[simula . research laboratory]

Software Development Effort Estimation: What do We Know About It?

PGS, Wroclaw, Nov. 2009

Prof. Magne Jørgensen Simula Research Laboratory & University of Oslo

About me

- Scientific researcher at Simula Research Laboratory, Oslo, Norway
 - prof. at Univ. of Oslo
 - Research reports can (free of charge) be downloaded from: simula.no/research/engineering/projects/best
 - Extensive industrial experience as programmer, project manager, process improvement managers and general manager.
- Conduct advisory work and seminars for software companies.

Last time I was here

- Many studies in one ...
- · Main topics:
 - Anchoring effects
 - Cultural effects
- Participants: 373 developers from Romania, Ukraine, Polen, Nepal, India and Vietnam

3

Estimation Task 1

- Low Anchor Group: Did you on average write more or less than 1 Line of Code per work-hours in your last project?
- High Anchor Group: Did you on average write more or less than 200 Lines of Code per work-hours in your last project?
- Then, on the next page, the developers from both groups were asked to estimate the number of lines of code they wrote in their last project.

Estimation Task 2

- One group received the description that the development task to be estimated was a "minor extension" and one group the description that the task to be estimated constituted "new functionality".
- The development task to be estimated and the rest of the instructions were exactly the same.

Estimation Task 3

- One group received a specification of software with mainly effort-relevant information and one group that received the same effort-relevant information, but in addition received much information that had no intended relevance for the development effort.
- The actual irrelevance of the information for the purpose of effort estimation was confirmed by an independent, experienced software developer.

Group	Estimation Task 1			Estimation Task 2			Estimation Task 3		
	Low anch.	High anch.	Diff	"Minor ext."	"New func."	Diff	Contro 1	Irr. Inf.	Diff
India	25	150	125***	63	80	17	30	58	28*
Nepal	11	120	109***	50	152	102*	80	90	10
Poland	12	100	88***	102	110	8	80	100	20
Romania	10	70	60***	95	100	5	50	70	20
Ukraine	10	100	90***	120	120	0	60	200	140*
Vietnam	25	100	75***	90	120	30	100	100	0

Level of "interdependence" may be important

Instrument		Estimation Task 1			Estimation Task 2			Estimation Task 3		
		Low anc h.	High anch.	Diff.	Min. ext.	New func.	Diff.	Contr.	Irr. inf.	Diff.
Interdep endence	High	15	100	85***	70	100	30**	50	100	50**
	Low	15	105	85***	120	120	0	80	80	0

Higher interdependence (higher context-dependency)

→ Lower estimates and easier biased

Same phenomenon found on impact from optical illusions?

Are Agile Methods Better?

- Question: How much do you agree in: "Use of agile methods has caused a better performance when looking at the combination of productivity and user satisfaction."
- Study: Presentation of randomly generated data sets.
- Result: Bias in favor of agile methods (see figure).
 - The agreement in the claim depended on previous belief in agile methods.
 - Previous belief: Agile methods are better
 → 20 of 32 agreed
 - Previous belief: Agile methods are not better
 → 1 of 7 agreed
 - Previous belief: Neutral → neutral answers
- The real-life bias is probably much stronger:
 - Lack of objective measurement. More bias in favor of the preferred method.
 - More variables of importance, i.e., more complex interpretation and more space for wishful interpretation.

80% of software developers are "better than average", only 2% worse

17

"Almost sure" (99% or 90% confident) of being inside a min-max interval corresponds to a "hit rate" of about 70% ...

Task: What is the number of inhabitants in Norway

Minimum

Maximum

Be 99% confident to include the correct number in the min-max interval!

19

Confusing Estimation Terminology

Is the estimate: i) most likely effort (mode), ii) 50% estimate (median), iii) most optimistic effort, iv) ideal effort, v) 70% estimate, vi) planned effort, vii) budgeted effort, viii) priced effort, ix) effort used as input to the bid, or, something else?

Recommendation: Use X% estimates

- Always inform about the type of estimate that you are providing (or receiving)
 - 50% estimate = just as likely to observe over- and under-run
 - 80% estimate = most likely effort + a risk buffer that makes it unlikely (only 20% likely) that there will be overruns. Could for example be the budget or the basis for the price to client.
 - 30% estimate = a close to best case estimate of the effort. Could for example be the bid in a situation where there are long term benefits of a client relationship.
- A method for the assessment of the likelihoods, (e.g., 80% likely not to exceed") can be downloaded from our website.

21

Characteristics of the Estimation Error

- Most large scale surveys of software projects finds an average estimation overrun (over-optimism) of about 30%.
- · No cultural differences.
- No improvement over time.
- Small tasks are over-estimated, large tasks underestimated (Vierordt's law)
- Unexpected or forgotten activities is the main error reason in large projects.
- High level of inconsistency.
- No improvement from use of formal estimation models, such as COCOMO and Function Points.

BUT, what is "Estimation Error"

- · Measure of difference between actual and estimated effort
 - Requires a precise and consistent usage of terms and good data collection methods to be meaningful.
- One thing is for sure, estimates are hardly ever "correct"
 - A 50% estimate is expected to be exceeded 50% of the time.
 - Even when estimates are based on good estimation processes and extensive historical data we should expect estimation errors.
 - What we want to avoid are:
 - Systematic under or over-estimation
 - Overconfidence in accuracy of estimate (→underestimation of risk →poor planning and budgeting)
 - We should learn to live with estimation errors (although try to reduce it) by better assessment and inclusion of estimation uncertainty.
- Question: It turns out not to be a good idea to give project managers bonuses based on low estimation error. Why not?

23

[simula . research laboratory]

Reasons for Estimation Error (and how to improve the processes)

Motivation

- Strong connection between high motivation for low use of effort ("commitment") and over-optimism
- Optimism can have a positive impact on performance, BUT
 - Only for a short period of time in the beginning.
 - It's easy to over-evaluate the effect.

25

Motivation (cognitive dissonance)

- A good self-evaluation is beneficial
 - For yourself
 - Because it's used an performance indicator by others
- Low effort estimates = high performance = better (but less realistic) self-evaluation.
 - Otherwise, we have a cognitive dissonance, i.e., a difference between what we estimate and who we want to be.

Cognitive processes

- Planning (scenarios of the future) makes us more optimistic than looking back (use of historical data).
- Illusion of control sometimes very strong
 - Perhaps the most important reason for overoptimism?
- Over-optimisms increases with "psychological distance"

27

Bidding round format frequently leads to over-optimism

- The winner's curse
- Bidding anchors
- Wishful thinking (future opportunities)

Ten Recommendations:

- Educate a "cost engineer" responsible for checklists and collection of experience/historical data.
- 2. Use separate processes (and people?) for estimation, planning and bidding.
- 3. Avoid irrelevant information (prepare information material before given to the estimators)
- 4. Use historical data when estimating and assessing uncertainty
- Ask for estimation justification based on historical data. Require very good arguments if the estimates are based on assumption of much less effort compared to similar projects.
- 6. Do not assume that you have improved much from previous projects.
- 7. When there are no relevant historical data available, try to find experts with relevant experience and historical data outside the organizations.
- 8. Do not let the most skilled estimators estimate the effort of junior developers. Use instead medium skilled developers.
- 9. If a person benefits from low effort estimates (really wants to start the project etc.), find another person to estimate the effort.
- 10. Combine estimates from different sources. Use a Delphi-like process (e.g., Planning Poker) to combine these estimates.