Massively Parallel Front Propagation
For Simulations of Geological Folds

Tor Gillberg

Simula Research Laboratory AS
and Kalkulo AS

19 January 2011

simula - by thinking constantly about it

Restoration made practical
by Statoil and Kalkulo

By reverting processes, the
geology becomes easier

Restore effects of processes

2. Simulate physical parameters
in the simple geometry

3. Test model by adding effects of

processes

—

Petersen, S.A. and Hjelle @. [2008] Earth Recursion, an Important Component in Shared Earth Model Builders,

70th EAGE Annual Meeting, Rome, 2008.
simula - by thinking constantly about it

Restoration along generalized distances,
or simulated folds

Layers/Distances are the position of a
propagating front at different times T{(x)
‘\
v F(@)[| VT + @(z) (a- VT') = 1, (anisotropic)
\“‘
\\‘
—> ‘\

’
.

2 4 6

8 10 2 4 6 6 8 10
(a) Fold of class 1A (b) Fold of class 1B (parallel) (¢) Fold of class 1C
d. Hjelle, S. A. Petersen, A Hamilton-Jacobi framework for modeling folds in structural geology,
Mathematical Geosciences, 2011
simula - by thinking constantly about it

Solution method must be fast for
the application to be interactive

SISl 1
RS

- Sweeping methods: Compute distances
in different directions (iterative) 5

10
* Front tracking methods; Wave simulation.

Smart, but sequential i

20

Smart methods are slow
on large 3D grids =

30

0 5 10 15 20 25 30

Sweeping methods for parallel
implementations

Modifications of stencil shape, /’
and iteration order give parallel f)K
possibilities

a) Orlglnal sweep 1 Onglnal sweep 2) Original sweep 3 (d) Original sweep 4

) New sweep 1 f) New sweep 2) New sweep 3 (h) New sweep 4

O.Weber, et al. Parallel algorlthms for approximation of distance maps on parametric surfaces,
ACM Transactions on Graphics, 2008

[.research laboratory |

A new algorithm;
The 3D Parallel Marching Method

A surface can be updated in parallel

for i=2—n, do
for all j € [1,ny] and k € [1,n,] do
Update T; jx using values T;_1 jiqitp,a € {0,1},b € {0,1}
end for
end for

simula - by thinking constantly about it

Parallelizing sequential C code

#pragma mint copy(T,toDevice) 1. Usmg Open MP
#pragma mint parallel 2. Using Mint to generate
for i=2—n, do Cuda code for GPUs

for all j € [1,n,] and k € [1,n,] do

Update T; j using values T;_; jiqitp,a € {0,1},b € {0,1}

end for
end for CPU time, SRIglefDb(BRidpdasision on GPU
end for 1680} | | | | |
#pragma mint copy(T,fromDevice)

1400
25+

1200

1068

o981

600

10}
400

208

1 2 3 4 5 6

Total number of nodes le7
160”3 32073 40073

simula “ - by thinking constantly about it

Some conclusions and remarks

Although not a ‘smart’ algorithm, the 3D Parallel Marching Method is
simple to parallelize and implement

Mint is a po-vl/;maand ree'%ol rgryeliation

https://sites.google.com/site/mintmodel/

The code is still in the development stage, and there are many
optimizations to explore

N I 5} 52 I4 54 Ie 56 1y S8 | IspGPU SSPGPU | IDPGPU SDPGPU
160° | 1044 541 19| 283 37| 193 54| 147 7.1 1.6 67.1 2.6 39.7
320° | 864.6 | 4499 19 | 2346 37| 1589 54| 1216 7.1 9.6 89.9 16.8 514
400° | 1661.0 | 866.5 1.9 | 416.0 3.7 | 3059 54 | 2338 7.1 17.5 95.0 31.1 534

D. Unat, X. Cai, S. Baden, Mint: Realizing CUDA performance in 3D stencil methods with annotated C, in: Proceedings of the 25th
International Conference on Supercomputing (ICS’11), ACM Press, 2011, pp. 214-224

simula - by thinking constantly about it

