Detailed Numerical Analyses of the Aliev-Panfilov Model on GPGPU

Xing Cai^{1,2} Didem Unat³ Scott Baden³

Simula Research Laboratory, Norway¹

Department of Informatics, University of Oslo²

Department of Computer Science & Engineering, UCSD³

PARA2010, Reykjavik, June 2010

SOG

- The Aliev-Panfilov model
- Numerical algorithms
- Simulations on CPU
- Simulations on GPU

We want to study the applicability of GPU for Aliev-Panfilov simulations: accuracy & speed

< D

æ

- The Aliev-Panfilov model can simulate very complex spiral waves in cardiac tissues
- High resolution is needed for long-term simulations
- Simulations can be vulnerable to numerical errors
- GPUs are known to possess great computing power
- Are GPUs suitable for Aliev-Panfilov simulations?
 - Accuracy?
 - Single-precision or double-precision?
 - How large is the speed advantage over CPUs?

$$\frac{\partial e}{\partial t} = \delta \nabla^2 e - ke(e-a)(e-1) - er$$
(1)
$$\frac{\partial r}{\partial t} = -\left[\varepsilon + \frac{\mu_1 r}{\mu_2 + e}\right] [r + ke(e-b-1)]$$
(2)

e — scaled transmembrane potential r — a state variable responsible for cardiac tissue recovery Model parameters: $\mu_1 = 0.07$, $\mu_2 = 0.3$, k = 8, $\varepsilon = 0.01$, b = 0.1, $\delta = 5 \times 10^{-5}$

Spiral wave formation and breakup

X. Cai, D. Unat, S. Baden Computing Aliev-Panfilov on GPU

< 🗗 🕨

< □ ▶

5900

∋⊳

During time step $\ell + 1$:

$$\begin{split} e_{i,j}^{\ell+\frac{1}{2}} &= e_{i,j}^{\ell} + \Delta t \delta \left(\frac{e_{i-1,j}^{\ell} - 2e_{i,j}^{\ell} + e_{i+1,j}^{\ell}}{\Delta x^2} + \frac{e_{i,j-1}^{\ell} - 2e_{i,j}^{\ell} + e_{i,j-1}^{\ell}}{\Delta y^2} \right) \\ e_{i,j}^{\ell+1} &= e_{i,j}^{\ell+\frac{1}{2}} - \Delta t \left(k e_{i,j}^{\ell+\frac{1}{2}} (e_{i,j}^{\ell+\frac{1}{2}} - a) (e_{i,j}^{\ell+\frac{1}{2}} - 1) - e_{i,j}^{\ell+\frac{1}{2}} r_{i,j}^{\ell} \right), \\ r_{i,j}^{\ell+1} &= r_{i,j}^{\ell} - \Delta t \left[\varepsilon + \frac{\mu_1 r_{i,j}^{\ell}}{\mu_2 + e_{i,j}^{\ell+1}} \right] [r_{i,j}^{\ell} + k e_{i,j}^{\ell+1} (e_{i,j}^{\ell+1} - b - 1)]. \end{split}$$

Very strict stability requirement $\Delta t \sim \mathcal{O}(\Delta x^2)$

X. Cai, D. Unat, S. Baden Computing Aliev-Panfilov on GPU

< <p>> >

P

During time step $\ell + 1$:

- Solve the ODE part from t_ℓ to $t_{\ell+\frac{1}{2}}$ by second-order SDIRK method
- Solve the PDE $\frac{\partial e}{\partial t} = \delta \nabla^2 e$ from t_{ℓ} to $t_{\ell+1}$ by Crank-Nicolson
- Solve the ODE part from $t_{\ell+\frac{1}{2}}$ to $t_{\ell+1}$ by second-order SDIRK method

Stability requirement $\Delta t \sim O(\Delta x)$

• The first-order explicit scheme

- straightforward to implement and parallelize (using MPI)
- efficient computation per time step
- strict stability requirement $\Delta t \sim \mathcal{O}(\Delta x^2)$
- The second-order implicit scheme
 - more computations involved
 - need to solve the PDE through a linear system per time step
 - need to solve the ODE part twice by a second-order ODE solver
 - more difficult to implement and parallelize
 - less strict stability requirement $\Delta t \sim O(\Delta x)$

High resolution is needed!

Results from the first-order explicit scheme

X. Cai, D. Unat, S. Baden Computing Aliev-Panfilov on GPU

< □ > < 🗗 >

Single-precision vs. double-precision

Results from the first-order explicit scheme

< ロ > < 同

GPU implementation

• We´ve made a CUDA implementation of the first-order explicit scheme

```
__global__ void panfilov(
REAL* E, const REAL* E_prev, REAL *R,
const REAL alpha, const int N, const REAL dt
```

- Capable of both single-precision and double-precision computations
- MPI for communication between multiple GPUs
- More details about GPU programming and optimization in Didem Unat's talk: *Optimizing Aliev-Panfilov model of cardiac excitation on heterogeneous systems*

< 口 > < 🗗 >

X. Cai, D. Unat, S. Baden Computing Aliev-Panfilov on GPU

< <p>Image: Image: Imag

< 🗗 🕨

5990

Single-precision computations				
	CPU	GPU	CPU	
Mesh	3200×3200	4048×4048	6400 imes 6400	
t = 100	0.0009	0.0013	0.0009	
t = 200	0.0012	0.0022	0.0017	
t = 300	0.0022	0.0024	0.0014	
t = 400	0.0170	0.0097	0.0023	
t = 500	0.0619	0.0279	0.0038	
t = 600	0.1347	0.0747	0.0350	
Values of $\ e - e^{\operatorname{ref}}\ _{L_2}$				

< ロ > < 同

5990

Closer comparison of accuracy (cont'd)

Double-precision computations					
	CPU	GPU	CPU		
Mesh	3200 imes 3200	4048×4048	6400 imes 6400		
t = 100	0.0009	0.0012	0.0007		
t = 200	0.0012	0.0017	0.0011		
<i>t</i> = 300	0.0025	0.0024	0.0014		
<i>t</i> = 400	0.0208	0.0135	0.0064		
t = 500	0.0756	0.0472	0.0203		
t = 600	0.1554	0.1121	0.0572		
Values of $\ e - e^{\operatorname{ref}}\ _{L_2}$					

æ

5990

Single	Single-precision computations				
	64 CPU cores	1 GPU			
	MPI	Cuda			
Mesh	3200 imes 3200	4048 imes 4048			
Steps	2149659	3541300			
Time usage	31569	13366			
GFLOP/s	32.94	124.48			

- Dual Xeon quad-core L5420 2.5GHz processors + Gbit/s ethernet
- GPU: nVidia Tesla C1060

< D

æ

- For the Aliev-Panfilov simulations, GPUs seem to produce similar accuracy as CPUs
 - both single-precision and double-precision computations
- The computing speed of GPU is a great advantage
- GPUs are poised for high-resolution Aliev-Panfilov simulations
 - using the first-order explicit numerical scheme
 - Fermi is better suited for double-precision simulations
 - Efficient use of cluster of GPUs?

We thank the following colleagues:

- Robert Artebrant
- Monica Hanslien
- Glenn Lines
- Aslak Tveito

< <p>Image: Image: Imag

æ