User Evaluation of a Domain Specific Program Comprehension Tool

Leon Moonen
Simula Research Laboratory
P.O. Box 134, N-1325 Lysaker, Norway
leon.moonen @ computer.org

Abstract—The user evaluation in this paper concerns a
domain-specific tool to support the comprehension of large
safety-critical component-based software systems for the mar-
itime sector. We discuss the context and motivation of our
research, and present the user-specific details of our tool, called
FlowTracker. We include a walk-through of the system and
present the profiles of our prospective users. Next, we discuss
the design of an exploratory qualitative study that we have
conducted to evaluate the usability and effectiveness of our tool.
We conclude with a summary of lessons learned and challenges
that we see for user evaluation of such domain-specific program
comprehension tools.

Keywords-user evaluation, domain specific tooling, program
comprehension, software visualization.

I. INTRODUCTION

Component-based software engineering aims to manage the
complexity of large-scale software development by assem-
bling systems from ready-made parts. It has known benefits
on the comprehensibility of the individual components,
by separating concerns, reducing coupling, and increas-
ing cohesion [1]. However, the overall comprehension of
component-based systems is complicated by the fact that
the configuration and composition of the components plays
such an essential role in the system’s behavior. To understand
a component-based system, one needs to understand the
interplay between its components and configuration artifacts.

In spite of this clear need, we found that there is little sup-
port to assist software engineers with this task [2]. Most tools
available to professional developers have strict limitations
on the programming languages that can be processed. This
typically means that information from external configuration
artifacts can not be included, effectively inhibiting system-
wide analysis and confining it to the boundaries defined by
the source code of a single component.

A second comprehension challenge is that it’s not always
just developers that need to understand what’s going on in
the code: Our work is motivated by an industrial case where
(non-developer) safety domain experts need to understand
the logic that is implemented in the system to support
software certification. These safety domain experts need to
see the system’s source artifacts represented in a context that
is relevant to them — not just what the code does, but what it
means [3]. Consequently, any views on the system need to
be goal-driven, at a suitable level of abstraction, and based
on relevant knowledge of the application domain.

978-1-4673-1859-4/12/$31.00 (© 2012 IEEE

45

We have developed an approach to reverse engineer a fine-
grained system-wide dependence model from the source and
configuration artifacts of a component-based system [2], and
defined a hierarchy of views on this model to visualize these
dependencies and possible information flow between inputs
and outputs at various levels of abstraction [4]. The views are
aimed at supporting both the developers and safety domain
experts of our industrial partner in their understanding of the
system. The whole process of model reverse engineering and
visualization is supported by a prototype tool, FlowTracker,
that we would like to evaluate with our users.

II. CONTEXT AND MOTIVATION

The work described in this paper is part of an ongoing
industrial collaboration with Kongsberg Maritime (KM), one
of the largest suppliers of programmable marine electronics
worldwide. The division that we work with specializes in
computerized systems for safety monitoring and automated
corrective measures to mitigate hazardous situations, such
as emergency shutdown, process shutdown, and fire & gas
detection systems for vessels and off-shore platforms. In
particular, we study a family of safety-critical embedded
software systems that connect control components to phys-
ical sensors and mechanical actuators.

Concrete software products are assembled in a
component-based fashion from a collection of approximately
30 reusable components, implemented in MISRA C (a
safe subset of C [5]). The components are relatively small
in size (1-2 KLOC), have a well-defined interface of
input- and output ports to connect to other components
or the environment, and perform relatively straightforward
computations. Their control logic, however, can be rather
complex and is highly configurable via parameters (e.g.
initialization, thresholds, comparison values etc).

The system’s overall logic is achieved by composing
pipelines of interconnected component instances that receive
values from system input ports (sensors) and process it in
various ways, such as measuring, digitizing, voting, and
counting, before sending the results to system output ports
(actuators). Figure 1 shows an example (the colors are not
important for now). Components of the same type can be
cascaded to handle a larger number of input signals than
foreseen in their implementation. Similarly, the output of a
pipeline can be put into another pipeline to use the safety
conclusions for one area as input for a connected area.

USER 2012, Zurich, Switzerland

"~)
Si AlarmVal |
= analog check |AlarmEr 1
o B | :
Sverride
| —‘ vote :
#1
I |
| check —] output !
! status #2 : Aj
[#2 T— ot :
X #2 .
I I
I I
I I
4 !
Smq! | digtal || |
T — input !
Sm_ ! | #m '
[
I\ _____________________________________ 7
Figure 1. Component composition network for an example system with

the System Information Flow for actuator A; highlighted in black.

Research goal: As installations that are monitored be-
come bigger, the number of sensors and actuators grows
rapidly, the safely logic becomes increasingly complex and
the induced component networks end up interconnecting
thousands of component instances. To give an impression,
a typical real-life installation has 12 to 20 stages in each
pipeline, and approximately 5000 component instances in
its safety system. As a result, it becomes very hard to
understand the overall behavior and dependencies in the
system. The goal is to investigate feasibility of providing
source-based evidence to support software certification and
assists with the understanding of deployed systems, 1i.e.
systems composed and configured to monitor the safety
requirements of a particular installation. One of the most
important questions in this context is the question “can sig-
nals from the appropriate sensors reach a given actuator?”.

III. FLOWTRACKER OVERVIEW

In theory, the question at the end of Section II can be
answered using program slicing [6]: A backward slice of a
program contains all parts that potentially affect the values
at a given point of interest, known as the slicing criterion [7].
Thus, by examining the backward slice for a given actuator,
we can determine which sensors can affect that actuator .
In practice, there are two challenges, given our context:
First, program slicing is defined within the closed boundaries
of source code, whereas we need to slice across the complete
component-based system. To this end, FlowTracker analyzes
component sources and system configuration artifacts to
reverse engineer a fine-grained system-wide dependence
graph (SDG) that captures intra- and inter-component de-
pendencies, and can be sliced using standard algorithms [2].
Second, dependence graphs, and slices through depen-
dence graphs, contain many low level details that make them
unfit for supporting comprehension or visualization, espe-
cially when targeting non-developers [8]. To make this type
of information more tractable, we have defined a hierarchy
of five abstractions (views), aimed at the needs of safety
experts and developers, ranging from a black-box survey

46

of the system, via a number of intermediate levels, to a
hypertext version of the source code. FlowTracker constructs
these views from the system-wide dependence model via a
combination of slicing, transformation and visualization [4].
The views are rendered using HTML and SVG, and are
interconnected via hyperlinks to support navigation and
enable various comprehension strategies [9].
(1) System Dependence Survey: This view shows the de-
pendencies between all system inputs (sensors) and outputs
(actuators) in one single matrix, with sensors and actuators
as rows and columns respectively (see Figure 2a). A filled
cell indicates that there is at least one path along which
information can flow from that sensor to that actuator. This
view gives a black-box summary that hides all details on
how the information flow is realized. Engineers can use it
to quickly find what sensors can affect a specific actuator,
and vice versa. The presentation intentionally resembles our
industrial partner’s specifications of the safety logic, known
as Cause & Effect matrices, to enable easy comparison of the
implemented dependencies with the specified safety logic.
The System Dependence Survey serves as a starting point
for navigation. To this end, we make the matrix active by
embedding hyperlinks to corresponding views on the next
abstraction level. By clicking one of the cells in the column
for a given actuator (e.g. A;), the user can zoom in on the
System Information Flow for that specific actuator.
(2) System Information Flow: This view depicts the inter-
component information flow that can affect a given actuator,
i.e., there is a diagram for each actuator in the system.
The view shows a backward slice through the system with
actuator A; as criterion while hiding all intra-component
level information. The result highlights the actuator and all
related sensors, component instances, and inter-component
connections, as was shown in Figure 1 for actuator Aj.
Apart from showing the elements that influence an actua-
tor, this view serves as an intermediate level between system
level views and component level views. It includes naviga-
tion hyperlinks so that a user can click on a component
instance to zoom in on that component, or click outside the
diagram to return to a higher level of abstraction.
(3) Component Dependence Survey: Similar to the System

(a) System-wide
dependencies

(b) Component
dependencies

Figure 2. System- and Component Dependence Surveys.

AlarmVal > -0.0001

Param->PrevInhibitin

IOErr! = FALSE
ALType & 0x08
getChkSum(AL)

AlarmVal != ErrValue AlarmVal < + 0.0001]

[InhibitCntr < MAX_IDLE]

A
TOEr = FALSE

<
<

Chk(LValue) >0

ManualOverride
OprMode == MANUAL|

[getChSum(AL) I= CheckSum]

Param->AckALL
ChkSumIN == getCheckSum(pram->InputVal)
param->IOErr |= FALSE

Param->LowSetFlag [AlarmVal <= Param->Limit]

[Param->|

nhibitOut |

v

| ((AlarmStat = DisableALL) && (Measure == TRUE))][Param->instance & DISPLAYOUT]
[P

GlobalResetStat
PrevGlobalResetStat

revAlarmStat == AlarmStat]

N,

[Param->instance & DISPLAYOUT]

Param-> InhibitOut

Figure 3.

Dependence Survey, the Component Dependence Survey is
a black-box view that summarizes the dependencies between
a component’s input- and output ports using filled cells in a
matrix (see Figure 2b). There is one dependency matrix for
each component, independent of its instances, because the
dependencies are induced by the component source code.
Users can navigate to more detailed views by clicking one
of the cells to zoom in on the Component Information Flow
for the corresponding output port.
(4) Component Information Flow: For a given compo-
nent and output port, this view shows the intra-component
information flow from all input ports that can affect that
output port (i.e., there is a diagram for each output port
of the component). In addition to the in- and output ports
involved, the graph includes all conditions that control the
information flow towards the selected output port. The view
hides all other information (e.g. assignments, computations)
and it combines sequences of conditions into aggregated
conditions wherever possible to reduce cognitive overhead.
Figure 3 shows an example for output port “AlarmErr”
(red node at the bottom). The input ports that can affect
AlarmFErr are at the top (green nodes) and the conditions that
control the information flow are shown as yellow squares.
The condition nodes have hyperlinks embedded to navigate
to the corresponding location in the source code.
(5) Implementation View: At the lowest level, this view
shows pretty-printed source code with hypertext navigation
facilities, e.g. cross-referencing of program entities with
their definition. It is very similar to the source code in an
IDE (besides not being editable) and we foresee that it could
be replaced by an IDE in future versions. Higher level views
provide links into the source code as a means of traceability
and to help minimize user disorientation.

47

Component Information Flow example

IV. TYPICAL USAGE SCENARIO

1) Users start navigating the system from the System
Dependence Survey. In this view, they can immediately
identify those sensors that can (or can not) influence a
given actuator (Figure 2a);

By clicking on one of the actuator columns, the users
zoom in on the System Information Flow that helps
them find the components and inter-component con-
nections that play a role in transferring the values from
sensors to that actuator (highlighted in Figure 1);

By selecting on one of the component instances, they
navigate to the Component Dependence Survey. This
view can be used to identify which input ports can (or
can not) affect which output ports (Figure 2b);

By clicking on one of the output port columns, the users
focus on the Component Information Flow, that shows
the conditions that control how information from the
input ports can reach the selected output port (Figure 3);
Finally, the user can click on one of the conditions to
navigate to the corresponding location in the source
code for traceability and further (manual) inspection.

2)

3)

4)

5)

V. TOWARDS USER EVALUATION OF FLOWTRACKER

User profiles: We organized a workshop at our partner’s
site to present FlowTracker to the various stakeholders, and
to identify the roles of prospective Flowtracker users:
Module Developers: engineers that develop and maintain
the modules of the studied system. Their focus is on
individual modules rather than the complete system.
System Integrators: experts in system composition and con-
figuration. Their tasks include checking component
inter-connections to verify consistency, and auditing
systems to verify that they meet the costumer’s needs.

Safety Experts: design the system’s Cause & Effect specifi-
cation(s) with the customer and handle the certification
process with third party certifiers.

Exploratory Qualitative Evaluation: Before embarking on
a full-blown user evaluation, we performed an exploratory
study to evaluate the usability and effectiveness of our visu-
alizations for the needs of KM. We conducted a qualitative
evaluation of the tool with six subjects, selected to match
the roles discussed above. Such a pre-experimental design is
a cost-effective way to get initial feedback, identify missing
functionality and required improvements [10].

We prepared the subjects with a brief 10 min. presentation
of FlowTracker that included a walk-through like Section I'V.
Next, we let the subjects play around with the tool until they
felt confident in their understanding of its functionality. We
concluded the training with three hands-on exercises which
participants had to complete before starting the evaluation.
These exercises were designed in a way to engage all the
views and the major features of FlowTracker.

The evaluation itself consists of a structured interview
which was guided by a questionnaire consisting of 30
closed questions using a 5-point Likert scale and 6 open
(discussion) questions. The questions varied in positive and
negative phrasing to break answering rhythms and avoid
steering [11]. Researcher-administered interviews were cho-
sen over self-administered questionnaires to elicit as much
feedback as possible. Participants were instructed to bring up
any question or comment during the training exercises, ques-
tions, and the open-ended discussion, similar to think-aloud
sessions. We recorded the complete audio of the sessions
(training+interviews). These recordings were independently
analyzed by two researchers to avoid interpretation bias. The
evaluation results indicate that the prototype was already
very useful and a number of directions for further improve-
ment were suggested. For more details, we refer to [4].

VI. CHALLENGES AND LESSONS LEARNED

We see a number of challenges around the user evaluation
of a domain specific program comprehension tool targeted
at a specific industrial audience, such as FlowTracker.

As researchers, we want to develop a sustainable relation
with our industrial partner, which requires that we limit the
overhead and impact of our research activities on their daily
work. A related concern, especially when targeting a small
user population, is that the final adoption may be hindered
by (negative) anchoring effects that result from exposing
potential users to (early) research prototypes [12]. As such,
we found that the potential for recruiting a statistically
significant number of subjects to conduct is rather limited,
making it hard to conduct a quantitative evaluation.

Our exploratory study is based on six subjects, which, can
be argued, is too small to infer generalizable conclusions. We
have tried to limit this threat using a qualitative study design.
In addition, the subjects were selected so that their profiles

48

would match with the various roles of prospective users.
Finally, we added a second group of subjects (colleague re-
searchers) to decrease the potential bias that could be caused
by only selecting subjects from our industrial partner [13].

A remaining concern is that we include one industrial
subject for each of the user profiles. As such, the person
gets a dominant voice and the answers (and our conclusions)
may be based more on personal opinions than on the role.

We used interviews over self-administered questionnaires
to collect more and better quality data. However, the live
interaction with the researchers might have led the subjects
to give more socially acceptable positive feedback.

Even though the tool was very positively evaluated, we
had underestimated how much attention would be drawn to
user interface aspects, which we had ignored since our focus
was getting the views themselves right. A next time, we
would address these issues before evaluation, to improve
the subject’s focus and avoid distraction.
Acknowledgments: The FlowTracker research is joint work
with Amir R. Yazdanshenas. We would like to thank Kongs-
berg Maritime for the collaboration, and in particular thank
the participants in our workshop and exploratory evaluation
study for their valuable time and feedback.

REFERENCES

[1] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, 2nd ed. Addison-Wesley, 2002.

A. R. Yazdanshenas and L. Moonen, “Crossing the Bound-
aries while Analyzing Heterogeneous Component-Based Soft-
ware Systems,” in Int’l Conf. Software Maintenance, 2011.
M. Petre, “Mental imagery and software visualization in
high-performance software development teams,” J. Visual
Languages & Computing, vol. 21, no. 3, pp. 171-183, 2010.
A. R. Yazdanshenas and L. Moonen, “Tracking and Visualiz-
ing Information Flow in Component-Based Systems,” in Int’l
Conf. Program Comprehension (ICPC). 1EEE, 2012.

L. Hatton, “Safer language subsets: an overview and a case
history, MISRA C,” Information and Software Technology
(IST), vol. 46, no. 7, pp. 465-472, 2004.

M. Weiser, “Programmers use slices when debugging,” Com-
munications of the ACM, vol. 25, no. 7, pp. 446-452, 1982.
K. Gallagher and D. Binkley, “Program slicing,” in Frontiers
of Software Maintenance (FoSM). 1EEE, 2008, pp. 58-67.
J. Krinke, “Visualization of program dependence and slices,”
in Int’l Conf. Software Maintenance (ICSM). 1EEE, 2004,
pp. 168-177.

M.-A. Storey, “Theories, Methods and Tools in Program
Comprehension: Past, Present and Future,” in Int’l Ws. Pro-
gram Comprehension (IWPC). IEEE, 2005, pp. 181-191.
D. T. Campbell and J. Stanley, Experimental and Quasi-
Experimental Designs for Research. Wadsworth, 1963.

A. N. Oppenheim, Questionnaire Design, Interviewing and
Attitude Measurement. Continuum, 1992, vol. 30, no. 3.
A. Tversky and D. Kahneman, “Judgment under Uncertainty:
Heuristics and Biases.” Science, vol. 185, no. 4157, pp. 1124—
31, 1974.

J. Nielsen and R. Molich, “Heuristic evaluation of user
interfaces,” in SIGCHI Conf. Human Factors in Computing
Systems, vol. 17, no. 1. ACM, 1990, pp. 249-256.

(2]

(3]

(4]

(5]

(6]
(7]
(8]

(9]

(10]
[11]

(12]

(13]

