Perceived Productivity Threats in Large Agile Development
Projects

Jo E. Hannay

PREPARE Group, Simula Research Laboratory

Pb. 134, NO-1325 Lysaker, Norway
johannay@simula.no

ABSTRACT

Applying agile methodology in large software development
projects introduces many challenges. For example, one may
expect that the combination of autonomous teams and the
necessity for an overall organizational control structure may
lead to conflicts, and one may expect that Agile’s informal
means of knowledge sharing breaks down as the number of
project participants increases. Such issues may in turn com-
promise the project’s productivity. In order to better un-
derstand potential threats to productivity in large agile de-
velopment projects, we conducted repertory grid interviews
with 13 project members on their perceptions of threats to
productivity. The project was a large software development
project consisting of 11 Scrum teams from three different
subcontractors. The repertory grid sessions produced 100
issues, which were content analyzed into 10 main problem
areas: (1) Restraints on collaboration due to contracts, own-
ership, and culture, (2) Architectural and technical qualities
are given low priority, (3) Conflicts between organizational
control and flexibility, (4) Volatile and late requirements
from external parties, (5) Lack of a shared vision for the end
product, (6) Limited dissemination of functional knowledge,
(7) Excessive dependencies within the system, (8) Overload-
ing of key personnel, (9) Difficulties in maintaining well-
functioning technical environments, (10) Difficulties in coor-
dinating test and deployment with external parties. Using
critical-case reasoning, we claim that projects deploying ag-
ile practices in projects with less favorable conditions than
those enjoyed in the current project, and that are larger and
more complex, are likely to face similar challenges.

Categories and Subject Descriptors

D.2.9.d [Software Engineering]: Management— Produc-
tivity; D.2.9.g [Software Engineering]: Management—
Software process models

Keywords

Agile, Large Development Projects, Practitioners’ Mental
Models, Repertory Grid, Case study

1. INTRODUCTION

Agile software development methodologies are intended as
a set of practices for the timely delivery of software of high
value to its users [12]. The agile approach is a reaction

ESEM’10, September 16—17, 2010 Bolzano-Bozen, Italy
Copyright 2010 ACM 978-1-4503-0039-01/10/09 ...$10.00.

Hans Christian Benestad

PREPARE Group, Simula Research Laboratory

Pb. 134, NO-1325 Lysaker, Norway
benestad@simula.no

against traditional relay-style development with exhaustive
up-front planning and design. Instead, it is argued that
uncertainty and change is inevitable and should therefore
be dealt with rather than avoided. Customer involvement
and collaboration is a key tenet.

In many peoples’ minds, agile approaches are tailored to
small projects (say, less than 20 developers): Large projects
should either not use agile [39, 9] or one should not run
large projects but rather break large projects into smaller
sub-projects [25, 4]. However, with the current global invest-
ment and reliance in IT, for example in the public sector,
large and partially sub-contracted projects seem inevitable
and are likely to increase in number. Further, agile devel-
opment has gained a firm foothold among developers and
also increasingly with management. Thus, recent discussions
have focused on how to reconcile “large” and “complex” with
“agile” [38, 26, 5]. These discussions regard both manage-
ment issues (e.g., command and control versus autonomous
teams) [41, 18, 27, 32, 15, 30, 17] and technical issues (e.g,
architecture in the face of code centeredness) [10, 24].

Several authors have given guidelines on how to scale up
agile projects, e.g, [10, 24]. It is important that such ac-
counts be evaluated and complemented by further empirical
evidence and experience. An immediate source of evidence
is practitioners’ perceptions of what the most challenging
issues are while working in large agile projects, which may
then be systematized and analyzed in a manner that lends
itself to knowledge building [1, 2, 14, 21].

As a case, we followed a large, agile project (Project X)
in the construction phase. A total of 176 people are directly
involved in the project, including 88 developers in 11 Scrum
teams from three sub-contractors. The project is planned
to last for four years and has a budget of approx. EUR
100 million. When the project had been in its construction
phase for about one year, the project managers felt that
there might be glitches in productivity at various locations
in the project. In order to get a clearer picture of possi-
ble threats to the project’s productivity, we conducted con-
cept elicitation sessions with project members. Threats to
productivity is here informally understood as circumstances
that may cause a less than optimal amount of features com-
pleted per unit time. This paper describes the method and
main results of this concept elicitation.

We used the repertory grid technique for concept elici-
tation [13, 20, 40] on 13 project members: two in-house
developers, two product owners, two architects, two test
managers, one project manager for the Development sub-
project, one Scrum team leader, two project owners, and

Release
Retrospect

Vision and Proect
Product Release Release Release R)
Road. etrospect
oadmap
Release . . .
Wi > Sprint >> Sprint >> Sprint

i

Sprint

Pkt Daily Work

\/
~—

Daily Work

\/

. Sprint
> Da]ly Work >

Daily Stand-
EE

Task Task Task

Progress
Completion Completion Completion Update

Figure 1: Project lifecycle (adapted from [38])

the Project Manager. The interviews were analyzed both
individually and on an aggregated basis. This gave a pic-
ture of the main challenges, their relative importance, and
their tentative causal relationships.

Section 2 describes the case, Section 3 describes our re-
search method for the study, Section 4 summarizes the find-
ings of the study, and Section 5 discusses the applicability
of results and threats to validity. Section 6 concludes.

2. THE CASE

Project X was initiated to (re)develop a large system com-
missioned by a governmental body for administering pen-
sions and loans. New political reforms and legislation neces-
sitated major reorganizations of case procedures. Three soft-
ware suppliers are involved: The customer has five in-house
Scrum teams (40 developers), and two external consultancy
houses have six teams (supplying 48 developers between
them). In addition, there is one cross-cutting architectural
team, one cross-cutting test team, and one development
environment team supporting the 11 Scrum teams. The
choice of following agile development practices was taken
on grounds that requirements were guaranteed to change
during the project’s lifetime due to political reforms that
were not fully decided upon yet, and whose indirect effects
through other governmental bodies were not yet clear.

The project’s lifecycle can be modeled by the “agile frac-
tal” [38] in Figure 1. Iterations (white boxes) permeate the
project at multiple levels of abstraction. At each level, iter-
ations are preceded by a planning phase and proceeded by
a retrospective phase (gray boxes).

At the top level, the project progresses in terms of releases
(mainly three a year). The project’s initial planning stage
(to establish the vision and product road map) was con-
ducted over a six-month period. However, the initial road
map was perceived as difficult to follow by the product own-
ers, and also, the chief architect left the project along with
key knowledge. Therefore, the road map was revised about
a year into the project. The outcome of this revision was
master product backlog with a total of about 300 high level
items for the entire project. Each item comes with a priority
(value for customer) and a relative estimate (story points).
The construction phase is planned to last for three years.

At the next level, a release progresses in terms of five to
six sprints. At the end of a release, the evolved system is put
into production. The input to a release is a release backlog
which is a designated portion of the master product backlog
to be realized in the release. A release is planned as follows:

At about six weeks prior to the first sprint, key stakeholders
meet to refine and develop a design specification of the items
in the release backlog. Then, the release backlog is split into
three subcontractor-specific backlogs. The subcontractors
estimate their backlog items using their preferred estima-
tion method and establish an hours per story-point ratio
(120 man-hours per story point, say). This ratio is then
used in negotiations with project management to determine
a target cost for the release with a 50-50 shared responsi-
bility agreement for over-/underruns. The parties use the
target cost-based [33] PS2000 contract [34].

At the lowest level, the input to a sprint is a sprint backlog
that consists of detailed tasks derived from the subcontractor-
specific backlog items that are to be realized in the sprint.
Sprints are set to last for three weeks.

3. RESEARCH METHOD

The study followed principles for applying scientific methods
to important industrial challenges in a more flexible manner
than in traditional large-scale research programs:

1. Relevant, concrete and general interest: The research ob-
jective is initiated by a desire to solve an important con-
crete challenge in a software development company. The
challenge is perceived to be of interest to the software
industry in general.

2. Practitioners’ theories: The research questions are de-
fined and refined by consulting (possibly by eliciting the
mental models of) practitioners working on the problem.

3. Scientific-strength research methodology: The research ques-
tions are answered by applying sound scientific research
methods, if necessary, with the help of researchers’ ex-
pertise on such methods.

Principle 1 is inspired by [19, 28]. In our setting, the
research was initiated by a desire from Project X to discover
productivity threats in their project, and secondly, by the
large general interest in the benefits and challenges of large
agile development projects. Our research objective in the
specific context of the project thus became:

Research objective: To lay out and systematize
knowledge and perceptions on the most salient
threats to productivity in Project X.

By applying critical case reasoning [45], we claim that the
results have applicability beyond the immediate case con-
text: Project X has several critical characteristics that are
expected to work in favor of effective software development
in general and agile development in particular [42, 7]. First,
efforts have been made to attract the best people on the
market in all roles of the project. These efforts were facili-
tated by the fact that the project is a prestige project within
the national IT-development industry. Second, the project’s
development strategy has been formally committed to at all
organizational levels. Third, the project receives consider-
able attention and resources from business experts and end
users. Fourth, developer teams and business experts are
co-located with the required support functions and infras-
tructure. Hence, threats to productivity that we find in the
context of this project are also likely to surface in compara-
ble projects where the above four conditions are equally or
less favorable. We elaborate on this reasoning in Section 5.

The impetus of Principle 2 comes from work by, among
others, Argyris, Gigerenzer, Jarvis, and Schén [1, 2, 14, 21],
and is based on the view that practitioners hold valuable
implicit and explicit knowledge of their work domain that
should give input to scientific knowledge. Since practitioner
knowledge is often tacit, various methods for eliciting such
tacit knowledge may be employed.

Principle 3 was met by using the repertory grid technique
(see Section 3.1 below). This is a semi-structured interview
technique which has had numerous applications in other do-
mains of research [40], such as marketing, quality control,
work training, and software engineering [8, 3, 35]. For soft-
ware engineering practice, the technique has also been pro-
posed for e.g., requirements elicitation [31]. The idea of
practitioner’s theories (Principle 2) permeates the repertory
grid technique. The technique is based on Kelly’s personal
construct theory [22, 23] which implies that people try to
understand the world and their place in it by constantly
testing hypotheses about the world. The resulting construct
system reflects a person’s current understanding or beliefs
and will change over time. In our context, this translates
to eliciting a software professional’s perceptions regarding
threats to productivity in Project X. The technique allows
one to gather salient information in a short time compared
to other relevant expert elicitation techniques. This was es-
sential, since Project X was in a particularly hectic phase.

3.1 The Repertory Grid Technique

The repertory grid technique’s main methodological objec-
tive is to elicit the interviewee’s current perception of a topic.
The interviewee determines the salient concepts of the inter-
view as well as a value system on which to rate the salient
concepts relatively to each other. We followed the guide-
lines for the technique described in [13, 20]. The key parts
of a repertory grid session are the topic, the elements, the
constructs, and the grid, as explained in the sections below.

The interviews took place during November and Decem-
ber 2009, and were conducted by the two authors at Project
X’s premises. The interviews lasted from 1 to 2 hours. All
interviews were audio recorded for the purpose of subsequent
clarifications. Anonymity was guaranteed. The interview
session began by the interviewer briefly introducing himself,
the field of empirical software engineering, and the ideas be-
hind evidence-based practice. The interviewees were then
asked to talk informally for 3-5 minutes about their role in

Project X and to present any initial thoughts on productiv-
ity threats in the project. The interviews then moved on to
describing the topic in a more concise manner, eliciting the
elements, the constructs, and the grid.

3.1.1 Topic

The topic in a repertory grid study forms the domain of in-
terest in which the interviewee’s personal constructs are to
be elicited. The overall topic for the study was presented as
“obstacles to productivity in large, agile software projects”,
where “productivity” was to be understood informally as
“circumstances that may cause a less than optimal amount
of completed features per unit time in the project”.

3.1.2 Elements

The salient concepts are the first things to be elicited in a
repertory grid session, and are called elements. The elements
were elicited by asking the interviewees to contemplate

“your personal opinion on concrete events, prob-
lems, circumstances that may have compromised,
or might compromise productivity in Project X”.

Each interviewee was provided with a set of blank cue cards
and was asked to write keywords for each subject he or she
came up with when thinking about the above. Each cue
card constitutes an element. The interviewee was free to
write down as many elements as he or she liked.

In element elicitation, it often turns out that elements
overlap or subsume other elements. Such elements are prob-
lematic, since the subsequent rating becomes more difficult
for the interviewee [40]. The interviewee was therefore given
the opportunity to merge, split, or rethink elements. Sub-
sequently, the interviewee was asked to pick out the eight
most salient elements that he/she had written down. This
was intended as a quick quality check, while also limiting the
number of elements. The recommended number of elements
is suggested to be between five and 12 in most cases [20]. It
would be possible to limit the number of elements at the out-
set by simply asking for, say, the eight most salient elements
at the start. However, this would require the interviewee to
hold a large number of elements in working memory simul-
taneously, which is cognitively taxing, e.g., [29]. In our ses-
sions, it happened that more than eight elements were kept
if they were perceived as important, and in some cases the
number of elements elicited was less than eight. The result-
ing elements (with explanations) of one of the interviewees
are presented in the first half of Table 1.

3.1.3 Constructs

After the elements have been elicited, the interviewer pools
three elements at a time and asks the interviewee to name a
characteristic of two of them that distinguishes them from
a named characteristic of the third one. This pair of bipo-
lar characteristics goes under the name of a construct. For
example, given the elements Clarification of dependencies,
Multiple roles, and Upfront plans (Table 1), the interviewee
grouped the first two and contrasted them to the third, by
characterizing the first two as Unclear responsibilities, and
the third as Traditional distribution of responsibility. This
gives the bipolar construct Unclear responsibilities — Tradi-
tional distribution of responsibility. Direct opposites, such
as Unclear responsibilities — Clear responsibilities are dis-
couraged, since such constructs typically are self-contained

Table 1: Elements and constructs of one of the interviewees

Elements

1.

2.

Process disagreement: The project feels non-agile at times. Vendors want to work agile, and now we’re suddenly supposed to work waterfall.
Flexibility is compromised.

Non-shippable code from sprints: Three annual main releases with designated test runs and test teams. Testing is inadvertently postponed
from sprints to these main releases, and is therefore not performed satisfactorily en route, resulting in not potentially shippable code. QA sets
in too late and since error fixing has high priority, this then diverts resources from ensuing activities.

Clarification of dependencies: Don’t know what the other teams are doing, and don’t know early enough what dependencies there are.
Ensuing clarification regarding these things steals time from ongoing efforts.

. Multiple roles: Multiple and concurrent roles (e.g., architect, responsible for builds, responsible for DB) leads to context switching that in

itself drains resources. Also, people from the Scrum teams get picked out to contribute in the release teams which have their own separate
runs in parallel.

. Long planning horizon: Often, details are planned for things further into the future, instead of focusing on details in, say, the next sprint.

This comes from the old school were things should be speced out beforehand, but this leads to badly specified user stories.

o

. Bottleneck personnel: Key people are sparse and often not available when needed. They might be involved in other projects.
Upfront plans: Twist toward waterfall model and measurement. New project management introduced “masterplan”. People were a bit put off

by this new model from above. Mismatches between peoples’ perceptions of models is demotivating and gives bad priorities.
8. Development environment: The development environment is often down and is not efficient enough. Demotivating. VDMs lock up. It’s
important to coordinate development efforts, but the templates aren’t good enough.

Constructs

1. Framework — Personal: Organizational aspects of the project versus things experienced by an individual.

2. Method — Resources: The process method (or breaches in method, i.e. in Scrum) versus all types of resource in the project.

3. Project size — Risk aversion: Many teams, obscurity in what we’re doing, and things that are difficult in this large project versus a fear
toward going all agile; one dares not abstain from detailed planning of future events.

4. Procrastination — Mental models: Issues that explicitly or implicitly are put off to later because some other process will deal with it somehow
versus the various process models people in the project have in their minds.

(2B

. Srum/agile — Specification: Method and framework for method versus weakly defined tasks.
Unclear responsibilities — Traditional distribution of responsibility: Many dependencies, loose ends, and multiple roles that make it easy to

think that someone else has the responsibility (ill-defined Scrum autonomies) versus old-fashioned command and control ideas.
7. Feeling productive — Distribution of competence: To feel efficient and motivated versus how knowledge and expertise is distributed.

and do not relate to the rest of the construct system. This
process of construct elicitation is repeated with new sets of
three elements until it is apparent that no essentially new
constructs emerge. The focus is not on eliciting all possible
constructs, but on eliciting sufficiently salient constructs. In
our case, the triads were pooled in a random manner, but it
was ensured that all elements were used approximately the
same number of times, see [13] for further suggestions.

The repertory grid technique is developed to minimize in-
terviewer bias. Nevertheless, the interviewer has a respon-
sibility to guide the interviewee to present constructs that
relate to the research objective. A process known as lad-
dering [13] was performed if constructs needed clarification.
Laddering is the process of going from general constructs to
specific constructs or vice versa according to what is relevant
for the research objective. Another way to guide the inter-
viewee is to introduce the phrase “in terms of” when compar-
ing elements. We asked “what contrasts events/problems A
and B from event/problem C, in terms of how they compro-
mised, or might compromise productivity’. This is meant to
guide the interviewee to present relevant constructs without
the interviewer actually suggesting constructs [13, 40]. All
constructs of one of the interviewees (with explanations) are
presented in the second half of Table 1.

It may be pertinent to provide predefined elements and
constructs [13, 20, 40]. For our study, three constructs were
provided for all interviewees:

1: Not serious — Serious: How serious you perceive a par-
ticular element to be in terms of negative impact on produc-
tivity in Project X.

2: Cause — Consequence: Whether you perceive an ele-
ment to be a cause of further threats to productivity in

Project X (not necessarily captured by the elicited elements)
or whether you perceive it as a consequence of other threats.

3: Fasy to handle — Difficult to handle: How easily you
think an element may be handled or resolved in Project X.

These constructs were provided to translate the intervie-
wees’ perceptions into immediate improvement initiatives:
It makes sense to start with elements that are classified as
Serious, Cause, and Fasy to handle. Supplied constructs
that consist of direct opposites are not considered a prob-
lem since they are not part of the elicited construct systems.

3.1.4 Grid

The last phase in the repertory grid session, is to rate each
element on each of the constructs. The two poles of a
construct, which were written on two separate cards, were
placed at opposite ends of a rating mat laid out on the ta-
ble, with five places (Figure 2). The interviewee was then
asked to place all elements relatively to each other between
the two construct poles, according to how close the intervie-
wee felt an element associated to one or the other pole. In
modern applications of the technique, one normally uses a
5- or 7-point scale [20]. The interviewee was encouraged not
to use the mid-point of the scale as a way out when he/she
was unsure where to put the element or if the element was
not possible to rate on the given construct. Instead, such
elements were left out. During the rating, each interviewee
was encouraged to think aloud. This gives the interviewee
the opportunity to verbalize his or her decisions. Reason-
ing or explaining action (Type 3 verbalization, in Ericsson
and Simon’s terminology [11]), has been shown to increase
performance in decision making, e.g., [6]. Also, the verbal-
izations helped the interviewer understand the often tacit
choices made by the interviewee.

4. FINDINGS

The data from the repertory grid sessions were analyzed per
interviewee, and then the individual results were content
analyzed to gain an overall understanding of the perceptions
regarding productivity in the project.

Figure 2: Rating mat with elements (white) and
bipolar construct (colored).

4.1 Analyses per Interviewee

The responses of a single interviewee may be analyzed in dif-
ferent ways [13, 20, 40]. In our case, we conducted a range of
analyses of the elements and the constructs (cluster analyses,
principle component analyses, map analyses) using WebGrid
(Centre for Person-Computer Studies repgrid.com) which
were fed back to each interviewee. We omit these analyses,
since the main purpose of this paper is to present the aggre-
gated results. The full set of elements and constructs can
be accessed by contacting the authors.

4.2 Aggregated Analyses

In total, 100 elements and 66 constructs were elicited. In
order to summarize and find trends in this information,
we content analyzed the elements into categories of simi-
lar meaning. The constructs helped in understanding the
individual elements, but were not content analyzed.

The content analysis of elements was carried out in an ex-
ploratory inductive manner following guidelines in [20]. All
100 elements were spread out on a table. If two elements
seemed to be related, they were grouped, thus forming an
initial inductively formed category. Other elements might
be added to such a category, or they might form a new cat-
egory. This aggregation process continued until all element
cards were allocated to a category. Both authors performed
this process independently. Inter-rater reliability in this case
concerns agreement on categories that arise and then on how
elements are allocated to categories. Prior to computing
agreement scores, we consulted each other’s categories and
decided which ones corresponded semantically to the other’s
categories. As expected in such inductive approaches [20],
inter-rater agreement was low on the first pass: 50% when
considering both corresponding and non-corresponding cat-
egories and 59% when considering only corresponding cate-
gories. Then, the non-corresponding categories were negoti-
ated upon until a full category set, with agreed-upon names,
was obtained. The remaining discrepancies were discussed
and resolved. To check the reliability of the category set, all
elements were recategorized independently giving an agree-
ment score of 77%, which is acceptable. The ten resulting
categories give rise to the ten problem areas in Table 2, and
are sorted roughly w.r.t. Project X'’s lifecycle.

In the following, we provide for each of the problem areas:

e An elaboration of the problem area and examples of el-
ements, as well as the associated perceived causes and con-
sequences.

e All elements belonging to the problem area, plotted ac-
cording to their ratings on the three supplied constructs.
Each element is labeled with an interviewee identifier (A—M).
It is thus possible to see how widely a problem area is rep-

Table 2: Problem areas.

1: Restraints on collaboration due to contracts, ownership
and culture.

2: Architectural and technical qualities are given low pri-
ority.

3: Conflicts between organizational control and flexibility.
Volatile and late requirements from external parties.
Lack of a shared vision for the end product.

Limited dissemination of functional knowledge.
Excessive dependencies within the system.
Overloading of key personnel.

9: Difficulties in maintaining well-functioning technical en-

vironments.

10: Difficulties in coordinating test and deployment with
external parties.

resented among the interviewees.

e Proposed initial actions toward the problem area based
on the elements that are located in the Serious, Cause, Fasy
to handle segment of the plots. These actions are thus de-
rived from the project’s perceptions of itself.

1: Restraints on collaboration due to contracts, own-
ership and culture. The stakeholders in the project need
to uphold their interests. Such interests are rooted in the
contracts between subcontractors and customer, but pertain
also to the perceived ownership of tasks and competence, as
well as to individuals’ and subcontractors’ views on method-
ology. Often, such interests are not explicitly stated or com-
municated adequately.

These interests constrain how tasks and expertise are dis-
tributed in the development teams, leading to a certain rigid-
ity. Consequences are teams with incomplete competencies,
teams that might run out of tasks, and inter-team commu-
nication that is not as open as it should be. In summary,
these restraints limit process learning and the development
toward common goals.

Figure 3 maps the elements in this problem area relative
to the three supplied constructs. Based on the position of
the elements with regards to this mapping, one may imply
the following starting points for improvement.

1: Maintain a designated backlog of overflow tasks along
with incentives to solve these tasks.

2: Develop routines prior to each sprint for evaluating needs
for particular expertise.

Conseguence

Diverse guality goals D
External QA G \

— Serious
Unde’con'n'ﬁg‘r%}to égdle_

| Casytohandis, o o -Changes give unused capacity F
|| . \ Distribution of product elements F
URallocated resources J

&+ Suboptimal team composition H

A }Pride in product D

Subcontractor split H

No process improvement forum H
Cause

Not 50 serious —
Contractual issues B «

|
Process direction D «
Target cost D«

Figure 3: Map of elements in Problem Area 1.

2: Architectural and technical qualities are given
low priority. The teams encounter problems that might
have been avoided, had there been a stronger focus on ar-
chitectural and technical qualities, both at the start of the
project and throughout the construction phase. The prob-
lems encountered pertain to qualities such as software per-
formance, stability, testability and maintainability.

However, a stronger focus on architectural and technical
qualities is recognized as diametrical to concerns such as
the time pressure of the project, the product owner’s field
of expertise, and the agile focus on value for customer. The
perception is nevertheless, that technical qualities should
receive more attention.

Little time for refactoring K WWriting Fitnesse tests J

Technical debt H4 : « Integration with legacy system C
« Maintaining Fitnesse tests |
Non-optimal code structure J

Consequence
N «Long build times J

o 4 = Low focus on technical qualities J
Low priority on technical gualities H «

- Serious

. Better component naming
Hard to handle ' — Underdesigned system B
T =1 Easyto handle

Wrong focus in p'e-pra_e.c.}. B~ » Fix GUI performance J

Not 50 serious —

Cause

Figure 4: Map of elements in Problem Area 2.

Implied starting points for improvement:

1: Maintain a designated backlog of technical improvement
tasks along with incentives to solve these tasks (one item in
the backlog might be to designate effort to optimize the use
of the test execution tool).

2: Conduct more systematic tests of technical qualities at
the sprint checkpoints.

3: Conflicts between organizational control and flex-
ibility. There are three main conflicts associated with this
problem area: First, the master product backlog (Section 2)
is subjected to early and binding estimates. This conflicts
with the agile practice and perceived need to maintain a
continuing reevaluation of requirements and estimates. Sec-
ond, features, or groups of features, are allocated early to
certain resources in the project. This induces ownership is-
sues and may hinder opportunities to redistribute subtasks
more evenly across teams. Third, at the end of each release,
there is an acceptance test. This diverts attention away
from the sprint tests, resulting in non-shippable code from
the sprints, and in the accumulation of architectural and
technical issues. In short, bounds on flexibility compromises
motivation and optimal allocation of resources to tasks.
Implied starting points for improvement:

1: Make sure to reevaluate whether the master product
backlog elements are necessary and sufficient.

2: Ensure flexibility in prioritizing and allocating tasks.

3: Consider estimates for larger portions of subtasks.

4: Move resources from release testing to sprint testing.

Consequence

Scattered tasks | »
Explain process G » Not so serious !
Too early estimation
Process disagreement A

« Overlap test and planning cycle L

/ =Mew method introduced C
\\ Hard to handle
Easy to handle

Upfront plans « = Scrum gives lack of continuity

« Long, planning horizon A

Scope adjustment before test L « A Serious

»Master plan implies low flexibility M
Cause

« Non-shippable sprint code A
«No overall plan E

Figure 5: Map of elements in Problem Area 3.

4: Volatile and late requirements from external par-
ties. Many of the project’s software requirements depend
on new political reforms. Due to time pressure, the project
needed to start the construction phase before all ramifica-
tions of new legislation were clarified. In addition, the sys-
tem must integrate with other systems across the public
sector, which themselves are under redevelopment. Over-
all, volatile and late requirements introduce uncertainty in
effort estimates, and are perceived to be a direct cause of
delays. For example, personnel capable of translating legis-
lation into software requirements are often overloaded. Al-
though the funding bodies are prepared to cover additional
project costs due to late requirements, project management
finds it challenging and time consuming to produce the doc-
umentation required to release these funds. Project man-
agement also finds it time consuming and unproductive to
defend the original estimates and uncertainty analyses when
queried by external QA auditors hired by funding bodies.

Conseguence

Not so serious - /
Hard to handle

Hit by estimation u"cena\'t\; Ge

A) “=Release of additional funds G
Delayed legislation/regulation G <E2sY 1o hapdle

> Serious
+ Attention from externals E

Cause

1 Undefined requirements B
Estimation under uncertainty E

Figure 6: Map of elements in Problem Area 4.

Implied starting points for improvement:
1: Ensure documentation that links added costs and delays
to pre-agreed risk factors
2: Document and convey the quality of the process that
led to estimates and uncertainty analyses.
3: Reevaluate time scope and level of detail for estimates.

4: Ensure that people with competence on the software
solution participate in estimation.

5: Lack of shared vision for the end product. There is
uncertainty as to the presence of a shared vision of how the
software product will support the business needs. Without
such a shared vision, there are concerns that redundant work

~Delayed legislation/regulations E

Hard to handle

Mot so serious - = Knowing the complete picture D

Understanding the user D« Cbnsequence

= Vigion not communicated E

" Total featura overview lacking F

Cause /
- Serious
Easy to handle

#Lack of shared vision M

Communication of guality goals Dy
Owverview of expert resources M

Figure 7: Map of elements in Problem Area 5.

is being done, that code will have to be withdrawn, and that
the system will eventually not fully satisfy the user’s needs.
Implied starting points for improvement:
1: Clarify how and by whom the overall solution is envi-
sioned.
2: Allocate time to describe and communicate vision.

6: Limited dissemination of functional knowledge.
Knowledge about the legacy system, its users, the depen-
dencies (technical and non-technical) to external systems,
and the overall domain knowledge is perceived as critical
for the developers to receive apt specifications. Concerns
were expressed that the lack of such knowledge impedes
well-designed solutions, and that this had already resulted
in erroneous code. There were concerns that the external
subcontractors possessed insufficient functional knowledge.

« Poor system knowledge gives poor estimates C

Consequence « Demanding acceptance test K

Not so serious -
Hard to handle

: .’_Specification growth |

' vAllocation of domain resources E
Fé’eqi_ﬂq subcontraciors E
- Serious

Detailing user stories rorégg%d Han'c.lle

Cause
18-,-stem knowledge in PM C
Discarded legacy knowledge C
y Bugs trigger noise M
Workflow knowledae G

Figure 8: Map of elements in Problem Area 6.

Implied starting points for improvement:
1: Ensure that the Scrum teams have access to people with
adequate functional knowledge for the tasks at hand.
2: Improve the timing for transferring knowledge from busi-
ness to development.
3: To a greater extent, involve people with rich functional
understanding in the specification of tests.

7: Excessive dependencies within the system. Sub-
contractors and their Scrum teams are responsible for desig-
nated system parts, where partitioning follows both vertical

architectural layers and horizontal sub-domains. Problem
Area 7 refers to dependencies beyond those inherent to the
business domain and those made explicit in the target archi-
tecture. It is perceived as particularly challenging to handle
interdependencies between code that is developed in parallel.
Due to the compressed lead time/effort ratio, a large number
of dependencies must be resolved by developers as part of the
coding activity. Communicating about this steals substan-
tial development time. Due to the priority on lead time and
deployable functionality, focus is not always on minimizing
the technical dependencies being introduced, as discussed
under Problem Area 2. In some cases, expensive correc-
tions to incompatible code parts had to be done, and in a
few cases, teams were unknowingly developing code for the
same features. The problem of interdependencies in newly
developed code has also led to challenges with configuring
integration test environments and test data, as discussed
under Problem Area 9. Some interviewees expressed con-
cerns that project management underestimates the negative
effects of compressing the lead time/effort ratio.

Conseguence

Not so serious - /
Hard to handle Cross-team communication K
/ { Coordination due to dependencies
« Clarification of dependencies A

; »|solation of test data J
| Dupticated activities F

Team interdependencies F
~ Serious

Easy to ha__n'dle
Knowledge of work in other teams | «

Broken builds across Iean‘SCK 4

use « Coordination of development E

<Not co-localized K

Figure 9: Map of elements in Problem Area 7.

Implied starting points for improvement:

1: Identify dependencies between product queue elements
at an early stage of release planning.

2: Clarify the responsibilities for configuring test data.

3: Assess the need for broader knowledge of the business
domain and the solution in different parts of the project.

8: Overloading of key personnel. It has been claimed
that some elements of agile methodology can lead to em-
ployee burnout [43], and that initial productivity gains is
challenging to sustain over time [36]. Examples of such el-
ements are constant pressure on delivering working code,
the expectancy to act socially and share shortcomings and
problems in daily meetings, and the reliance on the project’s
transactive memory, rather than on externalized knowledge
in the form of software system documentation. Problem
Area 8 is related to such claims. In particular, only a very
small group of people in the project deeply understand busi-
ness rules and system requirements, and thoroughly un-
derstand the IT solution. These people experience great
pressure and are perceived by themselves and other project
members as bottlenecks, with a constant backlog in serv-
ing developers with specifications. A large degree of con-
text switching, necessary to serve the 11 teams working on
different sub-domains, is perceived to further decrease the
productivity of key personnel.

k

Key domain resources J
{Imbalance oldinew system knowledge C

« Bottleneck personnel A
Conseguence

Hard to handle

- Serious

Multiple roles A " Resource bottleneck B

Not so serious ~
= Too many roles C

Easy 10' handle

Cause
Multiple roles B -

= Personnel turnover C

Figure 10: Map of elements in Problem Area 8.

Implied starting points for improvement:
1: During release planning, clarify the need for and avail-
ability of key personnel.
2: Allocate key personnel to specific teams while not sac-
rificing flexibility.

9: Difficulties in maintaining well-functioning tech-
nical environments. For small projects, configuring the
developers’ technical environment, such as development tools,
change management systems, build support and automatic
test execution is a relatively well understood task. In Project
X, the system evolves at a high pace, with a high degree of
parallel development. This puts demands on the technical
environment to evolve constantly. Achieving acceptable re-
sponse times and maintaining consistent test data are men-
tioned as particularly challenging. Substantial resources are
used to maintain the technical environment, and developers’
time is sometimes wasted when problems do occur.
Implied starting points for improvement:

1: Focus resources for preparing the test environment for
the release tests.

2: Ensure better prediction of test needs in different parts
of system, using historical data.

3: Reassess the technical platform used for development
and test.

Unknown technical environment |-
Not so serious -

Subversion tag management K« Conseguence

Hard to handle

Test result overdew [«
=5 o handle
Configuring development environment K «
Developmentitest envir
Cause E DE__\relopme"l environment A

* Seriols

~Configuring for integration tests K

«Development with virtual desktop G

Figure 11: Map of elements in Problem Area 9.

= Environment for acceplance test L

10: Difficulties in coordinating test and deployment
with external parties. The system under development in-
tegrates with external systems, such as web services deliver-
ing data from other public bodies. Also, as a consequence of
incremental deliveries, the system integrates with the legacy
system being replaced. Substantial effort is needed to coor-
dinate the integration of new versions, for example to trans-
fer knowledge of new features and to set up appropriate test
data. Unfortunately, short time windows are available for
performing such integration, and such windows might not
become available at the appropriate time. This escalates
problems in the affected organizations, leading to unplanned
effort expenditure at several levels of the project.

« Narrow time window for external test L

Consequence .)
\ Explaining selution to users M

+ External dependencies F

Ha'r_d to handle
— Serious
Notso serious ~———

Easy to handkExternal collaboration B

i1 « Test resources at externals L

\
! Collaboration with external party G
Cause

+User doc at unsuitable level M
Lack of system knowledge among users M

Figure 12: Map of elements in Problem Area 10.

Implied starting points for improvement:
1: Identify and commit the right people in the affected ex-
ternal organizations.
2: Produce documentation about new features at a level
found to be appropriate by the user organization.

5. DISCUSSION
5.1 Applicability to other agile projects

In Section 3, we claimed that Project X has certain char-
acteristics that are favorable for running an efficient (agile)
development project. We argued, by critical case reasoning,
that any threats to productivity uncovered in Project X
would likely surface in similar-type large and agile projects
where these favorable conditions are less present.

It is possible to augment the critical case reasoning done
hitherto, by extracting project characteristics that are plau-
sible root causes of the ten problem areas. Based on a infor-
mal assessment of the project as a whole and the findings of
this study, we propose that the following project character-
istics are at the root of the 10 problem areas:

1: Large number of developers.

2: Time pressure.

3: Highly complex and externally connected business pro-
cesses and business rules.

4: Fixed-price/fixed-scope dilemma in subcontracted de-
velopment services.
These four root causes are postulated to underly the 10
problem areas, whereas the favorable conditions mentioned

Problem areas identified
in Project X

Root causes

s ~
(Large number
_ of developers

AN yd

complex
~._business rules -

price/fixed
“_scope dilemma

T ~ T ~ e N N e . T ~
P < " Busines ~ locati N
/)) \ / Anchored N / usiness and \ / Colocation \
High skills | | methodolo) { user) and good)
N SN 2y _involvement ~ “_infrasturucture
Moderators

Figure 13: Conceptual model for the effect of project
characteristics on large agile development projects.

earlier are postulated to moderate the effect of these root
causes, see Figure 13.

The four root causes and the four favorable conditions
are all project characteristics that are recognized as im-
portant factors in project productivity [44, 42, 7]. For ex-
ample, the literature review in [42] suggests that the three
top cross-contextual factors influencing productivity are, (1)
Team capabilities and experience, hereunder, programming
language experience, application experience and familiarity,
and project manager experience and skills, (2) Software com-
plexity, hereunder architecture complexity, complexity of in-
terface to other systems, and database size and complexity,
(3) Project constraints, hereunder schedule pressure and de-
centralized /mulitisite development, and (4) Tool usage and
quality /effectiveness; all of which relate to the project char-
acteristics under discussion here. Moreover, the summary of
industrial experience from the information systems domain
in [42] suggests that the top factors influencing productiv-
ity are, (1) Requirements quality, in particular requirements
volatility, (2) Team capabilities and experience, in particu-
lar project manager experience and skills, (3) Customer /user
involvement, and (4) Method usage.

One may thus argue that in addition to a project’s failure
to meet the four favorable conditions enjoyed by Project X,
projects that have even more developers, more time pres-
sure, even more complex business rules and less control over
the fixed-price/fixed-scope dilemma, will also encounter prob-
lems akin to the ten problem areas elicited in this study.

5.2 Threats to Validity

The main threats to validity of the study concern the reli-
ability of the elicitation and interpretive processes involved

in the repertory grid technique and the subsequent content
analyses. To reduce these threats we recorded the interviews
for context understanding, we fed analyses back to intervie-
wees, and we conducted dual content analyses.

External validity of case studies is problematic, because
the variables under study are case specific and, thus, less
likely to be the basis of generalization, see [16] for a dis-
cussion on this. Preferably, generalization from case stud-
ies should be done through arguments of construct validity.
This remains a challenge due to the low number of validated
constructs in software engineering. In particular, several of
the concepts in Figure 13 are not agreed-upon validated con-
structs. Thus, our critical case argumentation is, in fact, on
the level of variables specific to our study, and is therefore
an external validity argument: We posit that our results are
valid for variations (to the worse) on these study-specific
variables [37]. Hence, our proposals for root causes and the
conceptual model in Figure 13 are suggestive only.

6. CONCLUSION

In this study, we uncovered productivity threats in Project
X, as perceived by project members. These productivity
issues were summarized in ten problem areas, and these
problem areas together with the elicited recommendations
for action, are now taken into consideration by project man-
agement in efforts to improve the planning and running of
the remaining releases. For example, during the current re-
lease planning, cross cutting communication and coordina-
tion is facilitated by the introduction of daily business anal-
ysis and release planning stand-ups, as well as weekly sum-
mary meetings involving all relevant stakeholders. Further,
developer leaders are now instructed to prioritize architec-
tural and technical qualities, the subcontractors are urged
to cooperate better, and the developers are instructed to use
documentation routines to check and uphold common goals.

The reflective practitioner reflects and learns from practice
and builds personal practitioner’s theories that, in turn, in-
fluences daily practices [21], see Figure 14. Our hope is that
our concept elicitation has aided in the process of reflection
by making projects member’s personal theories about large
agile development explicit. Our application of relevant sci-
entific knowledge on productivity is a further input to build-
ing practitioner’s theories. Scientific knowledge and theories
concern mechanisms that underlie phenomena encountered
in daily practice. Understanding such mechanisms enables
practitioners to control these phenomena to a larger degree.
The findings from studies such as the one presented here

Scientific
Theory

Practitioner's
Theory

Concept Construct /
elicitation building
Reflection /

and learning

Practice Practice
situation i situation i+1

Figure 14: Building practical and scientific knowl-
edge (adapted from [21]). Researchers’ contribu-
tions in grey.

may contribute to scientific knowledge by building constructs
through further systematization and evaluation.

This study focused on the elicitation of potential prob-
lems and not on their solutions. Preliminary suggestions for
improvement were nonetheless given based on the repertory
grid analyses. We note that the resulting problem areas are
broad in scope. To gain a deeper and more focused under-
standing of root causes and solutions, future research might
therefore target specific activities in which the problem ar-
eas arise. We are conducting further investigative studies in
Project X which focus on release planning in a large and
agile context. Release planning activities seem to intensify
aspects of all ten problem areas elicited in this study.

Acknowledgments

The authors are grateful to the interviewees for their insights
and cooperation, to the project management of Project X,
and to Mika Méntyld for valuable input. The authors wish
to thank the anonymous referees for insightful feedback.

References

[1] C. Argyris. Knowledge for Action. Jossey-Bass Publishers, 1993.

[2] C. Argyris and D. A. Schén. Organizational Learning II. The-
ory, Method, and Practice. Addison-Wesley Publishing Com-
pany, Inc., 1996.

[3] N. Baddoo and T. Hall. Practitioners roles in software process
improvement: An analysis using grid technique. Software Pro-
cess Improvement and Practice, 7:17-31, 2002.

[4] K. Beck and C. Andres. Extreme Programming Exzplained: Em-
brace Change. Addison-Wesley, second edition, 2003.

[5] B. Boehm and R. Turner. Balancing Agility and Discipline: A
Guide for the Perplexed. Addison Wesley, 2003.

[6] M. T. H. Chi, N. de Leeuw, M.-H. Chiu, and C. LaVancher.
Eliciting self-explanations improves understanding. Cognitive
Science, 18:439-477, 1994.

[7] T. Dyba and T. Dingsgyr. Empirical studies of agile software
development: A systematic review. Information and Software
Technology, 50:833—-859, 2008.

[8] H. Edwards, S. McDonald, and S. M. Young. The repertory grid
technique: Its place in empirical software engineering research.
Information and Software Technology, 51:785-798, 2009.

[9] H. Erdogmus. Let’s scale agile up. Agile Times, 2(1):6-7, Apr.
2003.

[10] H. Erdogmus. Architecture meets agility. IEEE Software, pages
2-4, Sept./Oct. 2009.

[11] K. A. Ericsson and H. A. Simon. Protocol Analysis. The MIT
Press, revised edition, 1993.

[12] M. Fowler and J. Highsmith.
Development, 9(8):28-35, 2001.

[13] F. Fransella, R. Bell, and D. Bannister. A Manual for Repertory
Grid Technique. John Wiley & Sons, Ltd., 2004.

[14] G. Gigerenzer. Gut Feelings. The Intelligence of the Uncon-
scious. Viking, Penguin, Ltd., 2007.

[15] R. Guzzo and M. Dickson. Teams in organizations: Recent re-
search on performance and effectiveness. Ann. Rev. of Psychol-
ogy, 47:307-338, 1996.

[16] J. E. Hannay and M. Jgrgensen. The role of deliberate artifi-
cial design elements in software engineering experiments. IEEE
Trans. Software Eng., 34:242-259, Mar/Apr 2008.

[17] J. D. Herbsleb and A. Mockus. Formulation and preliminary
test of an empirical theory of coordination in software engineer-
ing. In Proc. European Software Engineering Conf. and ACM
SIGSOFT Symp. Foundations of Software Engineering, pages
112-121. ACM Press, 2003.

[18] M. Hoegl and K. P. Parboteeah. Autonomy and teamwork in
innovative projects. Human Resource Management, 45(1):67—
79, 2006.

[19] F. Houdek. External experiments—a workable paradigm for col-
laboration between industry and academia. In N. Juristo and
A. M. Moreno, editors, Lecture Notes on Empirical Software
Engineering, volume 12, chapter 4, pages 133-166. World Scien-
tific, 2003.

[20] D. Jankowicz. The Easy Guide to Repertory Grids. John Wiley
& Sons, Ltd., 2004.

The agile manifesto. Software

[21]
(22]

[23]
[24]

(25]

[26]

(27]
(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]
(39]
[40]

[41]
[42]
(43]

[44]

[45]

P. Jarvis. The Practitioner-Researcher. Jossey-Bass Publishers,
1999.

G. A. Kelly. The Psychology of Personal Constructs. Norton,
1955.

G. A. Kelly. A Theory of Personality. Norton, 1963.

P. Kruchten. The 4+1 view model of architecture. IEEE Soft-
ware, 6:45-50, 1995.

P. Kruchten. Scaling down large projects to meet the agile "sweet
spot”. The Rational Edge, Aug. 2004.

C. Larman and B. Vodde. Scaling Lean & Agile Development:
Thinking and Organizational Tools for Large-Scale Scrum. Ad-
dison Wesley, 2008.

C. C. Manz and H. P. Sims Jr. The New Superleadership: Lead-
ing Others to Lead Themselves. Berrett-Koehler, 2001.

L. Mathiassen. Reflective systems development. Scandinavian
J. Information Systems, 10(1&2):67-118, 1998.

G. A. Miller. The magical number seven, plus or minus two:
Some limits on our capacity for processing information. Psycho-
logical Review, 63:81-97, 1956.

N. Nagappan, B. Murphy, and V. Basili. The influence of organi-
zational structure on software quality: An empirical case study.
In Proc. 80th Int’l Conf. Software Engineering (ICSE), pages
521-530. ACM Press, 2008.

N. Niu and S. Easterbrook. So, you think you know others’
goals? a repertory grid study. IEEE Software, pages 53-61,
March/April 2007.

C. L. Pearce and H. P. Sims Jr. Vertical versus shared leadership
as predictors of the effectiveness of change management teams:
An examination of aversive, directive, transactional, transfor-
mational, and empowering leader behaviors. Group Dynamics,
6:172-197, 2002.

M. Poppendieck and T. Poppendieck. Implementing Lean Soft-
ware Development: From Concept to Cash. Addison-Wesley,
2006.

PS2000 standard contract for iterative development. WWW .
dataforeningen.no/index.php?cat=134112, accessed 2010.

H. Rognerud and J. E. Hannay. Challenges in enterprise software
integration: An industrial study using repertory grids. In Proc.
3rd Int’l Symp.Empirical Software Engineering and Measure-
ment (ESEM), pages 11-22. IEEE Computer Society, 2009.

R. Schatz and I. Abdelshafi. The agile marathon. In Proc. AG-
ILE 2006, pages 139-146. IEEE Computer Society, 2006.

W. R. Shadish, T. D. Cook, and D. T. Campbell. Ezperimental
and Quasi- Experimental Designs for Generalized Causal Infer-
ence. Houghton Mifflin, 2002.

M. Sliger and S. Broderick. The Software Project Manager’s
Bridge to Agility. Addison Wesley, 2008.

M. Stephens and D. Rosenberg. Extreme Programming Refac-
tored: The Case Against XP. APress, 2003.

V. Stewart and A. Stewart. Business Applications of Repertory
Grid. McGraw-Hill, 1981.

H. Takeuchi and I. Nonaka. The new new product develop-
ment game. Harvard Business Review, pages 137-146, Jan./Feb.
1986.

A. Trendowicz and J. Miinch. Factors influencing software devel-
opment productivity—state-of-the-art and industrial experience.
Advances in Computers, 17:185-241, 2009.

E. Whitworth and R. Biddle. The social nature of agile teams. In
Proc. AGILE 2007, pages 26-36. IEEE Computer Society, 2007.
C. Wohlin and A. Amschler Andrews. Prioritizing and assessing
software project success factors and project characteristics using
subjective data. Empirical Software Engineering, 8:285-308,
2003.

R. K. Yin. Case Study Research: Design and Methods, volume 5
of Applied Social Research Methods Series. Sage Publications,
third edition, 2003.

