the continuous
part of the computational model of the Ca>" dynamics in the dyadic cleft. We will
provide PyDOLFIN code for each part of the presentation. The first part of the section
describes the discretization of the continuous problem using a finite element method.
The second part describes a method to stabilize the discretization. In this part, we also
conduct a parameter study to find the optimal stabilization parameters.
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1 from numpy import *

2 from dolfin import *

3

4 mesh = Mesh(’cleft_mesh.xml.gz’)

5

6 Vs = FunctionSpace(mesh, "CG", 1)

7 Vv = VectorFunctionSpace(mesh, "CG", 1)

8

9 v = TestFunction(Vs)

10 u = TrialFunction(Vs)

11

12 # Defining the electric field-function

13 a = Function(Vv,["0.0","0.0","phi_O*valencexkappa*sigmaxexp(-kappa*x[2])"],
14 {"phi_0":-2.2,"valence":2,"kappa":1,"sigma":1.e5})
15

16 # Assembly of the K, M and A matrices

17 K = assemble(inner(grad(u),grad(v))*dx)

18 M = assemble (u*v*dx)

19 E = assemble(-uxinner(a,grad(v))*dx)

NN
=l

# Collecting face markers from a file, and skip the O one

sub_domains = MeshFunction("uint",mesh,"cleft_mesh_face_markers.xml.gz")
unique_sub_domains = list(set(sub_domains.values()))
unique_sub_domains.remove (0)

NN NN
gtk W N

# Assemble matrices and source vectors from exterior facets domains
domain = MeshFunction("uint",mesh,2)
F={}f = {};tmp = K.copy(); tmp.zero()
for k in unique_sub_domains:
domain.values()[:] = (sub_domains.values() != k)
F[k] = assemble(u*v*ds, exterior_facet_domains = domain, \
tensor = tmp.copy(), reset_tensor = False)
f[k] = assemble(v*ds, exterior_facet_domains = domain)

W W W WwWwN N NN
W N = O © o

Figure 3: Python code for the assembly of the matrices and vectors from Eq. (14)-(15).

Discretization

The continuous problem is defined by Eqs. (3 -7) together with an initial condition. Given
a bounded domain 2 C R? with the boundary, 99, we want to find ¢ = ¢(z,t) € R,
for x € Q and ¢ € [0, 77, such that:

¢ = oAc—V-(ca) inQ

(8)
o0p,c—ca-n = Jy on 0, k=1,....4,

and ¢(+,0) = ¢o(x). Here a = a(z) = 20 E(x) and Ji is the k™ flux at the & boundary
0S), where Uizl o, = 092, 0,c = Vc-n, where n is the outward normal on the
boundary. The J; are given by Egs. (5)- (7).

The continuous equations are discretized using a finite element method in space.
Eq. (8) is multiplied with a proper test function v, and integrated over the spatial
domain, thus obtaining:

/Qc'vdx:/Q(UAc—V(ca))vdx. 9)

Integration by parts, together with the boundary conditions in Eq. (8), yield:

/évdx:—/(aVc—ca)-Vvdx—i-Z/ Jiv dsy,. (10)
Q 0 — Jog,
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1 # Defining the stabilization using local Peclet number
2 cppcode = """class Stab: public Function {

3 public:

4 Function* field; uint _dim; double sigma;

5 Stab(const FunctionSpace& V): Function(V)

6 {field = 0; sigma=1.0e5;}

7 void eval(double* v, const Data& data) const {

8

9

if (!field)

error("Attach a field function.");
10 double field_norm = 0.0; double tau = 0.0;
11 double h = data.cell().diameter();
12 field->eval(v,data);
13 for (uint i = 0;i < geometric_dimension(); ++i)
14 field_norm += v[il*v[i];
15 field_norm = sqrt(field_norm);
16 double PE = 0.5*%field_norm * h/sigma;
17 if (PE > DOLFIN_EPS)
18 tau = 1/tanh(PE)-1/PE;
19 for (uint i = 0;i < geometric_dimension(); ++i)
20 v[i] #*= 0.5*h*tau/field_norm;}};

21 "

22 stab = Function(Vv,cppcode); stab.field = a

23

24 # Assemble the stabilization matrices

25 E_stab = assemble(div(a*u)*inner(stab,grad(v))x*dx)

26 M_stab = assemble(u*inner(stab,grad(v))x*dx)

27

28 # Adding them to the A and M matrices, weighted by the global tau
29 tau = 0.28; E.axpy(tau,E_stab); M.axpy(tau,M_stab)

Figure 4: Python code for the assembly of the SUPG term for the mass and advection matrices.

Consider a mesh 7 = { K} of simplicial elements K. Let V}, denote the space of piecewise
linear polynomials, defined relative to the mesh 7. Using the backward Euler methods
in time, we seek an approximation of ¢: ¢, € Vj, with nodal basis {QS,}Z]L Eq. (10) can
now be discretized as follows: Consider the n'* time step, then given ¢ find ¢}*! € V,

such that
ctt—en
/ S hydy = —/ (O'VCZ—H — c’,f“a) -Voudx + Z/ Jrvdsy Yv € Vg, (11)
o At 0 — Joo

where At is the size of the time step. The trial function ¢}(z) is expressed as a weighted

sum of basis functions,
N

az) = Cre;(x). (12)

j
where C7' are the coefficients. Due to the choice of V}, will the number of unknowns, N,
coincide with the number of vertices of the mesh.

Taking test functions, v = ¢;, i € {1,..., N}, gives the following algebraic system of

Lo . N
equations in terms of the coefficients {C?H}i—r

1 n n n
GM(Cm—cn) = —K+E+Zk:a’f[ﬂ“ cj+1+zk:c’gf’f. (13)

Here C™ € RY is the vector of coefficients from the discrete solution ¢f(z), o* and ck
are constant coefficients given by Egs. (5) - (7) and
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M, — / bi0d, K, - / Vi - Vebyd,

Q Q (14)
E, - / adi-Voydr,  Fi= | dids

Q 15,97

are the entries in the M, K, E and F* matrices. f* are boundary source vectors
corresponding to the £*" boundary. The vector elements are given by:

= ¢ds. (15)

AN

The PyDOLFIN code for the assembly of the matrices and vectors in Eqgs. (14)-(15) is
presented in Fig. 3. Note that we define only one form for the different boundary mass
matrices and boundary source vectors, uxvxds and vxds respectively. The assemble
routine will assemble these forms over the 0" sub-domain, see line 31 and 33 in Fig.
3. By passing sub domain specific MeshFunctions to the assemble routine we can
assemble the correct boundary mass matrices and boundary source vectors. We collect
the matrices and boundary source vectors. These are then added to form the linear
system to be solved at each time step. If an LCC opens, we get contributions to the
right-hand side from the source vectors. If an LCC closes, the same source vectors are
removed from the right-hand side. When an LCC either opens or closes, a large flux is
either added or removed from the system. To be able to resolve the sharp time gradients
correctly, we need to take smaller time steps after such an event. The time step is then
expanded by multiply it with a constant > 1.

The sparse linear system is solved using the PETSc linear algebra backend [19] in
PyDOLFIN together with the Bi-CGSTAB iterative solver [20], and the BoomerAMG
preconditioners from hypre [21]. In Fig. 5, a script is presented that solves the algebraic
system from Eq. (13) together with a crude time stepping scheme for the opening and
closing of the included LCC channel.

Stabilization

It turns out that the algebraic system in Eq. (13) can be numerically unstable for
physiological relevant values of a. This is due to the transport term introduced by E;;
from Eq. (14). We have chosen to stabilize the system using the Streamline upwind
Petrov-Galerkin (SUPG) method [22]. This method adds an upwind discontinuous
contribution to the testfunction in the streamline direction Eq. (9),

h
v/ =v+s, where s = TIPS v/%) (16)
2|all
Here 7 is a parameter we want to optimize (see later in this Section), ||-| is the Euclidian

norm in R3, i = h(z) is the element size, and 7, = 7.(x), is given by,

1

Te = COth(PEe) — ﬁ’

(17)
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where PE, is the element Péclet number:

 lalh
20

PE. (18)
When PE, is larger than 1 the system become unstable, and oscillations is introduced.

In the 1D case, with a uniform mesh, the stabilization term defined by Egs. (17) - (18),
can give nodal exact solutions [22, 23]|. Our choice of stabilization parameter is inpired by
this. We have used the diameter of the sphere that circumscribes the local tetrahedron
as h. This is what DOLFIN implements in the function Cell.diameter (). We recognize
that other choices exist, which might give better stabilization [24]. Tezduyar and Park
[25] use a length based on the size of the element in the direction of a.

The PyDOLFIN code that assembles the SUPG part of the problem is presented in
Fig. 4. In the script, two matrices, E_stab and M_stab are assembled. Both matrices
are added to the corresponding advection and mass matrices E and M, weighted by the
global parameter tau.

A mesh with finer resolution close to the TT surface, at z = 0 nm, is used to resolve
the steep gradient of the solution in this area. It is here the electric field is at its
strongest, yielding an element Péclet number larger than 1. However the field attenuate
fast: at z = 3 nm the field is down to 5% of the maximal amplitude, and at z = 5 nm,
it is down to 0.7%.The mesh can thus be fairly coarse in the interior of the domain. The
mesh generator tetgen is used to to produce meshes with the required resolution [26].

The global stabilization parameter 7, is problem dependent. To find an optimal
7, for a certain electric field and mesh, the system in Eq. (13) is solved to steady
state, defined as T = 1.0 ms, using only homogeneous Neumann boundary conditions.
An homogeneous concentration of ¢y = 0.1 pM is used as the initial condition. The
numerical solution is then compared with the analytic solution of the problem. This
solution is acquired by setting J = 0 in Eq. (2) and solving for the ¢, with the following

result:
c(z) = cpe ) (19)

Here ® is given by Eq. (4), and ¢, is the concentration in the bulk, i.e., where z is large.
¢y was chosen such that the integral of the analytic solution was equal to ¢y x V', where
V' is the volume of the domain.

The error of the numerical solution for different values of 7 and for three different
mesh resolutions are plotted in Fig. 6. The meshes are enumerated from 1-3. The
error is computed using the L?(2) norm and is normalized by the L?(2) norm of the
analytical solution,

[e(T) — "l

le(T)lz2
where nr is the time step at ¢t = T. As expected, we see that the mesh with the finest
resolution produces the smallest error. The mesh resolutions are quantified by the
number of vertices close to z = 0. In the legend of Fig. 6, the median of the z distance
of all vertices and the total number of vertices in each mesh is presented. The three
meshes were created such that the vertices closed to z = 0 were forced to be situated
at some fixed distances from z = 0. Three numerical and one analytical solution for
the three different meshes are plotted in Fig. 7- 9. The numerical solutions are from

(20)
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1 # Model parameters

dt_min = 1.0e-10; dt = dt_min; t = 0; cO = 0.1; tstop = 1.0
events = [0.2,tstop/2,tstop,tstop]; dt_expand = 2.0;

sigma = 1leb; ds = 50; area = pi; Faraday = 0.0965; amp = -0.1
t_channels = {1:[0.2,tstop/2], 2:[tstop/2,tstop]l}

# Initialize the solution Function and the left and right hand side
u = Function(Vs); x = u.vector()
x[:] = cO#*exp(-a.valence*a.phi_O*exp(-a.kappa*mesh.coordinates() [:,-1]))

© 0 N O UAe W N

10 b = Vector(len(x)); A = K.copy();

11

12 solver = KrylovSolver("bicgstab","amg_hypre")

13 solver.parameters["relative_tolerance"] = 1e-10

14 solver.parameters["absolute_tolerance"] = le-7

15

16 plot(u, vmin=0, vmax=4000, interactive=True)

17 while t < tstop:

18 # Initalize the left and right hand side

19 A.assign(K); A *= sigma; A += E; b[:] =0

20

21 # Adding channel fluxes

22 for ¢ in [1,2]:

23 if t >= t_channels[c][0] and t < t_channels[c][1]:
24 b.axpy (-amp*1e9/ (2+Faraday*area) ,f [c])
25

26 # Adding cytosole flux at Omega 3

27 A.axpy(sigma/ds,F[3]); b.axpy(cO*sigma/ds,f[3])
28

29 # Applying the Backward Euler time discretization
30 A x= dt; b *= dt; b += Mxx; A += M

31

32 solver.solve(A,x,b)

33 t += dt; print "Ca Concentration solved for t:",t
34

35 # Handle the next time step

36 if t == events[0]:

37 dt = dt_min; events.pop(0)

38 elif t + dt*dt_expand > events[0]:

39 dt = events[0] - t

40 else:

41 dt *= dt_expand

42

43 plot(u, vmin=0, vmax=4000)

44

45 plot(u, vmin=0, vmax=4000, interactive=True)

Figure 5: Python code for solving the system in Eq. (13), using the assembled matrices from the two
former code examples from Fig. 3- 4.
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— Mesh 1: 0.75, #3379 | |
0.6  Mesh 2: 0.50, #6495 | 1 Figure 6: The figure shows a
T+ Mesh 3: 0.25, #23587 plot of the error versus the stabi-
lization parameter 7 for 3 differ-
ent mesh resolutions. The mesh
resolutions are given by the me-
dian of the z distance of all ver-
tices and the total number of
vertices in the mesh, see legend.

- 1 We see that the minimal values
- of the error for the three meshes,
occur at three different 7: 0.22,
0.28, and 0.38.

Error

simulations using three different 7: 0.1, 0.6 and the L2-optimal 7, see Fig. 6. The traces
in the figures are from the discrete solution ¢;”, evaluated on the straight line between
the spatial points py=(0,0,0) and p;=(0,0,12).

In Fig. 7 the traces from mesh 1 is plotted. Here we see that the numerical solutions
are quite poor for some of the 7. The solution with 7 = 0.10 is obviously not correct,
as it produces negative concentrations. The solution with 7 = 0.60 seems more correct
but it undershoots the analytic solution at z = 0 with ~ 1.7 uM. The solution with
7 = 0.22 is the L2-optimal solution for mesh 1, and approximates the analytic solution
at z = 0 well.

In Fig. 8 the traces from mesh 2 is presented in two plots. The left plot shows the
traces for z < 1.5 nm, and the right shows the traces for z > 10.5 nm. In the left plot
we see the same tendency as in Fig. 7, an overshoot of the solution with 7 = 0.10 and
an undershoot of the solution with 7 = 0.60. The L2?-optimal solution, the one with
T = 0.28, overshoots the analytic solution for the shown interval in the left plot, but
undershoots for the rest of the trace.

Figure 7: The figure shows the
concentration traces of the nu-
merical solutions from Mesh 1,
5 060 | | see legend of Fig. 6, for three
' ——  Analytic different 7 together with the an-
! alytic solution. The solutions
5 were picked from a line going
' between the points (0,0,0) and
(0,0,12). We see that the so-
lution with 7 = 0.10 oscillates.
The solution with 7 = 0.22 was
the solution with smallest global
error for this mesh, see Fig 6,
and the solution with 7 = 0.60
‘ ‘ ‘ undershoots the analytic solu-
0 2 4 6 8 10 12 tion at z = Onm with ~ 1.7 uM.

S

[Ca?*] [1iM]
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-- 7:0.10
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Figure 8: The figures show the concentration traces of the numerical solutions from Mesh 2, see
legend of Fig. 6, for three different 7 together with the analytic solution. The solution traces in the two
panels are picked from a line going between the spatial points (0,0,0) and (0,0,1.5), for the left panel,
and between spatial points (0,0,10.5) and (0,0,12), for the right panel. We see from both panels that
the solution with 7 = 0.10 give the poorest solution. The solution with 7 = 0.28 was the solution with
smallest global error for this mesh, see Fig 6, and this is reflected in the reasonable good fit seen in
the left panel, especially at z = Onm. The solution with 7 = 0.60 undershoots the analytic solution at
z = 0 with ~ 1.2 gM. From the right panel we see that all numerical solutions undershoot at z = 15nm,
and that the trace with 7 = 0.60 comes the closest to the analytic solution.

In the last figure, Fig. 9, traces from mesh 3 is presented. The results is also here
presented in two plots, corresponding to the same z interval as in Fig. 8. We see that the
solution with 7 = 0.10 is not good in either plots. In the left plot it clearly overshoots
the analytic solution for most of the interval, and then stays at a lower level than the
analytic solution for the rest of the interval. The solution with 7 = 0.60 is much better
here than in the two previous plots. It undershoots the analytic solution at z = 0 but
stays closer to it for the rest of the interval than the L2-optimal solution. The L? norm
penalize larger distances between two traces, i.e., weighting the error close to z = 0
more than the rest. The optimal solution measured in the Max norm is given when
7 = 50, result not shown.

These results tell us that it is difficult to obtain accurate numerical solution for the
advection-diffusion problem presented in Eq. (8). Using a finer mesh close to z = 0
could help, but it will create a larger algebraic system. It is interesting to notice that
the L? optimal solutions is better close to z = 0, than other solutions and the solution
for the largest 7 is better than other for z > 2 nm. For a modeller, these constraints are
important to know about; the solution at z = 0 and z = 12 nm are the most important,
as Ca”" interact with other proteins at these points.
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Figure 9: The figures shows the concentration traces of the numerical solutions from Mesh 3, see
legend of Fig. 6, for three different 7 together with the analytic solution. The traces in the two panels
were picked from the same lines as the one in Fig. 8. Again we see from both panels that the solution
with 7 = 0.10 give the poorest solution. The solution with 7 = 0.38 was the solution with smallest
global error for this mesh, see Fig 6, and this is reflected in the good fit seen in the left panel, especially
at z = Onm. The solution with 7 = 0.60 undershoots the analytic solution at z = 0 with ~ 0.7 pM.
From the right panel we see that all numerical solutions undershoot at z = 15nm, and the trace with
7 = 0.60 also here comes closest the analytic solution.

5 diffsim an event driven simulator

In the scripts in Fig. 3- 5, we show how a simple continuous solver can be built with
PyDOLFIN. By preassembling the matrices from Eq. (14) a flexible system for adding and
removing boundary fluxes corresponding to the state of the channels can be constructed.
The script in Fig.5 uses fixed time points for the channel state transitions. At these
time points we minimize At, so we can resolve the sharp time gradient. In between the
channel transitions we expand At. This simplistic time stepping scheme is sufficient
to solve the presented example. However it would be difficult to expand it to also
incorporate the time stepping involved with the solution of stochastic Markov models,
and other discrete variables. For such scenarios, an event driven simulator called
diffsim has been developed. In the last subsections in this chapter, the algorithm
underlying the time stepping scheme in diffsim will be presented. An example of how
one can use diffsim to describe and solve a model of the Ca®* dynamics in the dyadic
cleft will also be demonstrated. The diffsim software can freely be downloaded from
URL:http://www.fenics.org/wiki/FEniCS_Apps.

Stochastic system

The stochastic evolution of the Markov chain models presented in Section 3 is determined
by a modified Gillespie method [27], which resembles the one presented in Riidiger et al.
[28]. Here we will not go into detail of the actual method, but rather explain the part
of the method that has importance for the overall time stepping algorithm.
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1 while not stop_sim:

2 # The next event

3 event = min(discrete_objects)

4 dt = event.next_time()

5

6 # Step the event and check result
7 while not event.step():

8 event = min(discrete_objects)
9 dt = event.next_time()

10

11 # Update the other discrete objects with dt
12 for obj in discrete_objects:

13 obj.update_time(dt)

14

15 # Solve the continuous equation
16 ca_field.solve(dt)

17 ca_field.send()

18

19 # Distribute the event

20 event.send()

Figure 10: Python-like pseudo code for the time stepping algorithm used in our simulator

I <|> T {:StochasticHandler
*:DtExpander
20 3 8 *:TStop

/\/ I >
7.7

O

sl
< < <
\J

o= *

29 3
t [ms]

Figure 11: Diagram for the time stepping algorithm using 3 discrete objects: DtExpander, Stochas-
ticHandler, TStop. The values below the small ticks, corresponds to the time to the next event for
each of the discrete objects. This time is measured from the last realized event, which is denoted by
the thicker tick. In A we have realized a time event at t=2.0 ms. The next event to be realized is a
stochastic transition, the one with smallest value below the ticks. In B this event is realized, and the
StochasticHandler now show a new next event time. The event is a channel transition forcing the dt,
controlled by the DtExpander, to be minimized. DtExpander now has the smallest next event time,
and is realized in C. The channel transition that was realised in B raised the [Ca2+] in the cleft which
in turn increase the Ca®>* dependent propensity functions in the included Markov models. The time
to next event time of the StochasticHandler has therefore been updated, and moved forward in C.
Also note that the DtExpander has expanded its next event time. In D the stochastic transition is
realized and updated with a new next event time, but it is ignored as it is not a channel transition.
The smallest time step is now the DtExpander, and this is realized in E. In this example we do not
realize the TStop event as it is too far away.
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The solution of the included stochastic Markov chain models is stored in a state vector,
S. Each element in S corresponds to one Markov model and the value reflects which
state each model is in. The transitions between these states are modelled stochastically
and are computed using the modified Gillespie method. This method basically gives
us which of the states in S changes to what state and when. It is not all such state
transitions that are relevant for the continuous system. A transition between two closed
states in the LCC model will not have any impact on the boundary fluxes, and can be
ignored. Only transitions that either open or close a channel (channel transitions), will
be recognized. The modified Gillespie method assumes that any continuous variables
that a certain propensity function depends on, are constant during a time step. The
error of this assumption is reduced by taking smaller time steps right after a channel
transition, as the continuous field is indeed changing dramatically during this time
period.

Time stepping algorithm

To simplify the presentation of the time stepping algorithm we only consider one
continuous variable, this could for example be the Ca®" field. The framework presented
here can be expanded to also handle several continuous variables. We define a base
class called DiscreteObject, which defines the interface for all discrete objects. A
key function of a discrete object is to know when its next event is due at. The
DiscreteObject that has the smallest next event time, gets to define the size of the
next At. In Python this is easily done by making the DiscreteObjects sortable with
respect to their next event time. All DiscreteObjects is then collected in a list,
discrete_objects see Fig. 10. The DiscreteObject with the smallest next event time
is then just min(discrete_objects).

An event from a DiscreteObject that does not have an impact on the continuous
solution will be ignored for example a Markov chain model transition that is not a
channel transition. A transition needs to be realized before we can tell if it is a channel
transition or not. This is done by stepping the DiscreteObject, i.e., calling the object’s
step() method. If the method returns False, it will not affect the Ca" field, and we
enter the while loop, and a new DiscreteObject is picked, see Fig. 10. If the object
returns True when stepped, we exit the loop and continue. Next, we have to update
the other discrete objects with the chosen At, solve for the Ca*" field, broadcast the
solution and last but not least execute the discrete event that is scheduled to happen at
At.

In Fig. 11 we show an example of a possible realization of this algorithm. The
example starts at t=2ms at the top-most timeline represented by A, and it includes
three different types of DiscreteObjects: i) DtExpander, ii) StochasticHandler,
and 1ii) TStop. See the figure legend for more details.

diffsim: an example

diffsim is a versatile event driven simulator that incorporates the time stepping
algorithm presented in the previous section together with the infrastructure to solve

79



PAPER 11 5. DIFFSIM AN EVENT DRIVEN SIMULATOR

from diffsim import *
from diffsim.dyadiccleft import *
from numpy import exp, fromfile

# Model parameters
cO_bulk = 0.1; D_Ca
AP_offset = 0.1; dV

1.e5; Ds_cyt = 50; phi0 = -2.2; tau = 0.28
0.5, ryr_scale = 100; end_sim_when_opend = True

© 00 N O U s W N

# Setting boundary markers
LCC_markers = range(10,14); RyR_markers = range(100,104); Cyt_marker = 3

= o=
=)

# Add a diffusion domain
domain = DiffusionDomain("Dyadic_cleft","cleft_mesh_with_RyR.xml.gz")
cO_vec = cO_bulk*exp(-VALENCE[Ca]*phiO*exp(-domain.mesh().coordinates() [:,-11))

e e N e
o U A W N

# Add the ligand with fluxes

ligand = DiffusiveLigand(domain.name(),Ca,cO_vec,D_Ca)

field = StaticField("Bi_lipid_field",domain.name())

Ca_cyt = CytosolicStaticFieldFlux(field,Ca,Cyt_marker,cO_bulk,Ds_cyt)

[ R Ry —
= O © ™ N

# Adding channels with Markov models
for m in LCC_markers:

LCCVoltageDepFlux(domain.name(), m, activator=LCCMarkovModel_Greenstein)
for m in RyR_markers:

RyRMarkovModel_Stern("RyR_%d"%m, m, end_sim_when_opend)

NN NN NN
N O R W N

# Adding a dynamic voltage clamp that drives the LCC Markov model
AP_time = fromfile(’AP_time_steps.txt’,sep=’\n’)
dvc = DynamicVoltageClamp(AP_time,fromfile(’AP.txt’,sep=’\n’),AP_offset,dV)

W W NN
= O ©

# Get and set parameters
params = get_params()

w w w
= W N

params.io.save_data = True
params.Bi_lipid_field.tau = tau
params.time.tstop = AP_time[-1] + AP_offset
params.RyRMarkovChain_Stern.scale = ryr_scale

W w W w w
© 00 N O >

info(str(params))

N
o

# Run 10 simulations
data = run_sim(10,"Dyadic_cleft_with_4_RyR_scale")
mean_release_latency = mean([ run["tstop"] for run in data["time"]])

PN
[JUR

Figure 12: An example of how diffsim can be used to simulate the time to RyR release latency,
from a small dyad who’s domain is defined by the mesh in the file cleft_mesh_with_RyR.xml.gz.

models with one or more diffusional domains, defined by a computational mesh. Each
such domain can have several diffusive ligands. Custom fluxes can easily be included
through the framework. The sub module dyadiccleft implements some published
Markov models that can be used to simulate the stochastic behaviour of a dyad and
some convenient boundary fluxes. It also implements the field flux from the lipid bi-layer
discussed in Section 3. In Fig. 12 a runnable script is presented, which simulates the
time to release, also called the latency, for a dyad. The two Markov models that is
presented in Section 3 are here used to model the stochastic dynamics of the RyRs and
the LCCs. The simulation is driven by a so called dynamic voltage clamp. The data
that defining the voltage clamp is read from a file using utilities from the NumPy Python
packages.
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6 Discussion

We have presented a computational model of the Ca?" dynamics of the dyadic cleft
in heart cells. It consists of a coupled stochastic and continuous system. We have
showed how one can use PyDOLFIN to discretise and solve the continuous system using
a finite element method. The continuous system is an advection-diffusion equation
that produce unstable discretizations. We investigate how one can use the streamline
upwind/Petrov-Galerkin method to stabilize the discretized system. We use three
different meshes and find an L2-optimal global stabilization parameters 7 for each mesh.

We do not present a solver for the stochastic system. However we outline a time
stepping scheme that can be used to couple the stochastic solver with the presented
solver for the continuous system. A simulator diffsim is briefly introduced, which
implements the presented time stepping scheme together with the presented solver for
the continuous system.
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Abstract:

Ca’" induced Ca®* release (CICR) in cardiomyocytes is controlled in
the signalling micro domain of the dyadic cleft. During the action
potential, the L-type Ca®t channel (LCC) opens, allowing Ca®* entry
into the cleft. This Ca?" then triggers further Ca*" release from the
sarcoplasmic reticulum, by activating the ryanodine receptors (RyRs).
Large gradients of [Caﬂ} are rapidly established in response to the
open LCCs, which are highly dependent on locality and source strength.
These gradients determine the time required for the RyRs to open
after an action potential has arrived at a cardiomyocyte. Ca?" release
becomes delayed and dyssynchronous during heart failure. We used a
detailed computational model of the dyadic cleft to investigate poten-
tial mechanisms contributing to the altered Ca release pattern. We
found that alterations in action potential configuration alone slowed
the average activation time by 2 ms and increased the dyssynchrony,
here represented by the standard deviation in activation time. Heart-
failure alters the structures that defines the dyadic cleft. We modelled
potential perturbations to the dyadic cleft by increasing the height.
A height increase of 3 nm slowed the average activation time by an
additional 5 ms and further increased the dyssynchrony. We also em-
ployed our model to investigate whether a lone Na™/Ca®t exchanger
(NCX) working in reverse mode could trigger CICR. The NCX was
co-localized with a Na™ channel, so that local elevations in [NaJr]
could be sensed by the channel. We found that Ca®' from a single
NCX could not trigger CICR.
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1 Introduction

The process that links electric excitation of the cell membrane to contraction of a
cardiomyocyte is known as the excitation-contraction coupling (ECC) [1]. Depolarization
of the cell membrane during the action potential (AP) evokes a transient rise in cytosolic
Ca", the Ca®" transient. The major part of this transient is derived from Ca®"
release from the sarcoplasmic reticulum (SR), via ryanodine receptors (RyR). The Ca*"
release is triggered by external Ca®' entering mainly through the L-type Ca®"-channel
(LCC). The process is known as Ca*"-induced Ca®" release (CICR) [2]. CICR is
locally controlled in the dyad where the RyRs face the LCCs only separated by the
narrow (~ 12 nm) dyadic cleft. A dyad can be seen as a functional unit also called a
couplon comprising hundreds of RyRs and tens of LCCs [3]. These are predominantly
localized in the t-tubule (TT), which are invaginations of the surface membrane into
the interior of the cardiomyocyte. A single Ca?" release event in a couplon is called
a Ca?" spark, and the concerted appearance of thousands of sparks constitutes the
Ca’" transient [4]. The spatial synchrony of the Ca®t sparks is assured by the regularly
organized T'T network. Disruptions in the T'T structure can disturb ion homeostasis
in the dyadic cleft, and thus lead to altered control of contractility. Louch et al. [5]
observed a progressive reorganization of the TT during heart failure (HF). This resulted
in a spatially dyssynchronous Ca*" transient characterized by regions of delayed Ca*"
release. The delayed release regions occurred in areas of the cell that lacked TT network
and therefore also LCCs. Thus, Ca?" release in these regions was triggered only after
diffusion of Ca®" from neighboring dyads. The authors hypothesized that T-tubule
disruption might also have contributed to an observed delay in Ca*" release [5]. However,
others have suggested that reduced Ca*" release synchrony results from altered action
potential configuration during HF [6].

Previously we have suggested that the Na®™/Ca®" exchanger (NCX) can shorter
latency and better synchrony [7]. The NCX is a bi-dircetional ion exchanger. The rate
and direction of this current are controlled by the membrane potential, and the intra
and extra-cellular concentrations of both Ca®*" and Na™ [8]. In forward mode, the NCX
transports Ca*™ out of the cell and Na™ into the cell. This mode sets the Ca*" content
of SR, as it competes with the SR Ca?" ATPase (SERCA) pump, in extracting Ca*"
from the cytosol. In a brief time window, when the AP reaches above the reversal
potential of the NCX, the exchanger will work in reverse mode, letting Ca®" in to the
cell. This Ca®* entry may contribute to CICR and to the overall Ca*" transient [1, 7].
The significance of this contribution is currently under debate [9-11]. In a recent review
Bers [12] states that the main trigger of CICR is the LCC. However, Bers describes
three possible ways the NCX can modulate the process: i) The Na'-channel (NaC)
elevates sub-sarcolemma [Naﬂ which enhances reverse mode function of nearby NCXs.
i) During the early peak of an AP the NCX can immediately bring Ca®t into the cleft
before the slower LCCs open. iii) If the LCCs fails to open in a dyad, Ca from the NCX
may eventually trigger Ca?"' release from the SR. Previously we have reported that
when the reverse mode of the NCX is blocked by KB-R7943 [10], the latency of Ca®"
release is prolonged by 3.2 ms [7]. The latency wass defined as the time between onset
of the stimulus current and the start of the Ca®" transient. This result suggests that
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the reverse mode of NCX does indeed have an effect on the timing of the CICR. In the
same study we used a detailed computational model of the dyadic cleft to investigate
under what conditions the reverse mode of the NCX could precede the Ca®" current
from the LCC. We conclude that a co-localization of the NaC, the NCX and the RyR,
together with a crowded environment, modeled with slow diffusion, are necessary. This
corresponds to the two first scenarios from Bers [12]. A fourth scenario is that the NCX
may modify CICR in failing cardiomyocytes, where it is reported that the intracellular
[Na*] is raised [1, 13-15]. The elevated [Naﬂ is thought to be attributed by three
possible mechanisms: i) enhanced late NaC [16]; ii) decresed Na™ /K*-pump [17]; %)
increased Na™ /H*-exchanger [18], but it is still not entirely understood [19]. The raised
intracellular [Naﬂ during heart failure is expected to enhance reverse mode NCX
function, and increase its contribution to CICR.

In this study we develop a detailed 3 dimensional computational model of the dyad.
With this model we quantify two potential contributions to the uniform slowing and
increased dyssynchrony seen in HF cells: i) difference in AP shapes (SHAM and HF)
and 1) a displaced TT with respect to SR, modeled as an increased height of the dyadic
cleft. We will record the latency defined as the time between the onset of the triggering
stimulus to the first release of an RyR as measure of the slowing, and the variation in
latency as a measure of dyssynchrony.

We will revisit our previous study of the contribution of the NCX to the rapid
triggering of CICR in both failing and healthy cardiomyocytes [7], now with a more
detailed computational model of the ion dynamics in the dyad. In Lines et al. [7] we
modeled the single channel conductances as a continuous variable, linearly dependent
on the whole cell current. Here we will model local ion channels as discrete channels,
which are either on or off. We hypothesize that this can create a larger ionic response
in the cleft, once a channel is open. The dynamics of the LCC and RyR channels will
be modeled by discrete and stochastic Markov chain models.

In a recent study Poldkova et al. [20] found that the coupling fidelity, i.e., the
probability that a single open LCC will trigger a release from the SR, is much lower
than 1. This implies that the number of LCCs in a couplon must be high to preserve
an overall high probability for release. They also show that the low individual coupling
fidelity is also compensated by the reopening of single LCCs. This is new insight as the
coupling fidelity has previously been assumed to be high [21-23]. We will modify an
existing Markov model of the LCC kinetics [24], so it complies with the quantitative
measurements of the LCC dynamics that Poldkova et al. [20] present. To the best of
our knowledge, this is the first computational study to include the new findings from
Polakova et al. [20] in a computational model of the dyad.

2 Methods

In this study we conducted two different types of computational experiments. The first
was a study of the latency and dyssynchrony of Ca*" release, and the second a study of
the potential contribution of the NCX to the Ca®" influx prior to release from the RyRs.
Because of computational limitations, we used slightly different model approaches in
the two studies. In the latency study we used stochastic and discrete Markov models
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Figure 1: The figure shows a computational mesh we have used in the latency and dyssynchrony
part of this study. Panel A shows the full mesh representing a dyad with a 110 nm radius. The RyRs
are represented by 25 circular and distinct boundaries, with higher resolutions than the rest of the
boundaries. The regularities of these channels are illustrated in panel B. A single LCC is positioned
juxtapositional to one to the RyR. The actual boundary that represents the influx of the LCC is
elevated 2 nm from the TT boundary, which is illustrated in panel C.

of both LCCs and RyRs. The electro-diffusion of the Ca®" ions inside the cleft was
described by a partial differential equation (PDE). The diffusional response from an
open LCC was modeled using the quasi steady state solution of the PDE. The entire
model was be driven by an external dynamic voltage clamp, using recorded APs from
both SHAM and HF cardiomyocytes. In the second part of the study we did not include
any stochastic modelling. However we did include two diffusional domains, Ca*" and
Na™, which were coupled by the NCX. The model is non-linear due to the domain
coupling. An open NaC was used to drive the model, and the Ca*" response from a
co-localized NCX was recorded.

Experimental methods

Animals were cared for in accordance with the Guide for the Care and Use of Laboratory
Animals published by the US National Institutes of Health (NIH publication No. 85-23,
revised 1996). Myocardial infarction was induced by left coronary artery ligation in 9
week-old female mice as previously described [5, 26]. Sham-operated animals (SHAM)
were subjected to the same surgical procedure, but without ligation of the coronary
artery. At 1 week following infarction, mice which had developed congestive heart
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Figure 2: The figure shows the response from a single open LCC. The left panel shows the transient
[Ca®*] at the juxtapositional RyR, (solid line) and at the next closest RyR (dashed line), which is
31 nm away. The membrane potential is held constant at 0 mV and the LCC opens at time = 0 ms.
Steady state is reached after ~ 0.07 ms. The right panel shows the the steady state [Ca%} response
(solid line, left y-axis), from an open LCC channel for varying membrane potentials. The dashed line
together with the right y-axis, shows the corresponding single channel amplitude. The current from a
single channel was fitted so the amplitude equals -0.12 pA for a voltage step to 0 mV [25]. The single
channel conductance is measured in the membrane potential range of [-50,-12.5] mV to 11 pS .

failure (HF) were selected by echocardiographic criteria for inclusion in the study
[5, 26, 27]. Selected animals were then kept for an additional 9 weeks (a total of 10
weeks post-surgery) to allow development of chronic HF [27], and cardiocardiomyocytes
were enzymatically isolated [5].

Cardiomyocytes loaded with Fluo-4 AM (20 uM for 30 min, Molecular Probes, Eugene,
OR) were superfused with HEPES Tyrode solution containing (in mM): 140 NaCl, 1
CaCl2, 0.5 MgCl12, 5.0 HEPES, 5.5 glucose, 0.4 NaH2PO4 and 5.4 KCI1 (pH 7.4, 22°C).
In some experiments, cells were field stimulated at 1 Hz (3 ms biphasic pulse, 50%
above threshold) through a pair of platinum electrodes. In other experiments, cells were
patch-clamped with 1-2 M) pipettes containing (in mM): 120 K-aspartate, 0.5 MgCl2,
6 NaCl, 0.06 EGTA, 10 HEPES, 10 glucose, 25 KCl and 4 K2-ATP (pH 7.2).

Ca’"-dependent fluorescence was monitored using an LSM 510 confocal imaging
system (Zeiss GmbH, Jena, Germany) in line-scan mode, as described previously [5]. A
light-emitting diode was used to indicate the timing of the stimulus pulse. Line scan
recordings were normalized to resting fluorescence values (F0) at each point along the
line scan to obtain F/F0 images. Differences between populations were determined
using Student’s unpaired t-test. Statistical significance was defined as P<0.05.

Morphology

The dyadic cleft was modeled as a cylindrical disk, as has been done in other studies
[28-30]. The height of the disk represents the distance between the SR and TT. In
healthy cardiomyocytes this distance is ~ 12 nm [31]. The radius of the disk sets the
size of the dyad. The number of included RyRs follows from the size of the radius,
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as these large proteins are positioned in a highly regular 2D lattice grid [32], see Fig.
1 B. A cleft with a radius of 110 nm will have room for 25 RyRs, see Fig. 1 A, and
a cleft with a radius of 220 nm will have room for 100 RyRs. The number of LCCs
follows the number of RyRs. In this study we used a ratio of 1/5 between the number
of LCCs and the number of RyRs. This is the same number as Tanskanen et al. [33]
used in their model and it is similar to what is measured experimentally [34]. The
assumption that the LCCs have low individual coupling fidelity demands a high number
of LCCs in a dyad. This is to preserve an overall high probability of release [20]. We
have chosen to include 20 LCCs in a dyad, which means a dyad with a radius of 220 nm.
Unfortunately we are not able to simulate a transient process on such a large mesh since
the computational effort is too large. This is mainly caused by two limiting factors: 1)
The large domain together with a demand of high resolution for the mesh close to the
TT, creates a too large a computational mesh. i) The numerically stiff process of the
opening and closing of a single LCC, can be solved by taking small time steps. However
it became to demanding to do this for 20 LCCs that needed to open and close several
times each before a release was triggered. These limitations were resolved by using a
quasi steady state approach to the simulated [Ca2+].

We used a dyad with a radius of 110 nm, seen in Fig. 1 A, with only a single LCC.
This dyad was used to tabulate the steady state [Ca%} at the closest and second closest
RyR, for different membrane potentials, see Fig. 2. In the actual simulations we will
only use the tabulated value for the nearest RyR, the one that is juxtapositional to
the open LCC. This simplification can be justified by the large difference in amplitude
between the two steady state responses. In Fig. 2 we see that the second closest RyR is
exposted to a concentration that is ~ 1/3 of the closest RyR. The rate that controls
the RyR opening, is of the fourth order, see as described below. This means that the
propensity of the second closest RyR to open will be 1/81 of the propensity of the closest
RyR. There can be at most 4 RyRs surrounding the juxtapositional one, reducing the
effective difference in propensity to ~ 1/20. Therfore approximately in 1 out of 20 trials
where a single LCC triggers release from an RyR, will the release come from one of the
second closest RyR.

In the NCX study we limited the radius of the dyad to 50 nm. In this model we
included a single NaC together with a single NCX. To be able to study the maximal
effect of a higher local [Naﬂ from an open NaC, we co-localized the two membrane
proteins, see Fig. 3. The distance between the two channel mouths is 3.5 nm. This
distance is probably too small for real cardiomyocytes, as the size of the transmembrane
proteins would make such a close co-localization impossible. However using such a small
distance will get a theoretical maximal local [Naﬂ . We also model the possible effect of
protein crowding by lowering the height of the cleft to only 4 nm. This is a dramatically
smaller cleft. Tanskanen et al. [33] use 13 nm instead of 15 to model the effect of the
large proteins. However by choosing a relatively extreme value we could see if this way
of modelling crowding could cause high enough local [Naﬂ to create a significant Ca*"
response from the NCX working in reverse mode.

We did not model the precise size and structure of the included channel proteins,
as was done in the study by Tanskanen et al. [33]. However, in agreement with their
study, we placed the channel pores from the included t-tubule channels 2 nm above the
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Figure 3: The figure shows how the co-localization of the Na channel and NCX is modeled. The
distance between the two channel centers is 3.5 nm.

membrane. We used a radius of 1 nm for all channel pores. The strength of the channel
fluxes depended on the model used to describe each flux. These models together with
the parameters we have chosen to fit the fluxes to, are presented in the next subsection.

Continuous model

We will employ a continuous model for the ionic concentrations inside the cleft. Two
previous computational models of the dyadic cleft computed the trajectories of each
Ca?* ion in the cleft individually [33, 35], using a Random walk model. Their motivation
for doing so, was that there are too few Ca®" ions inside the cleft, to justify a continuous
approximation of the [CaQﬂ. This can be illustrated by a tentative dyad with a radius
of 100 nm and a height of 12 nm. Here each uM of [CaQ+] correspond to an average
0.22 Ca®*" ion. During diastole, with a resting [Ca2+] of 0.1 uM, we will have in average
0.02 Ca?" ions in this cleft. The steady state response from one open LCC, with an
amplitude of ~ 0.2 pA, is ~ 50 uM (averaged for the whole cleft). This concentration
corresponds to in average ~ 12 Ca®" ions. If we limit the volume of interest to a small
space surrounding a single RyR, e.g., a half globe with a radius of 15 nm, and a apply
a slightly higher [Ca2+] of 100 uM, we are down to an average of 0.1 Ca*" ions. The
small number of participating ions justify the questioning of the use of a continuous
model for the [Ca2+]. However in a recent study we show that it is not the average
number of ions in the cleft that invalidates the use of a continuous model but rather the
inflow rate of single Ca®*" compared to the binding rate to single receptors in the cleft
[28]. In the case of the dyadic cleft, where the binding rates are indeed small compared
to the inflow rates [28], even during diastole, we can use a continuous approximation of
the [Ca2+], if we also use stochastic models for binding of single ions to receptors in
the cleft.
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The electro-diffusional process in the dyadic cleft is modeled by an advection-diffusion
PDE. The electric field that drives the advection comes from the negatively charged
phospholipid head-groups in the lipid bi-layer of the sarcolemma [36, 37]. Therefore
in close proximity to the cell membrane, an electric double layer is produced in the
intracellular solution [38, 39]. In this layer the electric potential is screened by the ions
in the intracellular solution and attenuates rapidly. The negative potential attracts
cations causing an elevated concentration of these ion species near the membrane and
the anions are repelled. The charged head-groups of the membrane also serve as cation
binding sites and thus acting as buffers for these ions [40, 41]. It has been shown that
the Gouy-Chapman theory can be used to resolve the double layer [38], together with
appropriate membrane association constants for the buffer [30, 40].

The ionic distributions, the amount of ions bound to the buffers and the electric
potential are all coupled to each other. Bers et al. [40] developed an iterative scheme
that solved the coupled system. They assumed that each of the three processes was
in a steady state. With this assumption each process can be described as an explicit
algebraic system. Soeller and Cannell [30] simplified the modelling of the double layer
by assuming a monovalent 1-1 electrolyte consisting of [proteins] + [Cl_] = [Na+] +
[Kﬂ. The scheme can be divided into three stages: i) Calculating the intracellular
potential based on the charge density from phospholipid head-groups. ii) Calculating
the steady state ionic concentrations at the membrane based on the potential. i)
Letting the included ions species bind to the charged phospholipids based on the steady
state concentration at the membrane, which in turn reduces the charge density. In
the last stage the phospholipids are also titrated, based on the present [Hﬂ, i.e., the
pH of the solution, effectively reducing the charge density at the membrane [40]. See
Appendix for a detailed presentation of the algorithm.

The scheme converges in a small number of iterations giving us the electric potential,
&, described in dimensionless units as ® = ¥/Wr, where W and Wt are given in Voltage.
U is a temperature dependent characteristic potential given by

\IJT = k?BT/G. (]->
A single exponential can be used to approximate ®:
® = Py e/ v (2)

Here @, is the potential at the membrane, where x5 is zero, and A is the Debye length.
We chose to increase the amount of phospholipids to 563 nmol/mg compared to Soeller
and Cannell [30] to attain the same value for &5 = —2.2 as they use. We chose to do
this so the resulting advection-diffusion equation is comparable between the too studies.
However the differences in the amount of phospholipids points to discrepancies in the
underlying algorithms.

The Debye length is dependent on the ionic concentration, see Eq. 12, and quantifies
the screening strength of the double layer. The smaller the Debye length is, the larger
the screening strength. An intracellular environment with [proteins]+ [Cl1™] +[K™]
+ [Naﬂ =310 mM gives a Debye length of 0.78 nm. However it is questionable whether
the proteins, which carry most of the negative charges in the electrolyte, can move as
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Figure 4: The figure shows the electric potential, ®, from the charged phospholipids. In panel A
® is plotted against the distance to the membrane, using the mono exponential representation of ®
from Eq. 2, using Ap = 1 nm (solid line) and Ap = 0.78 nm (dashed line). Panel B shows the electric
potential at the membrane, @, as a variable of the intracellular bulk [Naﬂ‘ We see that the variation
in @ is small over a large range of Na™ concentrations.

freely as C17. We therefore assumed that the screening effect was lower, and we use Ay
= 1 nm.

Interestingly, two previous studies have also used 1 nm as the Debye length corre-
sponding to a weaker monovalent 1-1 electrolyte of 190 mM [30, 33]. In Fig. 4 A, we
show the electric potential ® from Eq. 2 as a variable of height of the cleft, x5. The
solid line shows the potential using a Debye length of 0.78 nm and the dashed line the
potential using a Debye length of 1 nm. Both use the mono exponential approximation
of ®.

Assuming that the curvature of the T'T is much larger than the Debye length, and
that the variation in the computed @, is small for the included ion species, we can use
the one dimensional expression for ® from Eq. 2 as a static expression for the whole
cleft. The first assumption is reasonable. The second assumption has to be validated
for the included ion species. Soeller and Cannell [30] show in their study that this is
true for a large variation of [Ca“]. In the NCX simulations we included Na™ in our
model and we have to check that ®, does not change substantially for larger values of
[Naﬂ. In Fig. 4 B @ is plotted for a range of different bulk [Naﬂ. We see that the
potential does not vary substantially.

We can now state the advection-diffusion equation that governs the movement of ions
in the dyad:

Here D; and z; are the diffusion constant and the valence of the i*" ion, respectively.
In addition to the no-flux boundary condition, which is employed at all membrane
boundaries, we include four different types of ion fluxes: i) the Na™ and Ca** outflux
to cytosol, 4) influx of Ca®t from the LCC, i) influx of Na® from the NaC and,
iv) the bidirectional flux of both Na™ and Ca®" from the NCX. As we in this study
focus on the release latency, defined as the time between onset of stimulus and the
triggering of the first RyR, we do not include the flux from the actual RyRs. The
cytosolic ion fluxes are treated as a concentration dependent boundary fluxes. The 7**
ion flux to cytosol is given by: Ji, = —D; (¢; — ClL,) /ASey, where ¢; and CL, are the

C
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Figure 5: The figure shows the Markov model scheme used for the LCC model, A and the simplistic
activation scheme used for the RyR model, B. The LCC scheme is the same as a previously presented
model [24, 46]. We have fitted the a(V'), 8(V'), f and g rates to the experimental data presented in
Poldkova et al. [20]. We have also re-fitted the -y parameter, so the overall v rate during a steady
state response from a single LCC, is the same as it is in the study of Greenstein and Winslow [24].
The ko, is fitted so the mean latency for the healthy dyad, cleft height of 12 nm, corresponds to the
experimentally measured value of 5 ms, see Fig. 8

concentration at the boundary and in the cytosol respectively, and ASy; is the distance
to where the concentration is assumed to be Cf ;. The LCC Ca®" flux is governed by
the Goldman-Hodgkin-Katz equation [42], which is linear in [Cazﬂ and can therefore
be treated similar to the cytosolic fluxes. The permeability of a single LCC is chosen so
the amplitude of the current is -0.12 pA for a voltage step to 0 mV at room temperature
[25]. We use an ordinary Nernst equilibrium potential to describe the NaC flux. The
Nernst potential is updated each time step as the intracellular [Naﬂ increases. The
single NaC conductance is chosen to be 25 pS [43]. The dynamics of the NCX flux is
governed by the equation given in Shannon et al. [44], with a single current amplitude
fitted to 0.2 fA for an intra- and extracellular [Naﬂ of 40 mM and 0 mM of extra-
and 4 mM of intracellular [Ca2+], together with a membrane potential of OmV and a
temperature of 35°C [45].

The NCX flux and the LCC and RyR Markov models, see below, are dependent on
the value of the concentration fields at their positions. These are communicated to each
model, by averaging the value of the field at the channel mouth.

Discrete and stochastic models

We use discrete and stochastic Markov models to describe the channel dynamics of the
LCCs and of the RyRs. The LCC model is a modified version of the 12 state model
previously used by Greenstein and Winslow [24] and first described by Jafri et al. [46],
see Fig. 5 A. The model represents 4 voltage activated subunits. Each subunit can be
in a permissive or non permissive state. When all 4 subunits are in a permissive state
the channel can undergo a voltage independent transition to a conducting state. Ca*"
inhibition is modeled as a [Ca%} dependent transition to mode Ca", see lower row in
Fig. 5 A. We modify the voltage dependent o and /3 rates together with the voltage
independent activation and deactivation rates, f and ¢, so the model fits the reported
kinetics from Polakova et al. [20]. The presented rates are for 22 °C, as both our own
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Figure 6: The figure shows the result of the fitted rates in the LCC Markov model. The left panel
shows the single channel open probabilities after a step to 60 mV from a holding potential of -50
mV for 1.5 ms, solid line, and 5.0 ms dashed line, as it is estimated by Poldkovd et al. [20]. The
open probabilities are plotted against the number of LCCs in a dyad. We fitted the LCC rates to
correspond to the single channel open probabilities when there are 20 channels in the cleft. The
recorded probabilities from our model, are represented by the square, (after 1.5 ms) and the circle
(after 5.0 ms). The mid-panel shows the whole cell steady state current response after different voltage
steps, from our fitted model (dashed line) and from Polédkovd et al. [20] (solid line). We used the steady
state open probabilities from our model together with the driving force of: V-53.3 mV, to fit the curve.
The right panel shows the mean number of LCC openings before deactivation after a step to three
different potentials, -120 mV, -80 mV and -40 mV. The square and the circle represents the number of
openings after an initial step to 60 mV during 1.5 and 5.0 ms respectively. This panel corresponds to
the results presented in Fig. 3C in Poldkova et al. [20], and they are fitted qualitatively.

experimental results are from this temperature together with the results from Polakova
et al. [20].
The « rate is given by a sigmoidal rate function:

1.7

V-13> (4)

a(V)=—_
(V) p——

and the [ rate is given by a single exponential:

V440

B(V)=035e "2

()

Here V' is the membrane potential. The voltage independent activation rate f was
fitted to 1.5 ms~! and the deactivation rate, g, was estimated directly by Poldkové et al.
[20] to 2.0 ms™. We used three experimental measures from Poldkova et al. [20] to fit
the a and (3 functions and the activation rate f: i) the single open probabilities after
two steps to 60 mV lasting 1.5 ms and 5.0 ms respectively, i7) the steady state whole
cell I-V response, and 4ii) the number of channel openings after a step to different tail
potentials, succeeding an initial step to 60 mV.

Polakova et al. [20] estimate the number of open LCC in a dyad after a step to 60 mV
that lasts for 1.5 ms and 5.0 ms, to 4.8 and 8.0 respectively. If we divide these numbers
with the number of LCC in a single dyad we get an estimate of the open probabilities for
a single channel, after the two steps. In the left panel of Fig. 6, these open probabilities
are plotted as a function of the total number of LCCs in the dyad. The solid line show
the probability after a 1.5 ms step and the dashed line the probability after a 5.0 ms
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step. We fitted our rates to a total number of 20 LCCs in the cleft. We mimicked the
conditions for which Poldkova et al. [20] made their experimental results, and held the
potential first at -50 mV, then we stepped the potential to 60 mV for 1.5 and 5.0 ms.
This was done 100 times. We recorded the number of open channels and divided by the
total number of channels in the cleft, 20, to get the single open channel probabilities.
These are plotted in the left panel of Fig. 6, after 1.5 ms (square) and after 5.0 ms
(circle). We also fitted the steady state whole cell I-V response of the model to the
one from Poldkova et al. [20]. This was done by first calculating the steady state open
probability of the model, a sigmoidal curve, and weighting this with the same linear
voltage dependency from Polédkova et al. [20], see figure legend in Fig 3. in this study.
The result from the fit is presented in the mid panel of Fig. 6. Here the I-V function
from Poldkovd et al. [20] is represented by the solid line and the I-V relationship from
our model is represented by the dashed line.

A key observation from Poldkova et al. [20] is that an LCC reopens several times
before the Ca?" release. They quantified this by calculating the number of re-openings
a single Ca?" channel would undergo during a step to different tail potentials. We fitted
our model qualitatively to these data too. We stepped our model to 50 mV during
1.5 ms and 5 ms, to open the channel. After this test step, we step the potential to a
tail potential during 10 ms, and recorded the mean number of re-openings during this
period. The result is presented in the right panel of Fig. 6 and should be qualitatively
compared to the results presented in Fig. 3C in Polakova et al..

We employed a minimalistic Markov model scheme for the RyRs, which is presented
in Fig. 5 B. The scheme follows a fourth order activation kinetics [20]. The kon rate
was fitted so the mean latency for a SHAM AP was 5 ms, see Fig. 8. For our specific

geometry and diffusion model this number was 0.069 gMms~!.

Numerical methods for the continuous model

We used a finite element method for the spatial discretization of the PDEs, and a
backward Euler method in time. The non-linearities introduced by the NaC and the
NCX were handled by using the value of the concentration field at the beginning of
the times step. The size of the time step was determined by an adaptive time stepping
scheme based on the max value of the relative time derivative of the included fields.
We used the streamline upwind/Petrov-Galerkin stabilizing method [47], together with
a fine mesh at the TT membrane, to stabilize the advection term in Eq. 3. The
sparse linear system was assembled and solved using PyDOLFIN from the FEniCS project,
(http://www.fenics.org), together with the PETSc linear algebra library [48].

Numerical methods for the discrete models

Some of the propensity functions in the Markov models we used depend on continuous
variables. The LCCs depend on the membrane potential wave forms, see Fig. 7, and the
RyRs will depend on the quasi steady state [CaQﬂ response when the juxtapositional
LCC is open. To be able to correctly evolve the stochastic system we therefore needed to
solve the discrete system coupled to these variables. We developed a modified Gillespie
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Figure 7: The figure shows representative action potentials registered from SHAM and HF cardiomy-
ocytes. These wave forms are used to drive the dyadic model.

method [49] to accomplish this. It is similar to methods used by previous studies
[50, 51].

The present values of the states in the included Markov models were kept in a state
vector, S = S(t). Let N = N(S) be the number of possible transitions that can be
undertaken from these states. The propensity function of the " transition is denoted
by A;. The total propensity for the next transition, A = A(S,t), is given by a sum over

N
A=)\ (6)

The time for the next stochastic transition is exponentially distributed, if we assume
that A is constant. The time to the next stochastic transition, At;, can then be realized
by drawing one random number, 7, from an uniform distribution on the unit interval
and transform it according to:

Aty = —In(r) /. (7)

The transition time is relative to the present time in the simulation. Given a transition,
at time ¢ + At;, we then have to realize which of the N possible transitions actually
takes place. This was done by drawing another random number, 75, from the same
distribution as above. The k™ transition take place if,

)\jS)\'T2<Z)\j, (8>

where \g =0, and k = [1... N].

The Gillespie method assumes constant propensity functions between the transitions.
Most of the included propensity functions in the LCC and RyR models are not constant.
The « function in the LCC model will for example rise fast during the upstroke of the
AP. We can therefore not assume constant propensity functions between transitions and
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we have to modify the method. We do this by first realizing a dimensionless time to
the next transition, At} i.e., we set A = 1 in Eq. 7. At} relates to the actual transition
time by,

We then choose a time step, At < At;, during which we assume constant external
variables, hence constant propensity functions. To minimize the error of assuming
constant continuous variables during a time step we need to choose a small At when
such variables change much. During an upstroke of the AP we therefore need to choose
smaller At.

The continuous system is then updated using the chosen At. After this is done we
update the dimensionless transition time according to,

At; = At; — At (10)

Whenever At;, from Eq. 9, is smaller than the chosen At a transition occurs before the
time step is over. We realize the transition and check whether the transition change the
status of a channel. If it does we say that the transition is a channel transition. The
continuous system is solved up to the transition time by setting At =At;. Finally we
realize the transition, changing the state of the continuous system. We then have to
draw a new dimensionless transition time, At; and start over again. If the transition
was not a channel transition we can skip it, but we need to draw a new dimensionless
transition time.

3 Results

Experimental results

We defined latency as the time delay between the stimulus and the onset of the Ca®"
transient [7]. In field-stimulation experiments on isolated cardiocardiomyocytes, line-
scan images, Fig. 8A, and spatially-averaged Ca*" transients Fig. 8B showed a longer
latency in HF cells than in SHAM. Mean field stimulation data are presented in Fig. 8C,
left panel. Line scan images also indicate that Ca®" release was more dyssynchronous
in HF than SHAM (Fig. 8A), which contributed to a slower rate of rise of the Ca®t
transient (Fig. 8B).

Computational results

We conducted two different types of simulations, one where we recorded the release
latency for the dyad during different circumstances, and one where we quantified the
reverse mode of an NCX while co-localizing it with a NaC. In the latency simulations
we used stochastic models of both LCCs and RyRs. In the NCX simulations we only
used a coupled continuous solver of both [CaZJr] and [Na+].
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Figure 8: Ca®" release latency was prolonged in HF cardiomyocytes. A Line-scan recordings of Ca**
transients (normalized to resting fluorescence, F/F0) from field-stimulated cardiomyocytes. Stimulus
timing is indicated by the vertical white line. B Spatially-averaged plots of the recordings in Panel A,
on an expanded time scale. C Mean latency measurements in field-stimulated cells (nSHAM = 16,

nHF = 16, * P < 0.05).
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Figure 9: The left columns of this figure shows the distributions of latencies, defined as the time for
opening of the first RyR. The latencies are collected from 400 simulations of the dyadic model and are
distributed proportionally. The dashed line represents the SHAM AP (not to scale), which is used to
drive the model. The left panel in the lower row shows the latencies from 400 simulations of the model,
when it is driven by a HF AP (dotted line). See Fig. 7 for a quantitative representation of the AP
wave forms. The mean latency is 5.2 +0.6 ms for the SHAM AP, and 7.3 £1.2ms for the HF AP. The
right column of the figure shows the average number of LCC openings in the dyad during the same
simulations as the latency recordings shown in the left column. A single bar is 0.5 ms wide and the
height of the bar represents the average number of LCC openings during that time interval.
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Latency and dyssynchrony study

In the latency study we used a dyad with 20 LCCs, each facing one RyR. We applied
two different AP wave form to drive the simulations: one from a cardiomyocyte from
a SHAM operated mouse, and one from a cardiomyocyte from a HF mouse, see Fig.
7. The system was simulated 400 times. The latency, defined as the time between the
onset of the AP wave form and the first opening of an RyR, was registered for each
simulation, and this also defined the end of each simulation. The left column of Fig. 9
presents the latency distributions for the two different APs; upper row SHAM AP, and
lower row HF AP. The data is plotted together with not-to-scale representation of the
AP wave forms. The height of the bars represents the proportion of simulations that
had a release latency corresponding to the time interval of that bar.

The mean latency was 5.2 £0.6 ms for the healthy SHAM AP, and was prolonged to
7.3 £1.2 ms for the HF AP. Interestingly we observed a faster and sharper distribution
of latencies from the healthy cardiomyocyte. The SHAM AP repolarized more rapidly,
causing larger amplitude Ca*" influx from any opened LCC as the driving force from
the AP increased. A larger LCC amplitude produced a higher [CaQ’L] response at the
RyRs, see Fig. 2, which resulted in a faster and sharper latency distribution for the
SHAM AP. It is noteworthy to point out that the increase in latency in HF and greater
variability of latency values was only due to the AP shape, as no other parameters were
altered.

The number of LCCs required to open in the dyad before a release is triggered is
presented in the right column of Fig. 9. The height of the bars represents the average
number of open LCCs during the time interval of each bar (0.5 ms). We observed that
the number of open LCC is smaller in the simulations using the SHAM AP. The mean
number of open LCCs before a release was 60 for the SHAM simulations and 110 for
the HF simulations. Each LCC opening in the HF simulations causes a smaller Ca*"
response due to the higher membrane potential and more LCC openings are therefore
needed to trigger a RyR opening. The average number of Ca®" ions that entered the
cell before a release is also higher for the HF simulations. This number was 2100 for
the SHAM simulations and 2800 for the HF simulations. This is interesting because
it indicates that more Ca®" enteres the cell through the LCC before the LCC will be
inactivated by the Ca®" release from SR. This supports our recent observations that
the Ca*" current and Ca®" transient amplitude are increased in the failing AP, results
not shown. Despite these advantageous effects, our present results illustrate that the
the failing AP also promotes greater latency and dyssynchrony of Ca®" release.

We also examined the timing of Ca®" release while altering the height of the dyad,
modelling different grades of displacement of the TT during HF. In these simulations,
only the HF AP was employed. We used dyads with 4 different heights: 15, 20, 30 and
40 nm. The latency distributions from these simulations are presented in Fig. 10. In 3
% of the simulations, where the height of the dyad was 40 nm, release did not occur.
The mean release latencies from the four different dyads were: 12.3 +2.3, 15.2 £+3.2,
19.8 +4.2 and 23.4 £4.9 ms. We see a progressive delay in release from the dyads with
a larger cleft. The distribution of latency values was also broadened with increased
dyad heights. Thus, the effects of broadening the dyadic cleft produce similar effects on
Ca?" release as prolonging the AP, namely an increase in release latency and decrease
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in release synchrony.

NCX study

We investigated the potential contribution to CICR from an NCX positioned in the
cleft. We co-localized the NCX with an open NaC, see Fig. 3. The NCX amplitude,
the [Cazﬂ and [Naﬂ response at the NCX for different membrane potentials, were
recorded. The recordings were made with a normal cleft and a crowded cleft. The
crowdedness was modeled by reducing the cleft height to 4 nm. In Fig. 11 left panel we
see the amplitude of the NCX for a normal (solid line) and crowded cleft (dashed line).
Note that for the presented voltages we only got reverse mode NCX, that is to say, ony
positive current. We see that the differences are small. In the right panel we plot the
[Ca*] (left y-axis) and [Na*] (right y-axis) responses at the mouth of the NCX from
the normal, (solid and dashed dotted lines) and crowded (dashed and dotted lines) cleft.
We oberved that the [Ca2+] responses more or less followed the NCX current for both
normal and crowded cleft, however slightly larger Caer] response is registered for the
crowded cleft. This corresponds to the larger [Nab+ response at the NCX, shown in the
right panel.

To investigate a potential contribution to the reverse mode during HF' when the
resting [Naﬂ is reported to be increased, we also conducted the same simulations with
a slightly elevated [Na™] of 20 mM [15] compared to a healthy cardiomyocyte with a
resting [Naﬂ of 15 mM. The results presented in Fig. 12 indicate increased reverse
mode NCX current in HF compared to healthy cardiomyocyte.

The [Ca2+] responses at the NCX mouth as seen in Fig. 11-12 are too small to have
any impact on the Ca>" release from the RyR across the cleft. This can be seen by
comparing the [Ca®"] at the RyR from an open LCC, see Fig. 2. Here the [zCaQJr]
response is ~ 20 uM at the closest RyR, after a step to 0 mV. The maximal [Ca ﬂ an
NCX experience is ~ 3uM. We see that for the reverse mode of the NCX to be high, it
needs a high membrane potential. However a higher membrane potential causes a lower
[Naﬂ response from the open NaC, which reduces the effect of a higher [Naﬂ from
the co-localized NaC and NCX.

4 Discussion

In this study we have used a detailed computational model of the dyad to investigate
the latency and dyssynchrony in a single dyad during heart failure. The latency was
defined as the time between the onset of an AP and the first opening of an RyR. The
dyssynchrony is the variation (standard deviation) of the latency. We have also used
the model to investigate the possible contribution from the NCX working in reverse
mode to the CICR.

Latency and dyssynchrony study

The latency distribution is delayed and broadened when we use a HF AP, 7.3 +1.2ms,
compared to the SHAM AP, see lower left panel of Fig. 9. This is only due to the
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Figure 10: The figure shows the latency distributions from dyads where the TT has been moved
away from the SR, modelling small and modest TT disruptions during HF. A healthy dyad in our
model, has a cleft height of 12 nm. This figure shows the results from dyads with cleft heights of 15,
20, 30 and 40 nm with mean latency distributions of 12.3 £2.3, 15.2 £3.2, 19.8 +4.2 and 23.4 £4.9 ms
respectively. A fraction of 0.03 of the simulations from the dyads with cleft height of 40 nm did not
result in a release.

differences in AP wave form, see Fig. 7. The faster repolarization for the SHAM potential
creates a larger driving force for the LCC current, hence a larger [Cazﬂ response at the
juxtapositional RyR, see right panel of Fig. 2. The longer latency for the HF AP can
contribute to the delay in Ca®" reported by Louch et al. [5]. But we also show that the
number of Ca®* ions that enters the cell from the LCC before the release from the RyR
is larger for the HF AP, 2800, than for the SHAM AP, 2100. The LCCs inactivates
with high cytosolic [Ca“], which means that more Ca®" ions enters the cell before the
LCC starts to inactive. This together with the longer depolarized phase for a HF AP
helps filling the cell and hence SR with more Ca?". These observations correspond to
reported cellular measurments in the mouse model of HF [27], which have elevated Ca®*
content and larger Ca®" influx during the HF AP.

We showed that small perturbations in the T'T structure, here modeled by a larger
cleft height, can also promote longer Ca®" release latency and greater dyssynchrony.
Even a small perturbation in cleft height from 12 nm to 15 nm give a significant longer
latency, 13 4+ 2.9ms compared to a normal cleft of 12 nm height, 7.3 £1.2ms. Larger
perturbations give longer latencies. Dyads with height of 30 and 40 nm produced
large latencies, 22.3 +£4.7ms and 25.4 4+5.6ms, which indicates that these might be
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Figure 11: The figure shows the effect of co-localizing a Nat channel and an NCX inside the dyad
with respect to the NCX current amplitude. The left panel shows the steady state NCX current for
different membrane potentials, and for two different geometries, normal cleft (height = 12 nm, solid
line) and crowded cleft (height = 4 nm, dashed line). Note that the NCX is only working in reverse
mode, as the current is positive for the whole voltage range. The right panel shows the [Na+] and
[Cazﬂ response at the mouth of the exchanger. The solid and dashed line represents the [Ca2+] (left
y-axis), for the normal and crowded cleft respectively. The dashed-dotted and dotted line represents
the [Naﬂ (right y-axis), for the normal and crowded cleft respectively.
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Figure 12: The figure shows the NCX response when the resting [Naﬂ is 20 mM [15]. Se Fig. 11 for
a description of the traces.
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dysfunctional, i.e., not able to trigger release locally. Most dyads has smaller latencies
than 20 ms, see Fig. 8 A HF figure. This means that dyads with later latencies than
this have to be triggered by Ca*" diffusing from neighbouring dyads.

We show that a dyad containing 20 LCCs creates a reliable release unit, with a sharp
latency distribution. The mean latency for a dyad using a SHAM AP is 5.2 £0.6ms, see
the upper left panel of Fig. 9. This latency is comparable with experimental results, see
Fig. 8. The coupling fidelity is low for a single open LCC. We measured the coupling
fidelity to 0.11, for a step in membrane potential to 10 mV. This is a bit less than
reported by Tanskanen et al. [33], who operates with a coupling Fidelity of 0.15 after a
step to 0 mV. Interestingly we get an earlier and more synchronous latency with our
model, see Fig. 6A in their study. We think this is due to the higher number of LCCs
we include in our dyad, 20, compared to the four LCCs included by Tanskanen et al.
[33]. The synchronous distribution of the latencies indicates that the response from a
single dyad is reliable in spite of the low coupling fidelity of an open LCC.

We recognize that the model for the RyR activation is minimalistic and does not
reflect the present knowledge of the modelling of RyR activation [52]. However it
includes the fourth order activation kinetics that we show are important for determining
the number of RyRs a single LCC is able to activate. An extension of the model to
also include modulation of RyR activation with luminal [Ca%} and possible Mg*" [53]
is a natural continuation of the present study. We also recognize that our model does
not include realistic geometries of the RyRs and LCCs in the cleft. This will alter the
quasi steady state distribution of [CaQﬂ after an open LCC, although probably not to
the same extent as the electric field. However the inclusion of the geometry introduces
the question of where the different Ca®" receptors are situated on the proteins. This
will change the [Ca%} detected by for example the RyR and hence alter the activation
kinetics [33]. The latency results of our study would probably not be altered by these
natural extensions as the RyR activation propensity is a free parameter in our study,
which is fit to correspond to measured mean latency for a healthy dyad. Another
limitation of our study is that we do not include any sarcolemmal buffer in the model.
The inclusion of buffers in the model would have slowed the establishment of the steady
state [Ca2+] response at the juxtapositional RyR. This means that the quasi steady
state assumption we have used in our study might not hold, and a more elaborated
model would be needed.

NCX study

Using our model we have shown that Ca®' coming into the dyad prior to an LCC through
an NCX working in reverse mode cannot trigger Ca*" release alone. We hypothesized
that modelling the Na™ flux as a single channel, instead of a proportion of the whole
cell current [7], we would get a larger Ca®" influx response from the NCX. However,
we got the opposite result. In Fig. 11 we show that the [Naﬂ at the NCX is inversely
proportional to the membrane potential. Hyperpolarized membrane potential gave a
strong [Naﬂ response at the NCX, but a low NCX amplitude. At more depolarized
membrane potentials there is a larger chance that the NaC will be open but the resulting
[Naﬂ at a nearby NCX will be small. This means that we cannot get a large [N a+]
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Figure 13: The figure shows the Ca?" concentration at the mouth of an open RyR in the middle
of a dyad with 220 nm radius for different values of the Ca" diffusion constant. We have used a
fixed amplitude of the RyR current: 0.5 pA. This value is similar to what is reported from bi-layer
experiments [54], but slightly lower than a value reported from an indirect measurement from a
cardiomyocyte [55]. We see that for a low number of the diffusion constant: 10* nm? ms~!, we get a
Ca®" response that is far above the typical concentration in SR: ~ 2 mM [1]. For the value of the
diffusion constant we have used: 2.2 x 10° nm? ms~! we get a reasonable Ca®" response in the range
of the SR content.

response at the NCX together with a depolarized membrane potential. We also found
that the crowdedness, modeled with a lower cleft, does not contribute significantly to
the reverse mode of the NCX. Neither does an elevated resting [N a+] (modelling a
raised [Naﬂ during HF) have any effect, see Fig. 12. It is noteworthy to point out that
we only modeled the [Naﬂ at the NCX for a constantly open NaC. We could have
modelled the dynamics using a discrete and stochastic Markov model. However, the
[Na*] sensed by the nearby NCX could only be lower in such a model, than the [Naﬁ]
we registered with our model.

This results differ significantly from our previous study [7]. Here a computational
model of the dyad was used to show that Ca®" flux from reverse mode NCX could
precede the LCC in triggering CICR. This discrepancy can be explained by several
differences between the two models. We have already pointed out that Lines et al. [7]
use a scaled whole cell current to represent the current from a single NaC. At high
membrane potentials the open probability for the NaC was high, but the single channel
current was low. The combination of high open probability and low single current
amplitude will give a comparable high whole cell current, at depolarized membrane
potentials. This is a whole cell phenomenon. The current is still small at single channel
level, which is reflected in our model. Hilgemann [45] reports that the current amplitude
from a single NCX is in the magnitude of 1.0 fA. We have used values from this study
to constrain our NCX current, see above. The NCX current included in the model from
Lines et al. [7] does not have a similar constrain. This is illustrated by the strength of
the NCX current shown in Fig 6 in their study. Here the NCX current peak at ~ 40 pA,
which is almost 2 order of magnitude larger than the measured maximal NCX current.
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Lines et al. [7] show that the diffusion constant of Na* has to be 103 nm? ms™! or
smaller, otherwise the reverse mode NCX cannot trigger CICR. This is a very small
value. The diffusion constant of Na™ is modelled as half that of Ca*". In Fig. 13 we
show the potential effect of a low diffusion constant for Ca>" in the cleft. Here we
present the Ca?' response at the mouth of an open RyR, where we have applied a
constant current of 0.5 pA. This current corresponds to reported values of single RyR
currents from bi-layer experiments [54]. For the low values of the diffusion constant we
see that the [Ca%} reach clearly un-physiological values. Note that our lowest value
for the diffusion constant, is an order of magnitude higher than the cut off value of 103
nm? ms™! reported by Lines et al. [7].

Our results indicate that Ca>" influx from a single NCX working in reverse mode,
cannot trigger CICR alone. This does not rule out the possibilities that Ca?* influx
from NCX can modulate the timing of the CICR, as recently discussed by Bers [12].
The experimental results from Lines et al. [7] also support this. Several more hypotheses
must be tested to determine the modulatory role of NCX on CICR. Such hypotheses
has recently been presented by others [11, 12]. We will briefly mention some of them
here: i) Ca®" influx from the reverse mode NCX can contribute to the Ca®* content of
SR and jSR, sensitising the RyR. 4) The Ca*" level in the dyad can be pre-elevated by
reverse mode NCX, reducing the time for the LCC to trigger release. i1) NCX situated
in the dyad can reduce the amount of Ca®" in the cleft after a release, reducing the time
the LCCs are inactivated due to Ca?' dependent inactivation. To be able to investigate
these hypotheses we need to include RyR release together with a more detailed model
of the RyRs in our model. We would probably also need to include a larger diffusional
domain, so we could study the Ca®" uptake to SR and jSR. A fourth hypothesis we
would like to mention is the possible effects Sarcolemmal buffers could have on the local
[NaJ’]. Such buffers could possibly hold on to some of the Na* comming in through
the NaC during a hyperpolarized membrane potential. The Na® could then be released
during depolarized membrane potentials, when the NCX could utilize it to promote
reverse mode.

Conclusion

We have presented a detailed model of the dyadic cleft. The model was used to examine
mechanisms underlying the delayed and dyssynchronous activation of Ca®" release from
SR during heart failure. We observed that the AP alone can prolong Ca®" release
latency by 2 ms, and increase dyssynchrony by 0.5 ms. During heart failure small
perturbations of the dyadic geometry, here modeled as an increase of the cleft height,
cause a further increase in latency and dyssynchrony. A small increase in cleft height,
from 12 nm to 15 nm increased the latency by 5 ms and the dyssynchrony (measured as
the standard deviation of the latency) by 1 ms. Larger perturbations of the cleft (cleft
with heights of 30 and 40 nm) might render the cleft dysfunctional, since the latest
activation time measured in HF' cardiomyocyte is smaller or in the same regime, ~ 20
ms, than the latency for these perturbed dyads.

We also co-localized a single NCX with an open NaC, and investigated whether
elevated intracellular [Naﬂ could sufficiently promote NCX-mediated Ca®" entry to
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trigger Ca?" release. When we applied a hyperpolarized membrane potential we observed
a high [Naﬂ response ~ 40 mM at the NCX, although NCX current was weak. During
depolarized membrane potentials the NCX current is strong, but the [Naﬂ from the
NaC is small. We also show that slow diffusion, D~ 10* nm? ms™!, cannot be used
to model crowdedness. This has previously been introduced as a way for the dyad to
hold on to a high [Naﬂ after an opening of the NaC. Such slow diffusion will create
un-physiological high values of intracellular [Caﬂ} from a release from SR.

In both of these two studies we used our model to resolve steep local ionic gradients in
the dyadic cleft. We have shown that these gradients play a significant role in determine
the dynamics of the dyad, and we beleive that models of the dyad needs to resolve these
to properly model the dynamics of a single dyad.

5 Appendix

Guy-Chapman/sarcolemmal buffer algorithm

The algorithm used to calculate the static electric potential ® from the included ions is
explained previously in Bers et al. [40] and Soeller and Cannell [30]. However, we found
it challenging to implement the algorithm as the explanation is spread over several
papers together with the parameters that are used. Here we will lay out the algorithm
we ended up using. Note that this is a presentation of the algorithm used to calculate
the static potential, and not a full explanation of the model behind it. The reader is
advised to look in the above mentioned references for this.

We will first define some useful length scales. First the Bjerrum length which defines
the length for which the thermal energy equals the Coulombic energy between two unit
charges:

e2

N — 11
dre kT (11)

Second we have the Debye-Hiickel length or just the Debye length, which defines the
screening strength in a double layer for low electrostatic potentials. In a 1-1 monovalent
electrolyte with strength c;_; this length is given by:

lp

1
V2ci1lgNy

To get this length in nm, we need to multiply what is inside the square root sign with
10%* going from [~! to nm™3. For an 1-1 monovalent electrolyte of strength c;.; = 155
mM ([K*] =140 mM and [Na*] =15 mM), A, ~ 0.78 nm. The third length is the
Guy-Chapman length:

Ap(cia) = (12)

1

Aac(0) = 27lo|ls’

(13)

which defines the size of the counter ion layer that has an integrated charge (per nm?)
of 1]o|. The unit of o is electron charges per nm?. A ¢ = 0.4e/nm? gives a Age =~ 0.57
nm. Meaning that half of the surface charges is countered by a layer with counter ions

112



5. APPENDIX PAPER 111

that is 0.5 nm thick. We are now ready to express the potential ®(z) in the solution.

2kpT = 1+ ye =2/ o
- In
e 1 —ye 2/

B (z,) = /Vr, (14)

where x5 is the perpendicular distance from the charged surface into the solution and
U = kgT/e (the same as Eq. 1). « is given by:

vwﬁg:—§g3+¢(§ﬁ3)+L (15)

The expression for ® can be approximated by a single exponential, ®(x5) = ®e™2/*»,
see Eq. 2, where @, is given by:
4kgT
Do(y) = ——2= atanh(v). (16)

e

The individual ion concentrations at the membrane can be calculated from the steady
state solution of the Nernst-Planck equation. The " ion concentration at the membrane
is given by: ‘

Cl = Cfe /00, (17)

where ¢} and 2" is the bulk concentration and the valence of the i ion. The values for

the bulk concentrations we have used for the included ions species is found in Table 1.
The ions in the solution close to the membrane will bind to bindings sites at the charged
phospholipid head-groups. This is done with a surface association constant Kd for each
ion, see Table 1 values used here. The fraction of the available binding sites that a
certain ion binds to is governed by:

cpi_ L (1+Hj(1+cj/de))_ | a8)

where the product is over all cat ions but the ¢* ion. This equation compares to Eq. 4
in Bers et al. [40]. As the cat-ions bind to the phospholipids the charge density, o will
be reduced. Let PL denote the number of cat-ion binding sites, then is the reduction in
charge density due to bound cat-ions:

o, =PLY zCB" (19)

The charge density is also reduced by titration of the amino groups of the phospholipids.
The amino groups will become deprotonated at higher pH, increasing the surface charge.
We will include the same number, type and fraction of phospholipids that Bers et al.
[40] do: PS, PC, and PE. See Table 1 for the fractions and names. PC does not have a
titratable amino group. The surface charges density available after titration is given by:

(20)

oi=pL (PO )

1+ CH/KNH
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Finally we get the total available charge density, after titration and binding of cat-ions

from:
PE + PS
oc=o0;,—0,=PL (PC KNHCH E ZZCBl) (21)

We are now able to solve for the potential ®, which we want to use in the advection-
diffusion Eq. 3, and to check that it stays approximately constant for a varying [N aﬂ.
We choose to set the total amount of phospholipids to PL=563 nmol/mg, so we get the
same initial &y = —2.2 as Soeller and Cannell [30] do. This is ~ 1.5 times the value
used in Soeller and Cannell [30]. We chose to do this so we would have comparable
electric potentials in our studies. The initial surface charge density is then given by
0, = PL X conv, =0.54 e/nm?, see Table 1 for the value used for conv,.

We use the bulk ionic concentration, see Table 1 and o, as an initial guess for o,
in Eq. 14. We then evaluate ®(, which is used in Eq. 17 to calculate the surface
concentration of the ions. Finally these are used in Eq. 21 to calculate a new surface
charge density, 0. This procedure is repeated until ¢ has converged and we have got
the static potential .
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Table 1: Electric double layer parameters

= a s
i & o
¥

Cconv,

pPC
PE

Temperature
Bulk [Ca*']

Bulk Cl_}

Ca?" surface association constant

Na™ surface association constant

K™ surface association constant

Mg2+ surface association constant

H™ surface association constant
Deprotonation constant

Surface concentration of phospholipids
Conversion between nmol/mg to e/nm?
Fraction of phosphatidylserine
Fraction of phosphatidylcholine
Fraction of phosphatidylethanolamine

22°C

0.1 uM

15 mM

140 mM

0.5 mM [40]

0.04 ;M (pH 7.4) [40]
[Na*] + K]

83 mM [30]

1600 mM [30]

3300 mM [30]

166 mM [30]

2.6 mM

1.25 x10~% mM [40]
563 nmol/mg
9.6x10~* [40]

0.2 [40]

0.4 [40]

0.4 [40]

* The divalent ions are only not included in the Guy-Chapman theory for the diffuse layer.
They are only included as reducers of surface charges, while binding to the sarcolemma.

** The actual [Cl_} is much smaller, ~ 10 mM, but the value used in the model also includes
negatively charged proteins, and is chosen to approximate a monovalent 1-1 electrolyte.

Table 2: Advection diffusion model parameters

D2+
Dy.+
[Ca™"]
[Na*]
[Na*]
AScyt

cyt
cyt

cyt

Temperature 22°C

Diffusion constant of Ca*" 2.2x10° nm?ms~!
Diffusion constant of Na™ D2+ /2
Cytosolic [CaQﬂ 0.1 uM

Cytosolic [N a+] 15 mM

Cytosolic [Na™] during heart failure 20 mM [15]
Distance to cytosolic concentration 50 nm

On rate for an RyR subunit 0.069 uMms~!
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Table 3: Model constants

7
ep  Permittivity of free space 8.85e-21 J(Ijlm

¢, Relative static permittivity 80 (water)

€s  Static permittivity €0y

N Avogadro’s constant 6.022x10% # /mmole
kg  Boltzmann’s constant 1.38x107% J/°K
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