Massively Parallel Front Propagation

For Simulations of Geological Folds

Simula Research Laboratory AS and Kalkulo AS

19 January 2011

Restoration made practical by Statoil and Kalkulo

Petersen, S.A. and Hjelle Ø. [2008] Earth Recursion, an Important Component in Shared Earth Model Builders, 70th EAGE Annual Meeting, Rome, 2008.

Restoration along generalized distances, or simulated folds

Layers/Distances are the position of a propagating front at different times T(x)

Ø. Hjelle, S. A. Petersen, A Hamilton-Jacobi framework for modeling folds in structural geology, Mathematical Geosciences, 2011

Solution method must be fast for the application to be interactive

- Sweeping methods: Compute distances in different directions (iterative)
- Front tracking methods; Wave simulation.
 Smart, but sequential

Smart methods are slow on large 3D grids

Sweeping methods for parallel implementations

Modifications of stencil shape, and iteration order give parallel possibilities (a) Original sweep 1 (b) Original sweep 2 (c) Original sweep 3 (d) Original sweep 4 (h) New sweep 4 (f) New sweep 2 (g) New sweep 3 (e) New sweep 1

O.Weber, et al. Parallel algorithms for approximation of distance maps on parametric surfaces, ACM Transactions on Graphics, 2008

A new algorithm; The 3D Parallel Marching Method

A surface can be updated in parallel


```
for i=2 \rightarrow n_x do

for all j \in [1,n_y] and k \in [1,n_z] do

Update T_{i,j,k} using values T_{i-1,j\pm a,k\pm b}, a \in \{0,1\}, b \in \{0,1\}

end for
end for
```

Parallelizing sequential C code

```
#pragma mint copy(T,toDevice)
#pragma mint parallel
for i=2 \rightarrow n_x do
  for all j \in [1, n_v] and k \in [1, n_z] do
     Update T_{i,j,k} using values T_{i-1,j\pm a,k\pm b}, a \in \{0,1\}, b \in \{0,1\}
   end for
end for
end for
```

- 1. Using OpenMP
- 2. Using Mint to generate Cuda code for GPUs

CPU time, SPId tei (DD) (to Pet do desis) on on GPU

6 1e7

Some conclusions and remarks

Although not a 'smart' algorithm, the 3D Parallel Marching Method is simple to parallelize and implement

Thank you Mint is a powerful and free tool or parallelization

https://sites.google.com/site/mintmodel/

The code is still in the development stage, and there are many optimizations to explore

											SSPGPU		
160^{3}	104.4	54.1	1.9	28.3	3.7	19.3	5.4	14.7	7.1	1.6	67.1	2.6	39.7
320^{3}	864.6	449.9	1.9	234.6	3.7	158.9	5.4	121.6	7.1	9.6	89.9	16.8	51.4
400^{3}	1661.0	866.5	1.9	416.0	3.7	305.9	5.4	233.8	7.1	17.5	95.0	31.1	53.4

D. Unat, X. Cai, S. Baden, Mint: Realizing CUDA performance in 3D stencil methods with annotated C, in: Proceedings of the 25th International Conference on Supercomputing (ICS'11), ACM Press, 2011, pp. 214–224