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Abstract— Increasingly, licensing and safety regulatory bodies 

require the suppliers of software-intensive, safety-critical 

systems to provide an explicit software safety case – a 

structured set of arguments based on objective evidence to 

demonstrate that the software elements of a system are 

acceptably safe. Existing research on safety cases has mainly 

focused on how to build the arguments in a safety case based 

on available evidence; but little has been done to precisely 

characterize what this evidence should be. As a result, system 

suppliers are left with practically no guidance on what 

evidence to collect during software development. This has led 

to the suppliers having to recover the relevant evidence after 

the fact – an extremely costly and sometimes impractical task. 

Although standards such as the IEC 61508 – which is widely 

viewed as the best available generic standard for managing 

functional safety in software – provide some guidance for the 

collection of relevant safety and certification information, this 

guidance is mostly textual, not expressed in a precise and 

structured form, and is not easy to specialize to context-specific 

needs.  To address these issues, we present a conceptual model 

to characterize the evidence for arguing about software safety. 

Our model captures both the information requirements for 

demonstrating compliance with IEC 61508 and the traceability 

links necessary to create a seamless chain of evidence. We 

further describe how our generic model can be specialized 

according to the needs of a particular context, and discuss 

some important ways in which our model can facilitate 

software certification. 

I.  INTRODUCTION 

Safety-critical systems such as those found in the 
avionics, automotive, maritime, and energy domains are 
often required to undergo a safety certification process. The 
goal of certification is to provide an assurance recognized by 
society (and in some cases by law) that a system is deemed 
safe by the certification body. 

The justification for safe operation of a system is usually 
presented in what is known as a safety case [1-5]. Kelly [1] 
describes a safety case as being composed of three principal 
parts: safety objectives, arguments, and evidence. 
Demonstrating the satisfaction of the objectives involves 
gathering systematic evidence during development and 
constructing well-reasoned arguments that relate the 
evidence to the objectives. 

With the growing use and complexity of software in 
safety-critical systems, licensing and safety regulatory bodies 
increasingly require system suppliers to provide an explicit 
software safety case. A software safety case is a part of an 

overall safety case, which provides assurance that the 
software elements of a system are sound, and that these 
elements are used correctly within the overall system. 

While the argumentation aspects of software safety cases 
(and generally, safety cases) have been studied for a long 
time [6]; little has been done to precisely characterize the 
evidence that underlies software safety arguments. As a 
result, suppliers of safety-critical software have been left 
without proper guidance on what evidence to collect during 
development. This has led to the suppliers having to recover 
the relevant evidence after the fact, which can be extremely 
costly or even impractical. In addition, the quality of the 
overall safety case is bound by the quality of the weakest 
link. Hence, current practices for managing software safety 
evidence can severely limit the effectiveness of safety cases. 

Although standards such as IEC 61508 [7] – which is 
widely viewed as the best available generic standard for 
management of functional safety in software – provide some 
guidance for collecting safety and certification information, 
this guidance is mostly textual, not expressed in a precise 
and structured form, and is not easy to specialize to context-
specific needs. 

The goal of this paper is to address the above issues by 
providing a conceptual model that characterizes the evidence 
necessary for arguing about software safety. Our model 
captures both the information requirements for 
demonstrating compliance with IEC 61508, and the 
traceability links necessary to create a seamless continuum of 
evidence information, called the chain of evidence [5].  

In real-life projects, multiple rules, regulations and 
standards apply; therefore, our conceptual model needs to be 
further specialized according to the safety needs of the 
application domain (e.g., national and international laws, and 
class society regulations in the maritime domain [8]), the 
development process, and the technologies used to express 
requirements and design decisions (e.g., SysML[9]). A 
specialized version of the conceptual model can in turn be 
used for constructing an evidence repository. Such a 
repository can be utilized for automating various 
development and analysis tasks associated with safety-
critical software, including safety report generation, checking 
of various compliance rules, and impact analysis. 

The remainder of this paper is structured as follows: In 
Section II, we give a brief introduction to the IEC 61508 
standard. We provide a detailed exposition of our conceptual 
model in Section III; and in Section IV, we exemplify some 
key aspects of the model. In Section V, we explain how the 
model can be specialized according to the needs of a 
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particular context. In Section VI, we describe some 
important applications of the model in software certification. 
Section VII provides initial validation of the usefulness of 
our model. Section VIII compares our work to related 
research; and Section IX concludes the paper with a 
summary and directions for future work. 

II. BACKGROUND 

This section provides background information on the IEC 
61508 standard (version published in 1998). The standard is 
concerned with improving the development of safety-related 
electrical/electronic/programmable electronic systems 
(E/E/PES) whose failure could result in harm to people, 
equipment, and/or the environment. IEC 61508 is a generic 
standard and can either be used directly or for the creation of 
domain-specific standards in industries that require an 
equivalent level of safety. 

The standard applies to both low-demand and continuous 
mode systems. In a low-demand system, the frequency of 
demands for operation is low (the standard specifies a 
precise range). An example of a low-demand system is a fire 
& gas protection system, which alerts personnel if a fire or 
gas leakage is detected and initiates protective actions either 
automatically or through manual intervention. A continuous 
(or high-demand) mode system is one with a high frequency 
of demands for operation. An example would be the dynamic 
positioning system that continuously controls a vessel‟s 
movement when the vessel is near a port or rig. 

The goal of the standard is to ensure that safety-related 
E/E/PES systems operate correctly in response to their 
inputs. This is referred to as functional safety. Functional 
safety is not all there is to safety.  For example, the activation 
of an alarm in response to a fire breakout is a functional 
safety measure, whereas the use of fire resistant walls to 
control the spread of fire is not, although the latter measure 
protects against the same hazard. IEC 61508 deals only with 
functional safety. A function that a control system performs 
to ensure that the system remains in a safe state is referred to 
as a safety function. Each safety function specifies what 
safety objective is to be achieved (safety function 
requirement) and the level of integrity with which the safety 
function is implemented (safety integrity level).  

To systematically deal with the activities necessary to 
achieve the required level of safety, the standard adopts an 
overall safety lifecycle. The lifecycle starts with establishing 
the concept and overall scope of a system, and then 
conducting a hazard and risk analysis to determine the 
hazards that can occur and the risks that they pose. Together, 
these activities determine what has to be done to avoid the 
hazardous situations (derivation of safety requirements) and 
the level to which safety has to be provided (derivation of 
safety integrity levels).  

In the next step, the safety requirements are allocated to 
the various designated E/E/PE safety-related systems, other 
technology safety-related systems, and external risk 
reduction facilities (only the E/E/PE allocations are within 
the scope of the standard). Once the allocations are made, the 
realization phase begins for both the hardware and software 
aspects of the E/E/PE safety-related systems. In tandem, 

planning begins for the installation and commissioning, 
operation and maintenance, and the final overall safety 
validation of the system. During the realization phases, the 
standard calls for a number of overarching verification, 
management, and assessment activities. The life cycle further 
takes into account the eventual, safe, decommissioning or 
retrofit of the system.  

In this paper, we deal with the activities that take place 
during the realization of the software part of a programmable 
electronic safety-related system. The standard requires an 
explicit software safety lifecycle, shown in Figure 1, for the 
development of a PES.  

 
Figure 1: IEC 61508 Software Safety Lifecycle 

 
The lifecycle for the realization of the hardware in the 

E/E/PES is similar except that it applies to the hardware. It is 
important to realize that the hardware and software 
development lifecycles are happening in parallel and certain 
hardware architectural assumptions will have to be in place 
before the relevant software lifecycle can be started.  

The software has to be implemented such that it fulfills 
the safety requirements allocated to it. In order to be able to 
show this during software safety validation and assessment, 
it is crucial to maintain traceability between the software 
safety requirements, and the decisions taken during design, 
and the actual implementation in code. This is a complex 
task and needs to be performed whilst the system is being 
developed, not once the development has finished. Providing 
an accurate description of the safety information that needs 
to be preserved during software development is the main 
motivation behind our work in this paper.  

The software safety lifecycle in Figure 1, together with the 
overall lifecycle activities (verification, management and 
assessment of safety) specialized to software, form the basis 
of the conceptual model in Section III. 

III. CONCEPTUAL MODEL 

Figure 2 formalizes our conceptual model as a UML 
class diagram. The concepts in the model are only succinctly 
and intuitively defined here and precise definitions are 
provided in a technical report [10]. To manage the apparent 
complexity of the model, the concepts have been divided 
into ten packages. We describe these packages next. Note 
that this conceptual model is meant to define, in a precise 
way, information requirements to demonstrate both 
compliance with the standard and, perhaps more importantly, 
ensure the safety chain of evidence is collected. 

A. System Concepts 

The System Concepts package describes the basic 
elements needed to conceptualize safety-related control 
systems that involve both hardware and software. A 
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Programmable Electronic System (PES) is a block made up 
of one or more hardware blocks and controlled by a number 
of software blocks. A hardware block may represent a 
mechanical, electrical or electronic entity, both 
programmable and non-programmable. Both hardware and 
software blocks can be hierarchically decomposed into 
lower-level blocks. For software, the typical decomposition 
levels are: module, component, subsystem, and system. The 
links between blocks and the corresponding development 
artifacts (see Section III.E) are captured through the 
association between the Block and Artifact concepts. 

Interactions between the blocks are expressed as 
interfaces. Making the interfaces explicit is necessary to 
minimize mismatches and deadlocks during integration. For 
arguing software safety at the level of an individual PES, the 
interfaces of interest are those that have a software block at 
least at one end (i.e., no hardware-to-hardware interfaces). 
For integration of system-of-systems, interfaces between 
PESs are crucial as well. 

Interactions between a PES and the human elements are 
modeled through user roles. Safety issues can arise due to 
misuse or unauthorized access to a system. Mitigating these 
issues requires an accurate description of how different 
groups of users can interact with the PES. 

Each block is traceable to the requirements allocated to it. 
At the PES level, the allocations are made during the safety 
requirements allocation step of the IEC 61508 overall safety 
lifecycle. The PES-level (safety) requirements are used to 
derive requirements for the software and hardware blocks. 
We discuss requirements in Section III.C. Blocks can evolve 
over time and are thus versioned and placed under 
configuration management. Configuration management is 
addressed in Section III.G.  

B. Hazard Concepts 

The Hazard Concepts package captures the hazards and 
the risks they pose, which then constitute grounds for safety 
requirements and safety integrity levels. A hazard is any real 
or potential condition that can cause injury, illness, or death 
to personnel; damage to or loss of a system, equipment or 
property; or damage to the environment.  

The potential for a hazard to occur exists whenever the 
system has some hazardous element in it – this is the basic 
hazardous resource creating the impetus for the hazard. An 
example could be a hazardous energy source such as 
explosives. The hazardous element in itself is not sufficient 
to trigger a hazard. The trigger is captured using the concept 
of an initiating mechanism. An initiating mechanism is a 
sequence of events that leads to the actualization of a hazard. 
Hazards are the basis for deriving safety requirements. 

Each hazard is analyzed to assess the risks it poses, using 
risk assessment techniques. In essence, a risk is the 
combination of the probability of occurrence of a particular 
harm and the severity of that harm to a person or object, 
usually referred to as the target. 

The probability of occurrence is referred to as the 
likelihood and is sometimes qualitatively divided into: 
frequent, probable, occasional, remote, improbable and 
incredible. The level of harm caused is referred to as the 

consequence and can be qualitatively rated as catastrophic, 
critical, marginal or negligible. Together, these are used to 
give a tolerance level to a risk. The level of tolerance of a 
risk is then used to derive a safety integrity level. The results 
of hazard and risk analysis are presented as a Description. 
Hazards and risks can be referred to in various other 
development artifacts such as requirements specifications. 

C. Requirements Concepts 

The concepts necessary to describe the requirements for 
creating, operating, maintaining and decommissioning a 
system are included in the Requirements Concepts package. 
Traceability from requirements to the corresponding PES, 
system blocks, hazards and artifacts forms an important part 
of the chain of evidence. 

A requirement is a statement identifying a capability, 
characteristic, or quality factor of a system in order for it to 
have value and utility to a user. Requirements are one of the 
central concepts of system development and are thus 
naturally connected to concepts in many other packages. A 
requirement is typically concerned with some particular 
aspect of the system (functionality, usability, performance 
etc.). This information is captured in the „type‟ of the 
requirements. Each requirement is linked to the block(s) that 
must realize it. A rationale item might be affixed to a 
requirement to justify why that requirement exists.  If an 
issue is raised about a requirement at some stage of 
development, the issue is recorded and linked to the 
requirement as well.  

The source of a requirement may be a person, 
organization, standard or recommended practice. A 
requirement may apply to certain operating modes of the 
system such as normal operation, maintenance, shut down, 
and emergency. Each operating mode may have a set of 
designated states, which would render the system safe or 
unsafe. For example, it might be unsafe to run a boiler 
engine during maintenance. 

A particular class of requirements is that which concerns 
safety. Safety requirements are used to ensure that the system 
carries out its functions in an acceptably safe manner. These 
requirements are derived from hazards, and are intended to 
mitigate the risks posed by these hazards. Each safety 
requirement is assigned a safety integrity level based on the 
likelihood and consequences of the risks it mitigates.  

Safety integrity is defined as the probability of the system 
to successfully perform a required safety function. Usually, 
the dual notion of probability of failure (instead of 
probability of success) is used. The failure rate unit can be 
“failure per hour” for high demand or continuous operation 
and “failure on demand” for low demand operation. When a 
safety requirement only partially addresses a risk, the 
residual risk (i.e., the risk fraction remaining after the 
protective measures have been taken) is recorded. 

A requirement may relate to other requirements in a 
number of ways. Example relationships include: when a 
lower-level requirement (e.g., module requirement) is 
derived from a higher-level requirements (e.g., system or 
component requirement), when a requirement contributes 
positively or negatively to the satisfaction of another



4 

 

 
 

F
ig

u
re

 2
: 

 C
o

re
 C

o
n

ce
p
ts

 a
n

d
 R

el
at

io
n

sh
ip

s 



5 

 

requirement, and when a requirement conflicts with or 
overrides another requirement. In these cases, we need to 
maintain traceability between the involved requirements. 
This is done using a reflexive association for the 
Requirement concept. 

A requirement can have various development artifacts 
associated with it. Particularly, a requirement is specified in 
some requirements specification, and referenced in many 
other artifacts such as design and architecture specifications, 
test plans, source code, and also other requirements 
specifications where related requirements are captured. 

D. Process Concepts 

Development of software for a PES follows a certain 
process. This is expressed using the Process Concepts 
package. Further refinements of the process concepts would 
have to be performed in specific contexts of applications, 
accounting for the specifics of the process in place.  

The notion of activity is the central concept in this 
package, representing a unit of behavior with specific input 
and output. An activity can be further decomposed into sub-
activities. A (lifecycle) phase is made up of a set of activities 
that are carried out during the lifetime of a system, starting 
from system inception to decommissioning. To be able to 
accommodate iterative development processes, we do not 
restrict activity types to particular development phases. 
Restrictions will be expressed externally where necessary, 
for example using OCL constraints [11]. 

Each activity utilizes certain techniques to arrive at its 
desired output, given its input. The selection of techniques is 
intimately related to the safety integrity level that needs to be 
achieved. For example, if the activity in question concerns 
software verification, constructing formal proofs of 
correctness is usually unnecessary for low integrity levels, 
whereas, formal proofs are highly recommended (and often 
necessary) for the highest integrity levels. Specific technique 
recommendations (e.g., recommended, not recommended, 
highly recommended, mandatory) are made based on the 
overall standard guidelines, and the requirements of the 
certification bodies in charge of assessing functional safety. 

Each activity requires certain kind of competence by the 
agents performing it. The agent itself can be either an 
individual person or an organization. In either case, the agent 
is identified by the type of role it plays, for example the 
agent may be the supplier of a system or the operator. Agents 
can be made responsible for certain development artifacts. 

E. Artifact Concepts 

The Artifact Concepts package characterizes the inputs 
and outputs of the development activities. The main concept 
here is Artifact, which describes the tangible by-products 
produced during development. IEC 61508 provides a high-
level classification of the different types of development 
artifacts: a specification (e.g. requirements specification); a 
description (e.g. description of planned activities); a diagram 
(e.g. architecture diagram); an instruction (e.g., operator 
instructions); a list (e.g., code list, signal list); a log (e.g., 
maintenance log); a plan (e.g., maintenance plan); a report 

(e.g., a test or inspection report); and a request (e.g., a 
change request).  

An artifact might be built based on a standard, e.g., 
source code may follow a certain coding standard. Each 
artifact can pertain to requirements, blocks, hazards, and 
risks, as discussed in earlier sections. An artifact can be 
linked to other artifacts as well. For example, a design 
document may realize the requirements in the requirements 
specification, or a report could be the result of carrying out a 
plan. Issues that are identified during lifecycle activities are 
documented in reports. Like system blocks, artifacts can 
evolve over time and are therefore versioned and under 
configuration management. 

IEC 61508 prescribes specific input and output artifacts 
for all the activities in the overall lifecycle. As an example, 
we have shown in Figure 3 the input and output artifacts for 
the Software Module Testing activity, whose goal is to verify 
that each software module performs its intended function and 
does not perform unintended functions. In the technical 
report version of this paper [10], we provide 
conceptualizations similar to that in Figure 3 for all the 
software lifecycle activities.  

 
Figure 3: Software Module Testing Activity 

 
Note that the links between the more specific subclasses 

of Artifact and these lifecycle activities (e.g., the link 
between Source Code and Software Module Testing in 
Figure 3) refine the high-level input and output links 
between Artifact and Activity in the conceptual model. 
Therefore, in Figure 2, the links between Activity and 
Artifact can be seen as derived (hence the „/‟ before the link 
names). Further, note that the various artifacts in the standard 
need to be specialized in any given context. For example, the 
Software Module Test Specification in Figure 3 could be 
defined as being composed of test cases that exercise certain 
blocks or requirements. Similarly, the notions of test stub, 
and test driver could be made explicit for testing. Deciding 
about how much structure to enforce on each artifact is one 
of the key aspects of specialization (see Section V). 

F. Issue Concepts 

The concepts enabling the description of issues are 
modeled in the Issue Concepts package. Issue is the broad 
term we use to denote a point in question or a situation that 
needs to be settled in regards to a controlled item or a 
requirement (controlled items are discussed in III.G). Issues 
may represent defects, human mistakes, or enhancements 
and can be a result of activities concerned with Verification 
& Validation (e.g. testing and inspection) and safety 
assessment. In addition, enhancement may be proposed at 
different stages of development as a result of activities such 
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as requirements engineering and design, or in response to the 
findings of V&V and safety assessment. Defects can be 
further refined into errors, failures and faults. An error is a 
discrepancy between the actual and the ideal output. IEC 
61508 distinguishes system errors from human errors, 
referred to as mistakes. Mistakes denote unintended results 
due to human action or inaction. A failure is defined as the 
inability of a unit to perform a required function, and a fault 
as the abnormal condition that causes a unit to fail (e.g., a 
software bug).   

To illustrate these concepts, consider a boiler system. An 
error could be when the observed temperature is 80 degrees 
Celsius while the water is boiling, i.e., when the expected 
value is 100. If there is a safety requirement stating that the 
boiler should activate the pressure-release valve in case of 
over-heating (i.e., when the temperature has reached 100), 
then the error would lead to a failure, because the safety 
function would not be delivered. An error does not 
necessarily lead to a failure. In our example, if the actual 
temperature was 80 and the observed one was 60, there 
would still be an error but no failure. Failures and errors 
might imply faults. In our example, the fault could be a 
damaged sensor or the boiler‟s control unit incorrectly 
interpreting the temperature sensor output.  

Mistakes made by an operator of the system can lead to 
failures. For example, if the safety function requires manual 
intervention and the operator fails to notice the alarm 
indicating an over-heating boiler, he would not engage the 
safety function. Mistakes may lead to changes to the 
operating procedures, or even the system. For example, the 
operating procedure may be changed to ensure that at least 
one operator is monitoring the control panel at all times; or 
the system‟s user interface may be revised to reduce the 
possibility of alarms going unnoticed. 

The decision made about an issue (whether it is valid, 
and if so, how it has been resolved) is documented in a 
report. The resolution of an issue may induce change to some 
controlled items. Note that issues can be raised not only 
through the development stage, but also during operation, 
maintenance, decommissioning, etc. 

G. Configuration Management Concepts 

Valid issues need to be addressed through change.  The 
concepts required for management of change and for 
ensuring that the safety requirements continue to be satisfied 
as the system evolves are captured in the Configuration 
Management Concepts package. Demonstration of accurate 
change management is necessary for compliance with IEC 
61508. The central concept here is a controlled item, which 
is any item for which meaningful increments of change can 
be documented. In our model, blocks, artifacts and PESs are 
controlled items. Each controlled item may have some 
rationale to justify its existence, and assumptions to describe 
constraints or conditions about the item. Assumptions and 
rationale are further explained in Section III.H. Changes to 
controlled items are made in response to issues, as discussed 
earlier, and can be justified by rationale. 

H. Justification Concepts 

System development entails various decisions which 
need to be justified by reasoning and based on assumptions 
about the domain and the artifacts. The basic concepts to 
enable justification are provided in the Justification Concepts 
package. There are two concepts here, assumption and 
rationale. An assumption is a premise that is not under the 
control of the system of interest, and is accepted as true. A 
rationale is the reason that explains the existence of a 
controlled item or a requirement in the system. The rationale 
may rely on some of the assumptions that have been made 
about the concerned block or artifact. An assumption about a 
PES as a whole will have overarching affects whereas 
assumptions regarding a particular block may affect how it is 
designed and implemented. In safety-critical systems, 
assumptions play a key role. In particular, most statements 
about the safety of a system are tied to the assumptions made 
about the environment where the system will function [5]. 

I. Guidance Concepts 

Many aspects of development are influenced by guidance 
from external resources. For example, a sector-specific 
standard or a recommended practice may mandate certain 
requirements that must be fulfilled by the PES; or the 
implementation source code may be expected to be based on 
a certain coding standard. Such external resources are 
captured using the Guidance Concepts package. The 
guidance package describes the various sources of advice 
and recommendations used throughout development. A 
standard provides formal recommendations on engineering 
or technical criteria, methods, processes and practices and 
can be either general such as IEC 61508 or sector-specific 
such as ISO 17894 [12] that provides principles for the 
development and use of PESs in marine applications . The 
recommended practice on the other hand may be much more 
prescriptive and specific, providing sound practices and 
guidance for the achievement of a particular objective. Either 
may be used as a measure of compliance. 

J. Domain-Specific Concepts 

Finally, the Domain-Specific Concepts package contains 
enumeration types that can be customized by defining 
specific enumeration values for a given context. The 
concepts behind the enumerations have already been 
described in the other package descriptions. In Figure 4, we 
show examples of the kinds of values that can be used for 
each enumeration type. 

IV. ILLUSTRATING THE CHAIN OF EVIDENCE 

The conceptual model described in the previous section 

gives an overall view of the safety evidence pieces and the 

interconnections that need to be established between these 

pieces during the lifecycle of a safety-critical system.  
Figure 5 shows a partial instantiation of the concepts in 

the model and their links. The hazard shown is the breakout 
of fire on an oil platform. The hazardous element involved is 
the combustible gas on the platform. The initiating 
mechanism leading to a fire breakout is the presence of a gas 
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Figure 4: Example Values for Domain-Specific Enumerations 

 

 
Figure 5: Example Evidence Information 

 

leak and a spark in the vicinity of the leak. The hazard is 

identified during a hazard analysis activity and documented 

in a hazard log. For every hazard, a risk analysis activity is 

conducted and a report indicating the risks to mitigate is 

created. Two of the potential risks that such a fire can pose 

are damage to the platform and loss of life.  

Based upon the hazard, safety requirements are derived 

and allocated to the various risk mitigation facilities. One 

such facility is the fire & gas protection system. The safety 

requirement allocated to this PES is that it must detect a fire 

breakout within two seconds of occurrence. A safety 

requirement for the software system is then derived for the 

software system that controls the PES, stating that the time 

from the actual detection of fire from the sensor until an 

alarm (visual and/or aural) is presented on the operator 

control panel is less than one second. This requirement is 

further partitioned between the control software and the heat 

sensor driver. The requirement allocated to the sensor driver 

is that it must keep the delay between two consecutive polls 

of the sensor to less than 200 milliseconds.  

In this example, we can see the relationships between the 

different blocks, the requirements associated with each 

block, the derivation of lower-level requirements from 

higher-level requirements, the root hazard and associated 

risks, and the lifecycle activities. The example could have 

been expanded to show a variety of other activities (e.g., 

design and testing) and artifacts (e.g., design specifications, 

test specifications and test results). All this information 

needs to be accounted for when a software safety case is 

being developed. 

V. SPECIALIZATION OF THE CONCEPTUAL MODEL 

IEC 61508 is a generic standard and can be implemented 
and augmented in a variety of ways depending on contextual 
factors, including the characteristics of a particular 
application domain, and the development process and 
technologies to be used. Specialization is an important 
prerequisite for developing a coherent, IEC 61508-compliant 
safety information model, which can guide data collection 
and support analysis in a particular development context. 
The generic conceptual model we developed in Section III 
provides an intuitive and technically rigorous basis for 
describing specializations. As an example, we show how to 
define a special type of the Diagram artifact (see Section 
III.E), and use this specialized diagram for expressing 
Assumptions (see Section III.H).  

In a safety-critical system, it is important to state the 
assumptions (e.g., about the operating environment) in a way 
that permits systematic analysis. This helps ensure that we 
can assess the validity of requirements, specifications, and 
design decisions and to verify that there are no conflicts 
between the required system properties [5]. A powerful and 
flexible notation for formalizing assumptions is the 
Parametric Diagram in the SysML modeling language [9]. 
This type of diagram is used for representing constraints on a 
system‟s property values. In Figure 6, we have shown an 
example parametric diagram. 

 
Figure 6: Parametric Diagram for an Assumption 

 
 The diagram describes a domain assumption about the 

physical dimensions of the plates that are fed to a hydraulic 
forging press. The assumption states that the height of a plate 
is no larger than ¼ of the length of the feed belt that conveys 
the plate to the press, and that the width of a plate is not 
larger than ¾ of the width of the feed belt. The former 
constraint is to ensure that the plate is small enough to be 
picked up by the robot arm that places the plate on the press 
table, and the latter – to ensure that plates would not fall off 
the edges of the feed belt while in motion. 

If we want to develop a specialized standard or 
recommended practice requiring that a parametric diagram 
should be constructed for every assumption, our conceptual 
model will be extended as follows: A Parametric Diagram is 
defined as a subclass of Diagram and an association is 
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established between Assumption and Parametric Diagram. 
This is depicted in Figure 7. 

 
Figure 7: A Specialization of the Generic Model 

 

In general, specialization refers to the extensions one 

makes to the conceptual model of Figure 2 in order to adapt 

it to a particular context. The extensions can be made by 

adding new classes (or subclasses), associations, attributes, 

and constraints. The example in Figure 7 already shows the 

addition of new (sub)classes and associations to the model. 

Below, we illustrate some simple extensions through new 

attributes and constraints. The model in Figure 2 is 

intentionally abstract, thus only providing the attributes that 

are fundamental to understanding the concepts. Any 

specialization of the model into an applicable, context-

specific information model necessarily requires many new 

attributes to be defined. For example, most concepts need a 

universal identifier (uid), a name, and a description attribute. 

Constraints will be used frequently in the specializations of 

the model as well. For example, IEC 61508 highly 

recommends that module testing (see Figure 3) for safety 

integrity level 4 (SIL 4) should utilize probabilistic testing. 

If the certification body applying the standard wants to 

make this mandatory, it may choose to add the following 

OCL constraint to the model in Figure 2: 
context SafetyIntegrityLevel  

inv:  

self.forAll(sil.value = 4 implies  

sil.SafetyRequirement.Block->forAll( 

     b.SoftwareModuleTestResultReport.output. 

     Technique->exists(t.name = "Probabilistic Testing")) 

 

The above constraint states that a module testing activity 

associated with a block that has SIL 4 requirements must 

utilize the probabilistic testing technique (we have assumed 

that each technique is identified by a name attribute). 

A full specialization of our conceptual model will involve 

numerous extensions like the ones illustrated above. Once a 

full adaptation of our model to a particular context is arrived 

at, the resulting model can be used to drive data collection 

during the development process and to automate some of the 

most important and yet laborious tasks in the software 

certification process, as we discuss in the next section. 

VI. APPLICATIONS 

Having described our conceptual model and how it can 

be specialized, we now discuss some important ways in 

which our conceptual model or its specializations can 

facilitate software certification. 

A. Aid to Understanding and Communicating IEC 61508 

At the most basic level, the conceptual model we have 

developed helps improve understanding and communication 

of the IEC 61508 standard. Interpreting a standard like IEC 

61508 is a daunting task for a software supplier. Even when 

attempted, the interpretation of a supplier is likely to be 

significantly different from that of the certifier. An issue we 

have noticed through our interactions with safety-critical 

software suppliers is that it is not always clear to them what 

documents and information, and at which level of detail, 

they are expected to provide in support of safety. 

Furthermore, it is frequently unclear what the scope of each 

document should be, and how these documents should be 

linked to hazards, requirements, activities, and so on. These 

issues typically lead to several unnecessary iterations to 

refine and complete certification documents as well as many 

misunderstandings that could have been avoided. 

A concise but precise graphical representation of the 

core concepts in the standard such as the one we have 

developed here is a valuable and appealing aid for 

understanding and using the standard. In particular, the 

representation can be used by the certifiers to convey their 

expectations and to clarify the information requirements for 

demonstrating compliance. 

B. A Contract between Suppliers and Certifiers 

After our conceptual model has been specialized to a 

particular context, it can be viewed as a formal contract 

between the supplier and the certifier. Specifically, from the 

specialized conceptual model, the supplier can determine 

what evidence the certifier expects, and can accordingly 

plan its data collection strategy. In the absence of such a 

contract, the supplier will not know a priori what evidence 

needs to be collected. This often leads to the supplier failing 

to record important information during the development 

process, and having to incur significant costs to recover the 

information later on.  Having such a contract is also 

advantageous to the certifier, because it permits them to 

assume that the safety evidence provided to them has certain 

content and structure.  

Hence, the certifier can optimize its safety assessment 

procedures according to the content and structure mandated 

by the contract. For instance, the specialization example we 

gave in Section V would bind the supplier to use a SysML 

parametric diagram for expressing assumptions. Hence, the 

supplier would know exactly how to express and record 

assumptions during development and the certifier would 

know exactly what they can expect during assessment and 

possibly build supporting analysis tools to analyze the 

consistency and completeness of assumptions. 

Finally, the existence of a formal contract for safety 

evidence means that certifiers and suppliers may define a 

common language for the electronic interchange of data, for 

example based on XML. This offers an opportunity for 

automation of some laborious certification tasks, as we are 

going to describe below in Sections VI.C and VI.D. 

C. Automatic Safety Report Generation 

Our conceptual model provides an abstract structure for 

the organization of software safety information.  Once 
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tailored to a particular context through specialization, the 

resulting concrete structure can be used as the basis for a 

repository for storing development artifacts, process 

knowledge, hazard analysis data, safety audits, etc. This 

repository can be queried automatically for safety-relevant 

information, and the results then assembled into safety 

reports. For example, the links in Figure 5 can be traversed 

from the hazard to all the related elements, and a structured 

document can be generated to facilitate the verification of 

all the safety evidence related to the hazard. Modern model-

driven technologies already enable the development of such 

infrastructure.  

The main traceability requirement for generation of 

safety reports has to do with how software development 

artifacts (e.g., software requirements, architecture, design, 

and tests) are linked to the higher-level safety concepts such 

as hazards, environmental and domain assumptions, and 

overall safety requirements. Establishing this traceability is 

a key issue that one must consider when the conceptual 

model is being specialized to a given context and the 

specific artifacts to be used in that context are being defined. 

We believe that using Model Driven Engineering (MDE) 

will facilitate the definition and exploitation of the 

traceability information that can be used for automatic 

software safety report generation. To illustrate this point, let 

us revisit the example we gave in Section V. The parametric 

diagram in Figure 6 not only alleviates any potential 

ambiguities about the textual description of the assumption, 

but also yields precise traceability links between the 

assumption and the involved system blocks, namely Plate, 

Feedbelt, and Hydraulic Press Domain (a super block). 

Hence, the chain of evidence is always maintained in a 

precise manner and can thus be queried automatically.  

In contrast, if text-based documents are used, traceability 

cannot be strictly enforced. Further, the semantics of any 

traceability links established in text would not be machine-

interpretable. As a result, the information cannot be 

precisely queried, without the danger of following false 

links or failing to follow the correct ones. 

D. Automation for Rule Checking 

An interesting use of our conceptual model is to define 

consistency and completeness rules based on the concepts in 

the model (or a specialization thereof) and then check these 

rules against the information in an evidence repository (see 

Section VI.C where we discussed such a repository). Here, 

we give two simple rules that can be articulated directly 

over the generic conceptual model of Figure 2: 

 From the model, we see that each activity requires 

certain competence, and that each agent possesses 

certain competence. This coupled with the fact that 

competence itself can be defined in terms of 

encompassing other competence, can be used to define 

a rule for checking that an agent responsible for 

carrying out a given activity has the necessary 

competence to do so.  

 Another example would be checking that each safety 

requirement derived from a hazard has indeed been 

allocated to a PES. This helps ensure that all derived 

safety requirements have been dealt with appropriately 

by some system component. 

To fully realize this notion of automated rule checking, 

we need to have in place a specialized conceptual model 

based on which all the rules of interest can be articulated.  

We further need some type of rule checking engine that 

allows both the definition of the rules in some language and 

the verification of the rules written in that language against 

the development information of a system. For example, 

MDE technologies such as the Eclipse Modeling 

Framework [13] and its associated OCL engine [11] readily 

provide such capabilities. This ability is useful to both the 

suppliers and the certifiers of safety-critical systems. From 

the perspective of the supplier, the rules can be used to 

ensure that the system has been built according to some 

industry-specific standard or recommended practice, or even 

to perform impact analyses whereby specific rules could be 

defined to predict the impact of changes based on 

dependency information. From the perspective of the 

certifier, the rules could be defined such that the supplier 

provides the data from the model to the certifiers, according 

to some predefined interchange format, and the certifiers 

have some proprietary rules defined in order to partially 

check if the supplied information complies with its standard 

or recommended practice. The checking of whether the 

supplier is using competent agents to perform certain 

activities could be one such rule.  

VII. MODEL VALIDATION 

Our conceptual model is based on a systematic analysis of 

the IEC 61508 standard and on the authors‟ experience. To 

validate the usefulness of the model, we participated in a 

number of safety-certification meetings for a safety 

monitoring system in the maritime industry. From the issues 

raised by the certification body during these meetings, we 

randomly selected 30 and analyzed whether the information 

captured in our model could have either prevented or helped 

to address the issues.  These issues could be classified in 

seven categories as shown in Table 1. Categories in the first 

five rows could be addressed by information collected based 

on the conceptual model. These categories represent 56% of 

the issues (17/30). The last two categories correspond to 

completeness issues and argumentation flaws and are not 

directly addressed by our model. 
TABLE 1: MODEL VALIDATION FINDINGS 

Type of Issue Count 

Missing traceability links 2 

Missing requirement type e.g. performance, availability 2 

Missing mode of operation for requirement 3 

Unaddressed certifier expectations (e.g. use of particular 

notation or technique) 
3 

Unclear delineation of system blocks and interfaces 7 

Unstated requirements, procedures , assumptions 6 

Argumentation problems (redundancy, ambiguity, and 

reasoning issues) 
7 
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VIII. RELATED WORK 

Systematic development of safety cases (and more 
generally, dependability cases) is an important topic which is 
gaining increased attention in the dependability literature [2, 
3, 5]. Kelly [1] provides an interesting and widely-accepted 
view on what a safety case is made up of. It divides a safety 
case into three parts: the safety requirements (or objectives), 
the argumentation, and the supporting evidence.  The safety 
requirements are developed through various kinds of safety 
analyses (e.g., Fault Tree Analysis, and Failure Modes and 
Effects Analysis) and have been addressed extensively [14]. 
Building the argumentation in a safety case has been the 
focus of a lot of research in the past 15 years, e.g. [1, 3, 6, 
15-17], with the Goal Structuring Notation (GSN) [1] as the 
basis for most of the work. However, there has been little 
research on providing a detailed characterization of the 
evidence underlying a safety case. What we presented in this 
paper is aimed to fill this gap for the software aspects of 
safety-critical systems. 

The need for more effective collection and linking of 
safety evidence information has been noted before. In 
particular, Lewis [18] mentions the existence of a web of 
safety-relevant information covering not only the 
relationships between hazards and safety requirements but 
also between the operator of the system and operating 
procedures, the system functions and hardware elements, the 
system components and software tests, and so on. The 
conceptual model we developed in this paper provides a 
precise characterization of this web of information based on 
the IEC 61508 standard. 

The sheer size and complexity of the documents 
comprising a safety case has been a constant challenge for 
safety assessors. The authors in [18, 19] propose the notion 
of electronic safety case, so that assessors can dynamically 
query a safety case for the information they need, instead of 
having to go through hundreds of pages of physical 
documents to find this information. As we discussed in 
Section VI.C, our conceptual model, when specialized to a 
particular context yields an information model for such 
electronic safety cases. 

The authors in [20, 21] provide partial conceptualizations 
of IEC 61508, but they adopt a process-oriented view of the 
standard and thus focus on the processes involved when 
using the standard and assessing safety. The conceptual 
model we developed in this paper takes a much more holistic 
approach and captures all the key information concepts 
necessary to show compliance to the standard. 

IX. CONCLUSIONS 

In this paper, we developed an extensible conceptual 

model, based on the IEC 61508 standard, to characterize the 

chain of safety evidence that underlies safety arguments 

about software. We showed through some examples how 

our conceptual model can be specialized according to the 

needs of a particular context and described some important 

ways in which our model can facilitate software 

certification. An analysis of a random sample of issues 

raised in certification meetings showed that a majority of 

them would have been prevented or addressed by 

information collected according to our model. Applications 

of our model include: the precise specification of safety-

relevant information requirements for system suppliers; 

defining a data model for developing a certification 

repository; the implementation of automatic, safety-relevant 

constraint verification (e.g., compliance with standard, 

recommended practice); and the automated generation of 

certification reports on demand. A detailed investigation of 

these activities and the development of appropriate tools to 

support them form facets of our future work.   
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