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ABSTRACT. The purpose of this paper is to discuss a general approach
to the construction of preconditioners for the linear systems of algebraic
equations arising from discretizations of systems of partial differential
equations. The discussion here is closely tied to our earlier paper [34],
where we gave a comprehensive review of a mathematical theory for
constructing preconditioners based on the mapping properties of the
coefficient operator of the underlying differential systems. In the pre-
sentation given below we focus more on specific examples, while just an
outline of the general theory is given.

1. INTRODUCTION

Discretization methods for partial differential equations are often designed
to mimic key properties of the problems they are approximating. For exam-
ple, discretizations of conservation laws are frequently constructed such that
corresponding discrete quantities are conserved, while finite element spaces
typically inherit continuity properties from the requirement that they should
be subspaces of the Sobolev spaces they approximate. In the present paper
we will demonstrate that also iterative solution algorithms for discretized
differential systems should inherit key properties from the corresponding
continuous systems. In particular, we will argue that the mapping prop-
erties of the governing differential operators suggest the basic structure of
efficient preconditioners for the corresponding discrete systems.

Linear differential operators usually have unbounded spectrum, and as
a consequence, standard iterative methods like the conjugate gradient and
related Krylov space methods will not converge, or in many cases will not
even be well defined, for such problems. These properties are reflected in the
corresponding discrete problems. Even if these problems are of finite dimen-
sion, the spectrum of the coefficient operators will be unbounded as the mesh
is refined, causing slower convergence of iterative methods for finer meshes.
To overcome this effect, preconditioners are introduced. In fact, even the
underlying differential equations can be transformed into problems which ad-
mit convergent iterations if the systems are properly preconditioned. As we
will explain in Section 3 below, the natural preconditioner for such systems
is an isomorphism mapping the space of right hand sides into the solution
space. By applying the corresponding ideas to the discrete analogs we obtain
so—called canonical preconditioners for the corresponding discrete systems.

Both authors were supported by Center of Excellence grants from the Norwegian
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Typically, these preconditioners lead to bounded condition numbers, and
therefore to rates of convergence which are bounded uniformly with respect
to the discretization. However, these preconditioners are usually not compu-
tationally efficient, since they typically are composed of inverses of discrete
differential operators. Computationally efficient preconditioners can often
be constructed by replacing these inverses by corresponding analogs gener-
ated by techniques like multigrid or domain decomposition methods.

This paper is closely tied to the review paper [34], where we present a
comprehensive overview of an abstract theory to construct preconditioners
for discrete systems from the mapping properties of the corresponding dif-
ferential operators. This technique originates from the papers [2, 3] and has
later been exploited in a variety of applications, see [34] and references given
there. The strength of the approach to the construction of preconditioners
for discretized differential systems presented here is most striking when we
consider singular perturbation problems. For such problems we will con-
struct preconditioners which behave uniformly well both with respect to the
discretization and the perturbation parameter.

We remark that there are close similarities between the abstract approach
to preconditioning taken here, and several other more abstract discussions
of preconditioning. The relation between preconditioning of elliptic prob-
lems and the concept "equivalent operators” has been utilized by several
authors, cf. for example [40, 4], while a more general approach to ”operator
preconditioning” is outlined in [21]. Furthermore, although the examples
presented both in this paper and in [34] are mostly symmetric saddle point
problems, the theory is not limited to such applications. Some discussion of
nonsymmetric problems are for example given in [25, 30, 38]. Alternative
block preconditioners for saddle point problems, on triangular or indefinite
form, are described in [7, 8, 9, 10, 17, 26, 27, 28, 35].

The numerical examples presented in this paper are implemented in FEn-
iCS [19] and are slight modifications of the examples described in [29]. In
FEniCS we have used the linear algebra backend Trilinos [20] and its alge-
braic multigrid toolbox ML.

The outline of this paper is as follows. In Section 2 we present a series of
numerical examples based on discretizations of a various differential systems,
namely the Stokes problem, linear elasticity, the stabilized Stokes problem,
and the time dependent Stokes problem. The general abstract framework
given in [34] is briefly described in Section 3, before we revisit in Section 4
some of the examples studied previously.

2. MOTIVATING EXAMPLES

In this section we will discuss a number of numerical experiments, where
we present condition numbers and iteration counts for various discrete dif-
ferential systems using different preconditioners. The purpose of these ex-
amples is to motivate the need for a better theoretical understanding on
how to construct effective preconditioners. Such a theoretical overview will
then be presented in the next section. Throughout the discussion below it
is convenient to let the underlying system of partial differential equations
be denoted Ax = f, where A is the governing differential operator, f is
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the given data, while x is the solution. Here, x and f are elements of ap-
propriate function spaces. Furthermore, we will use B to denote various
preconditioners at the continuous level.

In all the examples below the domain €2 is taken to be the unit square
in R?, and we will use 9Q to denote the boundary of . Most commonly
the computations will be done with respect to a uniform triangular mesh,
obtained by dividing 2 into h x h squares, where h = 1/(N — 1), and then
divided each square into two triangles. The corresponding discrete finite
element systems are denoted Apzp = fp, and the corresponding precondi-
tioners by Bj. In the numerical examples below we will typically report
estimates for the condition numbers of the operators By Ay. Furthermore, if
Ay, is positive definite we will give iteration counts for the conjugate gradient
method (CG) applied to the preconditioned system By Apxy, = By, fp, while
for indefinite problems we have used the conjugate gradient method on the
normal equation (CGN). More precisely, we have used CG to solve

B ALBy Apz = By AL B, f,.

This application of CGN requires that the preconditioner is symmetric and
positive definite. Of course, since all our examples below are symmetric,
we could also have used an iterative method which is more tailored, and
usually more efficient, for such problems, cf. for example [36]. However, the
purpose here is not efficiency, but the comparisons between different models
and preconditioners. Therefore, we have preferred to use a robust method
like CGN.

In some examples we compute the condition number by using a canonical
preconditioner, i.e., the preconditioner is composed of inverses of discrete
differential operators. However, since this approach requires the inversion of
matrices, it is limited to coarse grids. On finer grids the canonical precon-
ditioners are modified by introducing algebraic multigrid (AMG) operators
as replacements for the exact inverses.

Example 2.1. The Stokes problem.
The Stokes problem for an incompressible fluid is:

(1) —Au—gradp = f, inQ,
(2) divu = 0, in Q,
(3) u = 0, on 09,

where we refer to the unknown vector field u as the velocity and the unknown
scalar field p as the pressure. We can write this system of equations formally

A0 M-

The Stokes problem is a saddle-point problem, and for a stable finite el-
ement discretization the proper inf-sup condition should be fulfilled. In
our experiment we have used the lowest order Taylor-Hood element, i.e.,
continuous piecewise quadratic velocity fields, and continuous piecewise lin-
ear pressures. As a preconditioner we have used the discrete analog of the
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FIGURE 1. The left figure shows the condition number of
the preconditioned Stokes operator operator BjA; for dif-
ferent meshes using the canonical precondititioners Bj,. The
right figure shows the number of iterations required for con-
vergence when using an AMG preconditioner combined with
CGN for different meshes. The convergence criteria was a
relative reduction of the preconditioned residual by a factor
greater than 10'° in the discrete Ly norm.

N
s=(70 1)

on these spaces. In Figure 1, the condition number of the corresponding
discrete analogs of the operator BA and iterations counts for the precon-
ditioned CGN are given. Clearly, the condition number and the number
of iterations remains bounded as the mesh is refined. We remark that the
condition number of the operator A;, in this example is 1.1-10% for N = 32,
and that it grows like h=2. O

operator

Example 2.2. The linear elasticity problem.
The elasticity problem for an isotropic material reads:

(4) —(A+p)graddive — pAu = f, in €,
(5) u = 0, on 09,

where the positive constants A and p are the Lame’s elasticity constants.
For a nearly incompressible material A > u, and for such problems the phe-
nomena of locking, i.e., the case where the finite element computations pro-
duce significantly smaller deformation than it should, is well-known [13, 14].
Locking can be avoided by using reduced integration [18, 24] or special finite
element spaces [31]. Another consequence of A > p is that the condition
numbers of the corresponding finite element matrices increase, and hence
the convergence of iterative methods deteriorates. We first investigate the
linear system obtained by a finite element approximation of the system (4)—
(5) using continuous piecewise quadratics to approximate the displacement
u. The parameter p = 1, while A\ and the mesh parameter varies. In Figure
2 we show the number of iterations needed for convergence of CG combined
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F1GURE 2. The figure shows the number of iterations re-
quired for convergence with respect to different mesh resolu-
tions and values of \. We used CG combined with a standard
AMG preconditioner. The convergence criteria was a relative
reduction of the preconditioned residual of a factor greater
than 10° in the preconditioned discrete Ly norm.

with an AMG preconditioner. Clearly, the number of iterations increases as
A — o0.

One common way of avoiding locking is to introduce a separate variable
for the divergence, i.e., we let p = (A + p) divu. For g =1 the problem can
then be written as

—Au—gradp = f, in Q,
divu—€?p = 0, in Q,
uw = 0, on 0f,

where €2 = 1/(1 + )). So as A\ becomes large, ¢ tends to zero. This is a
mixed system which formally can be written in the form

A= = (0)-0)

Hence, when ) is large, € tends to zero and the problem formally approaches
the Stokes system. Therefore, as in the previous example, we discretize the
problem by the lowest order Taylor—-Hood element. In particular, as above
the velocity field is approximated by piecewise quadratics. We consider the
same preconditioner as we used in Example 2.1, i.e., the discrete analog of

—A1 0
s-(57 )

Motivated by the diagonal elements in A we also consider the alternative

preconditioner
-A"t 0
B2 = ( 0 6—2.7) '

These two preconditioners are compared with respect to different values
of h and X in Figure 3. We note that the two preconditioners coincide
when A = 1. The leftmost graph in Figure 3 clearly demonstrates that the
condition numbers of the discrete analogs of B1.4 are bounded independently
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F1GURE 3. The left figure shows the condition number of
the preconditioned discrete operators as a function of A, us-
ing the two different canonical precondititioners correspond-
ing to By and By. The right figure shows the number of
iterations required for convergence with respect to the mesh
resolutions, for two different values of A\, when using CGN
with an AMG preconditioner. The convergence criteria was
a relative reduction of the preconditioned residual of a factor
greater than 10'° in the discrete Ly norm.

of A, while the condition numbers of the discrete analogs of BaA grows as
A increases. Similarly, in the rightmost graph the CGN combined with an
AMG preconditioner of By gives convergence in a number of iterations that
is bounded independently of both h and A, while the preconditioner Bs
behaves poorly. [J

Example 2.3. The stabilized Stokes problem.

Consider the Stokes problem from Example 2.1 once more. By perturbing
the system slightly one can obtain stability of the discretization by using
the same polynomial order of the finite element spaces for both velocity
and pressure. One popular stabilization method consists of perturbing the
equation for mass conservation by adding a small diffusion term on the
pressure, i.e., we consider the system

(6) a(8)= (o B9 ()=

It has been shown in e.g. [22, 23] that the choice €2 = Bh2, where 8 > 0

is fixed, gives a stable discretization with equal order elements in velocity

and pressure. This method requires additional boundary conditions on the

pressure which usually is assumed to be homogeneous Neumann conditions.
For this system we consider two preconditioners:

A~ 0 —A1 0
Bl == ( 0 [> and BQ = < 0 (—62A)_1> .

Here, the By is the good Stokes preconditioner from above. This precondi-
tioner is independent of €, while the preconditioner By includes the diffusion
term in the pressure. In the computations we have used piecewise linears
for both velocity and pressure.
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FIGURE 4. The left figure shows the condition number of the
preconditioned system using the two different canonical pre-
condititioners B1 and By with respect to h, for two different
values of 3. The right figure shows the number of iterations
required for convergence when using an AMG preconditioner
combined with CGN for different meshes. The convergence
criteria was a relative reduction of the preconditioned resid-
ual of a factor greater than 10'° in the discrete Ly norm.

Figure 4 shows the behavior of the discrete versions of the preconditioners
By and By in terms of h and 3, where €2 = Bh%. Clearly, the e-independent
preconditioner Bi, combined with a Krylov solver like CGN, produces an
efficient algorithm that obtains convergence in a number of iterations that
is bounded independently of h, for a given 5. On the other hand, By shows
poor performance. [

Example 2.4. The time dependent Stokes problem.
The time dependent Stokes problem is an initial value problem of the form:

ur — Au —gradp = f, inQ, t>0,
diveu = 0, in€Q, t>0,

w = 0, ondQ, t>0,

u = ug, in, t=0.

Here, u is the unknown velocity vector, p is the uknown pressure, and wug is
the initial condition. Various time stepping schemes applied to this equation
result in systems of equations of the following form to be solved at each time

step,
A (™) (- A —grad) (u) _ (g
‘\p) div 0 p) \0)’

where g here includes both the right-hand side f and the solution at the
previous time step. The small positive parameter € is related to the time
step.

Efficient preconditioners for this system have been described in [16, 39,
32, 33]. These are of the form:

Be= (U ) ESA)_l (I- A)O—l + e2I> '
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F1GURE 5. The left figure shows the condition number of
the preconditioned system arising from discretizations of the
time dependent Stokes problem, for different e. The right fig-
ure shows the number of iterations required for convergence
when using an AMG preconditioner combined with CGN for
different mesh refinements and choices of €. The convergence
criteria was a relative reduction of the preconditioned resid-
ual of a factor greater than 10'° in the discrete Ly norm.

In this example, it is harder to ”guess” the form of an efficient preconditioner
by simple means. However, as we will see in the discussion below, this pre-
conditioner arise naturally from the abstract reasoning in following section.
Again the system is discretized by the lowest order Taylor—-Hood method.
In Figure 5 we present the condition numbers of the discrete preconditioned
system and corresponding iteration counts. The observed condition num-
bers are bounded by 14, independently of € and mesh refinements, and the
number of iterations is bounded by 130. Similar results can be found in
e.g. [32, 34]. O

3. VARIATIONAL PROBLEMS AND PRECONDITIONING

In this section we will first briefly review the abstract approach to pre-
conditioning outlined in [34], and thereafter we will discuss how this theory
relates to the examples presented above. The main motivation for design-
ing preconditioners for linear systems of equations is related to the use of
iterative solution algorithms. Consider a linear system of the form

(7) Az = f,

where A is a bounded and invertible linear operator mapping a real, sepa-
rable Hilbert space X into itself. In other words, we assume that A, A~! €
L(X,X), where in general £(X,Y") is the set of bounded linear operators
from X to Y. If the operator A is also symmetric and positive definite then
the equation (7) can be solved by the CG iteration in the sense that the
approximate solutions {z,,} satisfies

|2 = Zmlla < 2™ ||z — 20]| 4

Here, the convergence parameter « satisfies 0 < a < 1, g € X is an
abritary start vector, and the energy norm, ||-|| 4, is given by ||z[|} = (Az,z),
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where (-, -) denotes the inner product on X. More precisely, the convergence
parameter « admits the bound

k(A) —1

VE(A) 417

where the condition number of the operator A, k(.A), is given as the product
of the operator norms of A and A~!. In fact, z,, is the best approximation
of the solution z in the associated Krylov space

Koy = K (A, f) = span{ f, Af,..., A" f },

in the sense that

a <

|z —2mlla= inf [lz—y|a
yeEKm

A key to the efficiency of CG is that only one evaluation of the operator A
is necessary to compute x,, from z,,_ 1.

If the operator A is a symmetric, but indefinite isomorphism on X, then
we can instead apply CGN, i.e., CG to the normal equation A%z = Ab. Also
in this case the convergence rate depends on x(A), since x(A?) = k(A)? for
symmetric operators. For more details on CG, CGN, and more general
Krylov space methods we refer to [34, Section 2] and references given there.

3.1. Preconditioning. Krylov space methods like CG and CGN can in
general not be applied directly to systems of partial differential equations,
since the coefficient operators are not bounded. Consider for example the
Stokes operator A studied in Example 2.1 above. This operator cannot be
seen as a bounded operator of a Hilbert space into itself, since the eigenvalues
accumulate at infinity. If the domain €2 is a bounded subset of R", then
the appropriate weak formulation of the operator A leads to a bounded
operator from X = (H}(Q))" x L&(Q2) into X* = (H~1(Q))" x LE(2). Here,
(H(Q))™ is the space of all L? vector fields with weak first order derivatives
in L2, and which are zero in the trace sense on the boundary 952, while
L3(9) denote the set of L? scalar fields with mean value zero. Finally, the
space (H~1(2))" D (L*(2))" represents the dual of (HZ(2))™. In particular,
X C X*. Since the operator A maps the solution space X out of itself,
Krylov space methods like CG and CGN are in general not well-defined for
such problems. However, if B is an operator such that B € L(X™*, X) then
the composition Bo A € L(X, X), cf. Figure 6. Hence, we can apply Krylov
space methods to the corresponding preconditioned equation

BAx = Bf.

Assume in general that A € £(X, X*) is an isomorhism, i.e., A™' € £(X*, X).
Here, X and X* are assumed to be separable Hilbert spaces, where we should
think of X* as a representation of the dual of X. We also assume that A is
symmetric in the sense that

(8) (Az,y) = (z, Ay), =,y€ X,

where (-, ) is the associated duality pairing between X and X*.

We will assume that the preconditioner B is symmetric and positive defi-
nite in the sense that (-, 8-) is an inner product on X*. Hence, the precon-
ditioner is a Riesz operator mapping X* to X. As a consequence, (B~1-,-) is
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an inner product on X. It is a direct consequence of these assumptions that
the composition B.A is an isomorphism mapping X to itself. Furthermore,
the operator BA : X — X is symmetric in the inner product (B~!-,-) on X.
Therefore, the preconditioned system

BAx = Bf,

can be solved by CGN with a convergence rate bounded by k(BA) =
[IBAl £, x) | (BA) M| £(x,x)-

V V
V*

F1GURE 6. The mapping property of the composition of A
and B.

3.2. Variational problems. Many systems of partial differential equations
can be formulated as variational problems. Throughout the discussion here,
we will consider abstract variational problems of the form:

Find z € X such that for f € X*:

9) a(x,y) = (f,y), veX,

where, as above, X is a Hilbert space, X* its dual space, and (-,-) the
associated duality pairing. Furthermore, we assume that a : X x X — R
is a symmetric bilinear form. Following the classical variational theory of
Babuska [5, 6], the following two conditions, referred to as a boundedness
condition and an inf-sup condition, are sufficient to guarantee existence,
uniqueness, and well-posedness of the problem:

(10) la(z,y)| < allzlxlyllx, zyeX.
and
(11) inf sup a(z,y) > co >0,

veX yex llzllx llyllx

where ¢; and ¢y are positive constants.
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We may write the problem (9) as a linear system of the form
Az = f,
where A € L£(X, X*) is the linear operator defined by
(Az,y) = a(u,y), =z,ye X.

The conditions (10) and (11) will imply that the operator A is an isomor-
phism mapping X to X*. In particular,

IAllzx,x+) < €1 and Al gox ) < 5

Furthermore, since the bilinear form a is symmetric, the operator A is sym-
metric in the sense of (8). Therefore, throughout the rest of the discussion
here we assume that the bilinear form a is symmetric.

The canonical preconditioner in this case is the Riesz operator mapping
X* to X, ie., Be L(X* X) is defined by

Bfy)x={fy), yeX

Here (-,-) y denotes an inner product on the Hilbert space X. The operator
B is symmetric and positive definite in the sense specified above. In fact, it
is straightforward to verify that

(12) K(BA) = | Al £x,x) A 2o x) < e1/ea,

and therefore the convergence rate of CGN, applied to the preconditioned
System

BAz = BY,

can be bounded in terms of the constants ¢; and cs.

Next, we consider the discrete variational problems approximating the
system (9). Hence, let { X}, } be a family of subspaces of the Hilbert space X,
where h > 0 is refered to as the discretization parameter. As approximations
of the system (9) we consider discrete problems of the form:

Find z;, € X}, such that:

(13) a(zn,y) = (f,y), Y€ Xn.

It is clear that the boundedness of the bilinear form a on X, given by (10),
in particular implies boundedness on X}. On the other hand, the inf-sup
condition (11) will not imply that the corresponding condition holds on Xj,.
In general, the subspace X} may even be constructed such that the system
(13) is singular. However, the corresponding discrete inf-sup condition,

(14) inf sup M > c3 >0,
veXn yex, |7l x[lyllx

where the constant cs is independent of h, will indeed ensure stability.
If the stability condition (14) holds then the system (13) can be written
as a linear system of the form

Az = fn,
where Ay, : X3, — X is defined by
(Apz,y) = a(u,y), z,y € Xp.
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Furthermore, in the discrete case we define the canonical preconditioner,
Bh .4 ;; — X hs by

(15) Bnf,y)x = (f,y), ye€ X

By arguing exactly as above we obtain that
Kk(BpAp) < c1/es,

and as a consequence CGN, applied to the preconditioned system
BrApxy = Bp fn,

will converge with a convergence rate which can be bounded in terms of ¢;
and c3. We refer to [34, Section 5] for more details.

Remark 3.1. The canonical preconditioners defined from (15) will for most
problems not lead to efficient preconditioners, since they typically will be
composed of inverses of discrete differential operators that are expensive
to evaluate. To obtain efficient preconditioners these operators have to be
replaced by alternative spectrally equivalent operators, which can be evalu-
ated cheaply. Here we refer to two symmetric and positive definite operators
Bin, Bay : Xj — X as spectrally equivalent if there are constants ag and
a1, independent of the discretization parameter h, such that

a0<f7B1,hf> < <f7B2,hf> éal(val,hf>7 fGX;;

This is why we replaced the exact inverses by corresponding AMG operators
in the numerical experiments above. We refer to [34, Section 6] for more
details.

4. THE NUMERICAL EXPERIMENTS — REVISITED

From the discussion above we can conclude that if discrete linear systems
of the form (13) are preconditioned by a canonical preconditioner of the
form (15), then the condition number of the preconditioned system can be
bounded in terms of the boundedness constant ¢; and the inf-sup constant
c3. Below we will revisit the examples we presented in Section 2 above, and
discuss how the results we observed there can be explained by the theory
we just have outlined.

Example 4.1. The Stokes problem.
The coefficient operator of the Stokes problem is of the form

_ (—A —grad
A= (div 0 > ’
and, as we stated above, this operator can be seen as an isomorphism map-
ping X = (HZ(Q))" x L3() into X* = (H1(Q))" x L&(2), see e.g., [15].
The canonical preconditioner B should therefore be a Riesz mapping from
X* to X, and in this case this operator can be taken to be of the form

(16) s=(5 9):

Furthermore, the corresponding discrete operator will be composed of the
inverse of the discrete vector Laplacian, and a mass matrix (replacing the
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identity). It is well known that multigrid methods leads to spectrally equiva-
lent and computational efficient analogs of these operators. Therefore, both
the condition number and the number of iterations required by CGN, shown
in Figure 1, are bounded independently of the mesh parameter. [

Example 4.2. The linear elasiticy problem.
In Example 2.2 we considered the mixed formulation of the linear elasticity
problem. The coefficient operator of this problem is of the form,

—A  —grad
A= (div —€e] ) ’
where €2 = 1/(14 \). It is easy to see that for € € [0, 1] the operator A, is an
isomorphism mapping X = (H}(2))"x L*(Q) into X* = (H~*(Q))"x L?(Q),
with operator norms bounded independently of e. Therefore, the precondi-
tioner used for Stokes problem is also the appropriate canonical precon-
ditioner here, and the condition number of the preconditioned problem is
bounded uniformly in e. This explains the uniform results, both with re-

spect to the elasticity constant A and the mesh parameter h, observed for
the discrete version of the preconditioner B; in Figure 3. [J

Example 4.3. The stabilized Stokes problem.
The coefficient operator of the stabilized Stokes problem studied in Exam-

ple 2.3 is given by
_ (—A —grad
Ae = (div A > )

Above we studied finite element approximations of this operator when the
parameter € was proportional to the mesh paramer h. The motivation for
such studies is the desire to stabilize discretizations of the Stokes prob-
lem, where the velocity and the pressure are approximated by finite element
spaces of the same polynomial order. However, the system (6) also appear in
different settings, for example through time-stepping schemes for simplifica-
tions of the Biot equations describing a poroelastic problems c.f. e.g. [1, 12].
In these applications there are no relation between the positive parameter e
and the mesh parameter h. Therefore, we will discuss preconditioners for A,
in the more general situation, where no relation between € and h is assumed.
In particular, we will derive preconditioners for A, in the continous case.

It is relative straightforward to check that for each positive € the op-
erator A, is an isomorphism mapping X = (H}(Q2))" x H(Q) onto X* =
(H=1(Q))"x Hy *(Q). Here, Hy* () C LZ(Q) represents the dual of H'NL3.
However, the bounds on the associated operator norms on A, and A will
depend on €. In order obtain corresponding e-independent bounds on the
operator norms, we need to introduce an e-dependent norm on the solu-
tion space X, which degenerates to the L?-norm as € tends to zero. Let
Xe = (HYQ))" x (LENeHY)(Q), and X the associated dual space. Here,
we have used the notation of intersection of Hilbert spaces, which we will
discuss in more details below. The space (L3 Ne- H)() is equal to H(Q)
as a set for each € > 0, but its norm is given by

lall22nem = llallZ + €[lqll2.
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F1GURE 7. The left figure shows the condition number of
the preconditioned system for the stabilized Stokes problem
using Taylor-Hood elements, as a function of the mesh re-
finements and e. The right figure shows the number of iter-
ations required for CGN combined with an AMG precondi-
tioner. The convergence criteria was a relative reduction of
the preconditioned residual of a factor greater than 10'0 in
the discrete Lo norm.

For € = 0 the space (L Ne- H')(Q) coincides with L3(2), with identical
norms, and hence the mapping property of A. degenerates to the mapping
property of the coefficient operator for Stokes problem as e tends to zero.
The operator A, is an isomorphism mapping X, to X}, and with asso-
ciates operator norms bounded independently of €. As a consequence, if we
use the Riesz mapping B, from X} to X, as a preconditioner, then the con-
dition number k(B.A.) will be bounded independently of €, cf. (12). The

Riesz mapping from X to X, is in the present case given by

Be = <_Ao_1 (I - e%A)_1> :

In Figure 7 we provide numerical experiments for different values of ¢ and
mesh size h. We use the Taylor-Hood element since we allow ¢ — 0 indepen-
dently of h. Clearly, the condition numbers remain bounded independently
of both h and e. The number of iterations required for convergence seems to
be increasing for large €, but this is probably because the asymptotic limit
is not obtained for large € and h. In fact, the number of iterations required
in this problem is lower than that for the Stokes problem, see Example 2.1.

It can also be seen that if €2 is bounded by Bh?, where the constant f is
independent of h, then the operators By ;, and B, are spectrally equivalent.
This explains the numerical results of Example 2.3, where we observes that
the preconditioner By j behaved uniformly well with respect to h for e =
Bh%. O

The two last examples we have encountered above both have a coefficient
operator which depends on a parameter ¢. For the linear elasticity prob-
lem we saw that we obtained a uniform conditioning of the preconditioned
system by using an e-independent preconditioner, while for the perturbed
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Stokes system (6) we use e-dependent preconditioner to obtain uniform con-
ditioning in €, although a standard Stokes preconditioner works fine for ¢ ~ h
as seen in Example 2.3. The different behaviour of the two systems is re-
flected in the properties that the mixed linear elasticity problem is a regular
perturbation problem, in the sense that the function spaces X and X* re-
mains unchanged as e tends to zero, while the perturbed Stokes system (6)
is a singular perturbation problem. For such problems we typically need to
introduce parameter dependent function spaces in order to obtain parameter
independent bounds on the coefficient operator and its inverse, and hence
e-independent conditioning of the preconditioned systems, cf. (12).

One way to introduce parameter dependent function spaces, which fre-
quently occur in practice, is to consider weighted sums and intersections of
Hilbert spaces. If X and Y are Hilbert spaces, then the intersection X NY
is again a Hilbert space with norm

|25y = )% + =3
Furthermore, if € > 0 is a parameter then the corresponding weighted space,

XNe-Y,isequal to X NY as a set for e > 0 and to X for e = 0, while the
corresponding norms are given by

2 2 201112
%%y = llzll% + € llzly-
Hence, formally the norms behave continuously as € tends to zero. In Ex-
ample 4.3 we encountered an example of a space of this form.

Another related parameter dependent space is the weighted sum of Hilbert
spaces. In general the space X +Y consists of all elements z = z+y, z € X,
y € Y, with norm given by

2 . 2 2
Izl%y =t (2l +lIylly),

z=x+y
reX,yeY

while the corresponding weighted space, X + ¢! - Y, has the norm
2 . 2 —211, 112
ey = _inf  (lzl + e 2llyl?).
zeX,yeY
If XNY is dense in both X and Y, and € > 0, then
(XNe V) =X*"+el.V7,

where the star indicates dual spaces. Furthermore, there exist a correspond-
ing Riesz mapping R : X* + ¢ ' -Y* — X Ne-Y, such that the operator
norms

”REHC(X*-i-E*l-Y*,XﬂeY) and ”Re_l”E(XﬂeY,X*-i—s*l-Y*)

are bounded independently of e. In fact, the operator R, is given by z
r = R¢z, where x € X NY solves the problem:

<$7y>X+62<x7y>Y:<f7y>+<g7y>7 yGXﬁY
Here we have assumed that z = f+ ¢ and that f € X* and g € Y* is chosen
such that ||z||? e lyr = 1% + € 2llgl|3.. As above, we have used (-, -)
to denote the proper duality pairings. We refer to [11] for more details on
sums and intersections of Hilbert spaces.
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F1GURE 8. The rightmost figure shows the condition number
of the preconditioned matrix for different mesh resolutions.
The leftmost figure shows the number of iterations required
for convergence using CG combined with AMG, where the
convergence criterion was a relative reduction of a factor 10°
of the residual in the discrete Lo norm.

The significance of the weighted sums and intersections of Hilbert spaces
for singular perturbation problem is illustrated by the following simple ex-
ample.

Example 4.4. Reaction—diffusion equation.
Consider the reaction diffusion equation:

Au=u—eAu = f, inQ,
u = 0, on 0f.

For each fixed positive € the operator A, is a mapping from H} () to
H~1(Q), but it degenerates to the identity operator as e tends to zero.
Therefore, one possible choice for a preconditioner is,

B = —A7L

However, this operator will not be an efficient preconditioner for e close to
zero. To obtain a preconditioner which is uniform with respect to € we need
to consider A, as an operator from (L% Ne- H})(Q) to its proper dual space
(L? + eH~1)(Q), with associated Riesz mapping given by

By = (I — 62A)_1.

Of course the preconditioned operator B A, = I and using Bs involves solv-
ing the original reaction-diffusion problem. In practice however we replace
By with equivalent and efficient operators, where it is crucial that the equiv-
alence is independent of both € and the characteristic mesh size. In Figure
8 we compute the condition numbers of the corresponding preconditioned
discrete systems using continuous piecewise linears finite elements to ap-
proximate the solution u. The preconditioners are taken as discrete analogs
of By and By. We also show the number of iterations required by CG com-
bined with AMG for a given convergence criteria. Clearly, as expected, we
observe that the preconditioner By is superior to By, in particular when € is
small. [J
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Example 4.5. Linear elasiticy in the primal variable.

In Example 2.2 we saw that a standard multigrid method did not perform as
a uniform preconditioner with respect to A for the linear elasticity problem
in primal variables. For u = 1 and €2 = 1/(1 + \), this equation can be
written as

A= —graddivu — 2Au = €2f, inQ,
uw = 0, on 0f.

Here the coefficient operator A, can be seen as an isomorphism defined on
Ho(div, Q) Ne- HY(Q)™ to its proper dual space. So it easy to identify the
proper canonical preconditioner at the continuous level as the operator

B. = (— grad div —*A) L.

As in Example 4.4 we must replace B, with equivalent but efficient opera-
tors. However, standard multigrid algorithms do not produce precondition-
ers which behave uniformly with respect to € for the most common finite
element discretizations of this operator, and this is the reason for the poor
performance in Example 2.2. Suitable multigrid methods are however de-
scribed in [37]. O

Example 4.6. Time dependent Stokes problem.
In [32, 33] we showed that

(I —eA —grad
'A_( div 0 >

was a bounded and continuously invertible linear operator mapping X, =
(L2NeHY)(Q) x (H'N L) +€eL?)(Q) onto its dual space. The preconditioner

Be= (U R (—A)—Ol + e2f>

corresponds to a canonical mapping from the dual space and back to X..
This explains the efficiency of the preconditioner studied in Example 2.4.
We remark that an alternative preconditioner at the continuous level is

B — (I — graddiv—e2A)~t 0
€ 0 I .

This follows since A, can be seen as an isomorphism mapping H (div, ) N
eH'(Q) x L?(Q) onto its dual space, and with appropriate operator norms
bounded independently of €. For discussions of discrete analogs of this pre-
conditioner we refer to [37, 9, 10]. O

5. CONCLUSIONS

In this paper we have described how preconditioners for systems of partial
differential equations can be constructed based on the mapping properties
of the differential operator in properly chosen Sobolev spaces. In particular,
the canonical preconditioners can be seen as Riesz isomorphisms mapping
the space of the right hand side into the solution space. These Riesz iso-
morphisms are then replaced by equivalent and efficient precondititioners
constructed by using for example multigrid or domain decomposition tech-
niques.
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