
1

Characterizing the Chain of Evidence for Software Safety Cases:

A Conceptual Model Based on the IEC 61508 Standard

Rajwinder Kaur Panesar-Walawege,

Mehrdad Sabetzadeh, Lionel Briand

Simula Research Laboratory, Oslo, Norway

{rpanesar,mehrdad,briand}@simula.no

Thierry Coq

Det Norske Veritas

Paris, France

thierry.coq@dnv.com

Abstract— Increasingly, licensing and safety regulatory bodies

require the suppliers of software-intensive, safety-critical

systems to provide an explicit software safety case – a

structured set of arguments based on objective evidence to

demonstrate that the software elements of a system are

acceptably safe. Existing research on safety cases has mainly

focused on how to build the arguments in a safety case based

on available evidence; but little has been done to precisely

characterize what this evidence should be. As a result, system

suppliers are left with practically no guidance on what

evidence to collect during software development. This has led

to the suppliers having to recover the relevant evidence after

the fact – an extremely costly and sometimes impractical task.

Although standards such as the IEC 61508 – which is widely

viewed as the best available generic standard for managing

functional safety in software – provide some guidance for the

collection of relevant safety and certification information, this

guidance is mostly textual, not expressed in a precise and

structured form, and is not easy to specialize to context-specific

needs. To address these issues, we present a conceptual model

to characterize the evidence for arguing about software safety.

Our model captures both the information requirements for

demonstrating compliance with IEC 61508 and the traceability

links necessary to create a seamless chain of evidence. We

further describe how our generic model can be specialized

according to the needs of a particular context, and discuss

some important ways in which our model can facilitate

software certification.

I. INTRODUCTION

Safety-critical systems such as those found in the
avionics, automotive, maritime, and energy domains are
often required to undergo a safety certification process. The
goal of certification is to provide an assurance recognized by
society (and in some cases by law) that a system is deemed
safe by the certification body.

The justification for safe operation of a system is usually
presented in what is known as a safety case [1-5]. Kelly [1]
describes a safety case as being composed of three principal
parts: safety objectives, arguments, and evidence.
Demonstrating the satisfaction of the objectives involves
gathering systematic evidence during development and
constructing well-reasoned arguments that relate the
evidence to the objectives.

With the growing use and complexity of software in
safety-critical systems, licensing and safety regulatory bodies
increasingly require system suppliers to provide an explicit
software safety case. A software safety case is a part of an

overall safety case, which provides assurance that the
software elements of a system are sound, and that these
elements are used correctly within the overall system.

While the argumentation aspects of software safety cases
(and generally, safety cases) have been studied for a long
time [6]; little has been done to precisely characterize the
evidence that underlies software safety arguments. As a
result, suppliers of safety-critical software have been left
without proper guidance on what evidence to collect during
development. This has led to the suppliers having to recover
the relevant evidence after the fact, which can be extremely
costly or even impractical. In addition, the quality of the
overall safety case is bound by the quality of the weakest
link. Hence, current practices for managing software safety
evidence can severely limit the effectiveness of safety cases.

Although standards such as IEC 61508 [7] – which is
widely viewed as the best available generic standard for
management of functional safety in software – provide some
guidance for collecting safety and certification information,
this guidance is mostly textual, not expressed in a precise
and structured form, and is not easy to specialize to context-
specific needs.

The goal of this paper is to address the above issues by
providing a conceptual model that characterizes the evidence
necessary for arguing about software safety. Our model
captures both the information requirements for
demonstrating compliance with IEC 61508, and the
traceability links necessary to create a seamless continuum of
evidence information, called the chain of evidence [5].

In real-life projects, multiple rules, regulations and
standards apply; therefore, our conceptual model needs to be
further specialized according to the safety needs of the
application domain (e.g., national and international laws, and
class society regulations in the maritime domain [8]), the
development process, and the technologies used to express
requirements and design decisions (e.g., SysML[9]). A
specialized version of the conceptual model can in turn be
used for constructing an evidence repository. Such a
repository can be utilized for automating various
development and analysis tasks associated with safety-
critical software, including safety report generation, checking
of various compliance rules, and impact analysis.

The remainder of this paper is structured as follows: In
Section II, we give a brief introduction to the IEC 61508
standard. We provide a detailed exposition of our conceptual
model in Section III; and in Section IV, we exemplify some
key aspects of the model. In Section V, we explain how the
model can be specialized according to the needs of a

2

particular context. In Section VI, we describe some
important applications of the model in software certification.
Section VII provides initial validation of the usefulness of
our model. Section VIII compares our work to related
research; and Section IX concludes the paper with a
summary and directions for future work.

II. BACKGROUND

This section provides background information on the IEC
61508 standard (version published in 1998). The standard is
concerned with improving the development of safety-related
electrical/electronic/programmable electronic systems
(E/E/PES) whose failure could result in harm to people,
equipment, and/or the environment. IEC 61508 is a generic
standard and can either be used directly or for the creation of
domain-specific standards in industries that require an
equivalent level of safety.

The standard applies to both low-demand and continuous
mode systems. In a low-demand system, the frequency of
demands for operation is low (the standard specifies a
precise range). An example of a low-demand system is a fire
& gas protection system, which alerts personnel if a fire or
gas leakage is detected and initiates protective actions either
automatically or through manual intervention. A continuous
(or high-demand) mode system is one with a high frequency
of demands for operation. An example would be the dynamic
positioning system that continuously controls a vessel‟s
movement when the vessel is near a port or rig.

The goal of the standard is to ensure that safety-related
E/E/PES systems operate correctly in response to their
inputs. This is referred to as functional safety. Functional
safety is not all there is to safety. For example, the activation
of an alarm in response to a fire breakout is a functional
safety measure, whereas the use of fire resistant walls to
control the spread of fire is not, although the latter measure
protects against the same hazard. IEC 61508 deals only with
functional safety. A function that a control system performs
to ensure that the system remains in a safe state is referred to
as a safety function. Each safety function specifies what
safety objective is to be achieved (safety function
requirement) and the level of integrity with which the safety
function is implemented (safety integrity level).

To systematically deal with the activities necessary to
achieve the required level of safety, the standard adopts an
overall safety lifecycle. The lifecycle starts with establishing
the concept and overall scope of a system, and then
conducting a hazard and risk analysis to determine the
hazards that can occur and the risks that they pose. Together,
these activities determine what has to be done to avoid the
hazardous situations (derivation of safety requirements) and
the level to which safety has to be provided (derivation of
safety integrity levels).

In the next step, the safety requirements are allocated to
the various designated E/E/PE safety-related systems, other
technology safety-related systems, and external risk
reduction facilities (only the E/E/PE allocations are within
the scope of the standard). Once the allocations are made, the
realization phase begins for both the hardware and software
aspects of the E/E/PE safety-related systems. In tandem,

planning begins for the installation and commissioning,
operation and maintenance, and the final overall safety
validation of the system. During the realization phases, the
standard calls for a number of overarching verification,
management, and assessment activities. The life cycle further
takes into account the eventual, safe, decommissioning or
retrofit of the system.

In this paper, we deal with the activities that take place
during the realization of the software part of a programmable
electronic safety-related system. The standard requires an
explicit software safety lifecycle, shown in Figure 1, for the
development of a PES.

Figure 1: IEC 61508 Software Safety Lifecycle

The lifecycle for the realization of the hardware in the

E/E/PES is similar except that it applies to the hardware. It is
important to realize that the hardware and software
development lifecycles are happening in parallel and certain
hardware architectural assumptions will have to be in place
before the relevant software lifecycle can be started.

The software has to be implemented such that it fulfills
the safety requirements allocated to it. In order to be able to
show this during software safety validation and assessment,
it is crucial to maintain traceability between the software
safety requirements, and the decisions taken during design,
and the actual implementation in code. This is a complex
task and needs to be performed whilst the system is being
developed, not once the development has finished. Providing
an accurate description of the safety information that needs
to be preserved during software development is the main
motivation behind our work in this paper.

The software safety lifecycle in Figure 1, together with the
overall lifecycle activities (verification, management and
assessment of safety) specialized to software, form the basis
of the conceptual model in Section III.

III. CONCEPTUAL MODEL

Figure 2 formalizes our conceptual model as a UML
class diagram. The concepts in the model are only succinctly
and intuitively defined here and precise definitions are
provided in a technical report [10]. To manage the apparent
complexity of the model, the concepts have been divided
into ten packages. We describe these packages next. Note
that this conceptual model is meant to define, in a precise
way, information requirements to demonstrate both
compliance with the standard and, perhaps more importantly,
ensure the safety chain of evidence is collected.

A. System Concepts

The System Concepts package describes the basic
elements needed to conceptualize safety-related control
systems that involve both hardware and software. A

3

Programmable Electronic System (PES) is a block made up
of one or more hardware blocks and controlled by a number
of software blocks. A hardware block may represent a
mechanical, electrical or electronic entity, both
programmable and non-programmable. Both hardware and
software blocks can be hierarchically decomposed into
lower-level blocks. For software, the typical decomposition
levels are: module, component, subsystem, and system. The
links between blocks and the corresponding development
artifacts (see Section III.E) are captured through the
association between the Block and Artifact concepts.

Interactions between the blocks are expressed as
interfaces. Making the interfaces explicit is necessary to
minimize mismatches and deadlocks during integration. For
arguing software safety at the level of an individual PES, the
interfaces of interest are those that have a software block at
least at one end (i.e., no hardware-to-hardware interfaces).
For integration of system-of-systems, interfaces between
PESs are crucial as well.

Interactions between a PES and the human elements are
modeled through user roles. Safety issues can arise due to
misuse or unauthorized access to a system. Mitigating these
issues requires an accurate description of how different
groups of users can interact with the PES.

Each block is traceable to the requirements allocated to it.
At the PES level, the allocations are made during the safety
requirements allocation step of the IEC 61508 overall safety
lifecycle. The PES-level (safety) requirements are used to
derive requirements for the software and hardware blocks.
We discuss requirements in Section III.C. Blocks can evolve
over time and are thus versioned and placed under
configuration management. Configuration management is
addressed in Section III.G.

B. Hazard Concepts

The Hazard Concepts package captures the hazards and
the risks they pose, which then constitute grounds for safety
requirements and safety integrity levels. A hazard is any real
or potential condition that can cause injury, illness, or death
to personnel; damage to or loss of a system, equipment or
property; or damage to the environment.

The potential for a hazard to occur exists whenever the
system has some hazardous element in it – this is the basic
hazardous resource creating the impetus for the hazard. An
example could be a hazardous energy source such as
explosives. The hazardous element in itself is not sufficient
to trigger a hazard. The trigger is captured using the concept
of an initiating mechanism. An initiating mechanism is a
sequence of events that leads to the actualization of a hazard.
Hazards are the basis for deriving safety requirements.

Each hazard is analyzed to assess the risks it poses, using
risk assessment techniques. In essence, a risk is the
combination of the probability of occurrence of a particular
harm and the severity of that harm to a person or object,
usually referred to as the target.

The probability of occurrence is referred to as the
likelihood and is sometimes qualitatively divided into:
frequent, probable, occasional, remote, improbable and
incredible. The level of harm caused is referred to as the

consequence and can be qualitatively rated as catastrophic,
critical, marginal or negligible. Together, these are used to
give a tolerance level to a risk. The level of tolerance of a
risk is then used to derive a safety integrity level. The results
of hazard and risk analysis are presented as a Description.
Hazards and risks can be referred to in various other
development artifacts such as requirements specifications.

C. Requirements Concepts

The concepts necessary to describe the requirements for
creating, operating, maintaining and decommissioning a
system are included in the Requirements Concepts package.
Traceability from requirements to the corresponding PES,
system blocks, hazards and artifacts forms an important part
of the chain of evidence.

A requirement is a statement identifying a capability,
characteristic, or quality factor of a system in order for it to
have value and utility to a user. Requirements are one of the
central concepts of system development and are thus
naturally connected to concepts in many other packages. A
requirement is typically concerned with some particular
aspect of the system (functionality, usability, performance
etc.). This information is captured in the „type‟ of the
requirements. Each requirement is linked to the block(s) that
must realize it. A rationale item might be affixed to a
requirement to justify why that requirement exists. If an
issue is raised about a requirement at some stage of
development, the issue is recorded and linked to the
requirement as well.

The source of a requirement may be a person,
organization, standard or recommended practice. A
requirement may apply to certain operating modes of the
system such as normal operation, maintenance, shut down,
and emergency. Each operating mode may have a set of
designated states, which would render the system safe or
unsafe. For example, it might be unsafe to run a boiler
engine during maintenance.

A particular class of requirements is that which concerns
safety. Safety requirements are used to ensure that the system
carries out its functions in an acceptably safe manner. These
requirements are derived from hazards, and are intended to
mitigate the risks posed by these hazards. Each safety
requirement is assigned a safety integrity level based on the
likelihood and consequences of the risks it mitigates.

Safety integrity is defined as the probability of the system
to successfully perform a required safety function. Usually,
the dual notion of probability of failure (instead of
probability of success) is used. The failure rate unit can be
“failure per hour” for high demand or continuous operation
and “failure on demand” for low demand operation. When a
safety requirement only partially addresses a risk, the
residual risk (i.e., the risk fraction remaining after the
protective measures have been taken) is recorded.

A requirement may relate to other requirements in a
number of ways. Example relationships include: when a
lower-level requirement (e.g., module requirement) is
derived from a higher-level requirements (e.g., system or
component requirement), when a requirement contributes
positively or negatively to the satisfaction of another

4

F
ig

u
re

 2
:

 C
o

re
 C

o
n

ce
p
ts

 a
n

d
 R

el
at

io
n

sh
ip

s

5

requirement, and when a requirement conflicts with or
overrides another requirement. In these cases, we need to
maintain traceability between the involved requirements.
This is done using a reflexive association for the
Requirement concept.

A requirement can have various development artifacts
associated with it. Particularly, a requirement is specified in
some requirements specification, and referenced in many
other artifacts such as design and architecture specifications,
test plans, source code, and also other requirements
specifications where related requirements are captured.

D. Process Concepts

Development of software for a PES follows a certain
process. This is expressed using the Process Concepts
package. Further refinements of the process concepts would
have to be performed in specific contexts of applications,
accounting for the specifics of the process in place.

The notion of activity is the central concept in this
package, representing a unit of behavior with specific input
and output. An activity can be further decomposed into sub-
activities. A (lifecycle) phase is made up of a set of activities
that are carried out during the lifetime of a system, starting
from system inception to decommissioning. To be able to
accommodate iterative development processes, we do not
restrict activity types to particular development phases.
Restrictions will be expressed externally where necessary,
for example using OCL constraints [11].

Each activity utilizes certain techniques to arrive at its
desired output, given its input. The selection of techniques is
intimately related to the safety integrity level that needs to be
achieved. For example, if the activity in question concerns
software verification, constructing formal proofs of
correctness is usually unnecessary for low integrity levels,
whereas, formal proofs are highly recommended (and often
necessary) for the highest integrity levels. Specific technique
recommendations (e.g., recommended, not recommended,
highly recommended, mandatory) are made based on the
overall standard guidelines, and the requirements of the
certification bodies in charge of assessing functional safety.

Each activity requires certain kind of competence by the
agents performing it. The agent itself can be either an
individual person or an organization. In either case, the agent
is identified by the type of role it plays, for example the
agent may be the supplier of a system or the operator. Agents
can be made responsible for certain development artifacts.

E. Artifact Concepts

The Artifact Concepts package characterizes the inputs
and outputs of the development activities. The main concept
here is Artifact, which describes the tangible by-products
produced during development. IEC 61508 provides a high-
level classification of the different types of development
artifacts: a specification (e.g. requirements specification); a
description (e.g. description of planned activities); a diagram
(e.g. architecture diagram); an instruction (e.g., operator
instructions); a list (e.g., code list, signal list); a log (e.g.,
maintenance log); a plan (e.g., maintenance plan); a report

(e.g., a test or inspection report); and a request (e.g., a
change request).

An artifact might be built based on a standard, e.g.,
source code may follow a certain coding standard. Each
artifact can pertain to requirements, blocks, hazards, and
risks, as discussed in earlier sections. An artifact can be
linked to other artifacts as well. For example, a design
document may realize the requirements in the requirements
specification, or a report could be the result of carrying out a
plan. Issues that are identified during lifecycle activities are
documented in reports. Like system blocks, artifacts can
evolve over time and are therefore versioned and under
configuration management.

IEC 61508 prescribes specific input and output artifacts
for all the activities in the overall lifecycle. As an example,
we have shown in Figure 3 the input and output artifacts for
the Software Module Testing activity, whose goal is to verify
that each software module performs its intended function and
does not perform unintended functions. In the technical
report version of this paper [10], we provide
conceptualizations similar to that in Figure 3 for all the
software lifecycle activities.

Figure 3: Software Module Testing Activity

Note that the links between the more specific subclasses

of Artifact and these lifecycle activities (e.g., the link
between Source Code and Software Module Testing in
Figure 3) refine the high-level input and output links
between Artifact and Activity in the conceptual model.
Therefore, in Figure 2, the links between Activity and
Artifact can be seen as derived (hence the „/‟ before the link
names). Further, note that the various artifacts in the standard
need to be specialized in any given context. For example, the
Software Module Test Specification in Figure 3 could be
defined as being composed of test cases that exercise certain
blocks or requirements. Similarly, the notions of test stub,
and test driver could be made explicit for testing. Deciding
about how much structure to enforce on each artifact is one
of the key aspects of specialization (see Section V).

F. Issue Concepts

The concepts enabling the description of issues are
modeled in the Issue Concepts package. Issue is the broad
term we use to denote a point in question or a situation that
needs to be settled in regards to a controlled item or a
requirement (controlled items are discussed in III.G). Issues
may represent defects, human mistakes, or enhancements
and can be a result of activities concerned with Verification
& Validation (e.g. testing and inspection) and safety
assessment. In addition, enhancement may be proposed at
different stages of development as a result of activities such

6

as requirements engineering and design, or in response to the
findings of V&V and safety assessment. Defects can be
further refined into errors, failures and faults. An error is a
discrepancy between the actual and the ideal output. IEC
61508 distinguishes system errors from human errors,
referred to as mistakes. Mistakes denote unintended results
due to human action or inaction. A failure is defined as the
inability of a unit to perform a required function, and a fault
as the abnormal condition that causes a unit to fail (e.g., a
software bug).

To illustrate these concepts, consider a boiler system. An
error could be when the observed temperature is 80 degrees
Celsius while the water is boiling, i.e., when the expected
value is 100. If there is a safety requirement stating that the
boiler should activate the pressure-release valve in case of
over-heating (i.e., when the temperature has reached 100),
then the error would lead to a failure, because the safety
function would not be delivered. An error does not
necessarily lead to a failure. In our example, if the actual
temperature was 80 and the observed one was 60, there
would still be an error but no failure. Failures and errors
might imply faults. In our example, the fault could be a
damaged sensor or the boiler‟s control unit incorrectly
interpreting the temperature sensor output.

Mistakes made by an operator of the system can lead to
failures. For example, if the safety function requires manual
intervention and the operator fails to notice the alarm
indicating an over-heating boiler, he would not engage the
safety function. Mistakes may lead to changes to the
operating procedures, or even the system. For example, the
operating procedure may be changed to ensure that at least
one operator is monitoring the control panel at all times; or
the system‟s user interface may be revised to reduce the
possibility of alarms going unnoticed.

The decision made about an issue (whether it is valid,
and if so, how it has been resolved) is documented in a
report. The resolution of an issue may induce change to some
controlled items. Note that issues can be raised not only
through the development stage, but also during operation,
maintenance, decommissioning, etc.

G. Configuration Management Concepts

Valid issues need to be addressed through change. The
concepts required for management of change and for
ensuring that the safety requirements continue to be satisfied
as the system evolves are captured in the Configuration
Management Concepts package. Demonstration of accurate
change management is necessary for compliance with IEC
61508. The central concept here is a controlled item, which
is any item for which meaningful increments of change can
be documented. In our model, blocks, artifacts and PESs are
controlled items. Each controlled item may have some
rationale to justify its existence, and assumptions to describe
constraints or conditions about the item. Assumptions and
rationale are further explained in Section III.H. Changes to
controlled items are made in response to issues, as discussed
earlier, and can be justified by rationale.

H. Justification Concepts

System development entails various decisions which
need to be justified by reasoning and based on assumptions
about the domain and the artifacts. The basic concepts to
enable justification are provided in the Justification Concepts
package. There are two concepts here, assumption and
rationale. An assumption is a premise that is not under the
control of the system of interest, and is accepted as true. A
rationale is the reason that explains the existence of a
controlled item or a requirement in the system. The rationale
may rely on some of the assumptions that have been made
about the concerned block or artifact. An assumption about a
PES as a whole will have overarching affects whereas
assumptions regarding a particular block may affect how it is
designed and implemented. In safety-critical systems,
assumptions play a key role. In particular, most statements
about the safety of a system are tied to the assumptions made
about the environment where the system will function [5].

I. Guidance Concepts

Many aspects of development are influenced by guidance
from external resources. For example, a sector-specific
standard or a recommended practice may mandate certain
requirements that must be fulfilled by the PES; or the
implementation source code may be expected to be based on
a certain coding standard. Such external resources are
captured using the Guidance Concepts package. The
guidance package describes the various sources of advice
and recommendations used throughout development. A
standard provides formal recommendations on engineering
or technical criteria, methods, processes and practices and
can be either general such as IEC 61508 or sector-specific
such as ISO 17894 [12] that provides principles for the
development and use of PESs in marine applications . The
recommended practice on the other hand may be much more
prescriptive and specific, providing sound practices and
guidance for the achievement of a particular objective. Either
may be used as a measure of compliance.

J. Domain-Specific Concepts

Finally, the Domain-Specific Concepts package contains
enumeration types that can be customized by defining
specific enumeration values for a given context. The
concepts behind the enumerations have already been
described in the other package descriptions. In Figure 4, we
show examples of the kinds of values that can be used for
each enumeration type.

IV. ILLUSTRATING THE CHAIN OF EVIDENCE

The conceptual model described in the previous section

gives an overall view of the safety evidence pieces and the

interconnections that need to be established between these

pieces during the lifecycle of a safety-critical system.
Figure 5 shows a partial instantiation of the concepts in

the model and their links. The hazard shown is the breakout
of fire on an oil platform. The hazardous element involved is
the combustible gas on the platform. The initiating
mechanism leading to a fire breakout is the presence of a gas

7

Figure 4: Example Values for Domain-Specific Enumerations

Figure 5: Example Evidence Information

leak and a spark in the vicinity of the leak. The hazard is

identified during a hazard analysis activity and documented

in a hazard log. For every hazard, a risk analysis activity is

conducted and a report indicating the risks to mitigate is

created. Two of the potential risks that such a fire can pose

are damage to the platform and loss of life.

Based upon the hazard, safety requirements are derived

and allocated to the various risk mitigation facilities. One

such facility is the fire & gas protection system. The safety

requirement allocated to this PES is that it must detect a fire

breakout within two seconds of occurrence. A safety

requirement for the software system is then derived for the

software system that controls the PES, stating that the time

from the actual detection of fire from the sensor until an

alarm (visual and/or aural) is presented on the operator

control panel is less than one second. This requirement is

further partitioned between the control software and the heat

sensor driver. The requirement allocated to the sensor driver

is that it must keep the delay between two consecutive polls

of the sensor to less than 200 milliseconds.

In this example, we can see the relationships between the

different blocks, the requirements associated with each

block, the derivation of lower-level requirements from

higher-level requirements, the root hazard and associated

risks, and the lifecycle activities. The example could have

been expanded to show a variety of other activities (e.g.,

design and testing) and artifacts (e.g., design specifications,

test specifications and test results). All this information

needs to be accounted for when a software safety case is

being developed.

V. SPECIALIZATION OF THE CONCEPTUAL MODEL

IEC 61508 is a generic standard and can be implemented
and augmented in a variety of ways depending on contextual
factors, including the characteristics of a particular
application domain, and the development process and
technologies to be used. Specialization is an important
prerequisite for developing a coherent, IEC 61508-compliant
safety information model, which can guide data collection
and support analysis in a particular development context.
The generic conceptual model we developed in Section III
provides an intuitive and technically rigorous basis for
describing specializations. As an example, we show how to
define a special type of the Diagram artifact (see Section
III.E), and use this specialized diagram for expressing
Assumptions (see Section III.H).

In a safety-critical system, it is important to state the
assumptions (e.g., about the operating environment) in a way
that permits systematic analysis. This helps ensure that we
can assess the validity of requirements, specifications, and
design decisions and to verify that there are no conflicts
between the required system properties [5]. A powerful and
flexible notation for formalizing assumptions is the
Parametric Diagram in the SysML modeling language [9].
This type of diagram is used for representing constraints on a
system‟s property values. In Figure 6, we have shown an
example parametric diagram.

Figure 6: Parametric Diagram for an Assumption

 The diagram describes a domain assumption about the

physical dimensions of the plates that are fed to a hydraulic
forging press. The assumption states that the height of a plate
is no larger than ¼ of the length of the feed belt that conveys
the plate to the press, and that the width of a plate is not
larger than ¾ of the width of the feed belt. The former
constraint is to ensure that the plate is small enough to be
picked up by the robot arm that places the plate on the press
table, and the latter – to ensure that plates would not fall off
the edges of the feed belt while in motion.

If we want to develop a specialized standard or
recommended practice requiring that a parametric diagram
should be constructed for every assumption, our conceptual
model will be extended as follows: A Parametric Diagram is
defined as a subclass of Diagram and an association is

8

established between Assumption and Parametric Diagram.
This is depicted in Figure 7.

Figure 7: A Specialization of the Generic Model

In general, specialization refers to the extensions one

makes to the conceptual model of Figure 2 in order to adapt

it to a particular context. The extensions can be made by

adding new classes (or subclasses), associations, attributes,

and constraints. The example in Figure 7 already shows the

addition of new (sub)classes and associations to the model.

Below, we illustrate some simple extensions through new

attributes and constraints. The model in Figure 2 is

intentionally abstract, thus only providing the attributes that

are fundamental to understanding the concepts. Any

specialization of the model into an applicable, context-

specific information model necessarily requires many new

attributes to be defined. For example, most concepts need a

universal identifier (uid), a name, and a description attribute.

Constraints will be used frequently in the specializations of

the model as well. For example, IEC 61508 highly

recommends that module testing (see Figure 3) for safety

integrity level 4 (SIL 4) should utilize probabilistic testing.

If the certification body applying the standard wants to

make this mandatory, it may choose to add the following

OCL constraint to the model in Figure 2:
context SafetyIntegrityLevel

inv:

self.forAll(sil.value = 4 implies

sil.SafetyRequirement.Block->forAll(

 b.SoftwareModuleTestResultReport.output.

 Technique->exists(t.name = "Probabilistic Testing"))

The above constraint states that a module testing activity

associated with a block that has SIL 4 requirements must

utilize the probabilistic testing technique (we have assumed

that each technique is identified by a name attribute).

A full specialization of our conceptual model will involve

numerous extensions like the ones illustrated above. Once a

full adaptation of our model to a particular context is arrived

at, the resulting model can be used to drive data collection

during the development process and to automate some of the

most important and yet laborious tasks in the software

certification process, as we discuss in the next section.

VI. APPLICATIONS

Having described our conceptual model and how it can

be specialized, we now discuss some important ways in

which our conceptual model or its specializations can

facilitate software certification.

A. Aid to Understanding and Communicating IEC 61508

At the most basic level, the conceptual model we have

developed helps improve understanding and communication

of the IEC 61508 standard. Interpreting a standard like IEC

61508 is a daunting task for a software supplier. Even when

attempted, the interpretation of a supplier is likely to be

significantly different from that of the certifier. An issue we

have noticed through our interactions with safety-critical

software suppliers is that it is not always clear to them what

documents and information, and at which level of detail,

they are expected to provide in support of safety.

Furthermore, it is frequently unclear what the scope of each

document should be, and how these documents should be

linked to hazards, requirements, activities, and so on. These

issues typically lead to several unnecessary iterations to

refine and complete certification documents as well as many

misunderstandings that could have been avoided.

A concise but precise graphical representation of the

core concepts in the standard such as the one we have

developed here is a valuable and appealing aid for

understanding and using the standard. In particular, the

representation can be used by the certifiers to convey their

expectations and to clarify the information requirements for

demonstrating compliance.

B. A Contract between Suppliers and Certifiers

After our conceptual model has been specialized to a

particular context, it can be viewed as a formal contract

between the supplier and the certifier. Specifically, from the

specialized conceptual model, the supplier can determine

what evidence the certifier expects, and can accordingly

plan its data collection strategy. In the absence of such a

contract, the supplier will not know a priori what evidence

needs to be collected. This often leads to the supplier failing

to record important information during the development

process, and having to incur significant costs to recover the

information later on. Having such a contract is also

advantageous to the certifier, because it permits them to

assume that the safety evidence provided to them has certain

content and structure.

Hence, the certifier can optimize its safety assessment

procedures according to the content and structure mandated

by the contract. For instance, the specialization example we

gave in Section V would bind the supplier to use a SysML

parametric diagram for expressing assumptions. Hence, the

supplier would know exactly how to express and record

assumptions during development and the certifier would

know exactly what they can expect during assessment and

possibly build supporting analysis tools to analyze the

consistency and completeness of assumptions.

Finally, the existence of a formal contract for safety

evidence means that certifiers and suppliers may define a

common language for the electronic interchange of data, for

example based on XML. This offers an opportunity for

automation of some laborious certification tasks, as we are

going to describe below in Sections VI.C and VI.D.

C. Automatic Safety Report Generation

Our conceptual model provides an abstract structure for

the organization of software safety information. Once

9

tailored to a particular context through specialization, the

resulting concrete structure can be used as the basis for a

repository for storing development artifacts, process

knowledge, hazard analysis data, safety audits, etc. This

repository can be queried automatically for safety-relevant

information, and the results then assembled into safety

reports. For example, the links in Figure 5 can be traversed

from the hazard to all the related elements, and a structured

document can be generated to facilitate the verification of

all the safety evidence related to the hazard. Modern model-

driven technologies already enable the development of such

infrastructure.

The main traceability requirement for generation of

safety reports has to do with how software development

artifacts (e.g., software requirements, architecture, design,

and tests) are linked to the higher-level safety concepts such

as hazards, environmental and domain assumptions, and

overall safety requirements. Establishing this traceability is

a key issue that one must consider when the conceptual

model is being specialized to a given context and the

specific artifacts to be used in that context are being defined.

We believe that using Model Driven Engineering (MDE)

will facilitate the definition and exploitation of the

traceability information that can be used for automatic

software safety report generation. To illustrate this point, let

us revisit the example we gave in Section V. The parametric

diagram in Figure 6 not only alleviates any potential

ambiguities about the textual description of the assumption,

but also yields precise traceability links between the

assumption and the involved system blocks, namely Plate,

Feedbelt, and Hydraulic Press Domain (a super block).

Hence, the chain of evidence is always maintained in a

precise manner and can thus be queried automatically.

In contrast, if text-based documents are used, traceability

cannot be strictly enforced. Further, the semantics of any

traceability links established in text would not be machine-

interpretable. As a result, the information cannot be

precisely queried, without the danger of following false

links or failing to follow the correct ones.

D. Automation for Rule Checking

An interesting use of our conceptual model is to define

consistency and completeness rules based on the concepts in

the model (or a specialization thereof) and then check these

rules against the information in an evidence repository (see

Section VI.C where we discussed such a repository). Here,

we give two simple rules that can be articulated directly

over the generic conceptual model of Figure 2:

 From the model, we see that each activity requires

certain competence, and that each agent possesses

certain competence. This coupled with the fact that

competence itself can be defined in terms of

encompassing other competence, can be used to define

a rule for checking that an agent responsible for

carrying out a given activity has the necessary

competence to do so.

 Another example would be checking that each safety

requirement derived from a hazard has indeed been

allocated to a PES. This helps ensure that all derived

safety requirements have been dealt with appropriately

by some system component.

To fully realize this notion of automated rule checking,

we need to have in place a specialized conceptual model

based on which all the rules of interest can be articulated.

We further need some type of rule checking engine that

allows both the definition of the rules in some language and

the verification of the rules written in that language against

the development information of a system. For example,

MDE technologies such as the Eclipse Modeling

Framework [13] and its associated OCL engine [11] readily

provide such capabilities. This ability is useful to both the

suppliers and the certifiers of safety-critical systems. From

the perspective of the supplier, the rules can be used to

ensure that the system has been built according to some

industry-specific standard or recommended practice, or even

to perform impact analyses whereby specific rules could be

defined to predict the impact of changes based on

dependency information. From the perspective of the

certifier, the rules could be defined such that the supplier

provides the data from the model to the certifiers, according

to some predefined interchange format, and the certifiers

have some proprietary rules defined in order to partially

check if the supplied information complies with its standard

or recommended practice. The checking of whether the

supplier is using competent agents to perform certain

activities could be one such rule.

VII. MODEL VALIDATION

Our conceptual model is based on a systematic analysis of

the IEC 61508 standard and on the authors‟ experience. To

validate the usefulness of the model, we participated in a

number of safety-certification meetings for a safety

monitoring system in the maritime industry. From the issues

raised by the certification body during these meetings, we

randomly selected 30 and analyzed whether the information

captured in our model could have either prevented or helped

to address the issues. These issues could be classified in

seven categories as shown in Table 1. Categories in the first

five rows could be addressed by information collected based

on the conceptual model. These categories represent 56% of

the issues (17/30). The last two categories correspond to

completeness issues and argumentation flaws and are not

directly addressed by our model.
TABLE 1: MODEL VALIDATION FINDINGS

Type of Issue Count

Missing traceability links 2

Missing requirement type e.g. performance, availability 2

Missing mode of operation for requirement 3

Unaddressed certifier expectations (e.g. use of particular

notation or technique)
3

Unclear delineation of system blocks and interfaces 7

Unstated requirements, procedures , assumptions 6

Argumentation problems (redundancy, ambiguity, and

reasoning issues)
7

10

VIII. RELATED WORK

Systematic development of safety cases (and more
generally, dependability cases) is an important topic which is
gaining increased attention in the dependability literature [2,
3, 5]. Kelly [1] provides an interesting and widely-accepted
view on what a safety case is made up of. It divides a safety
case into three parts: the safety requirements (or objectives),
the argumentation, and the supporting evidence. The safety
requirements are developed through various kinds of safety
analyses (e.g., Fault Tree Analysis, and Failure Modes and
Effects Analysis) and have been addressed extensively [14].
Building the argumentation in a safety case has been the
focus of a lot of research in the past 15 years, e.g. [1, 3, 6,
15-17], with the Goal Structuring Notation (GSN) [1] as the
basis for most of the work. However, there has been little
research on providing a detailed characterization of the
evidence underlying a safety case. What we presented in this
paper is aimed to fill this gap for the software aspects of
safety-critical systems.

The need for more effective collection and linking of
safety evidence information has been noted before. In
particular, Lewis [18] mentions the existence of a web of
safety-relevant information covering not only the
relationships between hazards and safety requirements but
also between the operator of the system and operating
procedures, the system functions and hardware elements, the
system components and software tests, and so on. The
conceptual model we developed in this paper provides a
precise characterization of this web of information based on
the IEC 61508 standard.

The sheer size and complexity of the documents
comprising a safety case has been a constant challenge for
safety assessors. The authors in [18, 19] propose the notion
of electronic safety case, so that assessors can dynamically
query a safety case for the information they need, instead of
having to go through hundreds of pages of physical
documents to find this information. As we discussed in
Section VI.C, our conceptual model, when specialized to a
particular context yields an information model for such
electronic safety cases.

The authors in [20, 21] provide partial conceptualizations
of IEC 61508, but they adopt a process-oriented view of the
standard and thus focus on the processes involved when
using the standard and assessing safety. The conceptual
model we developed in this paper takes a much more holistic
approach and captures all the key information concepts
necessary to show compliance to the standard.

IX. CONCLUSIONS

In this paper, we developed an extensible conceptual

model, based on the IEC 61508 standard, to characterize the

chain of safety evidence that underlies safety arguments

about software. We showed through some examples how

our conceptual model can be specialized according to the

needs of a particular context and described some important

ways in which our model can facilitate software

certification. An analysis of a random sample of issues

raised in certification meetings showed that a majority of

them would have been prevented or addressed by

information collected according to our model. Applications

of our model include: the precise specification of safety-

relevant information requirements for system suppliers;

defining a data model for developing a certification

repository; the implementation of automatic, safety-relevant

constraint verification (e.g., compliance with standard,

recommended practice); and the automated generation of

certification reports on demand. A detailed investigation of

these activities and the development of appropriate tools to

support them form facets of our future work.

X. REFERENCES

[1] T. P. Kelly, Arguing Safety - A Systematic Approach to Managing Safety

Cases, PhD Thesis, University of York, 1998

[2] S. P. Wilson, T. P. Kelly, and J. A. McDermid, "Safety Case

Development: Current Practice, Future Prospects," in Safety and

Reliability of Software Based Systems: 12th Annual CSR Workshop,

1995.

[3] P. Bishop and R. Bloomfield, "A Methodology for Safety Case

Development," Proceedings of the 6th Safety-critical Systems

Symposium, 1998.

[4] T. Kelly and R. Weaver, "The goal structuring notation – a safety

argument notation," Proceedings of the Dependable Systems and

Networks - Workshop on Assurance Cases, 2004.

[5] D. Jackson, M. Thomas, and L. I. Millett, Software for Dependable

Systems - Sufficient Evidence?: The National Academies Press, 2007.

[6] J. A. McDermid, "Support for Safety cases and safety arguments using

sam.," Reliability Engineering and System Safety, vol. 43, pp. 111-127,

1994.

[7] "Functional Safety of Electrical / Electronic / Programmable Electronic

Safety-related Systems (IEC 61508)," International Electrotechnical

Commission: International Electrotechnical Commission, 2005.

[8] Rules for Classification of Ships, http://www.dnv.com/industry/maritime/

rulesregulations/dnvrules/rulesclassships/, 2009

[9] J. Holt and S. Perry, SysML for Systems Engineering: Institute of

Engineering and Technology, 2008.

[10] Lionel Briand, Thierry Coq, Shiva Nejati, Rajwinder Kaur Panesar-

Walawege, and M. Sabetzadeh, Characterizing the Chain of Evidence for

Software Safety Cases: A Conceptual Model Based on the IEC 61508

Standard., http://modelme.simula.no/, 2009

[11] MDT/OCL, http://wiki.eclipse.org/MDT/OCL, 2009

[12] "Ships and marine technology -- Computer applications -- General

principles for the development and use of programmable electronic

systems in marine applications (ISO 17894)," International Organization

for Standardization, 2005.

[13] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and E. Merks,

EMF: Eclipse Modeling Framework, 2nd ed.: Addison-Wesley, 2008.

[14] C. A. Ericson, Hazard Analysis Techniques for System Safety: John

Wiley & Sons, 2005.

[15] T. Kelly and J. McDermid, "Safety Case Patterns – Reusing Successful

Arguments," Colloquium on Understanding Patterns and Their

Application to Systems Engineering, 1998.

[16] M. Huhn and A. Zechner, "Analysing Dependability Case Arguments

using Quality Models," Proceedings of the 28th International Conference

on Computer Safety, Reliability, and Security, 2009.

[17] G. Despotou, D. Kolovos, R. F. Paige, and T. Kelly, "Defining a

Framework for the Development and Management of Dependability

Cases," Proceedings of 26th International System Safety Conference,

2008.

[18] R. Lewis, "Safety Case Development as an Information Model," in

Safety-Critical Systems: Problems, Process and Practice, Proceedings of

the Seventeenth Safety-Critical Systems Symposium, 2009.

[19] T. Cockram and B. Lockwood, "Electronic Safety Case: Challenges and

Opportunities," Safety-Critical Systems, Current Issues, techniques and

standards, 2003.

[20] P. W. H. Chung, L. Y. C. Cheung, and C. H. C. Machin, "Compliance

Flow – Managing the compliance of dynamic and complex processes,"

Knowledge-Based Systems, vol. 21, pp. 332-354, 2008.

[21] Y. Papadopoulos and J. A. McDermid, "A Harmonised Model for Safety

Assessment and Certification of Safety-Critical Systems in the

Transportation Industries," Requirements Engineering, vol. 3, pp. 143-

149, 1998.

http://modelme.simula.no/
http://wiki.eclipse.org/MDT/OCL

