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Better Software Effort Estimation—A Matter of Skill
or Environment?

Jo E. Hannay

Abstract— Estimating the effort of software development is fraught with difficulties, and it is clear that effort should be invested in improving
the accuracy and the reliability (consistency) of effort estimates, as well as the assessment of estimate uncertainty. However, it is less
clear where to target such improvement efforts. We discuss the degree to which it is feasible to improve the expertise of the person(s) who
estimate(s), and the environment in which the estimation is performed. The former hinges on what there is to say about the development
of estimation expertise and the task characteristics of effort estimation. The latter hinges on what contextual support may be developed in
terms of environment control and tools and methodology. We integrate several theories to make a framework for discussing software effort
estimation and planning. On the basis of that discussion, we conclude that present guidelines almost exclusively concern the environment
and its influence on broad psychological factors, that task-specific estimation expertise is too weak a signal in the noise of biases, and that
strengthening this expertise requires new efforts in understanding the task-specific elements in software effort estimation and planning,
as well as environmental measures (tools and methodologies) that support expert behavior and expert learning.

Index Terms— Software Effort Estimation and Planning, Lens Model, Environment, Expertise, Task Complexity, Deliberate Practice
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1 INTRODUCTION

In an interview with OMNI Magazine in 1994, Herbert Si-
mon gave a, by now, famous parable for describing complex
behavior: “When you watch an ant follow a tortuous path
across a beach, you might say, ‘How complicated!’ Well,
the ant is just trying to go home, and it’s got to climb over
little sand dunes and around twigs. Its path is generally
pointed toward its goal, and its maneuvers are simple,
local responses to its environment. To simulate an ant, you
don’t have to simulate that wiggly path, just the way it
responds to obstacles”, see also [136, ch. 3]. In addition
to illustrate that one need not implement complex rules
in order to achieve complex behavior, the ant’s tortuous
journey may also be used to illustrate a converse principle:
that one might decrease complex behavior by decreasing
the complexity of the environment. Make the beach flat
and featureless and perhaps the ant will end up on a less
tortuous, less complicated path.

The development of a software system is an inherently
complex process. Estimating the effort needed to run a large
software development project is doubly so and notoriously
difficult. The human judgment processes involved in fore-
casting an estimate are subject to a range of unconscious
processes [97], [93], [99] that are subject to complicating
environmental factors: They are sensitive not only to what,
but also to the nature and format of the information (e.g.,
requirement documents) that are available when producing
the estimate [94], [95], [96], [91].

Visible effects are that effort estimates of software de-
velopment are inaccurate and generally too low [112], that
software professionals tend to exhibit more confidence in
their estimates than is warranted [101], and that estimates
are unreliable in that the same person may judge the same
project differently on separate occasions [60].

With regards to responding to this environment, there
seems to be no substantial improvement (learning from
history) in estimation accuracy over the past decades [112],
and learning from outcome feedback seems difficult [61]. It
seems that it is not enough simply to do more estimation
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of software development effort to become good at it. Evi-
dence suggests that feedback (either passive in the form of
historical data or active in the form of immediate feedback)
in terms of performance measures alone does not improve
on over-optimism, over-confidence, or unreliability.

In attempts to improve effort estimation, one can take
one of two extreme stances. At the one extreme, one would
study the expertise within a person, exclusively seeking
ways to alter that person’s mental models so that he would
perform better. At the other extreme, one would ignore
personal expertise and concentrate instead on altering the
environment so as to induce better performance or, perhaps
more to the point, hinder adverse performance in a person.
Of course, a combination of the two is probably better than
either one alone: It is not enough to design straighter roads
and cars with more safety features, one also has to improve
driving skills. The question is where to invest most effort.

Underlying the ant parable is the idea that behavior
exhibited by an agent—be it complex, tortuous, erroneous
or simple—is an adaptation or reaction to an environment.
It is therefore not meaningful to study the agent’s behavior
without considering the environment to which the agent is
adapting itself [57]. Adaptation is about acquiring relevant
and pertinent expertise.1 In this paper, we explore the
boundaries of expertise and its environment with regards
to software development effort estimation. Our goal is to
comment on how far and where it is possible to go in
both developing estimation skill and in tailoring the en-
vironment so as to improve estimation performance. There
seems to be a limit as to how much estimation skill one can
induce, but when it comes to software development, it is
certainly not possible to make the beach featureless either.

So in order to improve performance on a task—in our
case, the task of estimating effort—one needs to develop
expertise and one also has to consider how to form the
environment so as to facilitate good task performance.

1Before objecting that ants do not exhibit expertise or learning and only
”mindlessly” respond to bumps and dips in the environment, it is worth
considering that ants have exhibited tutor-based learning, constructive
adaptation to failure, and exhibit speed/accuarcy tradeoffs in decision
making [50], [124], [49]. The ant’s well-adapted local response to obstacles
is precisely its expertise.
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The extent to which one should focus on expertise or
environment, or both, is the topic of this paper. At the core
of this discussion, however, is the concept of task and its
structure and content. If we were to discuss the task of
riding a bicycle, we would not need to analyze the task
in any depth. It suffices to go out and practice, unless you
want to become a bicycle athlete. When it comes to software
effort estimation, matters seem more complicated.

Section 2 presents a framework for discussing software
effort estimation that integrates the estimator with the
environment. Then, Section 3 and Section 4 relate concepts
of expertise and task complexity to this framework. Sec-
tion 5 discusses how to improve estimation performance,
and Section 6 exemplifies the preceding discussion in the
context of a large agile development project. Section 7
draws implications and concludes.

2 A FRAMEWORK FOR STUDYING ESTIMATION

In order to reason about complex phenomena it is useful
to use or build suitable concepts and to organize them in
an appropriate conceptual model of sufficient abstraction
and simplicity to facilitate reasoning.2 For our purposes,
we need a conceptual model for the task of estimation that
expresses the distinction between the environment and an
agent operating as a task-doer in that environment. Stewart
and Lusk present such a model for forecasting in general
[145], [144] which is theoretically and empirically founded.
We will in the following discuss this model in the specific
context of software effort estimation.

2.1 Skill Score

We start, as do Stewart and Lusk, by considering the com-
ponents of a skill score due to Murphy [115]. The observed
event O (e.g., the actual effort of a software development
activity) is what the forecast Y estimates; prior to the ob-
servation being available. The skill score of the forecaster
(estimator) relates Y to O (over a series of occasions) and
consists of three components:

SS = (rOY )
2 − [rOY − (sY /sO)]

2 − [(Ȳ − Ō)/sO]
2 (1)

Here, rOY is the correlation between the forecast and the
observed event, sY and sO are the standard deviations of
the the forecast and the observed event, respectively, and Ȳ
and Ō are the means of the forecast and observed event. The
first component (rOY )

2 may be viewed as a measure of the
potential skill of the forecaster in the absence of bias. The
second term [rOY −(sY /sO)]

2 expresses so-called conditional
bias; i.e., forecaster bias in uncertainty assessments (e.g.,
over-confidence) and the third term [(Ȳ −Ō)/sO]

2 expresses
so-called unconditional bias; i.e., forecaster bias in point
(middle value) forecasts (e.g., under-estimation).

Technically, there are several ways of instantiating Equa-
tion 1, and, moreover, the concepts in the equation should
be generalized to nonlinear equivalents. However, these
technicalities are not the topic of the present discussion.
We are here primarily interested in the conceptual decom-
position of Equation 1.

We will now elaborate on the three components of Equa-
tion 1 with regards to software effort estimation.

2This is the essence and purpose of theory building [70], [59].

2.2 Unbiased Skill—Simple Model

Stewart [143] decomposed the first component of Equa-
tion 1 further using a Brunswikian [66] lens model; see
Fig. 1. The lens model includes cues X (X1, . . . Xn) which
are used by the forecaster in producing the forecast Y
and as input to models for predicting the outcome O.
For example, the cues X could be quantitative project
characteristics recorded by a software development project,
such as function points, lines of code, average developer
skill, number of teams, etc. Associated with the lens model
are the following equations:

O = MOX(X1, X2, . . . , Xn) + eOX (2)

Y = MY X(X1, X2, . . . , Xn) + eY X (3)

Here, MOX and MY X are probabilistic models that describe
the relations between the cues X and the observed event O
and between the cues and the forecast Y , respectively.

One can then calculate reliability measures: The correla-
tion ROX between actual observed O and the corresponding
values of MOX expresses the fit of the model; i.e., the pre-
dictive strength of MOX , given the cues X . If MOX captures
all systematic variance in the relationship between the cues
and the event, then ROX is the maximum predictability
of the observed event O given cues X . Likewise, the cor-
relation RY X between forecasts Y and the corresponding
values of MY X expresses the predictive strength of MY X ,
given the cues X [145], [144]. The curved lines in Fig. 1
represent correlations between the cues, since some of them
are likely to be interdependent. Also, the observed event
and the forecast should be correlated, which is represented
by the curved line between O and Y . The error terms eOX

and eY X represent the residuals of the models; that is, the
amount of variability not explained by the models.

The lens model in Fig. 1 incorporates a model for the
environment (MOX ) and a model for the agent performing
the forecast (MY X ), and therefore provides a view of the
world that suits our focus in this paper. The correlation
between the outputs of these two models, denoted G, is
then a measure of how well the model of the forecaster
and the model of the environment match each other. The
overall predictivity of the models; i.e., the correlation rY,O

Observed Event

(Actual Effort)

Forecast

(Estimate)

Cues

(Available Data)

X

O Y

Environment Agent (Estimator)

Fig. 1. Lens Model (adapted from [145]).
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from Equation 1 between the forecast Y and the outcome
O, can be expressed as:

rY,O = ROXGRY X + C
√
1−R2

OX

√
1−R2

Y X (4)

where C is the correlation between the error terms eOX and
eY X . The more systematic variance MOX and MY X capture
and the better they are correlated, the smaller C will be.
Since we are interested in the conceptual properties, we will
concentrate on the primary term ROXGRY X of Equation 4.

2.3 Descriptive and Explanatory Models

The nature of the probabilistic models MOX and MY X

is worth some consideration. In the original formulation,
these models are best thought of as regression models that
describe available empirical data: MOX describes data con-
sisting of observed cases of cue values and observed events
(actual project effort). Such a model can be generated from
historical project data. The model defines a hypercurve
in X1 × · · · × Xn × O-space that best fits the data under
the chosen model type; e.g., a hyperplane under linear
assumptions. Similarly, MY X describes data consisting of
observed cases of cue values and forecasts (effort estimates)
and defines a hypercurve in X1 × · · · ×Xn × Y -space.

Models that describe empirical data are useful for demon-
strating phenomena. A first step beyond mere data descrip-
tion is to move from exploratory model fitting to confirma-
tory model checking in which the regression models are
validated on several data sets. However, regression models
are extensional, or “black box”, in that they do not describe
underlying mechanisms. They therefore do not provide the
means to manipulate phenomena or to improve on events.
For that, one needs to move toward intentional “white box”
explanatory models that describe cause-effect relationships
underlying phenomena [127], [59], [70]. Improvement is
then achieved by manipulating appropriate causes. We will
therefore extend the discussion in [145], [144] to include
not only models that describe empirical data (quantita-
tively), but also explanatory models that represent state-
of-knowledge (perhaps qualitatively).

Consider again the example cues Xi above for a software
project: function points, lines of code, average developer
skill, etc. If the observation to be forecast is project effort,
then an explanatory model MOX should reflect the state-
of-knowledge of how these cues influence project effort,
while an explanatory model MY X should reflect the state-
of-knowledge of how these cues influence the forecast of
a human estimator. That such explanatory models also
quantitatively capture all systematic variance is an ideal
(an optimal model) to strive for, but is far from achieved
in most disciplines. Only disciplines with extremely strong
theoretical models (such as in some fields of physics) come
close to such optimal models. In any case, explanatory
models are by necessity simplified abstractions—here of the
environment and forecaster—that allow us to comprehend
and reason about those features of the environment and
forecaster that are important to us. What is important is
that the theoretical models give us means to assess and
improve the practice of estimation and planning.

Our discussion in this paper concerns the possibility of
increasing G; the correspondence between the environment
model and the forecaster model. What this means precisely
depends on the nature of these models. If the models are

data-fitted models (i.e., extensional, black box and quan-
titative), it is natural to regard the environment model as
the standard to which one measures the performance of the
forecaster model. The input-output relationship of cues to
event is all one has, and the relationship has presumably
been modeled to the best of ones knowledge. For example,
the data-derived regression model MOX might describe the
best fit (within the type of model) to the given cues X in
relationship to O. Steps should then be taken to manipulate
the forecaster to the best of one’s knowledge and then check
if new data generates a model MY X of the forecaster that
better corresponds to MOX .

However, if the models are intentional, it is not clear that
the environment model should be the standard. In some
physical sciences, where one has near optimal models of the
environment, an obvious way to increase G is to increase
the forecaster’s knowledge of, and practice with respect to
the environment in general and MOX in particular. But
in disciplines such as economics, management, and the
behavioral sciences (upon which much of the theoretical
basis used in software engineering is built [70]) theoretical
models are much less accurate and many are qualitative
rather than quantitative. In such circumstances, epistemo-
logical issues come into play more prominently: There is
no longer a single consensus model. Rather, different view-
points serve different purposes, and the question becomes
one of how to choose models so as best to comprehend
and manipulate a complex world for the purpose at hand.
In such a setting, optimizing G might mean adjusting MOX

and MY X to each other, rather than simply using MOX as a
gold standard for MY X . For example, comprehensive envi-
ronment models may be too complex for a human forecaster
to relate to, since humans are not good at processing masses
of information analytically [57], [72], [73], [54]. In this sense,
it is a misnomer to call the first component of Equation 1
”skill” since this only refers to the qualities of the forecaster
and not to qualities of the environment model. We shall say
more on this in Section 3.

2.4 Unbiased Skill—Extended Model

Several authors have extended the model in Fig. 1; see e.g.,
[42]. Stewart and Lusk [145], [144] extended the model by
taking into account true descriptors T and subjective cues
U ; see Fig. 2 (correlations omitted). True descriptors are
facts about the environment, free from measurement error,
that the cues X are intended to capture. For example, true
function points may be only approximated in a project
database based on historical data, and the true skill level
of developers may be imperfectly measured conditional on
the assessment instrument administered. The lens equation
for predicting O from T is

O = MOT (T1, T2, . . . , Tn) + eOT (5)

where MOT is a probabilistic model describing the relation
between the true descriptors and the observed event. The
correlation ROT between O and MOT expresses the pre-
dictability of the environment given the true descriptors.
The ratio VTX = ROX/ROT is then, in the terminology of
[145], the fidelity in the information system; values less than 1
being the effect of measurement error. Efforts to improve
data quality in business intelligence are precisely efforts
to improve the fidelity in the information system. On the
other hand, the choice of what data to gather pertains to
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Observed Event
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Fig. 2. Extended Lens model (adapted from [145]).

which true descriptors one thinks are appropriate to gather
information (cues) about.

For extensional models (e.g., regression models) that
describe data, MOT and MOX will likely be distinct models,
unless X and T are very similar. For explanatory models,
MOT and MOX will likely be the same model, since mea-
surement error is not part of a conceptual model.3

Subjective cues U are the forecaster’s interpretation or
redefinition of the cues X . The cues might be interpreted
in various ways according to the forecaster’s mental model.
Cues might also be replaced by vicarious cues, when so-
called accessibility effects are present [103]. Accessibility
effects occur when a problem is approached by (subcon-
sciously) substituting the problem with a perceived easier
problem (as when heuristics such as the availability, repre-
sentability, and affect heuristics step into action) or when
the cues for the original problem are given a reference point
(anchoring). The lens equation for predicting Y from U is

Y = MY U (U1, U2, . . . , Un) + eY U (6)

where MY U is a probabilistic model describing the relation
between the subjective cues and the forecast. The correla-
tion RY U between Y and MY U expresses the reliability of
the forecast given the subjective cues; in other words, the
reliability of the information processing of the forecaster.
The ratio VUX = RY X/RY U represents, in the terminology
of [145], the reliability of information acquisition. It is assumed
that RY X is less than RY U , since the subjective cues are
what are actually incorporated into the forecast.

Again, in the setting of extensional models (for example
regression models) that describe data, MY U and MY X will
likely be distinct models, unless X and U are very similar.
For models that set out to represent knowledge, MY U and
MY X will likely be the same model.

Equation (4) can now be decomposed into further com-
ponents (using ROX = ROTVTX and RY X = RY UVUX ):

rY O = ROTVTXGVUXRY U (7)

3This is only true for probabilistic models. In contrast, in so-called
fixed-effects models, measurement error is confounded with conceptual
variance.

2.5 Areas for Improving Performance
Equation 1 can now be written as

SS = ROTVTXGVUXRY U−[rOY −(sY /sO)]
2−[(Ȳ −Ō)/sO]

2

(8)
Each component of Equation (8) represents an area for

improving forecasting performance. We list the components
together with their interpretations:

1) ROT : Environmental predictability
2) VTX : Fidelity in the information system
3) G: Match between environment and forecaster
4) VUX : Reliability of information acquisition
5) RY U : Reliability of information processing
6) [rOY − (sY /sO)]

2: conditional bias
7) [(Ȳ − Ō)/sO]

2: unconditional bias
Areas 1 and 2 pertain to the environment, Areas 4 and 5
pertain to the forecaster, and Area 3 pertains to the match
between environment and forecaster. Areas 6 and 7 origi-
nally pertain to the forecaster, but in software engineering,
they pertain to both forecaster and environment because
the forecaster is part of the environment and because
methods to avoid forecaster bias are measures taken in the
environment. In the following, we will discuss these areas
with regards to software effort estimation. We will treat the
environment first, then the forecaster, and then the match
between the two. Areas 1, 3, and 5 concern the environment
model and the forecaster model directly, and for these areas,
we shall discuss both descriptive and explanatory models
(recall Section 2.3), prior to discussing ways to improving
estimation performance. For the other areas, we will discuss
briefly how they relate to the models and then discuss ways
to improve estimation performance.

2.5.1 Environmental predictability
Area 1 concerns the environment model MOT .

Descriptive: If a descriptive model MOT captures all rela-
tionships (all systematic variance) between true descriptors
T and observed event O, ROT will provide a quantitative
upper bound of the environmental predictability, given the
true descriptors [145]. The effects of improving forecasting
performance across all areas of the skill score model are
limited by this upper bound. Achieving a good descriptive
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model for software engineering field phenomena is gener-
ally hard, and building a good explanatory model is even
harder. In fact, the difficulty of constructing such models
are one of the reasons why human forecasting is necessary.
Note that ROT is relevant even for non-optimal models; in
this case, it reflects the environmental predictability given
the state of knowledge embedded in MOT .

Explanatory: With regards to building explanatory mod-
els, the issue in judgment tasks such as software effort
estimation is to identify better descriptors T and to un-
derstand how they interact to produce the event O. A lot
of research has gone into identifying salient cost drivers of
software development projects. Formal estimation models
such as the COCOMO family, SLIM, or ANGEL are, in fact,
attempts at making quantitative models MOT . However,
the performance of formal estimation models is debatable
[89], and as of yet, no model comes close to being an
optimal model in the sense that it describes and explains
environmental predictability fully, and at the same time
provides means to improve environmental predictability.

Improving environmental predictability: It may seem
obvious that more effort should go into constructing better
quantitative models MOT for software effort estimation.
However, this too is under debate; e.g., [92]. Arguments
against are that decades of effort has produced sub-optimal
quantitative models that perform no better than human
forecasters, and that software development projects are so
diverse that it is only possible to produce good estimates
if one knows when to use project-specific cues; so-called
“broken-leg” cues (highly irregular, but available, informa-
tion) [111]. This somewhat contradicts arguments in other
judgment disciplines where it is found that formal models
are more reliable and do outperform human forecasters,
and where broken-leg cues are viewed as disturbances that
offset reliability [43], [7].

Nevertheless, increasing understanding about which true
descriptors that should be included in models will theoreti-
cally increase environmental predictability ROT . It is there-
fore relevant to continue work on understanding process
drivers. Also, some studies have shown that a decrease in
environmental predictability (when this is determinable) is
associated with a decrease in judgmental consistency [26],
[27], [32], [33]; see [145], [144] for an overview. For software
effort estimation, the vast variability in project variables and
an unclear understanding of the effects of this variability
(unclear MOT ) and of what variables are relevant (unclear
T ) have been proposed as one of several reasons for why
software effort estimation is hard in general [89], [90]. The
bottom line is that “judges respond to unpredictable tasks
by behaving less predictably themselves” [144, p. 88].

2.5.2 Fidelity in the Information System
Area 2 concerns the discrepancy between true descriptors
T and available cues X .

Relationship to models: True descriptors are hard to
access in general and sometimes impossible to access in
software projects in particular. Therefore, inputs to models
of the environment are often approximations X to the
true descriptors. For example, inputs to formal estimation
models such as those mentioned above are usually available
cues X , prone to measurement error, or subjective ap-
proximations, or themselves estimates by judgment-based
methods. The latter point has led Jørgensen to suggest that
formal estimation is judgment-based estimation in disguise

[89], [92], since the models rely on inputs (cues) from the
user that are non-trivial to supply.

There is therefore usually a discrepancy between the true
descriptors T and the available cues X . The fidelity in the
information system is a measure of this discrepancy; i.e., the
data quality brought both to the environment model and to
the forecaster (model). It is reasonable to expect that if the
available cues do not accurately reflect the true descriptors,
then both output from environment models and forecasts
will deteriorate. As mentioned, the environment models
for software estimation are vulnerable to data quality. For
forecasting, though, certain studies, e.g., [8] indicate that
measurement error in cues may be less of a problem than
anticipated. The noise from such error could be of less
consequence than other noise in the system; see [145], [144]
for further pointers. Certainly, in software engineering, an
imminent problem is to gather the appropriate business
intelligence data in the first place. Also, the structure of the
models; i.e. the estimation methods used, may be a larger
problem than the quality of the input cues.

Improving fidelity in the information system: For soft-
ware effort estimation, an aspect of fidelity in the informa-
tion system has been uncovered in studies on the effects
of irrelevant information in requirements documents [95],
[94]. For example, in attempts to provide a comprehensive
account of the system, a customer might include infor-
mation that goes beyond the requirements for the first
product release. Such information may concern accounts of
the complexity of possible user patterns and about possible
future extensions of the system. The information may also
be presented in a verbose manner; perhaps illuminating the
requirements from various point of view. These and other
factors have been shown to inflate estimates. While what
information that is irrelevant is a question of appropriate T
and environmental predictability, the act of removing such
information pertains to data quality. Environmental mea-
sures to reduce such effects are therefore steps to increase
the fidelity in the information system. Further, the format
of, and the manner in which information is presented, has
also been shown to have effects on estimates [65], [96]. Time
estimates of how much time to complete a given task are,
on average, lower than time estimates of how much work
can be done in a given time slot. Deciding the appropriate
format in which to present information is a data quality
issue and pertains to the fidelity in the information system.
All these effects sort under biases (components 6 and 7 in
Equation 8). Therefore, steps taken to increase the fidelity
in the information system may lessen the effect of bias-
inducing factors. The following are some of the current
pieces of advice for software effort estimation pertaining
to increasing the fidelity in the information system.

• Reduce irrelevant information [88], [60]
• Use standardized formats
• Reduce or control factors that trigger availability biases
• Identify the “swamping forces” represented by the

most important cues [57]
• Use group estimates [88]
• Use tools that offer cognitive decision support [15]
Since true descriptors are hard to access, environmental

predictability ROT , and therefore VTX , is in general not pos-
sible to compute; although it is possible to estimate its value
using probabilistic methods. Nevertheless, these reliability
measures provide a conceptual framework that gives an
opportunity to structure our knowledge of estimation.
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2.5.3 Reliability of Information Processing

Area 5 concerns the model of the forecaster MY U . Note
that reliability here concerns consistency of estimates, not
necessarily that estimates are accurate.

Descriptive: To develop a quantitative descriptive model,
one might start exploratory by modeling empirical data
on how subjective cues relate to human estimates, and
then confirmatory by validating the model on other data
sets. Then, RY U is a measure of the distance between
actual estimates and the model’s predicted estimates. If the
model captures all relationships (all systematic variance)
between subjective cues U and forecast Y , then RY U is a
quantitative measure of the reliability of the forecast, given
the subjective cues [145]. It is non-trivial to develop such a
model to perfection. Nevertheless, preliminary studies have
shown that software estimation reliability is low: Estimators
are inconsistent in their estimates both between and within
subjects [60]. A recent study also suggests that prioritizing
user stories for release planning suffers from a similar lack
of consistency and even that the technique used for setting
priorities affects the priorities between user stories [15].

Explanatory: Explanatory models of how human fore-
casters produce software effort estimates are mostly qualita-
tive. For example, models of analogical thinking in general
[77], [52] and with respect to estimation [140], [23], [100]
in particular, set out to model some of the (cognitive)
steps involved, and other models describe top-down versus
bottom-up strategies of estimation [98]. We also know that
estimators are influenced by environmental factors such as
irrelevant information, information format, and availability
biases. However, the process of producing the numerical
estimate is not well-understood. This unknown quantifica-
tion process has been coined “the magic step” [87]. This
magic step is not atomic, since it can be decomposed into
sub-steps; e.g., the similarity/dissimilarity testing set forth
in [146], [116], but these sub-steps are also qualitative,
producing several “magic sub-steps”.

Improving reliability of information processing: A good
explanatory model of the forecaster may help to improve
the reliability of human software effort estimation. Such a
model should embody what it is to be an expert software
effort estimator and might be a conceptual model of the
mental models of expert estimators [118] (Section 3.1). This
would be an explication of tacit knowledge into a common
task strategy (Section 4.3) and is theorized to improve
performance as long as practice undergoes reflection in the
practitioner [3], [4], [80] (Section 5.3). Such an improvement
should then manifest itself in improved readings from the
quantitative descriptive model in terms of better reliability.

Stewart and Lusk state that unreliability in processing
subjective information is pervasive in human judgment,
and that certain studies show that this unreliability in-
creases as the predictability of the environment decreases.
Further, unreliability may increase as the amount of in-
formation available to the forecaster increases [145], since
humans are not optimized to deal analytically with large
quantities of information [57]. An explanatory model of the
forecaster should therefore reflect this.Tool support should
be developed on the basis of such a model and might
aid the estimator in simplifying and reducing information,
rather than prompting the estimator to gather as much
information as possible.

2.5.4 Reliability of Information Acquisition

Area 4 concerns the extent to which the forecaster can
reliably interpret the objective cues X [145].

Relationship to models: In software engineering, the
meaning of cues is often not clear in the first place, and
reliability is bound to be low for this reason, since forecast-
ers are likely to interpret cues differently from one occasion
to the next. Stewart and Lusk [145] cite studies that indicate
that unreliability in judging cues makes learning more
difficult and has an effect similar to that of unpredictability
in the environment. Building consistent mental models is
thence hard for the practitioner, and deriving stable concep-
tual models of these mental models is therefore also hard.

Improving reliability of information acquisition: Soft-
ware effort estimation is now often done in group sessions,
and work studies indicate that elaborate processes come
into play in which a common understanding of cues is
achieved gradually through “boundary concepts” [23]. Cue
interpretation therefore also relies on input from other
forecasters; however, it is likely that reliability of cue in-
terpretation increases through group work.

Stewart and Lusk [145] argue that unreliability of infor-
mation acquisition limits forecasting skill more than lack
of fidelity in the information system and that the former is
also less costly to correct. However, it is not clear whether
the unreliability observed in software estimators is due to
unreliability of information acquisition or lack of fidelity in
the information system.

2.5.5 Match between Environment and Forecaster

Area 3 concerns the correspondence G between the envi-
ronment model MOX and the forecaster model MY X . In
the words of [145], it is an estimate of the potential skill
that the forecaster’s current strategy could achieve if the
environment were perfectly predictable (given the cues) and
the forecasts were unbiased and perfectly reliable. (Recall
that bias and unpredictability are factored out in the other
components of Equation 8.)

Descriptive: In a purely descriptive setting, and if the
environment and forecaster models adequately describe the
phenomena, the match between the models reflects how
well the forecaster predicts relative to the environment.
A good match means that reliability and accuracy levels
correspond between the two models.

Explanatory: In the explanatory mode, one can have
an explicit goal to match the environment and forecaster
models better. This might involve finding cues that more
easily allow for matching the models, and by transferring
knowledge from one to the other. For example, models
of human analogical reasoning in estimation may provide
a guide to environment models [108] which use project
data to calculate nearest analogies. Conversely, environ-
ment models may give valuable guidance on cost drivers,
etc. to models of human analogical reasoning. Notice how
this implies deliberately altering the model of the forecaster.
This is one of the essentials in learning and building
skill. In software engineering, it is less relevant to view
an environment model as the standard, since too little is
known about the environment (Section 2.3).

Improving the match between environment and fore-
caster: In the lens model, the environment model and the
forecaster model share the same cues. This assures the
so-called Brunswick symmetry [151], [152], in which the
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comparison of the forecaster and his performance in the en-
vironment is conducted on the same level and area of gener-
ality. According to Wittman, studies routinely fail to observe
this symmetry and may therefore ignore true relationships.
In an estimation setting, asymmetry will occur analytically
if the forecaster model is run on a certain type of project
data and is evaluated with respect to an environment model
which uses a different type of project data. Asymmetry will
occur in practice if an estimator is given certain cues and is
then evaluated on project outcomes based on different cues.
Moreover, if an estimator is simply evaluated on project
outcome, this says something about the adequacy of the
cues given to the estimator, rather than the estimator’s
performance, unless one has an explanatory environment
model that links the cues to the outcome. Since the latter
is for the most part missing, one is constantly running the
risk of asymmetry and, therefore, missing true relationships
between estimator and environment. This may contribute to
erroneous conclusions about the failure of software effort
estimation (both formal and human).

An instance of this problem is the following: One knows
that various ways of manipulating the environment affect
estimates through largely unconscious mental processes.
However, we have very little normative knowledge about
whether these manipulations induce estimates that are bet-
ter or worse. Consider again the case of irrelevant informa-
tion in requirements documents. One knows that adding
irrelevant information or simply inflating format will in-
crease estimates. However, one does not know the extent to
which the resulting estimates become less accurate. In fact,
since estimates in general tend to be too low [112], it would
actually seem sensible to take steps to inflate estimates.
However, to introduce such a practice would introduce an
asymmetry in Wittmann’s sense: the set of cues used by
the forecaster are different (inflated) from those that would
be used in an explanatory environment model, since the
purpose of the latter model is to understand the effect of
true descriptors on actual project outcomes.

Indeed, current recommendations urge us to avoid irrel-
evant information and, in general, to take environmental
measures so as to minimize the effects of unconscious
processes on the estimator [85]. Although not explicitly
stated, the underlying motive for such recommendations
is based on a desire for rationality: One does not wish such
unconscious processes to determine what experts do. The
problem, however, is that we do not know how to manip-
ulate experts’ performance in other, rational ways. We do
not know what the expertise of estimation is. We have the
unfortunate situation where we discourage certain factors
in the environment without providing a viable alternative;
in effect, we’re discarding the only forecaster model we
have, at least in terms of it being a normative model.

Nevertheless, asymmetry in cues between environment
model and forecaster model is bad for learning, because
the interchange of explanatory elements between models
can no longer take place. We therefore need to build a
rational forecaster model. This requires that the forecaster
is empowered with expertise so that the signal from this ex-
pertise stands out from the noise of unconscious processes
induced by the environment.

Bias—conditional and unconditional
Biases are collectively called calibration in [145], and are
an add-on to the forecaster model; recall that the latter

is a model of an unbiased forecaster. The observation
that estimators seem to be mis-calibrated with regards to
estimates—they tend to under-estimate—and uncertainty—
they tend to be unduly confident about their under-
estimates—motivated a line of research that has demon-
strated that several known effects from the heuristics and
biases literature (of which Kahneman and Tversky are two
of the foremost contributors) are also present in software
effort estimation. In fact, this research constitutes the main
body of what has been done toward understanding the
forecaster in software effort estimation [64]. Our present
knowledge is therefore almost exclusively about forecaster
bias rather than about forecaster skill or expertise.

Judgmental biases are hard to unlearn [105]. Many of
them persist even when forecasters (estimators) are made
aware of them [60] and when measures are taken to
neutralize them [95]. Moreover, in the complex setting of
actual projects, multiple biases are expected to augment and
counteract each other and to give rise to emergent biases
[136]. At present, the disturbing effects of interacting biases
overshadow forecaster skill. We do not know what a true
(unbiased) MUY is. We have, in fact, only measured biases.
We therefore contend:

To improve on software effort estimation one should
start to make efforts to strengthen the signal of expertise
(skill) to stand out from the noise of biases.

In fact, forecaster bias, as researched in software effort
estimation, pertains to the environment, rather than to
the forecaster. In physical sciences, the outcome O is not
affected by the forecast Y . It will rain regardless of what
the meteorologist says. In software engineering, effort es-
timates and project dynamics mutually affect each other
to produce the project outcome. Research on biases has
uncovered influences from the project environment that
induce the biases, and current advice urges one to alter the
environment (e.g., requirements documents) so as to avoid
inducing biases [88].

3 EXPERTISE

In the previous section, we argued that estimator perfor-
mance was swamped by biases and that a stronger signal
of estimation skill is necessary to break the dominance
of biases. Formal models of the environment do not at
present produce adequate estimates in general, and are in
any case reliant on nontrivial human input. On the other
hand, estimator skill must rely on knowledge embedded in
models of the environment. All this adds up to building
expertise in the forecaster, and we need to elaborate what
we mean by that. To do this we will first introduce the
concept of mental model.

3.1 Mental Models
A mental model is a person’s, or a group of persons’,
implicit understanding or conception of some given topic of
interest [53], [82], [84], [83]. In contrast to theoretical knowl-
edge, or conceptual models, mental models represent tacit
knowledge and are not explicit. A first step in influencing
how people elaborate about a given topic, is to elicit and
make explicit their mental models concerning the topic.
Norman [118] has a useful description of mental model
elicitation, which we depict in Fig. 3. The focus of interest
is a system S. For us, this is the complex techno-social-
psychological workings of a software development project
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System S

Conceptual model C(S) Mental model M(S)

Conceptual model of mental model C(M(S))
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feedback to design

feedback (training) 

Fig. 3. Mental Models Elicitation in Research, Training and Design.

or more specifically, the estimation process, but foci for
mental model exploration could also be a physical system
such as an advanced machine [53], or it may be a socio-
economic societal system or some other system [48], [104],
[107], [113]. A mental model M(S) of S then represents a
the tacit knowledge and understanding of someone using or
participating in S. A conceptual model C(S) represents the
explicit knowledge and understanding of researchers trying
to understand S, or of designers of S if it is designed. In
our context, C(S) is the environment model MOT .

The elicitation of a mental model M(S) results in a
conceptual model C(M(S)) of the mental model. The con-
ceptual model C(M(S)) goes under several names; e.g.,
“cognitive map” [45] and “conceptual map” [9], [119], [106].
In our context, C(M(S)) is a forecaster model MY X .

Based on the understanding established in C(M(S)),
and on our understanding C(S) of the software estimation
process, we may provide feedback to users in the form of
training. In addition, C(M(S)) may be used to provide
feedback to designers of S. Designers of S, where S is
the software estimation process, are researchers advising
software developers how to estimate better and designers of
formal estimation methods. Thus, in the cognitive tradition,
mental model elicitation, the conceptualization of mental
models, and ultimately altering mental models are steps in
building expertise. Mental models research has produced
much of what we know about expertise today.

3.2 Concept of Expertise
Expertise is a classic concept of social and behavioral sci-
ence and has undergone several stages of elaboration with
respect to definitions and operationalizations. At present,
expertise is given several aspects [46]:

1) in terms of individual differences in mental capacities,
2) in terms of extended experience,
3) in terms of superior knowledge representation and organi-

zation; more specifically [78], [141]:
• Expert knowledge
• Expert deductive reasoning
• Expert working memory

4) in terms of reliably superior performance on representative
tasks (so-called expert performance)

Expertise is understood as task specific. Being an expert on
one task does not necessarily relate to being an expert on a
different task, and expertise often does not transfer across
domains [36]. Differences in general mental capacities (1) is,
for very many tasks, not specific enough, and as a definition
of expertise, not adequate [2], [46]. In particular, this is the
case for most software engineering tasks which demand
extensive domain knowledge.

Extended experience (2) reflects the observation that peo-
ple tend to get better at tasks through experience doing
the task. For software effort estimation, such a definition
of expertise is, ostensibly, problematic since research shows
inadequate effects of experience on estimation performance.

Superior knowledge representation and organization (3)
concerns cognitive structure and enables one to understand
how expertise is formed and represented in the brain. It also
enables one to consider what other cognitive factors, such
as intelligence, may influence the development of expertise.
It is a fundamental aspect of expertise and also difficult to
operationalize. Nevertheless, notable general results about
cognitive differences between novices and experts have
been achieved through mental models research. Models
based on this aspect of expertise play the role of explanatory
models MUY of the forecaster (Section 2).

Reliably superior behavior on representative tasks (4) is
in many respects the most useful definition. It focuses on
determining and enhancing expertise by concentrating on
performance on small work samples. This is extremely time
saving. However, a valid construct here would demand that
one (i) is able to define the real-world task, (ii) is able to
design representative test tasks, (iii) is able to determine
relative difficulty of test tasks, and (iv) is able to assess
the relative skill of performers on these test tasks. All this
entails a level of control over the concept that allows for
both the determination of the level of expertise and for de-
veloping means to improve expertise. For example, recent
work on assessing programming skill has produced a test
instrument that goes a long way toward meeting the above
criteria [17], [18], [19]. For effort estimation, hardly any of
the above criteria are met to any useful extent [67]. Notice
how reliability is inherent in this aspect of expertise: One
needs to exhibit reliably superior performance. Hence the
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TABLE 1
Domains in which Good and Poor Expert Performance Have been

Observed (based on [133])

Good performance Poor performance

Weather forecasters Clinical psychologists
Livestock judges Psychiatrists
Astronomers Astrologers
Test pilots Student admissions
Soil judges Court judges
Chess masters Behavioral researchers
Physicists Counselors
Mathematicians Personnel selectors
Accountants Parole officers
Grain inspectors Polygraph (lie detector) judges
Photo interpreters Intelligence analysts
Insurance analysts Stock brokers
Nurses Nurses
Physicians Physicians
Auditors Auditors

Software effort estimators

focus on reliability in the framework of Section 2 captures
this essential aspect of expert performance. The literature
on skill usually defines skill in terms of this aspect.

There are interdependencies among the aspects of ex-
pertise. For example, extended experience often leads to
superior knowledge representation and organization which
manifests itself in reliably superior performance on repre-
sentative tasks. Expertise comes and goes with practice. If
you stop practicing, your expertise will likely drop below
your optimal level [78]. To gain expertise on certain types
of task, it is necessary to engage in deliberate practice; i.e.,
reflective practice on tasks and subtasks in conjunction with
plentiful feedback on task performance [46].

3.3 Superior Performance
Superior performance on real tasks within the domain of
expertise is the desired effect of expertise in the field. For
the task of software effort estimation, superior performance
is characterized by more reliable and accurate estimates and
more realistic uncertainty assessments in software development
projects. Expertise is one cause of superior performance.
Other postulated causes are intelligence, personality, and
as discussed in Section 2, unconscious biases. A large body
of research concludes that expertise is the main determinant
of superior performance while personality and intelligence
have less predictive power [12], [13], [14], [128], [129]. How-
ever, software effort estimation is in an awkward position,
since (i) there is a dearth of superior performance that
distinguishes would-be experts from novices, and (ii) one
does not know what it is that gives superior performance.
In short, it is unclear what expertise in software effort
estimation is. That biases have such a large effect in the
absence of expertise is therefore unfortunate.

Software effort estimation shares its lack of superior
performance with other domains and tasks. Shanteau [133]
lists a series of professions and activities for which expert
performance is good and for which expert performance is
bad. Here “expert performance” alludes to performance
by people with extended experience or who have been
assigned the expert role by consensual agreement among
peers. One may add software estimators to the “poor” side
of this list (Table 1).

Superior performance does not define expertise. But
whatever definition of expertise we adhere to, the definition

should be such that more of it leads to better performance,
that is, we are interested in the criterion validity of ex-
pertise with respect to superior performance (Fig. 4). We
are interested in finding ways to increase performance,
and therefore we need a useful definition, in two ways:
We must be able to use it to predict performance, but it
cannot be the same as what we wish to predict, because
this would compromise the content validity of the expertise
construct4. Note that the aspect of expertise, reliably supe-
rior performance on representative tasks, is not the same as
superior performance on real-world tasks, since the former
is a measurable test on smaller tasks that only represent
real-world tasks.

Expertise
Superior 

Performance

Fig. 4. Criterion Validity.

3.4 Operationalization
Concepts need to be operationalized into observable vari-
ables to have practical impact. In many disciplines, ex-
pertise is often operationalized by amount of experience
in various ways [139], [132], even when expertise is not
conceptually defined in terms of extended experience. For
example, it is postulated that superior cognitive structure
develops over time as a result of task-relevant experience,
see [62] for a review of operationalizations of IT-expertise
in the management literature.

For software effort estimation, this operationalization of
expertise has not proved appropriate, for the same reasons
that make the conceptual definition of expertise in terms
of extended experience difficult. Other domains experience
similar problems, and when lacking objective measures for
expertise, Shanteau [133] suggests to let each domain define
their experts, whether that be by peer consensus, official
recognition (job titles), or other consensual acclamation.

However, operationalizations must reflect what they are
intended to measure. Extended experience on a task should
be measured by amount of experience on that task and not
by a more general measure such as years of professional
experience; unless one is out to measure and predict gen-
eral professional performance. In other words, observable
variables should respect the Brunswik symmetry.

Empirical work on software engineering expertise is not
abundant, but there are interesting cases of operationaliza-
tion. For example, among the 103 articles reporting soft-
ware engineering experiments surveyed in [137] only three
explicitly investigated the expertise construct related to the
relevant task in some way. Expertise was operationalized in
terms of various indicators: by type of mental model, e.g.,
[28], by degree of semantic knowledge, e.g., [123], by stu-
dents versus professionals, e.g., [79], and by IT consultant
fee category [6], [5], [68], etc. None of these operationaliza-
tions observed the Brunswik symmetry with regards to the
purposes of the studies. Note that the resulting criterion
validity therefore also falls below standard.

4A construct is a concept with a means to determine or measure variation
in that concept (an operationalization). Any operationalization inevitably
restricts the degree to which a construct represents the intended concept,
and content validity is the extent to which a concept is expressed in a
construct. If one merely defines a predicting construct in terms of the
criterion construct, then one is in effect not defining a separate construct
and one is failing in the outset to obtain a means for predicting anything.
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Fig. 5. Model of Estimation Task.

4 TASKS

Expertise relates to specific tasks. A further development
is a more detailed analysis of task characteristics and how
such characteristics and expertise relate to each other.

4.1 Task Structure
A task may be defined simplistically in terms of three
elements: a set of cues (input), a set of acts (processes), and
a set of products (output) [22], [153]. We can relate this to
the model in Section 2. We invert Figure 2 to give the
task-focused diagram in Figure 5. The model takes into
account cues (input), a process, and output (the forecast)
in the manner of traditional task definitions. In addition,
the model takes into account subjective cues, which are the
forecaster’s interpretation or redefinition of the cues. Thus,
the simple task model can be extended with a preprocess
in which the (re)interpretation of cues takes place.

The preprocessing stage includes the weighting and
(re)interpretation of objective cues in requirements docu-
ments and project characteristics. As mentioned in Sec-
tion 2, objective cues are subject to a range of unconscious
processes that produce bias and unreliability.

When taking a closer look at the process part of judgment
tasks, unconscious processes play a major role here as well.
Judgments can be seen as one of two kinds: comparative,
where an observer identifies some relation between two
sets of cues present, or absolute, where a single set of cues
is assessed. In performing an absolute judgment, the im-
mediate cues are related to information held in short-term
memory, to information about former comparisons, or to
some previously experienced measurement scale [146], [20].
Thus, even in absolute judgments a comparison takes place;
namely between immediate cues and information stored in
memory of related cues. The practice of comparing user-
stories in planning poker and various other comparison
techniques [16] make this comparison process explicit.

If comparison is at the heart of judgment processes, then
we can consider Mussweiler’s selective accessibility process
model [116]; see Figure 6. This model suggests the cognitive
steps that are involved in making comparisons. Compar-
isons are made between a target and a standard. In our
context, the target might be a property of a current devel-
opment project and the standard could be a related property
in a past project. The main idea is that comparisons are done
either by assessing similarities between the target and the
standard or by assessing dissimilarities between the target
and the standard. The choice between these two paths

depends on an initial overall assessment of target-standard
similarity. Once the choice is made, the decision-maker
searches selectively for accessible information that supports
this initial choice; that is, he searches for information that
supports either the initial perceived similarity or the ini-
tial perceived dissimilarity. The outcome is a comparative
judgment that is, respectively, an assimilation or a contrast.

Experiments demonstrate that subjects may be manipu-
lated either way [116], [146]. This suggests that the selective
accessibility process is largely beyond subjects’ control;
hence relegating also the main process part of judgment
tasks to the unconscious processes together with those of
the preprocess part.

However, there is, in fact, an important distinction.
Whereas preprocess biases tend toward being task indepen-
dent, process biases tend toward being task specific. First,
the overall initial judgment that prescribes similarity or
dissimilarity testing relies on domain-specific knowledge.
Secondly, the ensuing hypothesis-testing process that is
involved in the selective accessibility mechanism focuses
on knowledge that relates specifically to the target of the
comparison. As a consequence, specific target knowledge
rather than general semantic knowledge is activated [116].
Further, the magnitude of comparison effects depends on
the amount of available target knowledge; see [116], [34]
for details and references. Thus, increasing the availability
of user-story-related knowledge before making a compar-
isons in a planning poker session should lead to more
pronounced comparison effects.

According to [116], this focusing characteristic of the
selective accessibility mechanism should reduce the com-
plexity of comparative evaluation, and since comparisons
are involved in every judgment, the selective accessibility
mechanism should become proceduralized [11]. Therefore:

This task-specificity is the signal of expertise that must
be strengthened to overcome the noise of biases.

In terms of the Brunswik symmetry, the broad semantic
concepts behind the preprocess biases do not match the
narrower task-specific concepts pertaining to estimation
expertise and skill in particular. It makes little sense to
evaluate a person’s estimation skill based on how affected
(s)he is on general biases.

In summary, one must distinguish between the cognitive
processes that are amenable to deliberate practice and there-
fore relevant for building expertise, and those that are not.
Klein states that “... for the most part, the recommended
techniques for overcoming biases are not firmly grounded
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Fig. 6. Selective Accessibility Process [116].

in evidence that the strategies can be learned and trans-
ferred to naturalistic settings” [105]. Moreover, there are
arguments and evidence that several of the biases studied
in the laboratory do not degrade performance in natural
settings and that the biases may even disappear in real
world settings [57], [105].5 Along this line of thought, it
is not clear how the extensive research on unconscious
general biases in software engineering should be applied
to improve estimation in practice. Indeed, general traits
such as handedness [102] and GMA may influence the
propensity to be affected by general biases, but such traits
are impossible to manipulate.

Instead one should design environmental facilitation so
that the signal of expertise becomes more prominent. The
comparison mechanism above is affected by numerous
conditions. For example, comparisons that involve non-
extreme standards tend to trigger similarity testing, as does
comparisons that involve ambiguous targets. Comparing
user stories in prioritizing backlogs or in planning poker
sessions involves comparing a user story to other user
stories or to analog user stories from earlier experiences. In
addition, user stories are purposely kept low in specificity.
One would therefore expect a rather strong propensity for
similarity testing. This could lead to prioritizing with too
little variance with ensuing difficulties in backlog mainte-
nance. To stimulate clearer decisions, one can use methods
that stimulate dissimilarity testing; i.e., that stimulate the
task-specific expertise that relates to discernibility. A useful
method is the repertory grid elicitation technique [51], [10],
[126], [69], [15].

4.2 Task Complexity
Based on the input(-preprocess-)process-output model, one
can further analyze tasks according to complexity. There
are several task complexity dimensions in the literature,
and efforts have been made to systematize them [29]. It
is reasonable to consider task complexity in relation to the
human performing the task, and researchers have discussed
task complexity from the point of view of primarily a
psychological experience, an interaction between task and person
characteristics, and a function of objective task characteristics; all
of which are useful characterizations, see [29]. Nevertheless,
in discussing expertise, it is particularly useful to isolate a
concept of objective task complexity. This does not preclude

5For example, the so-called Conjunction Fallacy, where most people
commit a logical blunder when deciding from a description of “Linda”
what is most likely: her being a bank-teller, or a bank-teller and a feminist
[103], has been argued to be based on a disregard for natural language
semantics [57].

the fact that a task of a specified complexity may be
experienced differently by performers. One can reserve the
notion of difficulty for the interaction between task and
person: a task of given complexity may be less difficult for a
trained person than for a novice, or it may be more difficult
due to stable abilities, such as intelligence or height [29].

4.3 Objective Characteristics

There are several ways of expressing objective task com-
plexity, but the most prominent elaborations can be forged
into the input-process-output format. Common to all is a
focus on task characteristics that demand cognitive load in
the performer. Wood [153] argues in terms of component
complexity (number of subtasks and cues and their de-
pendencies), coordinative complexity (measure of precedence,
timing, and other dependency relations between subtasks),
and dynamic complexity (measure of changes in the two pre-
vious complexity components during task execution). This
schema distinguishes tightly between variations on a task.
“Landing a plane every 90 s requires much higher levels of
coordination between acts and more frequent monitoring
of cues than landing a plane every 60 min. In this sense,
‘landing a plane safely at O’Hare airport, Chicago’ is a
different task than ‘landing a plane safely at Champaign-
Urbana airport’ ” [153]. One might also think that this tight
discernibility implies that experts actually solve different
tasks than novices. For example, chess masters use pattern
recognition or better chunking [35] when contemplating a
chess position, rather than analyzing the particular position
of every piece as a novice is likely to do [58]. On the face
of it, it may therefore seem that the master uses fewer cues
and therefore performs a different task than the novice.
However, the holistic approach of the master is dependent
on all cues (the pieces) being there, and in this sense, the
task and its objective complexity are the same as for the
novice. However, other tasks have less defined structures
and are not equally amenable to Wood’s definition.

Other accounts of task complexity are therefore looser,
and degrees of complexity are given by the distribution of
emphasis on each part of that structure. These accounts are
better suited to characterize judgment tasks. For example,
Campbell [29] summarizes the literature on objective task
complexity along the lines of Wood, but tasks may hold
several resolution paths through the input-process-output
structure; i.e., one has (1) the presence of multiple potential
paths to arrive at the desired end-state, (2) the presence of
multiple desired end-states, (3) the presence of conflicting
interdependence among paths and end-states, and (4) the
presence of uncertain probabilistic links among paths and
end-states. In particular, judgment tasks such as software
effort estimation are characterized by an emphasis on (3)
and (4). Thus accurate judgment or prediction requires the
task-doer to (a) determine which pieces of information to
pay attention to, (b) weight these pieces appropriately, and
(c) combine the weighted information to arrive at an overall
judgment” [29]. Here, (a), (b), and (c) correspond to input,
process, and output, respectively.

Abdolmohammadi and Wright [1] sort tasks according
to well-structuredness. They use a model due to Simon [134]
which divides a judgment task into three phases:

1) Intelligence—gather information to understand the
problem, risks involved, and key factors to consider

2) Design—identify the alternative courses of action



12

TABLE 2
Task Complexity and the Decision Process ([1])

Task Complexity Intelligence Design Choice

Unstructured Unique, undefined, few/no guidelines available Infinite/undefined alternatives Judgment & insights needed
Semi-structured Repetitive, semi-defined, guidelines available Limited; specified alternatives Judgment needed
Structured Routine, well-defined problem & cues Limited/well-specified alternatives Little judgment needed

3) Choice—arrive at decision on which alternative to take.
These three phases correspond to input, process, and output,
respectively. Task complexity is then defined in terms of the
presence of structure on the phases (Table 2).

A related classification uses a notion of consistency which
relates to the reliability discussion in Section 2. A task is said
to be consistent if, over time, the best performers develop
similar strategies to solving the task. An inconsistent task,
on the other hand, is a task for which substantially different
strategies for solving the task emerge [31], [30] Judgment
tasks, such as software effort estimation, sort under so-
called ill-defined tasks [81]. They transcend merely inconsis-
tent tasks in that successful strategies seem difficult even to
define [135], [125], [150]. Ill-structured tasks have no well-
defined a priori solutions and it is the task doer who adds
structure to the task.

In such conditions, a general result is that experts fare
no better than novices, and even simple regression models
often outperform experts. In software effort estimation,
mathematical models are not better than experts, but this
says perhaps more about the models than the experts.

In summary, software effort estimation as a task is tra-
ditionally seen as ill-defined, unstructured, has conflict-
ing interdependence among paths and end-states, and has
uncertain probabilistic links among paths and end-states.
Along with attempts to increase expertise on such a task, it
is relevant to ask if it is possible to evolve the task so that
it has less of these undesirable characteristics.

4.4 Performing a Task
Several authors make a distinction between task structure
and the process of solving the task. For example, Stuart and
Prawitt [147] report that it is better with an unstructured
rather than structured auditing routine on a complex task
(high component and coordinate complexity, in Wood’s
terminology [153]). Their findings suggest that a structured
routine is too rigid to gain experience with a task that is
complex, i.e., a task that is less routine, more cognitively
demanding, and less amenable to standardization.

Wood’s task structure is defined in terms of subtasks
and their precedences and which cues to consider for
each subtask. Thus, there is considerable overlap in what
task structure is and how to solve the task. Instead of
distinguishing between task structure and the way to solve
the task, one may view both various ways of solving a
task and variations of task structure as different resolution
paths to solving the task. Thus, if one finds that a certain
routine solves a task better, then this routine can be seen
as simply a more efficient resolution path through the
input(-preprocess-)process-output configuration. Whether
one views variants of a performing a task as defining a new
resolution path or actually defining a new task depends on
the granularity one chooses for defining subtasks and cues.

A related point is the statement that complex tasks do
not necessarily demand complex solutions [54]. This again

means that a task can be solved in several ways, and
that although it is possible to focus on a task’s complex
structure, it is also possible to focus on an alternative simple
structure. From this perspective, this entails that the notion
of task complexity is volatile. Several studies suggest that a
simpler resolution path gives better performance in certain
circumstances. There may be several reasons for this, but in
some cases it may be that following the complex structure
would give superior performance but that the structure is
too complex to be executable in sufficient detail in practice.
The optimal strategy is therefore too complicated, and
satisficing [136] by following the simpler structure might
give better performance in practice. Even in cases where
it is practically possible to follow the optimal strategy, it
may be more cost-effective to follow a simpler satisficing
strategy rather than a time-consuming optimizing strategy.

Complex behavior is not necessarily the result of a com-
plex rule or complex mental strategies. The ant’s complex
route across a sandy beach as a result of a simple strategy
interacting with a complex environment is prototypical
to research on adaptive behavior, e.g., [57]. In an uncer-
tain environment, good intuitions must ignore informa-
tion. Gigerenzer and the Adaptive Behavior and Cognition
Group [57] argue that simplicity is an adaptation to an un-
certain and complex environment. Several simple heuristics
outperform more analytical strategies on ill-defined tasks in
judgment under uncertainty [71], [55], [56].

A slightly different account arises from the observation
that experts follow abstract deeper-lying principles in solv-
ing tasks, while novices use surface information available
in the concrete task instance at hand [37], [38], [47]. This
has inspired a Chomskyan view [39] of task resolution
paths as pertaining to deep (or abstract) structure versus
surface structure. Based on the notions of surface structure
and deep structure, Hærem and Rau link cues (input) and
products (output) to a task’s surface structure, and the act
(process) part of a task to its deep structure. The critical
complexity of a task is the complexity of the resolution
path that minimizes the amount of information processing
[63]. A task’s objective task complexity can then be retro-
defined in terms of its critical complexity as follows: A
surface structure task is a task in which the critical complexity
resides in its surface structure, and a deep structure task is
a task in which the critical complexity resides in its deep
structure. A mixed structure task is a task whose critical
complexity resides in both its surface structure and its deep
structure [63]. For example, software effort estimation can
be done in a bottom-up manner or in top-down manner.
According to [63], bottom-up estimation is a deep-structure
resolution path and involves breaking down and analyzing
the project and the system under development into sub-
activities, estimating each sub-activity, and accumulating
the estimates into a total project estimate. Top-down esti-
mation is then closer to a surface-structure resolution path
and is based on properties of the project as a whole and
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comparisons with similar projects, and then dividing this
estimate into portions for parts of the project [86]. However,
it is not clear that deep structure here coincides with what
is meant by utilizing abstract properties in [37], because
using the inner workings of a software system (rather
than the input/output relation) does not necessarily involve
abstract knowledge to a larger degree. For some tasks, it
may be meaningful to claim that critical complexity resides
statically in deep or surface structure, but for other tasks,
this seems less viable.

5 IMPROVING SOFTWARE EFFORT ESTIMATION

The lens model of Section 2 gave us a way to conceptualize
the forecaster and the environment with an emphasis on
symmetry between cues for the forecaster and environment
(Brunswik symmetry). In Section 3 it also gave us a link to
expertise via the forecaster model and the notion of mental
models. We noted that software effort estimation as a whole
is seen an ill-defined task, with little structure. However,
the task model of Section 4 made it possible to indicate
which stages of an estimation task that are affected by broad
psychological factors and for which stages it is feasible
to build task-specific expertise. We noted that most of the
recommendations for improving software effort estimation
concern the preprocess structure of the task that pertain
to the broad psychological factors; e.g, avoiding biases in
the the transformation of cues to vicarious cues. We also
noted that task-specific expertise was to be found in the
ensuing comparison sub-processes. We further suggested
that methodological structure (e.g., pairwise comparisons,
repertory grid elicitation, planning poker) can be given to
the task to support that expertise.

We have thus given some conceptual and practical struc-
ture to the task of software effort estimation. We think that
this can be a basis for further substantial improvement of
performance on this and other planning tasks in software
engineering. We will now outline how we can use our
deliberations so far to proceed further. In summary, we
propose three avenues:

To improve the signal of expertise in software effort
estimation, we should, simultaneously

• construct forecaster models,
• design tools and methodologies (environmental

measures) that support expert behavior, and
• design tools and methodologies (environmental

measures) that support expert learning.

5.1 Constructing the Forecaster Model

What then, is the expertise that comes into play in compar-
isons? We identified the task-specific knowledge accessed
in the selective accessibility process and we mentioned
how one might encourage dissimilarity testing. But how
is this accessed knowledge used to generate an estimate?
Answering this question clearly would unravel the magic
quantification step of estimation. Moreover, this would
explain the step in terms of expertise, rather than in terms
of broad non-task specific biases. Some studies have been
conducted to investigate how estimators use knowledge.
For example, in [149] both analogical and analytical-style
reasoning was identified. However, it has been challenging
to elicit the mental models of individuals, and not much
progress has been made. However, group estimation has

now become common. Recently, promising advances [23],
[25], [24] have been initiated that take advantage of the
explicit communication that group estimation necessitates.
This studies use a socio-cultural perspective and discourse
analysis to classify the knowledge elements that are ver-
bally exchanged in group sessions along with their roles in
generating an estimate. Rather than relegating the quantifi-
cation step to “magic”, this conceptualization has means to
describe how reasoning to reach an estimate occurs on two
levels—qualitatively; e.g., in terms of discussions around
requirements specification and quantitatively in terms of
relative or absolute estimates. Moreover, these levels are
intertwined rather than in succession [24]. Thus, one can
begin to map out how a forecaster model might look like,
even though there are differences in individual and group
processes. Work-life studies based on theoretical commu-
nicative concepts are a major step forward in this difficult
terrain. We recommend that more such studies be initiated.

At the same time, normative guidelines are important.
Exactly what such guidelines should be, depends on which
estimation method one uses, but according to the lens
model, this ultimately comes down to relevant domain
knowledge and knowledge about process drivers. More-
over, according to the theory of expertise the knowledge
embedded in the guidelines should be structured appro-
priately. However, since we do not have adequate envi-
ronment and forecaster models, giving extensive normative
guidelines for the comparative processes in software effort
estimation seems difficult. So even if we have added some
structure to the task, the comparative steps remain ill-
defined, until we have developed better forecaster and
environment models.

For tasks that are difficult to define, Klein [105] suggests
two alternatives to normative guidelines. The first is to think
like experts, and when even thinking like experts is hard to
convey, one can instead teach people to learn like experts.

5.2 Thinking Like an Expert
It is common to build support tools and methodologies
with a disregard for mental models. In the parlance of Sec-
tion 3.1, one builds tools and methodologies on the basis of
a conceptual model C(S) (i.e., an environment model MOX

in our setting) rather than on the basis of a mental model
M(S). When the environment model is rudimentary, the
resulting tool is necessarily haphazardly developed. A tool
may also miss its mark if the correspondence G between
the environment model MOX and the forecaster model
MY X is insufficient, but also when this correspondence is
high, a tool or methodology may be inadequate if it does
not support the mental model(s) underlying the forecaster
model (the latter is C(M(S)) in mental model terms). This
happens a lot, since tools are often designed from abstract
conceptual models that are tuned to aiding clear conceptual
reasoning about the environment. By nature, such tools
often reflect optimal ideal conditions and therefore fall short
in the messy actualities in the workplace.

An approach when good models are lacking is not to
design tools in terms of specific estimation strategies, but
rather to focus on supporting expert behavior in its essence.
A key point is the observation that the main effort of
superior performers goes into assessing the nature of the
situation rather than on comparing alternative courses of
action; in particular, Klein [105] summarizes the essence of
expert behavior as:
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• Recognizing patterns (situation awareness).
• Making fine perceptual discriminations
• Recognizing typicality and detecting anomalies
• Mentally simulating future states (to evaluate courses

of action) and past states (to generate explanations)
• Improvising (satisficing instead of optimizing)
• Adapting to events (i.e., meta-cognition)

This is in line with other research: Instead of explicitly simu-
lating the complex environment grain by grain, one should
adapt by following simple heuristics [54], [74]. Cleverness
is to know when the environment allows the use of simple
rules [75]. Many studies on successful experts conclude
that assessing when to brake the rules of “best practice” is
valuable. For example, in a study of entrepreneurs [44], suc-
cessful entrepreneurs were found to follow means-driven
rather than text-book goal-driven strategies.

To further explicate this, we can relate to the expertise
aspect of superior knowledge representation and organization
of expertise (Section 3). It has three interacting cognitive
components: expert knowledge, expert deductive reason-
ing, and expert working memory [78].

Expert deductive reasoning is the main component. It
is knowledge based, deductive, and inferential. From the
repository of expert knowledge, which has been organized
and structured in a superior way, experts should quickly, by
using expert short-term working memory, comprehend and
categorize the situation at hand before deducing alternative
task solutions. It is useful to contrast this to the cognitive
components of general intelligence. Whereas the central
component of general intelligence, fluid intelligence (Gf),
is inductive reasoning from first principles (e.g., the rules
of chess), expert reasoning is deductive and inferential
(e.g., from the battery of experienced and learned chess
positions). Whereas short-term apprehension and retrieval
from short-term working memory SAR is retrieval from
short-term working memory, which holds seven chunks of
information, plus or minus two, experts seem to be able to
use an expanded expert working memory in their domain
of expertise that holds much more than SAR’s short-term
working memory [78]. Novices must rely on Gf alone and
will inductively generate a large number of alternatives
based on first principles that may not bear sufficient rele-
vance to the problem at hand. The inaccessibility of expert
knowledge to novices is why general intelligence influences
performance on entry-level jobs and on training, but does
not influence expert-level performance to the same degree
[128], [142]. This underpins our remarks in Section 4.4:
A lack of knowledge forces a task performer to use first
principles to induce an answer analytically, thereby possibly
missing the mark which is deductively evident to someone
with knowledge. For example, studies suggest that better
software effort estimators use analogical thinking based
on experience, and that reverting to analytical thinking
produces less accurate estimates [149], [114], [121].

Expert deductive reasoning relies especially on the item
recognizing patterns in the above list. This is central in
analogical reasoning which probably occurs in most ex-
pert estimation strategies. Research suggests that estimators
succeed in finding appropriate analogies only when there
is a close surface similarity with the present project, but
that the validity of this approach breaks down as soon as
obvious similarities fail to be apparent. Thus, high levels
of expertise is achievable, but only locally on very similar
projects. There is little transferability of obtained expertise

to other dissimilar projects. In this sense, expertise in soft-
ware effort estimation is currently transferable through its
external validity; i.e., in terms of variations on a project’s
specific variables [131]. In order to transfer expertise across
substantially diverse projects, one must master recognizing
patterns in terms of construct validity.

Transferring expertise by its construct validity means
to recognize variables in a particular project as instances
of abstract concepts (that, furthermore, are measurable).
This enables one to recognize deep similarities (rather than
surface similarities) between projects. Thus, projects that
may seem dissimilar on the most visible characteristics, may
actually share characteristics on a deeper level. If the effect
of these deeper level variables on, say, productivity are well
understood, then one may extend the scope of analogical
reasoning. For example, rather than looking at superficial
likenesses in the type of system, the programming lan-
guage, the number of function points, etc. [110], one could
look at similarities in organizational structure [117]. How-
ever, in general, the appropriate deep similarities to look
for are not well known, and the prospect of fully under-
standing the underlying mechanisms of software projects is
at present unrealistic. Instead, it is possible to concentrate
on a smaller number of most important variables. This still
remains a challenge since constructs and construct validity
are not well developed in software engineering.

Studies on process suggest that experts and novices in
unstructured and ill-defined tasks use similar processes
as experts and novices in other types of problem solving
[133]: Experts use top-down strategies, use more domain
knowledge, etc., than do novices. The quandary is that
this difference in process does not seem to bring about
the expected differences in performance. Neither the task
of software effort estimation nor the expertise required to
be good at this task are within our scientific grasp yet; in
other words, we are struggling with construct validity on
these two concepts.

5.3 Learning Like an Expert
If thinking like an expert is not viable, Klein suggests to
take aim to learn like an expert; i.e., we can make tools and
methodologies that support learning to become an expert,
in addition to, or instead of, support to be an expert. The
following list presents strategies identified by a review of
work on gaining expertise [105]:

• Engaging in deliberate practice, so that each opportu-
nity for practice has a goal and evaluation criteria

• Using attentional control exercises to practice flexibility
in scanning situations

• Sampling alternative task strategies
• Compiling an extensive experience bank
• Obtaining feedback that is accurate and diagnostic and

reasonably timely
• Enriching experiences (i.e. reviewing prior experiences

to derive new insights and lessons from mistakes)
• Building mental models
• Obtaining coaching

Several of these points are implemented to some extent
in project data repositories and in agile practices such as
burn-down charts and sprint reviews and retrospectives.
Attempts to sample mental models and feed them back
to practitioners has been done; e.g., [126], [69], [15]. How-
ever, tools or methodology that serve continuous mental
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model building [80], [4] are not implemented for software
effort estimation to our knowledge. This, and support for
deliberate practice are goals for a research project we are
initiating, whose aim is to develop training and assessment
modules for essential software project planning skills. Each
planning skill concept should thus be a full-fledged con-
struct with associated means for measuring variation in that
concept (assessment) and means to manipulate the concept
(training). The training scheme will be longitudinal with
simulations and targeted feedback, thus offering intensive
extended experience (Section 3) through deliberate practice.

We think the approach of withdrawing the researcher’s
position to that of giving support to practitioners’ own
theorizing and expertise building is crucial to achieving
progress in software effort estimation and planning. This
transfers the ownership and responsibility of expertise back
to the practitioner where it belongs and is therefore likely to
raise the necessary enthusiasm for success. It is important
that this avenue proceeds in parallel to the two others
outlined in Sections 5.1 and 5.2.

6 EXAMPLE: LARGE AGILE PROJECT

We will now exemplify the most central concepts of this
paper by relating to an actual project. A Norwegian public
service company that administers pensions and loans has to
acquire a new case handling system due to political reforms
and new legislation. A large software development project
was therefore initiated and organized using Scrum concepts
[130] in a large-scale “agile fractal” manner with iterations
on several levels [138]. The project is now in progress, and
an excess of 300 epics (very high-level user stories) [40]
define the functional scope. Each epic is a short description
and acts as a placeholder for development tasks requiring
in the magnitude of one person-year in effort. Each epic
has been given a priority according to value for customer
and an effort estimate produced by Wideband Delphi [21]
in a top-down manner [86] involving stakeholders with
business, functional, and technical expertise.

In addition to the scrum teams, there is one cross-
cutting architectural team, one cross-cutting test team, and
one development environment team supporting the Scrum
teams. The choice for agile practices was taken on grounds
that requirements were guaranteed to change during the
project’s lifetime due to political reforms that were not fully
decided upon yet, and whose indirect effects through other
governmental bodies were not yet clear.

The project selects, designs, builds, and deploys a sub-
set of the epics every four months, giving three releases
per year. Three different subcontractors supply ten on-site
Scrum teams consisting of eight developers on average. The
teams should deliver production-ready code in three-week
iterations between these release points. A six-week release
planning period precedes each release period, wherein epics
are elaborated upon and split into user stories, possible
interdependencies between development tasks are clarified,
and priorities are reevaluated and detailed. Toward the end
of this release planning, the detailed backlog for the release
is split among the three developer companies who then
proceed to negotiate a contract on the deliverables for the
release with project management. The three subcontractors
use their preferred estimation method to estimate effort
for each item in their portion of the release backlog: Two
use planning poker [41], while the third uses their own

proprietary tool. The subcontractors establish an hours per
story-point ratio (120 man-hours per story point, say). This
ratio is then used in negotiations with project management
to determine a target cost for the release with a 50-50 shared
responsibility agreement for over-/underruns. The parties
use the target cost-based [120] PS2000 contract [122].

In this project, prediction happens at various occasions
at different levels for different purposes and involving dif-
ferent stakeholders. We will discuss two occasions: project
inception and release monitoring.

6.1 Project Inception
In the inception phase, a central estimation task was to
deliver an estimate Y of the actual project effort O so
that negotiations with governmental funding bodies could
commence. As a part of this task, the master backlog con-
sisting of epics with rough estimates was constructed. The
available cues X were the functional and non-functional
requirements of the system, as well as other project charac-
teristics such as organization and technical environment.

Environment model: The forecasters did not use or
construct an environment model MOX at this stage. A
descriptive environment model might have taken the form
of a systematized database with historical project data and
actual efforts of “similar” systems. Efforts are underway by
the governmental IT regulatory body to collect historical
data from large public service development projects, but
at present, the results are not perceived as useful. An
explanatory environment model, on the other hand, would
have to provide usable insight into project drivers based on
the available cues for this project. At present, there seems
to be no comprehensive models or theories that are easy to
apply in inception phase settings such as this one.

Environmental predictability and fidelity in the infor-
mation system: True cues T in this phase are the actual
requirements of the customer and true project characteris-
tics pertaining to organization and technical environment,
etc. Whether the actual requirements of the customer are
captured by the requirements documents is a profound
question that is addressed in research on requirements
elicitation, capture and representation. In line with the
project’s choice of Scrum, the project uses the user story
format. Although the good intentions of this format are
plausible, it is an open question whether this format ac-
tually does entail a closer match of available cues X to
true cues T in general. In the very early stages of the
project, requirements were listed in a so-called migration
plan which was reportedly very hard to understand for the
customer, particularly after the lead architect left the project.
Thus, the project did experience a substantial improvement
in requirements handling when the master backlog was
constructed. An environment model MOT would describe
or explain the relationship between what the customer really
wants and project outcome. In some sense, efforts in agile
methodology to involve the customer are intended to aid
the customer in gradually becoming more aware of her re-
quirements (true descriptors T ) and hence also in updating
the requirements documents (available cues X). The fidelity
in the information system VTX = ROX/ROT would express
predictability of the project using the requirement docu-
ments and available project characteristics versus somehow
accessing the true requirements of the customer and using
true project characteristics. In this project, VTX is not com-
putable, but still provides relevant conceptual concerns to
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the participants. Indeed, the extent to which user stories
contribute to core functionality and added value remains a
prime concern with project participants [15]. Related to this,
there is concern that the project lacks a shared vision for the
end-product [69]. Finally, environmental predictability ROT

of an environment model can be approximated by ROX ,
which could be assessed over all available historical data
in a database over projects.

Forecaster model: A forecaster model MY X that is both
descriptive and in part explanatory can be derived from
the explicit estimation methodology the project used in this
phase. First, the build effort of each epic was estimated
using Wideband Delphi/planning poker using story points
in the Fibonacci sequence. Based on the build estimate,
estimates for analysis, design, system testing, debugging,
Scrum ceremonies, and functional disambiguation are cal-
culated as percentages of the build estimate. The sum of
these estimates together with the build estimate consti-
tutes the construction estimate. Then, estimates for business
value analysis, epic deconstruction and elaboration, and
verification are calculated as percentages of the construc-
tion estimate. Finally, estimates for other activities such as
administration, technical environment, etc. are calculated
as percentages of that total. All percentages are predefined.
This then gives the overall project base estimate used as
input to establish governmental funding.

Reliability of information acquisition and reliability of
information processing: Subjective cues U are the estima-
tor’s reinterpretation of the information in the requirements
documents and of the other project characteristics. The epics
are high-level, and their further elaboration is intentionally
left for later. At inception phase, the epics leave a lot of
room for subjective interpretation and one would expect
that inter- and intra-estimator reliability would be de-
creased by this fact. Although not done in the project, intra-
estimator reliability, an aspect of RY X , could be assessed
by recording the span in epic points given for each epic
in the planning poker sessions. A study on the project’s
user stories indicated that judges are inconsistent when
assessing the same user story on different occasions and
that the method used to rank user stories affects value as-
sessments [16]. Ongoing research aims to find methods that
aid forecasters in being consistent (reliable). The reliability
of information acquisition VUX = RY X/RY U would express
the extent to which the estimator can reliably interpret the
subjective cues compared to the objective cues. To assess
this, one would first have to gain insight into the extent to
which estimators reinterpret epics and user stories and the
variability in such interpretations. In any event, efforts were
made to control unreliability: group estimation involves
stakeholders holding different expertise, and (extreme) es-
timates are to be justified to the group; both measures
recognized to increase reliability of estimates [144].

Match between environment and forecaster: Note that
the distinction between what might be a model of the envi-
ronment and what might be a model of the forecaster is not
clear cut here. The forecaster is a part of the environment;
more precisely, the method used by the forecaster, and
therefore the forecaster model, forms how the project will
evolve; in other words, it forms the environment model.
This is in contrast to physical systems, such as weather,
where the forecaster has no (direct) influence on the envi-
ronment. One could also argue that the percentages schema
used by project management constitutes an environment

model. We choose not to, for two reasons. First, the schema
needs human forecasts as input and second, the underlying
presumption in the lens model is that the environment
model describes or explains project outcome from cues in
terms of scientific knowledge. We regard the percentages
schema closer to a description of a mental model, and
therefore belonging to the domain of the forecaster model.

Since the forecaster model is integrated in the would-
be environment model, facilitating the environment for
the forecaster is all the more pertinent and viable. It is
important that this is done in ways that support building
and utilizing expertise (Sections 5.2 and 5.3). Matching the
forecaster and environment models is not possible in this
case, since there is no environment model as such.

Bias: Bias at epic level is unknown. At sprint level,
there seems to be marginal conditional bias (over-
/underestimation). However, this is at subcontractor level,
and there is a lack of traceability up to epic level. Uncondi-
tional bias (overconfidence) is not recorded in the project.

Expertise: We assume that the essence in judgment is
comparison and that within comparison one can locate the
task-specific factors that pertain to expertise in, first, the
holistic initial (dis-)similarity assessment, and secondly, in
the hypothesis-testing selective accessibility process (Sec-
tion 4.1). In planning poker, this is explicit in that a user
story or epic (target) is to be compared to a reference
user story or epic (standard). Standards are conventionally
chosen to be a small simple user story/epic, in part so
that other user stories/epics may be compared in multiples
of the target.6 Thus, standards are deliberately chosen to
aid similarity testing. One could argue that the use of
a small standard makes it extreme w.r.t. very large user
stories/epics and that dissimilarity testing is therefore trig-
gered. However, very large user stories/epics are usually
identified and broken down into smaller ones, and it is
likely that the standard is not perceived as extreme so that
the propensity for similarity testing persists. This means
that as each epic is is considered, there is a propensity to
assess it according to how similar it is to the reference
epic, by selectively exciting target-specific knowledge to
test the similarity hypothesis. Ambiguous perceptions of
the target would strengthen this propensity. Under the
assumption that it is beneficial to augment the elements
of expertise so as to strengthen the deliberate signal against
the noise of unconscious biases, one should here ensure that
the forecaster has as much similarity-relevant expertise as
possible on the target; i.e., the epic under consideration.

However, the actual work flow in planning poker is
usually more complex. Although a standard is explicitly
provided, analogical reasoning from past experience is per-
vasive in planning poker sessions in this project [24], and
this introduces at least one additional standard that proba-
bly overshadows the provided reference epic/user story in
terms of semantic content, although the original standard
still serves as the definition of “unit”. This new standard
would virtually by definition trigger similarity testing. In
group settings with different stakeholders, knowledge is
integrated, rather than put forth competitively [25]. For
example, both business flow and technical issues are elab-
orated when breaking down epics into user stories prior to
casting one’s bid in planning poker in the project [24]. The

6Recent findings suggest that one should choose a medium-sized user
story as a reference, due to bias introduced by thinking in terms of
multiples.
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process of elaboration involves multiple comparison and
reconceptualization and involves a substantially more com-
plex series of steps in contrast to the search-find-compare-
adjust sequence of formal models of analogical reasoning
[23]. Moreover, group processes are in play, which could
mean that social comparisons concerning competence, role,
power, etc. are in play as well. To enhance the elements of
expertise in such a situation is all the more important, and
a thorough understanding of work flows and construction
of the forecaster model are instrumental (Section 5.1).

Expert knowledge. The forecaster’s mental model must
include an efficiently organized knowledge base that is ap-
plicable to the deployment of large agile projects. Extended
experience on a variety of such projects could give such a
knowledge base, but as mentioned before, expertise is likely
to be gained only on very similar projects. To speed up the
learning process, a deliberate practice training regime might
have exposed stakeholders to simulations of large agile
projects where essential parameters are varied. It would
further have been important to support the abstraction of
salient factors of events to give an efficient organization
of knowledge. In the inception phase, the diversity of
stakeholders’ backgrounds and interests are represented
by various mental models. In the project, a major part of
actual project deployment is fixed in the percentages (due
to the mental model of the project manager) mentioned
earlier, and variety is then factored out in the Wideband
Delphi/planning poker sessions. The percentages are the
results of experience from very similar past projects.

Expert deductive reasoning. The forecaster’s mental model
must include ways to deduce efficiently, from expert knowl-
edge, how the requirements expressed in the epics will
affect project deployment. In the project, stakeholders held
varying levels of expert knowledge and very likely applied
varying degrees of deductive reasoning, but this is uncon-
firmed, since studies on the project were only conducted af-
ter the inception phase. It may well have been the case that
the reasoning process was “educated guessing” rather than
expert deductive reasoning, and that the planning poker
sessions adjusted variability in these guesses to relatively
reasonable estimates. A deliberate practice training regime
prior to project start might have enabled expert deductive
reasoning to a larger extent.

Expert (short-term) working memory. This element allows
the forecaster to quickly categorize the situations expressed
in epics; possibly using rapid intuitive thinking [73] rather
than time-consuming analytical processes. This requires a
solid base of expert knowledge. Again, it is uncertain to
what extent this element was utilized at inception phase. To
support this cognitive element, is to support the building
of effective chunking by repeated exposure to the task (ex-
tended experience) or small representative tasks (training).

6.2 Release Monitoring

During a release, it is important to monitor progress ac-
cording to plan. Although not defined as an estimation
phase, monitoring progress involves predicting future effort
(outcome O) based on current progress. Project manage-
ment uses elements from earned value management (EVM)
[148], [109] using project data stored and monitored in JIRA
(available cues X) to obtain an estimate Y of future effort.
Based on the estimates for the epics, planned value PV t′

t is
defined (mis-nominally, perhaps) as the budget for planned

work between time t and time t′ (e.g., the period included
in a release plan). The budget at completion BAC(tC) is
the total planned value up to some time of completion tC
(e.g., of production or of the entire project). Earned value
EV t′

t is the amount of planned value realized between
time t and time t′. In the project, 10% of planned value
for an epic is regarded as realized when the epic enters
elaboration, 30% when the target value contract has been
signed, 85% when the epic is accepted by the customer at
the designated check point, and 100% when the epic is put
into production. Actual cost ACt′

t is the actual expenditure
between time t and time t′. Then the cost performance index
CPIt

′

t = EV t′

t /ACt′

t gives the realized value to cost ratio
between time t and time t′ and is a measure of productivity.
Another measure of productivity is the schedule performance
index SPIt

′

t = EV t′

t /PV t′

t which gives the realized value
to planned value ratio. From these productivity metrics,
future outcomes can be forecast; e.g., by computing the
estimate at completion EACt′

t (tC) = BAC(tC)/CPIt
′

t at some
completion time tC based on observations for time t to t′.

Environment model: The EACt′

t (tc) metric and others
constitutes a model MOX of the environment based on
available cues X (project data). The model is descriptive
(quantitative), not explanatory.

Environmental predictability and fidelity in the infor-
mation system: The project data X are approximations of
true project descriptors T that are subject to measurement
error; e.g., by imprecise registering of AC or by errors in
recording data in JIRA. Project data are in some instances
also missing due to a lack of discipline in entering data. A
study of two releases in the project showed that the three
subcontractors had valid estimate/actual effort data for,
respectively, 1066 (97.4%) of 1095 sprint tasks (23 sprints),
2118 (92.7%) of 2286 sprint tasks (32 sprints), and 1891
(95.9%) of 1972 sprint tasks (21 sprints) [76]. These are issues
of the fidelity in the information system VTX . Environmen-
tal predictability ROT (which must be approximated by
ROX ) can be calculated by correlating the actual cost AC
with that predicted by, e.g., EAC over several periods of
time (releases). A quicker way to gain insight into environ-
mental predictability, is to sample data of completed sprint
tasks and compute a distribution of actuals at sprint level or
release level by using Monte Carlo simulation. This can be
used for successively predicting uncertainty (environmental
predictability) for the next sprint or release [98], [76]. For
this project, the mean actual/estimate ratio over the sprints
above where, for the three subcontractors, 1.05, 0.97, and
0.94, respectively. The distributions generated from the data
are somewhat more informative; see [76] for details.

Environmental predictability could be improved by col-
lecting project data more consistently. For example, there is
only occasional data that links estimates and actual effort of
sprint tasks to estimates and actual efforts on the epic level.
Earned value is calculated based on how far the user stories
belonging to an epic have proceeded in construction; see the
10-35-85-100% ranking above. However, the subcontractors
do their own estimation on user stories, and actual cost
(under-/overruns) are dealt with according to the deliv-
erables contract which is subject to mercantile discretion
[69]. While earned value according to plan is traceable,
detailed estimates and actual effort is not traceable from
the sprints up to epic. This compromises transparency and
analyzability of exact locations in the production where
problems or successes occur, which in turn compromises
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project learning and building of experience and therefore
expertise. Nevertheless, it is important to note that, in this
agile setting, the environment model is revised at regular
intervals according to new project data; the intention being
to improve environmental predictability for the future of
the project according to the project’s past.

Forecaster model: The forecaster model MY X for re-
lease monitoring can only be sketched. It is clear that the
environment model MOX is integrated somehow in the
forecaster model, since project management uses informa-
tion obtained from the model to make decisions. Human
judgment is needed in addition. For example, low CPI
values may appear due to unforeseen events that trigger
work not accounted for in planned value. In the project,
nine types of uncertainty have been predefined and given
designated epics complete with estimates. When an unfore-
seen event occurs, it is classified to one of the nine epics
and a user story is allocated to the event. The user story is
then included in the backlog, and thus the event is included
in the earned value calculations. This simulates unforeseen
events as being planned for. However, this may necessitate
that an existing user story has to be taken out, and since
there are non-trivial dependencies between user stories,
consequences need to be elaborated, and the backlog may
have to be re-estimated. The set of cues for the forecaster
model is therefore larger than those for the environment
model. Since the latter is used by the former, this should be
regarded as a deliberate breach of the Brunswik symmetry
due to the present status of the models.

Reliability of information acquisition and reliability
of information processing: When monitoring progress, the
forecaster interprets the project data, the outcome of the
earned values management calculations, and other relevant
data to understand anomalies in the earned value calcula-
tions or factors that might affect future productivity. The op-
portunity for reinterpreting cues X to subjective cues U are
many and depend on the forecaster’s mental model of the
project. In this project, this was not investigated specifically,
but indications as to the variability of subjective perceptions
were that various project members had diverging views on
how on track the project was. Reliability in information
processing concerns how consistent the forecaster is in
assessing progress. This was not assessed in the project.

Match between environment and forecaster: The en-
vironment model generates input cues to the forecaster
model, and it is important that the forecaster model in-
cludes additional cues. To paraphrase a manger (whom
we interviewed for a different occasion): it’s fine to have
a dashboard with instruments showing speed and progress, but
you have to look at the road too. It is extremely important to
acknowledge that a current environment model is subop-
timal (but still useful) and that one needs to integrate the
model in a larger mental model (practitioner) and forecaster
model (researchers). In this setting, the goal can still be to
match the environment model and the forecaster model,
but neither model is the gold standard. We postulate that
conscious and explicit reference to these models and to
the asymmetry in cues will benefit projects such as this.
Conscious efforts can then be made to expand the two
models mutually, with an ultimate goal that they observe
the Brunswik symmetry.

Bias: Although we have viewed the release-monitoring
activity as an estimation activity, the purpose is to guide
when to adjust resources in real time. For this reason, biases

have not been assessed at this level in the project.
Expertise: Here when unforeseen events happen, project

management must recognize that such an event is occurring
and classify it to one of the nine predefined uncertainty
categories, define a user story for the event and estimate
the effort/cost of the event. The target is the event and
the standards are the categories and their contents. Targets
cannot be considered extreme here, so there should be a
tendency for similarity testing rather than dissimilarity test-
ing. This means that as each category is considered, there
is a propensity to assess an unforeseen event according
to how similar it is to a category, by selectively exciting
target-specific knowledge to test the similarity hypothesis.
Ambiguous perceptions of the target would strengthen this
propensity. Under the assumption that it is beneficial to
augment the elements of expertise so as to strengthen the
conscious signal against the noise of biases, one should here
ensure that the forecaster has as much similarity-relevant
expertise as possible on the target; i.e., the unforeseen event.
This would strengthen the adherence of the target to the
most appropriate category of multiple categories that may
in the outset fit the event.

Expert knowledge. The forecaster’s mental model must
include an efficiently organized knowledge base that is
applicable to unforeseen events. Extended experience on
unforeseen events in the project, or rather across projects,
would give such a knowledge base. To speed up the learn-
ing process, a training regime might expose students to a
battery of unforeseen events that are found (by research
and experience) to be most often occurring in projects. It is
important to support abstracting salient features of events
to give an efficient organization of knowledge.

Expert deductive reasoning. The forecaster’s mental model
must include ways to deduce efficiently how the event
is similar to one of the nine uncertainty categories in the
project. The same extended experience and training above
is applicable. In addition, environmental measures to aid
the forecaster would be to give comprehensive definitions
of the categories perhaps using checklists, or to provide
the quick estimation heuristic [71]. Note that the categories
themselves support abstraction and principled thinking,
which are both consistent with associating expertise with
the abstract or deep structure of a task. Optimally, the
nine categories in this project should relate to cardinal
uncertainties taught in training.

Expert (short-term) working memory. Massive experience
in using the nine categories to classify events would train
expert memory. This would enable rapid and clear classifi-
cations as to what type of unforeseen event the project is ex-
periencing. This would replace e.g., checklists for analytical
classification. It is unclear which processes project members
use when classifying unforeseen events in the project.

7 CONCLUSIONS AND IMPLICATIONS

We draw the following conclusions and implications from
our deliberations in the previous sections:

Conclusion: The current nature of insight into esti-
mation processes is most useful for taking amelio-
rative action in the environment.

Because: Studies into what affects estimates have almost
exclusively focused on bias effects between groups, irre-
spective of levels of expertise. In other words, experimental
groups have been subjected to environmental manipulation



19

(anchors, amount/format/nature of information) and then
systematic differences in estimates have been observed as
consequences of such manipulation. It is therefore possi-
ble to recommend various measures to be taken in the
environment (avoid ill-founded anchors, avoid irrelevant
information, etc.) to facilitate better estimates. However,

Conclusion: There are common-sense but non-
validated assumptions underlying these insights.

For example, one assumes implicitly that irrelevant informa-
tion inflates estimates wrongfully and that anchors wrong-
fully affect the “true” estimate, but there is no validation as
to whether biased estimates are not, in fact, closer to actual
effort than are unbiased estimates. Therefore,

Implication: Advice on taking environmental mea-
sures may not give better estimates

Because: Such advice may reduce the effect of a bias that
actually gives better estimates, and therefore,

Implication: Estimates may be good or bad esti-
mates for the “wrong” reasons.

This is frustrating and clearly unacceptable as a basis for
reflective practice aiming to build expert knowledge on
which to make rational decisions using expert deductive
reasoning. If research were to reveal that inserting 33%
irrelevant information does produce better estimates, then
acting on that information is not acting on the root cause
of the problem, and would be a solution more akin to
evidence-based magic. It is important that practice reflects
our ideas of reducing complexity in the environment, and
adding irrelevant information would to most people mean
adding complexity, which would not make the estimation
journey any less tortuous. Rather than making the beach
smoother, we may inadvertently be introducing even more
complexity for the software engineering ant.

Further, it is not acceptable for generating explanatory
models of the environment and estimator that environmen-
tal measures have spurious effects. We know that putting
up highway road dividers is life saving and that driving
on the wrong side of such a road divider is wrong. But we
would not know if correcting for judgment biases is cost
saving and we would not know which side of such a bias
is the right side.

To actually reduce complexity in the environment and
make the beach smoother:

Implication: We need to develop normative theories
for rational effects of environmental measures.

In other words, we should understand which environmen-
tal measures that do, in fact, facilitate better estimation.
However, there are a host of bias-inducing factors in the
environment which in naturalistic settings may interact
and even induce emergent or canceling effects. Working
guidelines would have to consider all of these factors at
once, which would amount to rearranging the sand on the
beach to a painstaking detail.

Conclusion: Controlling the environment so it does
not induce biases is impossible.

To produce better estimation, we can make the beach
smoother as recently discussed. But we can also alter
the way software engineering ants respond to obstacles.
However, training people to be unaffected by biases is not
feasible due to the robustness of biases and the broad stable
psychological factors that mediate them. On the other hand,
it is possible to identify the task-specific elements of judg-
ments tasks that can be altered by training regimes such as

deliberate practice with feedback. This is building expertise;
more specifically, it is strengthening the mental models of
estimators so that their deliberate actions become stronger.
To alter the way software engineering ants respond to the
environment;

Conclusion: We need to strengthen the deliberate
signal of task-specific expertise to overcome the
noise of unconscious broad psychological biases.

This is also hard, but at least there are feasible steps forward
that are very promising. We propose to follow a three-way
endeavor that aims to unearth the task-specific elements in
play in the comparison processes that underlie judgments
such as estimation, to design environmental facilitation
to support expert thinking and behavior, and to design
environmental facilitation to support expert learning.

Conclusion: We need to conduct facilitating mea-
sures in the environment after all, but in order
to support task-specific expertise, rather than to
cancel broad psychological bias-inducing factors.
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[5] E. Arisholm, H. Gallis, T. Dybå, and D.I.K. Sjøberg, “Evaluating pair

programming with respect to system complexity and programmer
expertise,” IEEE Trans. Software Eng., vol. 33, pp. 65–86, Feb. 2007.

[6] E. Arisholm and D.I.K. Sjøberg, “Evaluating the effect of a delegated
versus centralized control style on the maintainability of object-
oriented software,” IEEE Trans. Software Eng., vol. 30, pp. 521–534,
Aug. 2004.

[7] J.S. Armstrong, “Forecasting of software development work effort:
Introduction,” Int’l J. Forecasting, vol. 23, p. 447, 2007.

[8] J.S. Armstrong, R.J. Brodie, and S.H. McIntyre, “Forecasting methods
for marketing: Review of empirical research,” Int’l J. Forecasting,
vol. 3, pp. 355–376, 1987.

[9] D.P. Ausubel, J.D. Novak, and H. Hanesian, Educational Psychology:
A Cognitive View, 2nd ed. Holt, Rinehart & Winston, 1978.

[10] N. Baddoo and T. Hall, “Practitioners roles in software process
improvement: An analysis using grid technique,” Software Process
Improvement and Practice, vol. 7, pp. 17–31, 2002.

[11] J.A. Bargh, “The automaticity of everyday life,” in Advances in Social
Cognition, R.S. Wyer, Ed. Erlbaum, 1997, vol. 10, pp. 1–61.

[12] M.B. Barrick, M.K. Mount, and T.A. Judge, “Personality and perfor-
mance at the beginning of the new millennium: What do we know
and where do we go next?” Int’l J. Selection and Assessment, vol. 9,
no. 1/2, pp. 9–30, 2001.

[13] M.R. Barrick, G.L. Stewart, M.J. Neubert, and M.K. Mount, “Relating
member ability and personality to work-team processes and team
effectiveness,” J. Applied Psychology, vol. 83, no. 3, pp. 377–391, 1998.

[14] S.T. Bell, “Deep-level composition variables as predictors of team
performance: A meta-analysis,” J. Applied Psychology, vol. 92, no. 3,
pp. 595–615, 2007.

[15] H.C. Benestad and J.E. Hannay, “A comparison of model-based and
judgment-based release planning in incremental software projects,”
in Proc. 33rd Int’l Conf. Software Engineering (ICSE 2011). ACM, 2011,
pp. 766–775.

[16] H.C. Benestad and J.E. Hannay, “Does the prioritization technique
affect stakeholders selection of essential software product features?”
To be submitted to ESEM, 2012.



20

[17] G.R. Bergersen, “Assessing programming skill, to be submitted in
2012,” Ph.D. dissertation, Simula Research Laboratory/University of
Oslo, 2012.

[18] G.R. Bergersen and J.E. Gustafsson, “Programming skill, knowledge
and working memory among software developers from an invest-
ment theory perspective,” J. Individual Differences: To appear, 2010.

[19] G.R. Bergersen and J.E. Hannay, “Detecting learning and fatigue
effects by inspection of person-item residuals,” in Probabilistic Models
for Measurement in Education, Psychology, Social Science and Health,
2010.

[20] A.L. Blumenthal, The Process of Cognition. Prentice Hall, 1977.
[21] B.W. Boehm, Software Engineering Economics. Prentice Hall, 1981.
[22] S. Bonner, “A model of the effects of audit task complexity,” Ac-

counting Organization and Society, vol. 19, pp. 213–234, 1994.
[23] K. Børte, “Challenges faced by software professionals in analogy-

based top-down estimation,” European J. Information Systems; sub-
mitted, 2010.

[24] K. Børte, S. Ludvigsen, and A. Mørch, “The role of concepts in
professional work: Unpacking the “magic step” in software effort
estimation,” Information & Software Technology, 2012.

[25] K. Børte and M. Nerland, “Software effort estimation as collective
accomplishment: An analysis of estimation practice in a multi-
specialist team,” Scandinavian J. Information Systems; to appear, 2010.

[26] B. Brehmer, “Note on the relation between clinical judgment and the
formal characteristics of clinical tasks,” Psychological Bulletin, vol. 83,
pp. 778–782, 1976.

[27] B. Brehmer, “Response consistency in probabilistic inference tasks,”
Organizational Behavior and Human Performance, vol. 22, pp. 103–115,
1978.

[28] J.M. Burkhardt, F. Détienne, and S. Wiedenbeck, “Object-oriented
program comprehension: Effect of expertise, task and phase,” Em-
pirical Software Engineering, vol. 7, no. 2, pp. 115–156, June 2002.

[29] D.J. Campbell, “Task complexity: A review and analysis,” Academy
of Management Review, vol. 13, no. 1, pp. 40–52, 1988.

[30] J.P. Campbell, “Modeling the performance prediction problem in
industrial and organizational psychology,” in Handbook of Industrial
and Organizational Psychology, 2nd ed., M.D. Dunnette and L.M.
Hough, Eds. Consulting Psychologists Press, Inc., 1990, vol. 1, pp.
687–732.

[31] J.P. Campbell, R.A. McCloy, S.H. Oppler, and C.E. Sager, “A theory
of performance,” in Personnel Selection in Organizations, N. Scmitt
and W.C. Borman, Eds. Josey-Bass, 1993, pp. 35–70.

[32] C. Carmerer, “General conditions for the success of bootstrapping
models,” Organizational Behavior and Human Performance, vol. 27, pp.
411–422, 1981.

[33] C. Carmerer, “Why are judgments less consistent in less predictable
task situations?” Organizational Behavior and Human Performance,
vol. 63, pp. 247–263, 1995.

[34] G.B. Chapman and E.J. Johnson, “Anchoring, activation, and the
construction of values,” Organizational Behavior and Human Decision
Processes, vol. 79, pp. 1–39, 1999.

[35] W.G. Chase and H.A. Simon, “The mind’s eye in chess,” in Visual
Information Processing, W.G. Chase, Ed. Academic Press, 1973.

[36] M.T.H. Chi, “Two approaches to the study of experts’ characteris-
tics,” in The Cambridge Handbook of Expertise and Expert Performance,
K.A. Ericsson, N. Charness, P.J. Feltovich, and R.R. Hoffman, Eds.
Cambridge Univ. Press, 2006, ch. 2, pp. 21–30.

[37] M.T.H. Chi, P.J. Feltovich, and R. Glaser, “Categorization and rep-
resentation of physics problems by experts and novices,” Cognitive
Science, vol. 5, pp. 121–152, 1981.

[38] M.T.H. Chi, R. Glaser, and E. Rees, “Expertise in problem solving,”
in Advances in the Psychology of Human Intelligence, R. Sternberg, Ed.
Lawrence Erlbaum Associates, Inc., 1982, pp. 17–76.

[39] N. Chomsky, Syntactic Structures, 2nd ed. Mouton, 2002.
[40] M. Cohn, User stories applied: For agile software development. Addison-

Wesley Professional, 2004.
[41] M. Cohn and R. Martin, Agile Estimating and Planning. Prentice

Hall, 2005.
[42] R.W. Cooksey, “The methodology of social judgement theory,”

Thinking and Reasoning, vol. 2, no. 2/3, pp. 141–173, 1996.
[43] J. Dana, “Is task complexity an exception to the superiority of

mechanized judgement, or a barrier to it?” Int’l J. Forecasting, vol. 23,
pp. 463–464, 2007.

[44] N. Dew, S. Read, S.D. Saravasthy, and R. Wiltbank, “Effectual versus
predictive logics in entrepreneurial decision-making: Differences
between experts and novices,” J. Business Venturing (in press), 2008.
[Online]. Available: doi:10.1016/j.jbusvent.2008.02.002

[45] J.K. Doyle and D.N. Ford, “Mental models concepts for system
dynamics research,” System Dynamics Review: J. System Dynamics
Society, vol. 14, no. 1, pp. 3–30, 1998.

[46] K.A. Ericsson, “An introduction to Cambridge Handbook of Exper-
tise and Expert Performance: Its development, organization, and
content,” in The Cambridge Handbook of Expertise and Expert Perfor-
mance, K.A. Ericsson, N. Charness, P.J. Feltovich, and R.R. Hoffman,
Eds. Cambridge Univ. Press, 2006, ch. 1, pp. 3–20.

[47] K.A. Ericsson and N. Charness, “Expert performance—its structure
and acquisition,” American Psychologist, vol. 49, pp. 725–747, 1994.

[48] D.N. Ford and J.D. Sterman, “Expert knowledge elicitation to im-
prove formal and mental models,” System Dynamics Review, vol. 14,
no. 4, pp. 509–340, 1998.

[49] N.R. Franks, A. Dornhaus, J.P. Fitzsimmons, and M. Stevens, “Speed
versus accuracy in collective decision making,” Proc. R. Soc. Lond B,
vol. 270, no. 1532, pp. 2457–2463, 2003.

[50] N.R. Franks and R. T., “Teaching in tandem-running ants,” Nature,
vol. 439, no. 7073, 2006.

[51] F. Fransella, R. Bell, and D. Bannister, A Manual for Repertory Grid
Technique. John Wiley & Sons, Ltd., 2004.

[52] D. Gentner, K.J. Holyoak, and B.N. Kokinov, Eds., The Analogical
Mind: Perspectives from Cognitive Science. MIT Press, 2001.

[53] D. Gentner and A.L. Stevens, Eds., Mental Models. Lawrence
Erlbaum Associates, Inc., 1983.

[54] G. Gigerenzer, Gut Feelings. The Intelligence of the Unconscious.
Viking, Penguin, Ltd., 2007.

[55] G. Gigerenzer and D.G. Goldstein, “Reasoning the fast and frugal
way: Models of bounded rationality,” Psychological Review, vol. 103,
no. 4, pp. 650–669, 1996.

[56] G. Gigerenzer and D.G. Goldstein, “Betting on one good reason,” in
Simple Heuristics that Make Us Smart, G. Gigerenzer and P.M. Todd,
Eds. Oxford University Press, 1999, ch. 4, pp. 75–95.

[57] G. Gigerenzer and P.M. Todd, Eds., Simple Heuristics that Make Us
Smart. Oxford University Press, 1999.

[58] F. Gobet and N. Charness, “Expertise in chess,” in The Cambridge
Handbook of Expertise and Expert Performance, K.A. Ericsson, N. Char-
ness, P.J. Feltovich, and R.R. Hoffman, Eds. Cambridge Univ. Press,
2006, ch. 30, pp. 523–538.

[59] S. Gregor, “The nature of theory in information systems,” MIS
Quarterly, vol. 30, no. 3, pp. 611–642, Sept. 2006.

[60] S. Grimstad and M. Jørgensen, “Inconsistency in expert judgment-
based estimates of software development effort,” J. Systems and
Software, vol. 80, no. 11, pp. 1770–1777, 2007.

[61] T.M. Gruschke and M. Jørgensen, “Assessing uncertainty of software
development effort estimates: Learning from outcome feedback,” in
Proc. Eleventh Int’l Symp. Software Metrics, 2005, p. 4.

[62] T. Hærem, “Task complexity and expertise as determinants of task
perceptions and performance: Why technology-structure research
has been unreliable and inconclusive,” Ph.D. dissertation, Norwe-
gian School of Management BI, 2002.

[63] T. Hærem and D. Rau, “The influence of degree of expertise and
objective task complexity on perceived task complexity and perfor-
mance,” J. Applied Psychology, vol. 92, no. 5, pp. 1320–1331, 2007.

[64] T. Halkjelsvik and M. Jørgensen, “From origami to software de-
velopment: A review of studies on judgment-based predictions of
performance time,” accepted to Psychological Bulletin, 2011.

[65] T. Halkjelsvik, M. Jørgensen, and K.H. Teigen, “To read two pages,
I need 5 minutes, but give me 5 minutes and I will read four: How
to change productivity estimates by inverting the question,” Applied
Cognitive Psychology, 2010.

[66] K.R. Hammond and T.R. Stewart, The Essential Brunswik. Oxford
University Press, 2001.

[67] J.E. Hannay, “Personality, intelligence, and expertise: The impact on
software development,” in Making Software: What Really Works and
Why We Believe It, A. Oram and G. Wilson, Eds. O’Reilly, 2010,
ch. 6.

[68] J.E. Hannay, E. Arisholm, H. Engvik, and D.I.K. Sjøberg, “Personality
and pair programming,” Transactions on Software Engineering, vol. 36,
no. 1, pp. 61–80, January/February 2010.

[69] J.E. Hannay and H.C. Benestad, “Perceived productivity threats in
large agile development projects,” in Proc. 4th Int’l Symp.Empirical
Software Engineering and Measurement (ESEM). IEEE Computer
Society, 2010, pp. 1–10.

[70] J.E. Hannay, D.I.K. Sjøberg, and T. Dybå, “A systematic review
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