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Abstract

In this work, we study two numerical strategies for solv-
ing a coupled system of distinct nonlinear partial differen-
tial equations, which can be used to model dual-lithology
sedimentation. Using high-resolution bathymetry data of
Lake Okeechobee, Florida, we study the stability and com-
putational speed of these numerical strategies. The fully-
explicit scheme is straightforward to implement and re-
quires a relatively small amount of computation per time
step. However, this simple numerical strategy has to use
small time steps to ensure stability. These small timesteps
may render the explicit solver impractical for long-term and
high-resolution basin simulations. As a comparison, we
have implemented a semi-implicit scheme, where the two
partial differential equations at each time step are solved
implicitly in sequence. This semi-implicit scheme is numer-
ically stable even for very large time steps. Using paral-
lel computing, we have applied both schemes to a realistic
case, Lake Okeechobee, Florida. The simulation success-
fully diffused material along a river-channel and into the
lake. Both MPI-based implementations demonstrated satis-
factory parallel efficiency on a multicore-based cluster.

1 Introduction

Processes of sediment erosion and deposition are of-
ten modelled using a diffusion equation with the regional
slope and transport efficiency governing the speed of dif-
fusion [7]. In models with different types of sediment, an-
other equation can be added for each additional sediment
type to account for the ratio of the sediment types [9]. A
dual-lithology model for siliclastic sediment transport has
formed a basis for some of the deterministic diffusion-based
models of sediment transport existing today [2]. In addition
to having an underlying diffusion equation, numerous em-
pirical rules are incorporated that govern the different phys-

ical processes: sediment compaction, tectonic movements
and carbonate production, for example. By neglecting the
additional rule-based formulas, we can investigate the par-
allel performance of the dual lithology diffusion equation
alone.

1.1 Lake Okeechobee

As a basis for testing the numerical properties of the
model, we chose Lake Okeechobee, in southern Florida.
Data for the lake’s bathymetry was derived from depth-
sounding at approximately 3 m intervals along north-south
lines, each about 1000 m apart [4], while the lake itself is
almost 60 km in diameter. We have chosen Lake Okee-
chobee precisely for this publicly available high resolution
data, which allows us to test the numerical implementation
with a large number of unknowns. To complete the square
computational domain, a 30-arc second (approximately 1
km) grid, GTOPO30 [11] was used as the basis for the sur-
rounding topography. The combined elevation map of the
computational grid is shown in Figure 1. The lake is ex-
tremely shallow, on average 2.7 m deep [10] and at its deep-
est in only about 4 m of water. Kissimmee River is the
largest single contributor of sediment to the northeast, ac-
counting for 30 % of the water volume coming into the lake

[8].
1.2 Mathematical Model

Diffusion has been used to model sediment transport
in fluvial, on- and off-shore environments. The equations
were developed first for the case of landscape evolution
and fluvial transport of sediment, but have found applica-
tion in the continental shelf primarly because of the work of
Jordan and Flemmings [6], in which the basic equation is
% = V- (kVh). Here h is the height of the basin, ¢ is time
and « is the efficiency of diffusion, the so-called transport
coefficient. Rivenas [9] later modified the equation to take
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Figure 1. Florida viewed from the south-
east. The lower-layer is exaggerated eleva-
tion from ETOPO2 [12] as veiwed from the
southeast. Lake Okeechobee’s present-day
elevation, used in the computations, is dis-
played as the upper-layer.

into account two sediment types, each with their own trans-
port coefficients. In the following equations, o and 3 are
the two diffusion coefficients for each sediment type and s
and 1 — s are the corresponding fractions of each sediment
type at a particular location:

% — V- (asVh)+ V- (B(1—s)Vh) (1)
and

A% + s% =V - (asVh). (2)

A is the layer thickness which scales the partial deriva-
tives of s with respect to distance and determines how effec-
tive changes in h will be in affecting the sediment concen-
tration. For our case, we set A equal to 1 m, representing
the height of unsettled sediment in the basin. In our case, s
represents first material type, sand, while (1 — s) represents
the second: silt.

The separation into two different material types, rather
than having a diffusion coefficient based on grain-size,
means that water discharge rates, water-flow induced shear-
stress and drag-coefficients can be neglected [7]. For ex-
ample, without a sediment source, the sediment type with
the higher transport coefficient will move faster down-slope
and preferentially fill deeper parts of the basin. In our case,
we use coefficients for sand and silt, such that the fine-grain
silt has a fractionally higher transport efficiency compared
with sand (see Table 1).

Table 1. Transport coefficients by region in
square metres per year (m?/yr).

Region Sand (o) | Silt (B)
Kissimmee River 70,000 100,000
Lake Okeechobee 2,100 3,000

Surrounds 70 100

The diffusion parameters for the lake region are mod-
elled on Riven®s’ [9, p.64] except that, for simplicity, the
values are not-depth dependent. We utilise lower values
than those suggested by the lake’s mean depth of 2.7 m,
since we assume sediment diffusion is not as vigourous in
the lake as for the seashore modelled in [9]. For the river,
values an order of magnitude higher are chosen following
Angevine et al. [1, cited in [9]]. Values two orders of mag-
nitude lower than the lake are chosen for the surrounding
flatlands, as we want the main sediment source into the lake
to be from the river.

The numerical model is calculated using Neumann
boundary conditions for the entire boundary, % and % are
zero except along a 1.5 km wide channel, representing the
River Kissimmee. Here, we set a Direchlet condition for
s and non-zero Neumann for %. This allows us to spec-
ify inflow, for which we allow an 80% inflow of silt, 20%
sand and 50m? /yr per metre width of the channel or a total
volume influx of 75,000 cubic metres per year.

The numerical model does not directly take into account
wave action, thought to be of paramount importance in
modelling sediment transport in Lake Okeechobee on short
timescales such as months [5]. However, we are modelling
the lake over a thousands of years, an appropriate scale for
approximating wave-action by diffusion [2].

2 Two numerical methods

Computer basin simulations using the above mathemat-
ical model correspond to solving an initial-value problem
by time integration. At time step ¢, the latest numerical so-
lutions of A and s, denoted by h*~! and s°~!, are used as
initial values. The time derivatives are approximated by
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Different discretisations of the right-hand sides of (1)-(2)
will give rise to different numerical strategies, which often
have different characteristics in accuracy, stability and com-
putational speed. In this paper, we consider two methods as
follows.



2.1 A fully-explicit numerical scheme

If values of h*~! and s*~! are used in the spatial discreti-
sation of the right-hand side of (1), while values of A and
s'~1 are used for the right-hand side of (2), we can arrive at
a fully-explicit numerical scheme:
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+V - (ast"IVAL) (3)
and
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The diffusion terms with respect to h*~! on the right-
hand side of (3) can be discretised by central finite differ-
ences. The convection term on the right-hand side of (4)
with respect to s“~! can be discretised by upwind finite dif-
ferences. The advantage of the fully explicit scheme (3)-(4)
is that no linear systems need to be solved, so that the values
of h* and s* on each mesh point can be computed by simple
algebraic operations.

However, the disadvantage of the fully-explicit scheme
is that the size of At is limited by the values of a, [,
and mesh spacing. In particular, since (1) is a diffusion
equation, the maximum allowed At for (3) is of order
O(Az?/ max(c, 3)). Such a limit may be too restrictive
for practical long-term and high-resolution simulations.

2.2 A semi-implicit numerical scheme

As a remedy to the stability problem inherent to the
fully-explicit scheme, we consider a so-called semi-implicit
scheme as follows:
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The reason for terming the above scheme as semi-
implicit is because (5) and (6) are both of an implicit and
linearised form, but can be solved by two separate lin-
ear systems. This is unlike a fully-implicit scheme which
requires finding all the h‘ and s’ values simultaneously
by solving a larged coupled system of nonlinear algebraic
equations.

2.3 Parallel implementation

We have adopted a straightforward parallelisation ap-
proach, where the global solution domain is divided into
rectangular subdomains, each assigned to one processor
core. MPI has been used for the inter-subdomain commu-
nicaiton. For the semi-implicit scheme, we have used the
parallel iterative CG and GMRES solvers from the Trilinos
package [3].

3 Numerical experiments

In this section we will first examine a comparison of
two numerical strategies using stability and computational
speed as criteria. This investigation is done using a realistic
basin elevation as the basis for the simulation, Lake Okee-
chobee, where the spatial domain spans a rectangular area
of 62.13 x 69.50 km. The initial topography of the basin,
i.e., h(x,y,0),is depicted in Figure 2, while the initial sand-
silt volume fraction is assumed to be a constant at 50%, that
is s(z,y,0) = 0.5. Other parameters are as per Section
1.2. Afterwards, we present some speedup measurements
of the two MPI-based parallel implementations. Finally, we
discuss the results of a 10,000 year simulation.

-80°30'

-81°00' -80°45'

27°10 27°10'
27°00' 27°00
26°50' I 26°50
26°40' I 26°40
-80°30'

0 4 8 12 16

Figure 2. Inital height, », in meters. Out-
lines of Lake Okeechobee and the Kissim-
mee River used to define the transport coef-
ficients are dotted in white.

All the numerical experiments have been carried out on a
cluster of multicore-based compute nodes, where each node
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Figure 3. Speedup results of the fully-explicit
scheme.

is equipped with two Xeon 2.66 GHz quad-core processors,
i.e., 8 cores per node. The interconnect network between
the nodes is InfiniBand.

3.1 Stability

For the purpose of checking the stability requirement
of the fully-explicit scheme, we have used two spatial
mesh resolutions: 250 x 250 and 1000 x 1000. On the
coarser mesh, the maximum allowed At for the fully-
explicit scheme is approximately 0.21 year, whereas the
maximum allowed At is approximately 0.013 year for the
finer mesh. For the semi-implicit scheme, we tried At of
order of thousands of years on both meshes, and did not
encounter any stability problem.

3.2 Computational speed and speedup

Studying the computational speed of the two MPI-based
implementations, we used a 10-year simulation on the
1000 x 1000 mesh, while using At = 0.01 year for both
methods. Table 2 and Figures 3 and 4 show the actual time
measurements and speedup results. From Table 2, it can
be seen that the semi-implicit approach is approximately a
factor of 100 slower calculating each time step. This large
difference in the computational speed is due to two reasons.
Firstly, the semi-implicit scheme is quite complex, where
two linear systems have to be set up and solved separately
per time step. We have used the Conjugate Gradient itera-
tive method for solving the linear system arising from (5)
and the GMRES iterative method in connection with (6).
And secondly, the MPI-implementation of the semi-implicit
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Figure 4. Speedup results of the semi-implicit
scheme.

scheme has not undergone extensive code optimisations as
those that have been applied to the fully-explicit implemen-
tation.

Table 2. Time measurements (in seconds) of
the two numerical schemes for a 10-year sim-
ulation on the 1000 x 1000 mesh, A¢ = 0.01
year.

Number of cores | Fully-explicit | Semi-implicit
1 55.00 5102.13
2 29,46 3230.01
4 15.62 1748.45
8 12.84 1349.22
16 4.77 608.65
32 1.97 262.56
64 0.98 103.08
128 0.77 52.30

The fully-explicit scheme has better parallel efficiency
when the number of cores used is small. On the other hand,
the semi-implicit scheme scales better on a large numbers of
cores. This is clearly due to the unfavourable computation-
communication ratio of the fully-explicit scheme when
the 1000 x 1000 mesh is divided into many subdomains.
However, as Figures 3 and 4 demonstrate, both MPI-
implementations have obtained reasonable speedups on the
multicore-based cluster.
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Figure 5. / after 1,000 years.

3.3 Diffusion-based evolution of Lake
Okeechobee over 10,000 years

Using both MPI-implementations, where the fully-
explicit method uses At = 0.01 year and the semi-explicit
method uses At = 0.1 year, we carried out a 10000-year
simulation; the two numerical methods produced qualita-
tively similar simulation results.

Figures 5-6 show the evolution of elevation and sand-
content in and around Lake Okeechobee after 1000 years
of model evolution. In general, silt moves to the lowest ly-
ing sections of the basin, leaving sand exposed at the lake’s
edge. The same applies to the channel, leaving a sandy
bank exposed on either side of the river. The three order
of magnitude contrast between the channel and the flatlands
inhibits diffusion out of the channel, while material diffuses
perferentially along the river, leading to fan-shaped bank of
sediment at the river mouth, where the transport coefficients
are lower by an order of magnitude.

Allowing the model to evolve further, until 10,000
years, the basin bathymetry and surrounding topography are
sharply smoothed by the diffusion equation. On the other
hand, the sand fraction has a large high-frequency signal
and, at this point, correlates with the initial topography well:
silt predominately occupies previously lower elevated areas,
while sand is left in areas with initially high elevation, ex-
cept in the region of the river. In addition, the injection of
mud around the river mouth is now highly pronounced.
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Figure 6. s after 1,000 years.

4 Conclusion

Using a purely diffusion-based model, we have simu-
lated inflow of material along River Kissimmee and into
Lake Okeechobee. Of the two schemes adopted to solve
the model equations, the semi-implicit scheme had superior
stability in all of our numerical experiments. The current al-
gorithm uses backward Euler discretisation in time, which
gives first-order temporal accuracy: the same as the fully-
explicit scheme. In the future, we can apply the Crank-
Nicholson method in the time direction of the semi-implicit
scheme, potentially obtaining second-order temporal accu-
racy. Further code optimisations can also be carried out,
with the aim of reducing the CPU time consumption. As
a result of the above, we expect the semi-implicit scheme
to be of better practical use when higher spatial resolutions
force the fully-explicit scheme to adopt prohibitively small
time steps. These schemes could also be applied to cases of
sediment transport into paleo-basins and, given we expand
the model, used to predict the geology of the basin. The
expansion of the model to include, for example, sediment
compaction and tectonics, may pose additional challenges
to the stability and parallel efficiency of the schemes.
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