
Topology Agnostic Dynamic Quick Reconfiguration for Large-Scale Interconnection
Networks

Frank Olaf Sem-Jacobsen
Simula Research Laboratory

frankose@ifi.uio.no

Olav Lysne
Simula Research Laboratory, University of Oslo

olavly@simula.no

Abstract—Toleration of faults in the interconnection net-
works is of vital importance in todays huge computer in-
stallations. Still, the existing solutions are short of being
satisfactory. They require that the system defaults into a
routing algorithm that is inferior to the original, either in terms
of performance, or in terms of the need for virtual channels, or
both. Furthermore, since support for dynamic reconfiguration
is not supported in current hardware, existing methods require
the system to be halted while reconfiguration takes place in
order to avoid deadlocks. In this paper we present a method
that efficiently generates a new routing function in the presence
of faults. The new routing function only reroutes the traffic that
is affected by the fault, so that the performance of the original
routing function is preserved to the extent possible. No specific
functionality in the switches is required, we only require exactly
the same number of virtual channels in the presence of faults
as the original routing algorithm did. Finally, the new routing
function is compatible with the old one, so that deadlock
free dynamic transition between the old and the new routing
function is immediately available. This means that our solution
can easily be implemented on current InfiniBand platforms, e.g.
through the OFED software stack. We demonstrate that the
method is workable for meshes, tori and fat-trees, and that it is
able to guarantee one-fault tolerance for all of these topologies.

I. INTRODUCTION

The performance of high-performance and cluster com-
puting systems relies heavily on the efficiency of the inter-
connection network. In latter years, the sizes of such systems
have become so big that the network needs to be able to
function also in the presence of faulty components. This
has led to the study and implementation of various methods
for routing around faults that appear while the system is
running.

Such fault tolerant routing consists of two elements. The
first is a method for finding a routing function that is
efficient for semi-regular topologies, i.e. topologies such as
meshes, tori, and fat-trees where some components have
been removed due to malfunctions. Ideally this method
should be fast - so that the system can commence normal
operation as soon as possible after the fault. Furthermore, it
should be efficient, so that the degradation of performance
in the presence of the fault is minimal. Finally, it should
not require more virtual channels for deadlock freedom than
the routing algorithm needs for the fault free case. The

second element of fault tolerant routing is a method for
transitioning between the old and the new routing function
without causing deadlock. It is well known that even if
the old and the new routing functions are deadlock free by
themselves, an uncontrolled transition between the two can
cause deadlocks [1].

Unfortunately, there is a huge gap between the ideal
described above and the current state of the art. Com-
puting a new routing function when a fault has occurred
is not at all fast. For systems such as Ranger, Atlas,
and JuRoPa that are based on InfiniBand and use the
OFED OpenSM subnet manager, the execution time for the
routing algorithms (minhop, Up*/Down*) is in the range
of hundreds of seconds to 15 min [2]. Furthermore, the
routing functions that come out of the recalculation are
based on Topology Agnostic methods, that disregard the
carefully planned routing strategies that have been made
for the fault free case. For this reason, they either require
additional virtual channels, or they lead to a severe drop
in performance, or both. Regarding reconfiguration between
the old and the new routing function, the picture is equally
bleak. Even though several mechanisms for deadlock free
dynamic reconfiguration have been proposed, none of them
are implemented in current hardware. Runtime reconfigu-
ration in Infiniband simply updates the forwarding tables in
the switches in the network with the values calculated by the
routing function and makes no provisions for guaranteeing a
deadlock free transition. A common solution to this problem
is to use static reconfiguration. This requires the entire
fabric to be drained of all traffic and shut down before the
reconfiguration commences. A far more efficient solution is
to change the routing tables in the network on-the-fly. This
requires careful handling by the routing algorithm of the
transient dependencies that occur when the routing tables
are updated.

In this paper we present a novel mechanism for fault
tolerant routing. The mechanism is in essence topology
agnostic, and it is designed with a plug-in architecture to
allow topology specific additions that increase the fault
tolerance for the specific topology. For meshes, tori, and
fat-trees it is able to guarantee toleration of one link fault,
and it has a good probability distribution for the toleration

of multiple faults. The mechanism is able to quickly react
and reconfigure the network after a topology change, and
it only changes the paths for the flows that are directly
disconnected by the change. Finally, it does not require
any additional virtual channels, and the new paths for the
disconnected flows are compatible with the existing paths in
the network in such a way that deadlock free dynamic re-
configuration is guaranteed. Our reconfiguration mechanism
is compatible with existing technology such as InfiniBand
as it requires no specific functionality in the network ele-
ments. The algorithm is completely contained in the node
responsible for configuring the network (subnet manager),
and it can therefore easily be implemented and be put into
production. The rest of the paper is organized as follows.
In Section II we review previous attempts at creating fault
tolerant mechanisms for large-scale networks. We introduce
the theory that guarantees the deadlock freedom of our new
routing mechanism in Section III, and the mechanism itself
in Section IV. We evaluate the mechanism in Section V and
the paper is concluded in Section VI.

II. RELATED WORK

There has been a substantial amount of work presented
on network fault tolerance in general and dynamic recon-
figuration in particular. Almost every interconnect topology
have been subject to extensive research in order to create
fault tolerance routing algorithms. For multistage topologies,
this has been quite successful. E.g. for the fat tree, fault
tolerance is easily achieved simply by choosing a different
upward path towards a different root in the network. Even
a dynamic rerouting mechanism to handle faults locally has
been developed [3].

The mesh and the torus is more difficult to handle in terms
of fault tolerance, and several proposals exist for different
baseline routing algorithms. Lysne et al [4] show that one
link fault can be tolerated when using XY routing in a mesh
simply by creating a path around a link fault where the first
turn that is towards the centre of the mesh. Lots of proposals
for meshes and tori rely on block faults [5][6][7][8] which
require multiple healthy nodes to be disabled. Single fault
tolerance and concave regions has also been considered [9]
[10][11]. In [12], the suggestion was to route through
intermediate destinations in order to avoid faulty nodes.
Several of the solutions rely on virtual channels or adaptive
routing to maintain deadlock freedom, and the solutions
using deterministic routing without virtual channels only
support static reconfiguration, not dynamic reconfiguration.
Furthermore, for meshes and tori, no dynamic solution is
easily implementable in current systems.

A dynamic reconfiguration mechanism is in general a
mechanism that can take an arbitrary set of deadlock free
paths and reconfigure the routing tables in the network
to support these paths. The role of the reconfiguration
mechanism is to ensure that this reconfiguration remains

deadlock free. This requires that the paths before and after
reconfiguration are separated in the network in some manner.
Pinkston et al [13] present the double-scheme where the
old and new routing functions are separated into two sets of
virtual channels. Casado et Al. [14] present a mechanism for
dynamic reconfiguration where the network uses a reconfig-
uration protocol to apply successive changes to the routing
tables to converge towards the new routing function. This
only works between two instances of Up*/Down*routing.
Additionally, for Up*/Down*routing, Lysne et al [15] show
how only the upper part of the Up*/Down* graph needs
to be reconfigured. A generic mechanism for providing
deadlock free dynamic reconfiguration between any two
routing functions is presented in [16]. Based on some key
properties of the two routing functions, a step-by-step re-
configuration process is described. In [17] another dynamic
reconfiguration method is presented where the old and the
new routing functions are separated by a token injected into
the packet header. This token identifies whether the packet
is following the old or the new routing scheme. A second
token-based reconfiguration scheme is presented in [18].
The full complexity of dynamic network reconfiguration is
illustrated in [16].

In common for the dynamic reconfiguration mechanisms
we have reviewed is that they either rely on a specific topol-
ogy agnostic routing algorithm (e.g. Up*/Down*) or they
require complex and specialised fault tolerance algorithms
tailored towards the specific topology or a topology agnostic
routing algorithm. From our review of fault tolerance algo-
rithms for the mesh and torus topologies it is clear that most
topology specific algorithms rely on certain resources to be
available (e.g. virtual channels, adaptive routing) or switch
of healthy resources.

The novelty of the approach we present in this paper is
that not only does it not require virtual channels or any
complex reconfiguration protocol to enforce a progressive
update of routing tables or using tokens, it does not require
any topology specific or topology agnostic routing algorithm
to generate the new routing function. This is baked into our
dynamic reconfiguration mechanism in an efficient manner,
with a plug-in architecture to easily support specific topolo-
gies.

III. CHANNEL LIST

The key to the efficient and deadlock free implementation
of the dynamic quick reconfiguration (DQR) mechanism we
present in this paper is the novel data structure we use for
handling channel dependencies in the network. We therefore
present this in some detail in this section before we move on
to presenting the DQR mechanism itself in the next section.

In order to ensure that new paths that are created to recon-
nect the network after a topology change (fault) the reconfig-
uration mechanism must beware of all existing dependencies
in the network. The usual method for handling channel

dependencies is using a Channel Dependency Graph (CDG)
which is a direct graph where the vertices V represent
channels and the directed edges E represent dependencies
from one vertex to another. A deadlock is identified as a
cycle in the CDG [19]. Using this data structure to create
new paths in a network involves checking if any of the
new dependencies introduced by the path into the CDG
leads to a cycle. The search for a cycle in the CDG has
complexity O(|E|). In order to find a new deadlock free
path for some source destination pair, it is necessary to
explore a number of possible paths and check for cycles
in the CDG for every possibility. For a large topology the
number of possible paths from a single source destination
pair is very high. For instance, in a 20 x 20 mesh the largest
number of shortest paths for a single source/destination
pair (where source and destination are located at diagonal
corners) is

(
38
19

)
= 3.53 × 1010. The size of the problem is

further increased by the fact that for the existing channel
dependencies and set of topology changes the only possible
deadlock free paths might be non-minimal. This is clearly
not a scalable algorithm.

Motivated by this we introduce the channel list. The chan-
nel list represents one possible arrangement of all channels
in the topology such that any dependency from one channel
to another only moves upwards in the list. Hence, there are
no dependencies to the bottom channel, and there are no
dependencies from the top channel. An example channel list
for a simple 4-node ring is presented in Figure 1. It is clear
that if it is possible to arrange the channels in a topology in
such a list, the routing function that built the dependencies is
deadlock free. There cannot be a cycle in a linear sequence
of dependencies. The task of arranging the channels initially
can be achieved using a linear programming solver. Every
dependency in the CDG can be represented as an inequality,
where the first channel of a dependency must have an index
less than the second channel of the dependency. The linear
programming solution to this sets of inequalities is a valid
channel list given the channel dependencies and routing
algorithm.

Constructing the channel list is not more efficient than
searching for cycles in a CDG. However, once the channel
list has been constructed, it serves as a valuable tool for
creating new deadlock free paths. In fact, any new path
that can be created by moving only upwards in the channel
list (i.e. the next hop channel is always above the current
channel in the channel list), is by design deadlock free. By
combining this property with a path searching algorithm
such as Dijkstra’s shortest path algorithm as we do in the
next section, it is possible to find a deadlock free shortest
path given the existing dependencies in the channel list in
an efficient manner.

Unfortunately, a channel list represents only a single
possibility out of a large number of possible channel list
arrangements. This means that for a given channel list

Figure 1. The channel list formed based on the dependencies from the
4-node ring. Each channel is denoted by the pair source node destination
node (AB is the channel from A to B).

there might not exist a deadlock free path for a specific
source/destination pair, even though the path introduces no
cyclic dependencies into the CDG. In this case it is necessary
to check whether certain illegal turns (going downwards
in the channel list) may be permitted by rearranging the
channel list. To permit a new turn the target channel of the
new dependency must be moved upwards in the channel
list. Furthermore, every channel to which the target channel
has dependencies that are now below it must also be moved
upwards. This process continues until the channel list again
is valid. We present two algorithms in the next section for
checking whether a turn can be permitted in the channel list,
and for updating the channel list with the new turn. These
are important parts of the DQR mechanism we now present.

IV. DYNAMIC QUICK RECONFIGURATION

The reconfiguration mechanism we present in this paper
is called Dynamic Quick Configuration (DQR) because it
is high-speed and the new paths are compatible with the
existing routing function. These properties are guaranteed by
the channel list we presented in the previous section, which
ensures that any new dependency introduced by the new
paths are compatible with the already existing dependencies,
i.e. there can be no deadlock. Furthermore, the high-speed
of the reconfiguration mechanism comes from the fact that it
will only reconfigure paths that have become disconnected.
All other paths will remain the same, minimising the impact
on the network. The mechanism does not require virtual
channels for deadlock freedom, but where these are used by
the routing algorithm (e.g. LASH [20]), these can be utilised
to increase the search space for a valid path by allowing to
move a path between different virtual channels. In its current
incarnation the algorithm assumes that the virtual channels
are divided into virtual layers such that the entire path is in

one layer or another and does not cross between them. This
will be expanded in the future.

The reconfiguration mechanism is in its simplest form a
topology agnostic mechanism that can be applied to any
topology and routing function. The degree of fault tolerance
depends on the topology and routing function used, and it
can be enhanced by adding a topology specific ”plug-in”
to the mechanism. This plug-in will use topology specific
information to identify a set of turns/dependencies that
can be safely added to the existing routing function to
guarantee connectivity without introducing deadlocks. If, for
some reason, this mechanism fails (for instance if there
are more failures than it is designed to tolerate), the core
topology agnostic functionality in DQR takes over with
some probability of success.

The DQR mechanism consists of two parts. The first part
is the mechanism responsible for building the channel list
structure based on the dependencies caused by the paths that
were set up by the routing algorithm. This task can be quite
time consuming in large networks. Fortunately the task can
be run in the background after network configuration has
completed, in advance of any topology changes/faults. The
second part is the reconfiguration mechanism itself. This is
invoked whenever the subnet manager detects a change in
the network topology that requires some paths to be rerouted.
The general view of the algorithm is as follows:

1) Construct the channel list as soon as initial routing is
complete

2) Wait for topology change/failure
3) Identify all disconnected paths
4) Calculate new paths using the preconfigured channel

list.

In this section we first give a general overview over the
dynamic quick reconfiguration algorithm. Then, in the next
two sections we describe the reconfiguration algorithm and
evaluate the complexity of the algorithm to determine its
efficiency. For more details and listing of the pseudo algo-
rithms we refer the interested reader to [21].

A. Overview

The first part of the DQR algorithm, generating the
channel list, is quite straightforward. The first step is to
identify all the flows in the network and the dependencies
these cause between channels. We use the term channels
to encompass all the virtual channels that might be utilised
in the network. The result of this step is a list of (virtual)
channels and which channels these have dependencies to.
Based on this list we can construct the channel list such that
every channel is below (has lower index than) all channels
to which it has dependencies. As we indicated in Section III
this is quite easily done using a linear programming solver
where each dependency is directly translated to an inequality
in the linear problem.

The second part of the algorithm is the reconfiguration
mechanism itself. The first objective is to identify all the
flows (source/destination pairs) that are disconnected be-
cause of the fault. Once this is done the next step is to
generate new paths for the disconnected flows, and herein
we have three options.

1) Create a topology agnostic local reroute around the
failed element and have all flows (if possible) use this
reroute for connectivity.

2) Enable topology specific turns in the channel list to
guarantee connectivity through a topology specific
plug-in

3) Reroute all disconnected flows end-to-end
The performance of these options depends on the topology.
As we will see in the evaluation section, the local reroute
option works well for mesh and torus topologies, while the
end-to-end reroute works better for fat trees. For guaranteed
fault tolerance in the mesh, however, the topology specific
plug-in is required.

When finding a new path for a disconnected flow it is
usually necessary to introduce illegal turns into the channel
list to create connectivity. For instance, if a link fails in a
mesh that relies on XY routing, an illegal YX turn must be
used to create a new path. Similarly, for fat trees that require
switch to switch connectivity, a single link fault can lead to
the need for introducing new downward to upward turns at
different places in the topology which are illegal for the
original routing algorithm. Consequently, the function that
finds new paths for the disconnected flows must contain a
mechanism to check whether a turn can be made legal by
rearranging the channel list or not. We use Dijkstra’s shortest
path algorithm to generate the shortest possible paths for the
disconnected flows given the constraints of the channel list
and existing paths. For this step there are several design
choices which we evaluate in Section V.

1) Should the path be in the same virtual layer as the
original one, or can it be moved to a different layer

2) Should each illegal turn be considered separately, or
in combination with other illegal turns existing on the
same path

Both options represent trade-offs between run-time complex-
ity and fault tolerance probability. Searching for paths in
all virtual layers increases the runtime, but also increases
the probability of finding a connected, deadlock free path.
Similarly, checking the legality of a single illegal turn
against the channel list is a relatively simple operation, while
checking the sequence of legal turns required for a specific
path is more complex. However, this added complexity leads
to an increased probability that the resulting path is deadlock
free. Let us review the algorithm in more detail.

B. Rerouting the Affected Paths
The main algorithm for quickly reconfiguring the network

is as follows:

1) Identify all disconnected flows F
2) If a plug-in is enabled, execute it to enable the required

turns by reordering the channel list
3) For each disconnected flow, find a valid path with

the current channel list using Dijkstra’s shortest path
algorithm with the following modifications:

• Ensure that the next channel to be tested for a
path is (or can be made) valid in the channel list

• Include the number of turns that have to be
enabled in the cost function to prefer paths with
fewer turns that must be enabled

• Include the specific new turns in the cost function
to preference turns that have already been enabled
by other paths

a) Once a path has been selected, rearrange the
channel list to enable the required turns

4) Finally, update routing tables
The core of the algorithm is the search for the new paths

using Dijkstra shortest path algorithm. If a topology specific
plug-in is utilised, this is a straightforward effort since there
will always be a path that requires no additional turns to be
enabled in the channel list (this has been taken care of by
the plug-in).

If a topology specific plug-in is not available, or the
current topology is not supported by the plug-in (e.g. too
many faults), the path search performed by the shortest path
algorithm must include paths that enable one or more illegal
turns in the channel list. For the sake of speed, there is only
done if it is reasonable to believe that the resulting path will
be shorter than any previously tested paths.

Let us discuss the other important component of the
algorithm, namely checking whether an illegal turn can
be enabled and the subsequent reordering of the channel
list. An illegal turn creates a downward dependency in the
channel list. However, it might be possible to reorder the
channel list so that all dependencies again moved upwards.
An example of this is presented in Figure 2, where one
link in the previous example of our 4-node ring has been
removed. To restore connectivity previously non-existent
turns have to be used which lead to a downward dependency
in the channel list. By moving the target channel of this
dependency upwards in the channel list, and repeating this
for the following dependencies, a new valid channel list is
created.

The design choices we reviewed earlier are realised in the
algorithm throughout the path search is performed. The local
reroute option can be viewed as a topology agnostic plug-in
that tries to enable the necessary turns to create a legal path
around the failed element. Similarly, whether to search for
a path in the same virtual layer, or in other virtual layers
can easily be implemented by considering the channel list
for the different virtual layers separately and testing each
one through a separate run of the shortest path algorithm.

Figure 2. Reordering the channel is to allow the turns necessary to connect
the topology after a failure.

Finally, whether to consider each illegal turn separately, or
combined with the others is implemented in the shortest
path algorithm by keeping a local copy of the channel list
which is continuously updated with the enable turns. For
more details we refer the reader to [21].

Complexity of the resulting reconfiguration function is
O(|F ||T ||V |log|V |), where F is the number of flows that
must be rerouted, T is the small subset of channels that
must be moved in the channel list, and V is the number
of switches/nodes in the network. The exact values of the
number of flows that must be rerouted, F , are very low,
and we present these in the evaluation section. For a more
detailed discussion we again refer to [21].

C. An Example Topology Specific Plug-In for the Mesh
Topology

The main idea for this plug-in is to always ensure that the
local paths around the disconnected link goes towards the
centre of the mesh as described in [4]. So, instead of creating
an arbitrary local reroute around a link, we add a specific
rule for how to select this path. Furthermore, we enable the
turns required to enter and exit this path at either end of the
failed link. In this manner once the local reroute has been
successfully established together with the additional turns,
the subsequent search for paths for the disconnected flows
can proceed without having to enable any new illegal turns.

V. EVALUATION

We have evaluated DQR for several of the most common
topologies, mesh, torus, and fat tree. The purpose of the
evaluation is to see how efficient the mechanism is at re-
configuring the network with a connected routing algorithm
after a fault event. We also evaluated several of the options
we have outlined through the description of the mechanism
such as adding a local reroute path, adding topology specific

‘

Figure 3. Mesh fault tolerance comparison.

dependencies, checking the validity of all illegal turns on
the path or just each single turn, and doing this for all
paths or just the local reroute. The algorithm has been
implemented in Python and it is run on topologies with
routing tables dumped by the latest version of OpenSM
(OFED 1.5.3.2). Every data point in all the figures represents
500 separate runs which consists of introducing a random
faults, reconfiguring, and if successful introducing a new
fault and so on. The results are presented in the next sections
for the different topologies.

A. Mesh

The mesh is a well-known and simple topology where
one link fault tolerance can be guaranteed as we discussed
earlier. Let us first discuss Figure 3 where we compare all
the different variations of the DQR mechanism in a 10 x 10
mesh. The x-axis is the number of link faults (inserted one
after the other with reconfiguration in between) introduced
into the topology and the Y axis is the probability of finding
a connected and deadlock free solution. The keywords
”end-to-end” and ”local paths” signify whether the new
paths are created with or without enforcing a local reroute
around the failed link. ”All turns” means that for every path
that is created, all illegal turns along that path have been
considered together, as opposed ”single turn” where each
turn is considered in isolation. Finally, for ”turn local reroute
(tlr)” we consider all turns along a path together, but only
for the local reroute path, not the full paths for the flows,
and ”mesh specific” is the mesh specific plug-in variation.

It is clear from figure that the two mesh specific variations
are the only variations that are able to guarantee toleration of
one link fault, and they have the overall best probability of
tolerating further faults. Of these two, the best solution is to
consider the sequence of all illegal turns for the local reroute
if the mesh specific plug-in fails. In the middle we find
the rest of the variations around the local topology agnostic

Figure 4. Mesh fault tolerance capability.

reroute solutions, and the best of these is also the one where
we consider all the illegal turns on the path together rather
than individually. We get the worst performance if we do
not add the local reroute and consider all the illegal turns
on the path together. This is because this solution requires
there to be a valid new path for all possible sources for a
given destination, not just the ones that are disconnected by
the fault.

The conclusion is that with a topology specific plug-in
mechanism we can guarantee one link fault tolerance in a
mesh and have a reasonable probability of tolerating several
more subsequent faults.

To evaluate the scalability of the solution for the mesh
we tested a 5 by 5, 10 x 10, 15 x 15, and 20 x 20 mesh
using the mesh specific plug-in together with single turn
local path. The results are presented in Figure 4. The figure
clearly shows that we are able to guarantee connectivity
with one fault. Furthermore, the degradation in probability
is similar for every topology size which indicates quite good
scalability properties.

Finally, to put the complexity of the reconfiguration
algorithm into context we review the numbers of flows that
have to be reconfigured after a link has failed in the 20 x
20 mesh. This fraction is quite stable, it ranges from 1.7%
to 2.2% when increasing the number of subsequent faults in
the system from one to 10. Around 2% of all the flows are
configured which ensures good runtime and scalability for
the reconfiguration algorithm.

B. Torus

The torus is a mesh with wraparound links so that it is
fully symmetric. This topology cannot be routed without
using virtual channels to guarantee deadlock freedom. A
possible way routing the torus is using the E-cube algorithm

Figure 5. Torus fault-tolerant capability.

which mimics mesh routing and divides the traffic in various
portions of the torus into different virtual layers. It is then
possible to apply the mesh specific plug-in to every layer
in the torus and achieve approximately the same probability
of full toleration as for the regular mesh. In other words,
using the E-cube routing algorithm DQR can guarantee one
fault tolerance with a graceful degradation beyond one fault.
Since the results are very similar we have not included the
figure in the paper.

Another possible way of routing a torus is using
LASH [20]. LASH is a topology agnostic routing algorithm
that guarantees shortest path routing and divides conflicting
paths (that may cause deadlock) into different virtual layers.
It is therefore interesting to see how the topology agnostic
DQR behaves together with the topology agnostic LASH.
The results for a 5 by 5, 10 x 10, 15 x 15, and 20 x 20 torus
are presented in Figure 5 where every layer is searched for
a path for a disconnected flow.

There is a striking difference to the mesh probability
figure. No fault tolerance is guaranteed, and for the largest
torus, 20 x 20, there is only a 33% chance of tolerating a
single fault. The reason for this poor performance is that
LASH uses arbitrary shortest paths and tries to pack the
resulting paths into as few layers as possible. This gives
very little room for creating different paths without causing
deadlock. The results for not searching in different virtual
layers from the original are significantly worse, and have
not been included in the paper.

C. Fat Tree

Finally we consider a two-tier fat tree constructed using
36-port switches. This yields a fat tree with 648 ports.
The current algorithm in OpenSM for fat tree routing only
provides deadlock free node to node and node to switch con-
nectivity. Deadlock free switch to switch connectivity is not
supported, although it is required for several management
systems that rely on running IP over Infiniband.

Figure 6. Fat tree fault tolerance comparison.

When evaluating the fat tree we have therefore first treated
the switch to switch paths as disconnected and used DQR
to reconnect them. Thereafter we introduce faults as for
the other topologies. The challenge with switch to switch
connectivity in the fat tree is that it involves introducing
U-turns in the leaf switches of the tree. Without careful
consideration of where these U-turns are placed, deadlocks
will occur. Including switch to switch communication makes
the evaluation more challenging since link faults in a fat tree
without switch to switch connectivity can always be handled
without introducing any illegal turns. The fault tolerance is
therefore only bounded by the physical connectivity.

The results of the evaluation are presented in Figure 6. For
the fat tree we only compare using pure end to end routing
and creating local reroutes around the link fault without
any topology specific plug-ins (a plug-in is not required
to guarantee that the free connectivity). First, we note that
DQR was able to successfully create all the necessary switch
to switch paths. Second, it is clear from the figure that
creating a local reroute around a link fault is not a good
solution for the fat tree. In this case single fault tolerance
is not guaranteed. The end-to-end algorithm can guarantee
connectivity with at least one link fault, and shows a much
smaller degradation with increasing number of faults.

To summarise, DQR performs better for some topologies
than others, but with topology specific plug-ins connectiv-
ity can be guaranteed. The fat tree with switch-to-switch
connectivity is supported with the pure topology agnostic
solution, while the mesh and torus topologies require a
topology specific plug-in to guarantee connectivity. Still,
even the topology agnostic solution could tolerate a single
link fault with 93% chance and two faults with 80% chance
in a mesh. In these cases the best topology agnostic solution
is to create a local path around the faulty elements and
check that the entire sequence of illegal turns on this path
is deadlock free. The LASH routing mechanism is more
difficult to work with because the tight packing of paths into
as few virtual layers as possible means there is little leeway
for creating new paths. However, LASH is a very time-
consuming algorithm with a significant deadlock probability
when reconfiguring, so it might be worthwhile running DQR
before doing a full LASH reconfiguration on the off chance

that it can be avoided.

VI. CONCLUSION

Having an efficient and deadlock free reconfiguration
algorithm for large interconnection networks is important to
maintain good utilisation of the computer system. Existing
solutions either require virtual channels or have severe
performance issues during the reconfiguration. Furthermore,
these solutions often rely on topology agnostic routing
algorithms to create connectivity. We have presented DQR, a
topology agnostic dynamic reconfiguration mechanism that:

• Guarantees a deadlock free reconfiguration if connected
paths are available

• Reconfigures only disconnected paths
• Requires no virtual channels or reconfiguration protocol

for updating forwarding tables
• Cap has easy support for topology specific function-

ality through a plug-in architecture to guarantee fault
tolerance

• Has low complexity
The evaluations have shown that with this architecture
we can guarantee connectivity with single faults in mesh
and torus topologies with a graceful degradation beyond
this point. Fat trees with switch-to-switch connectivity are
supported even with only the topology agnostic solution.

Further work includes implementing the functionality into
OpenSM and evaluate it on real systems. More efficient
topology specific plug-ins will also be researched to see
whether the fault tolerance capabilities of the mechanism
can be increased.

REFERENCES

[1] J. Duato, O. Lysne, R. Pang, and T. M. Pinkston, “Part I:
A Theory for Deadlock-Free Dynamic Network Reconfigu-
ration.” IEEE Transactions on Parallel Distributed Systems,
vol. 16, pp. 412–427, 2005.

[2] T. Hoefler, T. Schneider, and A. Lumsdaine, “Optimized
Routing for Large-Scale InfiniBand Networks,” in High
Performance Interconnects, 2009. HOTI 2009. 17th IEEE
Symposium on, no. Lmc. IEEE, Aug. 2009, pp. 103–111.

[3] F. O. Sem-Jacobsen, T. Skeie, O. Lysne, and J. Duato,
“Dynamic Fault Tolerance in Multistage Interconnection Net-
works,” journal, 2009.

[4] O. Lysne, T. Skeie, and T. Waadeland, “One-fault tolerance
arid beyond in wormhole routed meshes 1,” Microprocessors
and Microsystems, vol. 21, no. 7-8, pp. 471–480, 1998.

[5] Chien and J. H. Kim, “Planar-adaptive routing: Low-cost
adaptive networks for multiprocessors,” 19th Ann.

[6] S. Chalasani and R. V. Boppana, “Fault-tolerant wormhole
routing in tori,” in ICS ’94: Proceedings of the 8th interna-
tional conference on Supercomputing. New York,, USA:
ACM Press, 1994, pp. 146–155.

[7] S. Chalasani and R. Boppana, “Communication in
multicomputers with nonconvex faults,” Computers, IEEE
Transactions on, vol. 46, no. 5, pp. 616–622, 1997.

[8] C.-T. Ho and L. Stockmeyer, “A new approach to
fault-tolerant wormhole routing for mesh-connected parallel

computers,” IEEE Transactions on Computers, vol. 53, no. 4,
pp. 427–438, Apr. 2004.

[9] J. Duato, “A Theory of Fault-Tolerant Routing in Wormhole
Networks,” in Proceedings: 1994 International Conference on
Parallel and Distributed Systems. IEEE Computer Society
Press, 1994, pp. 600–607.

[10] C. Glass and L. Ni, “The turn model for adaptive routing,”
in Proceedings of the 19th annual international symposium
on Computer architecture, vol. pages. ACM, 1992, pp.
278–287.

[11] N. A. Nordbotten and T. Skeie, “A Routing Methodology for
Dynamic Fault Tolerance in Meshes and Tori,” in Interna-
tional Conference on High Performance Computing (HiPC),
ser. LNCS 4873, R. B. V. K. P. Srinivas Aluru Manish
Parashar, Ed. Springer-Verlag, 2007, pp. 514–527.

[12] M. E. Gómez, N. A. Nordbotten, J. Flich, P. López, A. Robles,
J. Duato, T. Skeie, and O. Lysne, “A Routing Methodology
for Achieving Fault Tolerance in Direct Networks,” IEEE
Transactions on Computers, vol. 55, pp. 400–415, 2006.

[13] T. M. Pinkston, R. Pang, and J. Duato, “Deadlock-Free Dy-
namic Reconfiguration Schemes for Increased Network De-
pendability,” IEEE Transactions on Parallel and Distributed
Systems, vol. 14, pp. 780–794, 2003.

[14] R. Casado, a. Bermudez, J. Duato, F. Quiles, and J. Sanchez,
“A protocol for deadlock-free dynamic reconfiguration in
high-speed local area networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 12, no. 2, pp.
115–132, 2001.

[15] O. Lysne and J. Duato, “Fast dynamic reconfiguration in
irregular networks,” icpp, 2000.

[16] O. Lysne, T. M. Pinkston, and J. Duato, “Part II: A Method-
ology for Developing Deadlock-Free Dynamic Network Re-
configuration Processes.” IEEE Transactions on Parallel Dis-
tributed Systems, vol. 16, pp. 428–443, 2005.

[17] O. Lysne, J. Montañana, T. Pinkston, T, and J. Duato,
“Simple deadlock-free dynamic network reconfiguration,”
Computing-HiPC 2004, pp. 504–515, 2005.

[18] Å. G. Solheim, O. Lysne, and T. Skeie, “RecTOR: A New
and Efficient Method for Dynamic Network Reconfiguration,”
in Euro-Par 2009, 2009.

[19] W. Dally and B. Towles, Principles and Practices of Inter-
connection Networks. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2003.

[20] O. Lysne, T. Skeie, S.-A. Reinemo, and I. r. T. Theiss,
“Layered Routing in Irregular Networks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 17, pp. 51–65, 2006.

[21] F. O. Sem-Jacobsen and O. Lysne, “Topology Agnostic Dy-
namic Quick Reconfiguration for Large-Scale Interconnec-
tion Networks,” Simula Research Laboratory, Research note,
2011. http://simula.no/publications/Simula.simula.852

