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1 Introduction

Mass extinction of man is a major threat in a world with zombies. It is there-
fore of fundamental importance for humans to figure out how to conquer
zombies and the extremely serious disease known as zombification. The
right strategy must be founded on a thorough understanding of how zom-
bies and humans interact and how zombification spreads in a population.
Although one gains some understanding of a world with zombies by watch-
ing relevant movies and reading books, this understanding is just as partial
and incomplete as our understanding of the real world by just observing
and experiencing it.

In the real world, it has been a tremendous success to understand the
functioning of Nature by making mathematical models and studying these
models. For example, Newton was the first to create mathematical models
of how objects move under influence of forces. Such models laid the foun-
dation of the industrial revolution and made it later possible to land a man
on the moon. Maxwell and other physicists formulated models for electric-
ity that gave us the understanding and the subsequent technology to create
things like radio, TV, and wireless internet. It cannot be underestimated how
important mathematical models have been for understanding the world and
predicting the future.

So, in the world of movie making, it might well be the case that the
realistic revolutionary ideas for how to conquer zombies in future movies
arise from studying mathematical models of the human-zombie interaction.
Note the world “realistic”: how we conquer the zombies must be consistent
with how a certain world with zombies actually functions. Mathematics can
ensure this consistency in a simple way. Nothing can happen against the
rules we define. Moreover, once the mathematical model with full consis-
tency is in place, we can use it to learn about human-zombie interaction,
change rules and assumptions, and finally predict how the future will be.
There is always an uncertainty in the predictions, partly because we make
many simplifications of how things are functioning, when we create a math-
ematical model, and partly because the model needs some data that can
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be hard to measure precisely.
How can we use mathematics to escape the zombie threat? As always,

we look for existing applications of mathematics to similar problems, and
then we try to migrate the thinking behind the model, in a well-understood
problem, to a new problem. This particular ability of humans is the sin-
gle most important reason for the dramatic technological development our
specie has created. Hence, it seems fruitful to apply this strategy to prevent
the extinction of man when the zombies attack.

Although there are no zombies (yet) in the real world, there are indeed
processes going on that are similar to what we see in movies. The lay-
man may think that a zombie reminds of a leper, and then we are almost
there: according to the modern popular culture, humans get infected by
zombies, and large-scale zombification is basically a question of how a dis-
ease spreads in a population. This latter topic has obviously received a
lot of attention among scientists for centuries, and mathematics has in fact
been central to the understanding for about 80 years. Recently, the spread-
ing of the swine flu also made laymen interested in the science field known
as epidemiology. We shall adopt mathematical ideas and techniques from
this field to show how we can understand more about the dynamics of a
population threatened by zombification.

The bottom line of the mathematics of zombification is that the number
of zombies at time t, denoted by Z(t), can be computed by a quite sim-
ple formula that is repeated a lot of times. That is, the formula would be
tedious, and in fact impossible, to evaluate by pen and paper, so we need
a computer to automate the job and do the calculations with high speed.
The idea is that we compute Z at a set of discrete points in time, named
t0 < t1 < t2 · · · < tn−1 < tn. We have to know the initial number of zombies
at time t0, but how this number evolves in the future, can be computed. Let
Zi mean Z at time ti, i = 0, 1, . . . , n. The formula is of the form

Zi+1 = Zi + other known quantities at time ti

That is, we know some quantities at time ti, and then we can evaluate a
formula to compute a quantity like Z at some future time ti+1. For such
computations to be fairly accurate, the distance ti+1 − ti in time must be
quite small1. One aspect that complicates the equation for Z is that that
we must solve some similar equations for other quantities, because these
quantities are needed in the formula for Zi+1. We shall show in detail how
we reason to construct and solve such equations. You hardly need high
school math to understand it, all you need is some idea of what a function
is. However, we may argue that the way we use mathematics in the present
chapter represents an new, attractive way to introduce young people to the

1Mathematicians can give precise meaning to the adjectives “fairly” and “quite” in this
context, and turn such vague qualitative statements into quantitative facts.
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fundamental ideas and the craft of modern computation-based science and
engineering.

2 Problem Definition

In a pioneering paper, Munz et. al [3] modeled zombie outbreaks mathe-
matically and predicted extinction of mankind if zombies come to existence.
Although doomsday was nearly inevitable, it could possibly be prevented
by devastating and early counter attacks. This conclusion is supported by
most modern zombie movies and stories. In the present paper, we refine
this conclusion and use mathematics, computer simulations, and empirical
data from movies to question the realism of the doomsday scenario, and
also the realism of how zombie movies start.

The zombie archetype that forms the basis for this paper is based on
the classical 1968 movie ”The Night of The Living Dead” [6] by George
A. Romero, which has inspired most modern zombie movies. Zombies are
flesh-hungry, mindless, and almost dead people that spread the disease by
biting humans. There is no magic involved, as is more common in the zom-
bie variant that originates from Caribbean and African culture. In Romero’s
movie, zombies are subject to the nature of the laws of physics and biology,
having similarity to animals infected by rabies, for instance. Zombies are not
dead, they are simply a primitive and ruined form of life. Furthermore, zom-
bies are hard to kill and may survive gunshots that humans would certainly
die from. The only effective way of killing a zombie is to destroy its cen-
tral nervous system. Outsiders of modern popular culture would probably
suggest to conquer zombies by fiction, i.e., invetion of new magic effects.
This is obviously an unethic approach: in all virtual worlds, from computer
games to internet societies, the environment itself may be fiction, but the
accepted behavior in that environment must be in accordance with the laws
and rules of the environment.

Munz et. al [3] modeled zombie outbreaks by extending the commonly
SIR-type differential equation models for the spreading of diseases such
as flu and HIV. The conclusions in that paper are based on mathematical
tools for analyzing the stability of nonlinear dynamical systems described
by ordinary differential equations. It was shown theoretically that an equi-
librium state corresponding to a zombie-free world was unstable. However,
humans do conquer zombies in movies. Munz et al. [3] incorporated this ef-
fect by adding impulsive human attacks on zombies at some distinct points
in time.

In the present work, we take a different approach. First, we phrase the
mathematical model directly as a set of difference equations, incorporating
all the effects suggested in [3]. However, contrary to Munz et al., we argue
that dead zombies cannot become functioning zombies again, a fact that
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has a fundamental impact on whether the doomsday scenario is likely or
not. Second, we propose that the parameters in the model change with
time, according to the phases of the human-zombie interaction observed in
movies. Third, we put effort into estimating the parameters of the model,
based on watching a single movie (The Night of The Living Dead). We fit the
model to this movie, so that we can reproduce its scenarios, and thereafter
we may use the model to predict how a zombie outbreak will most likely
behave in a bigger community with other initial conditions than in the film.

The paper is organized as follows. Section 2 lists the mathematical
model and defines the input parameters required by the model. Section
3 is devoted to estimating parameters from one movie and demonstrating
how the model predicts a zombie outbreak. We discuss the limitation of
the study in Section 4 and make some concluding remarks about zombie
movies. A series of appendices have been written with a two-fold goal: we
want to document in detail how the model is derived, and we want to explain
the derivation to a wide audience. To reach the latter goal, we avoid differ-
ential equations and work directly with difference equations. We have also
chosen to start with explaining the well-established and simple SIR model,
and then show how this model can be extended to include more compli-
cated effects, ending up with the complete model for zombie outbreaks.
Computer programs in Python for solving the equations arising in the mod-
els are inserted in the text to illustrate all the “nuts and bolts” necessary to
bring the mathematics to action in real or virtual problems2. Knowledge of,
and some interest in, basic high school mathematics should be sufficient to
understand most of the mathematical details in the appendices. Hopefully,
the exposition can help to show that mathematics can be useful far beyond
the reader’s imagination.

3 The Model for Human-Zombie Interaction

A detailed derivation of our mathematical model for human-zombie inter-
action can be found in the appendices. The model and its parameters are
summarized below. We have four categories of individuals:

1. S: human susceptibles who can become zombies.

2. I: infected humans, being bitten by zombies.

3. Z: zombies.

4. R: removed individuals, either conquered zombies or dead humans.

2The web page http://www.simula.no/Zombies contains more programs, with addi-
tional graphical features.
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Figure 1: The first zombie encountered in the movie The Night of The Living
Dead [6].

3.1 The System of Difference Equations

The mathematical model expresses the temporal transfer of individuals be-
tween the four categories: S, I, Z, and R. We introduce the number of in-
dividuals in each category as the functions of time t: S(t), I(t), Z(t), and
R(t). These four functions are computed at discrete points in time: ti = i∆t,
i = 1, 2, . . . , n. The values at time t0 = 0 must be known. Introducing
Si = S(ti) and a similar short notation for the other three functions, we can
write the equations governing the temporal evolution of S, I, Z, and R as
follows:

Si+1 = Si +∆t(Σ− βSiZi − δSS
i), (1)

Ii+1 = Ii +∆t(βSiZi − ρIi − δII
i), (2)

Zi+1 = Zi +∆t(ρIi − (α+ ω(t))SiZi + ζRi), (3)

ω(t) = a

m
∑

i=0

exp

(

1

2

(

t− Ti

σ

)2
)

, (4)

Ri+1 = Ri +∆t(δSS
i + δII

i − ζRi + (α+ ω(t))SiZi) . (5)

The parameters Σ, β, δS , δI , ρ, ζ, α, a, σ, and T0, . . . , Tm must given. We
must also know the distribution of individuals initially, i.e., S0, I0, Z0, and
R0.

The interpretations of the parameters are as follows:

• Σ: the number of new humans brought into the zombified area per
unit time.
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• β: the probability that a theoretically possible human-zombie pair ac-
tually meets physically, during a unit time interval, with the result that
the human is infected.

• δS : the probability that a human is killed or dies, in a unit time interval.

• δI : the probability that an infected human is killed or dies, in a unit
time interval.

• ρ: the probability that an infected human is turned into a zombie,
during a unit time interval.

• ζ: the probability that a removed individual turns into a zombie, during
a unit time interval.

• α: the probability that, during a unit time interval, a theoretically pos-
sible human-zombie pair fights and the human kills the zombie.

• a: as α, but the probability relates to killing a zombie in an organized
and effective war on zombies.

• T0, . . . , Tm: points in time with strong attacks (war) on zombies.

• σ: length of attacks in the war on zombies (typically, 4σ measures the
length and should be much smaller than the time interval Ti − Ti−1

between attacks).

Note that probabilities per unit time do not necessarily lie in the interval
[0, 1]. The real probability, lying between 0 and 1, arises after multiplication
by the time interval of interest.

3.2 Computing the Solution to the Equations (1)–(5)

Below is a small computer program, written in the Python language, for
calculating the evolution of the Si, Ii, Zi, and Ri quantities, for the time
levels corresponding to i = 0, 1, 2, . . . , n.

Sigma = 0
beta = 0.03125
delta_S = 0
delta_I = 0
rho = 1
zeta = 0
alpha = 0.2*beta

a = 10*beta
sigma = 0.5
attacks = [5, 10, 18]
from math import exp
def omega(t, a, sigma, T):

return a*sum(exp(-0.5*(t-T[i])**2/sigma) for i in range(len(T)))
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dt = 0.1 # time step measured in hours
D = 0.7 # simulation lasts for D days
n = int(D*24/dt) # corresponding total no of hours

from numpy import zeros
S = zeros(n+1)
I = zeros(n+1)
Z = zeros(n+1)
R = zeros(n+1)

# initial conditions:
S[0] = 50
I[0] = 0
Z[0] = 3
R[0] = 0

# step equations forward in time:
for i in range(n):

t = i*dt
omega_t = omega(t, a, sigma, attacks)
S[i+1] = S[i] + dt*(Sigma - beta*S[i]*Z[i] - delta*S[i])
I[i+1] = I[i] + dt*(beta*S[i]*Z[i] - rho*I[i] - delta*I[i])
Z[i+1] = Z[i] + dt*(rho*I[i] - (alpha + omega_t)*S[i]*Z[i] + \

zeta*R[i])
R[i+1] = R[i] + dt*(delta*S[i] - zeta*R[i] + delta*I[i] + \

(alpha + omega_t)*S[i]*Z[i])

3.3 A Corresponding System of Differential Equations

Mathematical modeling in epidemiology, which is the scientific discipline
laying the foundation for the system of difference equations (1)–(5) mod-
eling zombification, is very much about systems of differential equations
(ODEs), not systems of difference equations. However, in the limit ∆t → 0,
the difference equations (1)–(5) approach a system of ODEs3. Since some
readers may be well educated in differential equations, and find them easier
to interpret than difference equations, we list the ODE system correspond-
ing to (1)–(5):

S′ = Σ− βSZ − δSS, (6)

I ′ = βSZ − ρI − δII, (7)

Z ′ = ρI − (α+ ω(t))SZ + ζR, (8)

ω(t) = a
m
∑

i=0

exp

(

1

2

(

t− Ti

σ

)2
)

, (9)

R′ = δSS + δII − ζR+ (α+ ω(t))SZ . (10)

The prime denotes the derivative in time. We shall not, however, deal more
with the equations (6)–(10) in this paper.

3Just move the first term on the right-hand sides to the left-hand side, divide by ∆t, and
observe that the left-hand sides are difference approximations to derivatives, which become
derivatives as ∆t → 0.
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4 Estimation of Parameters

To be able to estimate realistic parameters for the model we have chosen
to divide zombie outbreaks in three different phases:

1. the initial phase,

2. the hysterical phase,

3. the counter attack.

The initial phase is characterized by the fact that humans do not know that
zombies are devastating man-eating monsters. In this phase, man typically
tries to bring infected and zombies to hospitals for treatment. The con-
sequence is that the disease spreads fast during this phase and that few
zombies are killed. The initial phase is usually short. Humans soon real-
ize that helping zombies will likely cause their own death. Needless to say,
zombies often have a frightening look and appearance that prevent them
from being rescued.

The second phase is usually characterized by hysteria. Humans, facing
a pressed situation, try to hide and only fight back against zombies with
simple means. Often humans barricade themselves in a house and try to
communicate with others or gather information through telephones, radio,
or TV. Zombification does not spread much during this phase.

In the final phase, man has fully realized the threat. Humans have of-
ten gathered weapons and fight back against zombies in an intelligent and
strategic manner. However, in this phase zombies often outnumber humans
by orders of magnitude, caused by a rapid increase of zombification during
the first phase.

Example 4.1. The initial phase in The Night of the Living Dead.
The initial phase in The Night of The Living Dead movie seems to last

for a few hours, taken as 4 hours in our calculations. During this time,
two human meet one zombie, see Figure 1, and one of the humans get
infected or eaten when trying to help the zombie (the human appears to be
stumbling around without any sense). It is, of course, difficult to estimate
parameters from such an isolated incidence, but let us try. According to
the derivation of (1), as given in Appendix B, the term ∆tβSZ models the
increase in the number of infected individuals during a time interval ∆t,
which is assumed small. When applying this formula for a long time interval
of 4 hours, we choose to use the value SZ at the beginning of the time
interval, when S = 2 and Z = 1. It is unclear whether the human gets
killed or infected so let us say that there is 50% change that he survives,
resulting in 1/2 infected, which is turned into a zombie. This means that
β · 4 · 2 · 1 = 0.5, implying β = 0.0625. Furthermore, no zombies are killed in
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Figure 2: The initial phase of The Night of The Living Dead, with β = 0.0625.
Humans are eradicated before the main part of the movie starts.

this initial phase so α = a = 0. We assume that infected humans become
zombies within one hour with probability 1, giving ρ = 1.

These parameters are believed to be representative for the population
in this small area of the outbreak. In order to produce as many zombies
as seen later in the movie, we must assume that more humans are present
initially, say 60. Figure 2 shows the consequence of starting with S0 = 60,
I0 = 3 and using the estimated β, ρ, and α values. The other parameters,
δS , δI , a, and ζ are not considered relevant and hence set to zero. The
outbreak is seen to be very fast: the humans are eradicated after four hours,
i.e., during the initial phase of the movie. This is obviously not consistent
with what we watch later. The problem relates to the large value of β.
Therefore, we look more into the sensitivity to β before proceeding with the
other two phases.

Example 4.2. Sensitivity to parameters in the initial phase.
The evolution of humans and zombies in the first phase is very sen-

sitive to the value of β. To investigate this sensitivity, we have run se-
ries of simulations where β is varied and where we have measured the
number of hours it takes to reduce the human population with 95% com-
pared to the initial value (S0). Figure 4 shows the sensitivity to β for some
choices of initial conditions S0. Other key parameters for these runs are
Σ = α = δS = δI = a = 0, and Z0 = 1. We have also computed the sensi-
tivity to β for various values of Z0. The curves are very similar to the ones
in Figure 4. Since we have a logarithmic scale on the axis in in Figure 4,
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Figure 3: The initial phase of The Night of The Living Dead with Σ = 20,
β = 0.03, S0 = 60, and Z0 = 1.

the time to eradiction of humans behaves as C1β
−C2 for positive constants

C1 and C2. We notice that decreasing the initial amount of humans (S0), or
the initial amount of zombies (Z0), may help to make the initial phase last
longer, but a decrease in S0 also leaves few humans available for the next
phase.

A different strategy to arrive at a more realistic model for the initial
phase, is to reduce β to 0.03 and steadily bring in more humans from the
outside into the zombified area. Introducing Σ = 20, so that 20 humans ar-
rive in the zombified area every hour, shifts the S(t) to the right, as depicted
in Figure 3. These graphs result in about 10 humans and 100 zombies af-
ter five hours, a state that may be compatible with what we see in the next
phase of the movie. Another strategy is to reduce β further, e.g., to 0.02 as
used later in Figure 10.

It might be of interest to see the sensitivity to β for various Σ values,
and Figure 5 provides one example (with S0 and Z0 fixed at 60 and 1,
respectively).

A conclusion is that the estimated β = 0.0625 is too large to give mean-
ingful results. We either have to decrease β, say to less than 0.02 according
to Figure 4, or we have to feed in new humans, say Σ = 20, and halve the
β value.

Example 4.3. The hysterical phase in The Night of The Living Dead.
Most of the movie concerns the hysterical phase, which seems to last

about 24 hours. During this time the main characters arrive at an isolated
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Figure 4: Time to 95% reduction in human population in the initial phase as
function of β. Different initial conditions S0 are varied.
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Figure 6: The hysterical phase of The Night of The Living Dead (β = 0.0012,
α = 0.0016, δI = 0.014, Σ = 2, with all other parameters set to zero).

house which they barricade with simple means. During this phase, six hu-
mans get to the house and all but one get infected or killed. Hence we take
five to be infected, two of these are eaten (killed) by zombies, while the
other three turn into zombies. At the same time seven zombies are killed
by the involved characters. It may appear that there are around 30 zombies
that interact with the humans in this phase of the movie. To estimate β and
α, we use the terms ∆tβSZ (= 3+5) and ∆tαSZ (= 7) from the equations,
with ∆t = 24 hours, S = 6, and Z = 30. Hence, β = 3/(6 · 30 · 24) ≈ 0.0012
and α = 7/(6 · 30 · 24) = 0.0016. We also take the two infected humans
that are killed into account in the I equation, giving a contribution δI∆tS
equal to 2 in that equation, i.e., δI = 2/(6 · 24) = 0.014. With these pa-
rameters, there will be some reduction in the human population, but not
much. However, starting with 10 humans and 100 zombies, which is the
state after five hours in the initial phase, the number of humans is further
reduced, leaving too few for the final phase. We may either assume more
humans at the beginning of the hysterical phase, or we may bring in new
ones (Σ 6= 0). Going for the latter strategy and Σ = 2, Figure 6 shows the
evolution of zombies during the course of 24 hours. In this situation, we see
that human and zombies may co-exist for a long time.

Example 4.4. The counter attach in The Night of The Living Dead. Fi-
nally, in the end of the movie, the humans start their counter-attach. In
this phase, about 30 zombies are killed by about 30 humans in a matter
of hours. Here, the humans act strategic and effectively with weapons to
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Figure 7: The counter attack in The Night of The Living Dead.

completely destroy zombies. One sheltered human accidently gets killed
because he got mistaken for a zombie, but otherwise human destroy the
zombies without risking their own lives.

Assuming a time frame of five hours, we can make some estimates:
α · 5 · 30 · 30 = 30, giving α = 0.006; β = 0 (no humans get infected);
δS · 5 · 30 = 1, implying δS = 0.0067. Figure 7 shows the evolution of
humans and zombies during this final phase. We may also put all the three
phases together to show the evolution of zombies and humans through the
complete movie. Figure 8 combines the phases and show the evolution
over three days. Using the originally estimated β = 0.0625 and without
introducing new humans into the zombified area, we get the evolution as
depicted in Figure 9, where doomsday appears before the core of the movie
starts. This is obviously unrealistic. A smaller β value, 0.02, gives a much
more realistic scenario, see Figure 10, also without any transport of humans
into the zombified area.

As we have seen in the previous examples, the relation between α and
β determines whether mankind face extinction or not. The parameters are
of course very uncertain, even when we base them on specific movies.
Furthermore, the α − β relation varies a lot within a single movie. In The
Night of The Living Dead, the zombies are mindless, clumsy, and slow,
while in Zombieland [1] and Død snø [2], they may even outrun at least an
untrained person. However, in all movies it is natural to assume that α ≥ β
in phase 2 and 3 because zombies always demonstrate a complete lack of
intelligence. Furthermore, in phase 3, α ≫ β in all movies, since attacks
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Figure 8: All three phases in The Night of the Living Dead.
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Figure 9: All three phases in The Night of the Living Dead, using β = 0.0625
for the first phase and Σ = 0 in all phases.
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Figure 10: All three phases in The Night of the Living Dead, using β = 0.02
for the first phase and Σ = 0 in all phases.

are planned and effective. Hence, the crucial parameters that determine
mankind’s faith under a zombie outbreak is the duration of the initial phase
and the value of the corresponding β. These two parameters are also the
most uncertain parameters in typically zombie films since the initial phase
is often short, and mostly used to introduce the main characters in the
movie. Our sensitivity analysis shows that the time to human extinction has
a power-law dependence on β.

Example 4.5. Allowing dead zombies to re-enter the action. So far, we
have assumed that dead zombies are out of the play, i.e., ζ = 0, which is
in accordance with the non-magic zombie character from The Night of The
Living Day. Since Munz et al. [3] allow ζ 6= 0, it is of interest to introduce the
magic that dead zombies can turn into live zombies again. Obviously, this
effect changes the picture dramatically. Even a small value, ζ = 0.05, leads
to a doomsday scenario over eight days, as shown in Figure 11.

Example 4.6. A theoretical initial counter attack.
We have seen that zombification is rapid in the first phase. A better

strategy than depicted in typical zombie movies is to follow the ideas of
Munz et al. [3] and start early with a war on zombies, containing impulsive
attacks. Our ω(t) function in the mathematical model is exactly designed
for this purpose. As a demonstration, we start out with 50 humans and 3
zombies, and β = 0.0625 as estimated from The Night of The Living Dead
movie. These values leads to a rapid zombification. We assume there
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Figure 11: All three phases in The Night of the Living Dead, using β = 0.02
for the first phase, Σ = 0 in all phases, but ζ = 0.05 to allow dead zombies
to re-enter the zombie category.

are some small resistance against zombies from the humans: α = 0.2β.
However, the humans implement three strong attacks, a = 10β, at 5, 10,
and 18 hours after zombification starts. The attacks lasts for about 2 hours
(σ = 0.5). It appears from Figure 12 that such attacks are sufficient to save
mankind in this particular case.

5 Conclusion

Zombies are un-intelligent, flesh-hungry, and clumsy beings. Consequently,
once people realize the threat they protect themselves fiercely. In some
newer movies like, e.g., Død Snø [2] and Zombieland [1], the zombies are
fast and may even outrun an untrained individual, but they are always un-
intelligent. Because of this lack of intelligence, the main characters in the
movies always kill huge amounts of zombies. Hence, if the main characters
are representative humans, then an average human will kill more zombies
than an average zombie will infect. Humans will therefore quickly eradicate
zombies as soon as they realize the threat. The key point is that the time
it takes to realize this fact must be smaller than the time it takes to infect
nearly all humans in the initial phase.

Our estimation of the speed of zombification in the initial phase gave a
too high value, as no disease spreads that fast. The estimation procedure
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Figure 12: Simulation of a zombie outbreak with β as in the initial phase
of The Night of The Living Dead, but with an effective war on zombies with
strong attacks after 5, 10, and 18 hours (δS = δI = ζ = Σ = 0, ρ = 1,
α = 0.2β, a = 10β, σ = 0.5).

used terms in the difference equations, with time scales much larger than
assumed when introducing these terms in the modeling. The data was also
based on watching the movie, i.e., what we see is what there is. Claiming
that the initial phase of The Night of The Living Dead is unrealistic, and
that zombification spreads at a significantly lower speed, we could obtain
a model that fits the observed evolution of humans and zombies in that
movie.

Zombies will never outnumber people if humans realize the danger, and
realizing that zombies are monsters is almost inevitable. Zombies will there-
fore never be a threat to mankind, unless magic (ζ > 0) is involved.

A Basic Mathematical Modeling Concepts

Our aim with this section is to show in detail how one can apply math-
ematics to investigate spreading of diseases. The next section will then
demonstrate how we can transfer this knowledge to a world where humans
fight zombies.
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A.1 Spreading of a Flu

Imagine a boarding school out in the country side. This school is a small
and closed society. Suddenly, one or more of the pupils get a flu. We expect
that the flu may spread quite effectively, but how many of the pupils and the
school’s staff will be affected? Some quite simple mathematics can help us
to achieve insight into the dynamics of how the disease spreads.

Let S(t) count how many individuals, at time t, that have the possibility
to get infected. Here, t may count hours or days, for instance. These
individuals make up a category called susceptibles, labeled as S. Another
category, I, consists of the individuals that are infected. Let I(t) count how
many there are in category I at time t. An individual having recovered from
the disease is assumed to gain immunity. There is also a small possibility
that an infected will die. In either case, the individual is moved from the I
category to a category we call the removed category, labeled with R. We
let R(t) count the number of individuals in the R category at time t. Those
who enter the R category, cannot leave this category.

To summarize, the spreading of this disease is essentially the dynamics
of moving individuals from the S to the I and then to the R category. We
can use mathematics to more precisely describe the exchange between
the categories. The fundamental idea is to describe the changes that take
place during a small time interval, denoted by ∆t.

The problem setting is that we assume we know S at a particular time
ti and want to compute S at some future time ti+1 > ti. Here, i is an
integer counter, i = 0, 1, 2, . . . , n, used to label some discrete points in time:
t0 < t1 < t2 < · · · < tn. Our aim is to compute S at these discrete points
only, not for any value of t. We still consider S as a continuous function of
t, but our computations will be performed by a computer and only produce
S values at the time points t0, t1, . . . , tn. Aiming for S at a finite number
of discrete points instead of finding a general mathematical formula for the
function S(t) is very much simpler, more general, and more powerful.

We now let the discrete points in time be uniformly distributed such that
the time between ti and ti+1 is a constant ∆t, for any i. This means that
ti = i∆t if t0 = 0 (which is a common choice). Given S(ti), we aim at
predicting the future value S(ti+1) under the assumption that ∆t is small.
That is, we want to look slightly into the future. What “small” means is vague
at this stage, but for spreading a disease one may think of an hour or five
minutes, not three days because during three days one may have moved
from the S to R category. The idea is that ∆t should be small enough so
that changes in S are small.

In the time interval ∆t we know that some pepole will be infected, so
S will decrease. We shall soon argue by mathematics that there will be
β∆tSI new infected individuals in this time interval, where β is a parameter
reflecting how easy people get infected during a time interval of unit length.
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If the loss in S β∆tSI, we have that

S(ti+1)− S(ti) = −β∆tS(ti)I(ti),

which gives a formula for the future value:

S(ti+1) = S(ti)− β∆tS(ti)I(ti) . (11)

We have simply evaluated the product SI at time ti such that we can use
known values S(ti) and I(ti). Evaluating this formula at ti+1, or any time
point in |ti, ti+1] is also possible, but it will not matter much if ∆t is small4.

Let us step aside and explain the formula β∆tSI. We have S suscep-
tibles and I infected people. These can make up SI pairs. Now, suppose
that during a time interval T we measure that m actual pairwise meetings
do occur among n theoretically possible pairings of people from the S and
I categories. The probability that people meet in pairs during a time T is
(by the empricial frequency definition of probability) equal to m/n, i.e., the
number of successes divided by the number of possible outcomes. From
such statistics we normally derive quantities expressed per unit time, i.e.,
here we want the probability per unit time, µ, which is found from dividing by
T : µ = m/(nT ). Given the probability µ, the expected number of meetings
per time interval of SI possible pairs of people is (from basic statistics) µSI.
During a time interval ∆t, there will be µSI∆t expected number of meetings
between susceptibles and infected people such that the virus may spread.
Only a fraction of the µ∆tSI meetings are effective in the sense that the
susceptible actually becomes infected. Counting that m people get infected
in n such pairwise meetings (say 5 are infected from 1000 meetings), we
can estimate the probability of being infected as p = m/n. The expected
number of individuals in the S category that in a time interval ∆t catch the
virus and get infected is then pµ∆tSI. Introducing a new constant β = pµ
to save some writing, we arrive at the formula β∆tSI.

Estimating the value of β is important before we can use (11) to predict
the future. One possibility is to estimate p and µ from their meanings in
the derivation above. Alternatively, we can observe an “experiment” where
there are S0 susceptibles and I0 infected at some point in time. During a
time interval T we count that N susceptibles have become infected. Using
(11) as a rough approximation of how S has developed during time T (and
now T is not necessarily small, but we use (11) anyway), we get

N = βTS0I0 ⇒ β =
N

TS0I0
. (12)

Using (11) to compute S(ti+1) is straightforward if we know β, S(ti), and
I(ti). However, using (11) again to compute S(ti+2) from

S(ti+2) = S(ti+1)− β∆tS(ti+1)I(ti+1)

4Viewing (11) as a differential equation in the limit ∆t → 0, the evaluation point for SI is
determined by the numerical solution method applied to solve this differential equation.
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is difficult since we do not know I(ti+1) after having computed (11) only.
We therefore need an additional equation to update I as well. Such an
equation is easy to establish by noting that the loss in the S category is a
corresponding gain in the I category. That is,

I(ti+1) = I(ti) + β∆tS(ti)I(ti) . (13)

However, there is also a loss in the I category because people recover from
the disease. Suppose that we can measure that m out of n individuals
recover in a time period T (say 10 of 40 sick people recover during a day:
m = 10, n = 40, T = 24 h). Now, γ = m/(nT ) is the probability that one
individual recover in a unit time interval. Then (on average) γ∆tI infected
will recover in a time interval ∆t. This quantity represents a loss in the I
category and a gain in the R category. We can therefore write

I(ti+1) = I(ti) + β∆tS(ti)I(ti)− γ∆tI(ti), (14)

and
R(ti+1) = R(ti) + γ∆tI(ti) . (15)

Since there is no loss in the R category (people are either recovered and
immune, or dead), we are done with the modeling of this category. In fact,
we do not strictly need the equation (15) for R, but in later modeling exam-
ples we do.

To summarize, the three quations (11), (14), and (15) discribe the com-
plete5 dynamics of the spreading of the flu. The computational procedure
goes as follows:

• Specify values for ∆t, β, γ, S(t0), I(t0), and R(t0).

• For i = 0, 1, 2, . . . , n:

– Use (11) to compute S(ti+1).

– Use (14) to compute I(ti+1).

– Use (15) to compute R(ti+1).

The nice thing is that the formulas (11), (14), and (15) are recursive, i.e.,
they can be used repeatedly. If the interest is in some future values of S
and I, say S(tn) and I(tn), one could think of taking one single large jump
and set ∆t = tn − t0. However, the equations were derived to express
small changes in small time intervals, so the equations cannot be used for
large jumps into the future. When we create mathematical models of real or

5The model we have derived is only an approximation to reality, and to use the model, we
need to have good estimates of β and γ. However, we may say that the model is complete
in a mathematical sense: we have established enough formulas to enable computation of
S, I , and R as far into the future as we wish.
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virtual worlds, we are usually only able to find mathematical expressions for
small changes in small time intervals. Seeing far into the future can be done
by adding a large number of small changes, and that is what we do in the
computational recipe above. The computational procedure is, of course,
very tedious since we need to repeatedly calculate the same formulas over
and over again, but all this work can be done by a computer.

For further work, we introduce some notation that can save writing. Let
Si, Ii, and Ri be a short notation for S(ti), I(ti), and I(ti), respectively.
We can then write the equations (11), (14), and (15) more compactly, and
better suited for a computer, as

Si+1 = Si −∆tβSiIi, (16)

Ii+1 = Ii +∆t(βSiIi − γIi), (17)

Ri+1 = Ri +∆tγIi . (18)

The computation of (16)–(18) can be readily made in a computer program.
Below we present a program written in the Python language:

# time unit: 1 h
beta = 10./(40*8*24)
gamma = 3./(15*24)
dt = 0.1 # 6 min
D = 30 # simulate for D days
n = int(D*24/dt) # corresponding no of hours

from numpy import zeros
S = zeros(n+1)
I = zeros(n+1)
R = zeros(n+1)

# initial condition:
S[0] = 50
I[0] = 1
R[0] = 0

# step equations forward in time:
for i in range(n):

S[i+1] = S[i] - dt*beta*S[i]*I[i]
I[i+1] = I[i] + dt*beta*S[i]*I[i] - dt*gamma*I[i]
R[i+1] = R[i] + dt*gamma*I[i]

This program was written to investigate the spreading of a flu at the men-
tioned boarding school, and the reasoning for the specific choices β and
γ goes as follows. At some other school where the disease has already
spread, it was observed that in the beginning of a day there were 40 sus-
ceptibles and 8 infected, while the numbers were 30 and 18, respectively,
24 hours later. Using 1 h as time unit, we then have from (12) that β =
10/(40 · 8 · 24). Among 15 infected, it was observed that 3 recoverd during
a day, giving γ = 3/(15 · 24). Applying these parameters to a new case
where there is one infected initially and 50 susceptibles, gives the graphs in
Figure 13. These graphs are just straight lines between the values at times
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Figure 13: Natural evolution of a flu at a boarding school.

ti = i∆t as computed by the program. We observe that S reduces as I
and R grows. After about 30 days everyone has become ill and recovered
again.

We can experiment with β and γ to see whether we get an outbreak
of the disease or not. Imagine that a “wash your hands” campaign was
successful and that the other school in this case experienced only 2 new
susceptibles during 36 hours. This gives a reduced β. Assuming that the
“wash your hands” campaign is equally effective in the society where we
apply the model, we get the graphs as in Figure 14. This time the disease
spreads very slowly.

Looking at the equation for I, it is clear that we must have βSiIi−γIi > 0
for I to increase. When we start the simulation it means that

βS(0)I(0) − γI(0) > 0,

or simpler
βS(0)

γ
> 1 (19)

to increase the number of infected people and accelerate the spreading of
the disease.

A.2 Defeating a More Serious Disease

Flu is seldom a really serious problem at a boarding school. What is more
serious for pupils in the age group 16–19 is sexually transmitted diseases.
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Figure 14: Small outbreak of a flu at a boarding school (β is much smaller
than in Figure 13).

Because diseases like ghonorrea is a constant threat at the school, it be-
comes important to understand the dynamics of how the disease spreads,
and what the effect of different actions will be. Insight can be gained from
a small extension of the described SIR model.

Individuals now recover after being treated by antibiotics. It is natural to
introduce the S, I, and R categories again. However, individuals in the R
category are not immune to the infection. Some may be sufficiently scared
so that they protect themselves appropriately, while others rely on luck to
avoid being infected again. There is hence a leakage from the R category to
the S category. As usual we collect some statistics: It appears that among
n individuals who have recovered from the disease, m individuals have in a
time period T fallen back to old habits of pairing up with infected people in a
way that exposes them efficiently to the infection. This gives automatically
a contribution to the S category. We can then define the probability of one
recovered individual going from the R to the S category per unit time as
δ = m/(nT ). In a time interval ∆t, δ∆tR individuals will leak from the R to
the S category.

The modified system of equations, incorporating the transfer of individ-
uals from the R to the S category, now looks like

Si+1 = Si +∆t(δRi − βSiIi), (20)

Ii+1 = Ii +∆t(βSiIi − γIi), (21)

Ri+1 = Ri +∆t(γIi − δRi) . (22)

Say that from previous experience it is recorded that out of 50 susceptibles
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Figure 15: Explosion of a sexually transmitted disease with a significant
leakage from the R to the S (and then to the I) category.

and 4 infected, 8 new individuals were infected during a 3-day period. The
number of infected can be roughly estimated by (12), giving β = 8/(3 · 24 ·
50 · 4), when the time unit is hours. Among 40 infected, 4 were free of
symptoms during one day. This gives γ = 4/(1 · 24 · 40). The bad thing is
that out of 24 recovered, 17 ignored to protect themselves properly, over a
2-day period, and thus enter the S category again. From this observation,
a rough estimate of δ, based on the same reasoning as for γ, becomes
17/(2 · 24 · 24). Suppose then that the number 17 can be reduced to 1 by
active information. The corresponding two δ values lead to two different
scenarios, as depicted in Figures 15 and 16: the large value implies an
explosion of the disease and a constant, high number of infectives in the
long run, while the low value cures the disease. An even more attractive
scenario, where the sexual activity is also reduced, giving a direct reduction
of β, appears in Figure 17.

B Modeling Zombie Infection

We start this section with a quick overview of how zombies behave and
quote T. V. Wilson’s article “How Zombies Work” [5]: “Many people credit
George A. Romero with setting the standard for modern zombies. In the
classic movie ”Night of the Living Dead,” Romero portrayed zombies as
slow-moving, flesh-eating corpses, reanimated by radiation from a satellite
returning from Venus. The radiation affected the recent, unburied dead,
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Figure 16: Stabilization of the disease through a small leakage from the R
to the S category.
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Figure 17: Evolution of a sexually transmitted disease with small infection
probability and small leakage from the R to the S category. Note the long-
term stabilization of the number of infected.
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and the resulting zombies were invulnerable until someone destroyed their
brains or separated their heads from their bodies. In ”Night of the Living
Dead,” zombies were neither intelligent nor self-aware. They had a very
limited use of tools, mostly confined to using blunt objects as cudgels. ...
Many movies and video games have used Romero’s concept of zombies.
For the most part, zombies are: newly dead corpses reanimated by radi-
ation, chemicals, viruses, sorcery or acts of God; human, although some
depictions include zombie animals; very strong, but not very fast or agile;
impervious to pain and able to function after sustaining extreme physical
damage; invulnerable to injury, except for decapitation or destruction of the
brain; relentlessly driven to kill and eat; afraid of fire and bright lights.” Some
modern movies introduce intelligent and fast-moving zombies, but these are
often claimed to be contradictory to the mythology established by George
A. Romero [4].

Only a small extension of the previous SIR model is necessary to model
the effect of human-zombie interaction mathematically. The basic starting
point is that zombification acts like a disease in the SIR model. That is, hu-
man susceptibles are getting infected by zombies. A fraction of the infected
are then turned into zombies. On the other hand, humans can conquer
zombies. Dead humans and zombies constitue a removed category. One
particular feature of this category is that some of the dead humans can be
turned into zombies.

We introduce four categories: susceptibles (S), infected (I), zombies
(Z), and removed (R). The corresponding functions counting how many in-
dividuals we have in each category are named S(t), I(t), Z(t), and R(t),
respectively.

Now we shall precisely set up all the dynamic features of the human-
zombie populations we aim to model.

• Changes in the S category are due to three effects.

1. Susceptibles are infected by zombies, modeled by a term −∆tβSZ,
similar to the S-I interaction in the SIR model.

2. Susceptibles die naturally and enter the removed category. If the
probability that one susceptible dies during a unit time interval is
δS , the total expected number of deaths in a time interval ∆t
becomes −∆tδSS.

3. We also allow new humans to enter the area with zombies, as
this effect may be necessary to successfully run a war on zom-
bies (the other two effects alone will solely reduce the number
susceptibles). The number of new individuals in the S category
arriving per time unit is denoted by Σ, giving an increase in S(t)
by ∆tΣ during a time ∆t.
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We could also add newborns to the S category, but we simply skip
this effect since it will only be significant over time scales of a couple
of decades. Our characteristic time in this study will be days rather
than decades.

The balance equation of susceptibles, incorporating the three men-
tioned effects, becomes

Si+1 = Si +∆t(Σ− βSiZi − δSS
i) . (23)

• The infected category gets a contribution ∆tβSZ from the S category,
but loses individuals to the Z and R cateogry. That is, some infected
are turned into zombies, while others die. Movies reveal that infected
may commit suicide or that others (suceptibles) may kill them. Let δI
be the probability of being killed in a unit time interval. We clearly
have that δI is much larger than the natural death of humans (δS).
During time ∆t, a total of δI∆tI will die and hence be transferred to
the removed category. The probability that a single infected is turned
into a zombie during a unit time interval is denoted by ρ, so that a
total of ∆tρI individuals are lost from the I to the Z category in time
∆t. The accounting in the I category becomes

Ii+1 = Ii +∆t(βSiZi − ρIi − δII
i) . (24)

• The zombie category gains −∆tρI individuals from the I category.
Following Munz et al. [3], we also allow a fraction ζ per time unit of
the removed category to turn into zombies. During time ∆t a total
number of ∆tζR are moved from the R to the Z category. However,
we question the relevance of this term, because magic is needed to
turn dead people or zombies into alive zombies again. A quote from
[5] supports this view: “In some portrayals, zombism is contagious,
and people bitten by zombies become zombies themselves. In others,
people die from the bite and are reanimated by the same force that
created the other zombies.” The latter case is modeled by β and ρ – it
does not matter if the human or infected dies and turns into a zombie
after a few minutes or if the death does not occur. The important
effect with a ∆tζR term is that conquered zombies can be zombies,
i.e., there is feedback in the system, and obviously zombies overtake
us all.

A fundamental feature in zombie movies is that humans can conquer
zombies. We introduce two flavors of this feature. First, zombies
can be killed in a “man-to-man” human-zombie fight. This interaction
resembles the nature of zombification (or the susceptible-infective in-
teraction in the SIR model) and can be modeled by a loss −αSZ for
some parameter α with an interpretation similar to that of β. Second,
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a war on zombies can be implemented with large-scale effective at-
tacks. A possible model is to increase α by some amount ω(t), where
ω(t) varies in time to model strong attacks at some distinct points of
time T1 < T2 < · · · < Tm. Around these t values we want ω to have
a large value, while in between the attacks ω is small. One possible
mathematical function with this behavior is a sum of bell functions:

ω(t) = a

m
∑

i=0

exp

(

1

2

(

t− Ti

σ

)2
)

, (25)

where a measures the strength of the attacks (the maxium value of
ω(t)) and σ measures the length of the attacks, which should be much
less than the time between the points of attack: typically, 4σ measures
the length of an attack, and we must have 4σ ≪ Ti−Ti−1 to make the
length of an attack much smaller than the time between two attacks.
We should choose a significantly larger than α to make the attacks
in the war on zombies much stronger than the “man-to-man” killing of
zombies. We remark that (25) is our continuous way of modeling the
discrete impulsive attacks that play a fundamental role in defeating
zombies in the work by Munz et al. [3].

Summarizing the loss and gain in the zombie category leads to the
following equation for Z:

Zi+1 = Zi +∆t(ρIi − (α+ ω(t))SiZi + ζRi) . (26)

• The accounting in the R category consists of a gain δS of natural
deaths from the S category, a corresponding loss ζR to the Z category
(though claimed unrealistic), a gain δI from the I category, and a gain
(α+ ω)SZ from defeated zombies:

Ri+1 = Ri +∆t(δSi − ζRi + δIi + (α+ ω(t))SiZi) (27)

The classical SIR model for spreading of a disease has now been ex-
tended to model human-zombie interaction in terms of four key quantities
S(t), I(t), Z(t), and R(t), which can be computed from the equations (23)–
(27). The parameters Σ, β, δ, ρ, ζ, α, a, σ, and T0, . . . , Tm must given. We
must also know the distribution of individuals initially, i.e., S(0), I(0), Z(0),
and R(0) must be given.
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