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ABSTRACT Cardiomyocytes from failing hearts exhibit spatially nonuniform or dyssynchronous sarcoplasmic reticulum
(SR) Ca2þ release. We investigated the contribution of action potential (AP) prolongation in mice with congestive heart failure
(CHF) after myocardial infarction. AP recordings from CHF and control myocytes were included in a computational model of the
dyad, which predicted more dyssynchronous ryanodine receptor opening during stimulation with the CHF AP. This prediction
was confirmed in cardiomyocyte experiments, when cells were alternately stimulated by control and CHF AP voltage-clamp
waveforms. However, when a train of like APs was used as the voltage stimulus, the control and CHF AP produced a similar
Ca2þ release pattern. In this steady-state condition, greater integrated Ca2þ entry during the CHF AP lead to increased SR
Ca2þ content. A resulting increase in ryanodine receptor sensitivity synchronized SR Ca2þ release in the mathematical model,
thus offsetting the desynchronizing effects of reduced driving force for Ca2þ entry. A modest nondyssynchronous prolongation of
Ca2þ release was nevertheless observed during the steady-state CHF AP, which contributed to increased time-to-peak
measurements for Ca2þ transients in failing cells. Thus, dyssynchronous Ca2þ release in failing mouse myocytes does not result
from electrical remodeling, but rather other alterations such as T-tubule reorganization.
INTRODUCTION
In mammalian cardiomyocytes, contraction is triggered by
a transient increase in intracellular [Ca2þ]. This Ca2þ tran-
sient results from the temporal and spatial summation of
Ca2þ sparks, which are the fundamental units of Ca2þ

release from the sarcoplasmic reticulum (SR) (1). Evoked
Ca2þ sparks are initiated when Ca2þ influx through L-type
Ca2þ channels (LCCs) triggers the opening of clusters of
SR Ca2þ release channels, ryanodine receptors (RyRs). This
process, known as Ca2þ-induced Ca2þ release (CICR),
occurs at functional units called dyads where the mem-
branes of the T-tubule network and the SR are in close prox-
imity (z12 nm (2,3)). The nearly simultaneous opening of
sarcolemmal Ca2þ channels during the cardiac action poten-
tial (AP) ensures that Ca2þ sparks are triggered synchro-
nously across healthy ventricular cardiomyocytes during
the heartbeat.

Reduced cardiomyocyte contractility in human heart
failure largely results from reduced magnitude of the Ca2þ

transient. It is generally agreed that depletion of SR Ca2þ

stores is an important contributor to the reduction in SR
Ca2þ release (4). However, Ca2þ transients also rise more
slowly in heart failure, which leads to the development of
slower and weaker contractions in this condition (4,5).
Although the mechanisms underlying slowing of Ca2þ

release have not been carefully examined, we and others
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have reported that ventricular myocytes from failing hearts
exhibit nonuniform or dyssynchronous Ca2þ release, which
results in a slower spatially averaged Ca2þ transient (6–11).
Dyssynchronous Ca2þ release is caused, at least in part, by
loss and/or disorganization of T-tubules in failing myocytes
(8–12). This results in the formation of orphaned clusters
of ryanodine receptors, where Ca2þ release occurs only
after diffusion of trigger Ca2þ from sites where T-tubules
are present. However, we calculated that such changes
accounted for only a fraction of the overall slowing of
the Ca2þ transient (8), indicating a role of other unknown
mechanisms.

Altered AP configuration may also contribute to nonuni-
form Ca2þ release in failing cardiomyocytes. APs in large
mammals such as cat, rabbit, and human contain a notch
during the early phase of repolarization which is critical in
triggering synchronous opening of LCCs, and thus uniform
Ca2þ release (13). Harris et al. (7) observed that this notch
was lost in APs from failing feline ventricular myocytes,
which promoted dyssynchronous Ca2þ release. Importantly,
APs are also widely reported to be prolonged in heart
failure, in both large and small animal models (4). It is
unclear how such alterations affect Ca2þ release synchrony,
particularly in animals such as mice which do not contain
a notch during early repolarization. Complicating this issue
is the fact that AP prolongation may modify SR Ca2þ

content (5,14–17), and thus, RyR sensitivity. In this
study, we propose that slowed repolarization during the pro-
longed AP in failing murine cardiomyocytes promotes
doi: 10.1016/j.bpj.2010.06.055
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dyssynchronous Ca2þ release, but that increased SR Ca2þ

content offsets this effect. This hypothesis was investigated
by developing and employing a three-dimensional computa-
tion model of the dyad in combination with experiments in
isolated cardiomyocytes.
MATERIALS AND METHODS

Animal care and cardiomyocyte isolation

Studies were performed in accordance with the Norwegian Animal Welfare

Act, which conforms to National Institutes of Health guidelines (NIH publi-

cation No. 85-23, revised 1996). For some experiments, we employed

a murine model of congestive heart failure (CHF) after myocardial infarc-

tion (5,8,18,19). Briefly, large infarctions were induced in anesthetized

nine-week-old female C57BL/6 mice, while sham-operated (SHAM)

mice underwent the same procedure without coronary artery ligation.

At one week after surgery, post-MI mice which had developed CHF were

selected, based on our previously reported echocardiographic criteria

(18); left atrial diameter >2.0 mm and infarct size >40% of total left

ventricular (LV) circumference. Animals selected by these criteria exhibit

CHF characterized by congestion and markedly reduced overall cardiac

function (5,18,19). After evaluation at one week, CHF was allowed to prog-

ress for an additional nine weeks (10 weeks post-MI) when animals were

sacrificed.

Because the MI spanned most of the LV free wall in CHF hearts,

myocytes were only isolated from the noninfarcted septum, as described

previously (8). Care was taken to exclude the border zone. Septal myocytes

from SHAM hearts served as controls in these experiments. For other

experiments, cardiomyocytes were isolated from the entire LV of normal,

8–10-week-old C57BL/6 mice.
Experimental protocols and imaging

Myocytes were adhered to laminin-coated coverslips mounted in a perfusion

chamber. Ca2þ transients were examined in cells incubated with 20 mM

fluo-4 AM (Molecular Probes, Eugene, OR) for 30 min. In some experi-

ments, Ca2þ transients were elicited by field stimulation (3 ms biphasic

pulse, 50% above threshold) during perfusion with HEPES Tyrode solution

containing (in mM): 140 NaCl, 1.0 CaCl2, 0.5 MgCl2, 5.0 HEPES, 5.5 glu-

cose, 0.4 NaH2PO4, 5.4 KCl, pH 7.4, 22�C. SR Ca2þ content was assessed

by rapidly switching the perfusion solution to one containing 10 mM

caffeine and measuring the resulting Ca2þ transient.

Confocal fluorescence imaging of Ca2þ transients was performed with

an LSM 510 scanning system (Zeiss, Jena, Germany), as described (8).

Five-hundred-and-twelve pixel longitudinal line scans were recorded every

1.5 ms, and sequential scans were stacked to create two-dimensional figures

with time in the x axis. A light-emitting diode indicated the start of the stim-

ulus on a separate channel from the fluo-4 signal. In line-scan images, this

stimulus signal appears as a vertical line 3 ms in duration.

Discontinuous voltage-clamp experiments (sample rate 8 kHz) were con-

ducted with an Axoclamp-2B amplifier (Axon Instruments, Foster City,

CA) using 1–2 MU pipettes. APs were recorded at 1 Hz, and representative

examples were applied as voltage-clamp waveforms (5). In some experi-

ments, Ca2þ transients were recorded after a train of 20 identical AP wave-

forms (1 Hz), whereas in other experiments cells were alternately

stimulated with SHAM and CHF APs. Ca2þ influx during AP clamp was

measured in Naþ- and Kþ-free conditions (5). Transient outward current

(ITO) was recorded under Naþ- and Ca2þ-free conditions (as described in

section A in the Supporting Material). Current measurements are presented

normalized to cell capacitance. Capacitance was calculated by integrating

the current elicited during a voltage-clamp step from �70 mV to �80 mV.
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Data analysis

Analysis of Ca2þ transients was performed using Image J (NIH), MATLAB

(The MathWorks, Natick, MA), and SigmaPlot software (Systat Software,

Point Richmond, CA). Resting fluorescence across the cell (F0) was calcu-

lated by pixel-by-pixel averaging of 20 consecutive line scans immediately

before the stimulus. Each line-scan image was then divided by the F0 line to

obtain normalized Ca2þ transients (F/F0). Ca
2þ release synchrony was

calculated by then thresholding the normalized line-scan image to the

half-maximal fluorescence (F50) of the entire Ca2þ transient (8). An F50
profile was created for each cell indicating the first time at which F50 was

reached along the scan line. The standard deviation of values in the F50
profile was defined as the dyssynchrony index.

Mean data are presented 5SE. Data comparisons were performed with

two-tailed paired or unpaired t-tests. Statistically significant difference

was accepted when P < 0.05.
Computational model of the dyad

We developed a three-dimensional computational model of the dyad. The

dyadic cleft was modeled as a cylindrical disk (see Fig. S1 A in the Support-

ing Material), as has been done in other studies (20–22). The height of the

disk represents the distance between the SR and T-tubule, ~12 nm in healthy

myocytes (2,3). Because recent data indicate that dyad size is highly vari-

able (3,23), we conducted our simulations with dyads of two sizes: RyRs¼
100 and RyRs¼ 25. To encompass 100 RyRs, the radius was set to 220 nm

and for the smaller cleft, the radius was set to 110 nm. A ratio of 1:5

between the number of Ca2þ channels and RyRs determined the number

of LCCs in a dyad. This ratio has also been employed previously in other

modeling studies (24), and is in the range of what is measured experimen-

tally (25). The RyRs were positioned in a highly regular two-dimensional

lattice grid (26), as shown in Fig. S1 B.

The entire model was driven by an external dynamic voltage-clamp,

using recorded APs from SHAM and CHF myocytes. For each type of

simulation, we conducted 120 runs and recorded the time between the

onsets of the triggering stimulus to the first RyR opening. The number of

open LCCs during the clamp and total Ca2þ current through the open chan-

nels was calculated. The simulation was terminated after the first recorded

RyR opening. Numerical methods for the solution of the continuous

and discrete system are presented in sections C and D in the Supporting

Material.
Continuous model

A continuous model for the ionic concentrations inside the cleft was

employed. Two previous computational models of the dyadic cleft com-

puted the trajectories of each Ca2þ ion in the cleft individually (24,27),

using a random-walk model. The motivation for these investigators doing

sowas that there are too fewCa2þ ions inside the cleft to justify a continuous

approximation of [Ca2þ]. However, in a recent study we showed that it is

not the average number of ions in the cleft that invalidates the use of

a continuous model, but rather the in-flow rate of single Ca2þ ions com-

pared to the binding rate to single receptors in the cleft (22). In the case

of the dyadic cleft, where the binding rates are indeed small compared to

the in-flow rates (22), we could use a continuous approximation of the

[Ca2þ] if we also employed stochastic models for binding of single ions

to receptors in the cleft. The electro-diffusional process in the dyadic cleft

was modeled by an advection-diffusion partial differential equation (see

section B in the Supporting Material). The diffusion constant for Ca2þ

was set to 2.2 � 105 nm2 ms�1.

We used two different types of boundary conditions:

1. No-flux condition at all membrane boundaries, and

2. Concentration-dependent flux condition for the cytosolic and LCC

fluxes.



TABLE 1 Animal and cell characteristics

SHAM CHF

BW: g 25.2 5 0.6 24.9 5 1.6

LW: g 0.228 5 0.009 0.597 5 0.040*

LW/BW (e�3) 9.1 5 0.4 24.2 5 1.4*

Cell length: mm 135.2 5 6.3 178.0 5 5.3*

Cell width: mm 26.2 5 1.7 26.1 5 1.5

APD, 20%: ms 7.8 5 0.7 10.9 5 1.5*

APD, 50%: ms 11.7 5 1.1 25.0 5 3.8*

APD, 70%: ms 18.2 5 1.9 59.3 5 17.7*

BW, body weight; LW, lung weight.

*P < 0.05 versus SHAM; nanimals: SHAM ¼ 15, CHF ¼ 9; ncells: pics:

SHAM ¼ 26, CHF ¼ 28; ncells: APs: SHAM ¼ 13, CHF ¼ 16; P < 0.05

versus SHAM.
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In-flux from the RyRs was not included in this study, because we focused

on the timing of the RyR triggering. The cytosolic in-flux was treated as

a concentration-dependent boundary flux,

Jcyt ¼ �D
�
c� Ccyt

�
=DScyt:

Here c and Ccyt are the Ca2þ concentrations at the boundary and in the

cytosol, respectively. DScyt is the distance to where the concentration is

assumed to be Ccyt. We fitted Ccyt to 5 nm so the concentration profile

from an open LCC inside the cleft equaled the concentration profile

when we included a large domain outside the cleft (data not shown).

Note that Ccyt is a variable that varies with the electrical potential as

Ccyt ¼ C0
cyte

�zF;

where z is the valence of Ca2þ and F is the electric potential, described by

Eq. S2 in the Supporting Material. C0
cyt was set to 0.1 mM.We used a Gold-

man-Hodgkin-Katz equation to govern the LCC flux (28). The permeability

of a single LCC was chosen so the amplitude of the current was �0.12 pA

for a voltage step to 0 mV at room temperature (29). The LCC and RyR

Markov models (see below) were dependent on the value of the Ca2þ field

at their boundaries.
Discrete and stochastic models

Discrete and stochastic Markov models were employed to describe the

channel dynamics of the LCCs and RyRs. The LCC model is a slightly

modified version of the 12-state model previously used by Greenstein

and Winslow (30), and first described by Jafri et al. (31) (Fig. S2 A).

With a Q10 of 1.8, we modified the rates in the model to room temperature

22�C. The Ca2þ-dependent inactivation rate g0 was fitted, so the overall

g-rate during a steady-state response from a single LCC was the same as

in the study of Greenstein and Winslow (30).

We employed a minimalistic Markov model scheme for the RyRs, which

is presented in Fig. S2 B. The scheme follows fourth-order activation

kinetics (32,33). The kon rate was fitted so that the mean time between

the stimulus and RyR triggering for the larger dyads matched that observed

experimentally during a SHAM AP (z5 ms). For our geometry and diffu-

sion model this number was 0.048 (mM � ms)�1. We also performed simu-

lations with sensitized RyRs, modeling a higher SR Ca2þ content, by

multiplying the kon rate by 1.4 (see Results).
Coupling fidelity

The probability for an open LCC to trigger release, i.e., the coupling

fidelity, has recently gained interest in the literature (32,34,35). Due to

the complexity of our model, we did not study the coupling fidelity in

an analytical manner. However, we could calculate the coupling fidelity

directly by summating LCC openings during a run, and defining coupling

fidelity as one over the number of open LCCs needed to trigger release.

For comparison with previous work, we also present here the coupling

fidelity during voltage-clamp steps to 0 and 10 mV: large dyad ¼ 0.39

and 0.19, respectively; small dyad ¼ 0.32 and 0.11. The values are in

accordance with a low coupling fidelity suggested by recent studies

(32,35). The lower coupling fidelity for the smaller dyad is caused by

the geometrical differences between the two dyads, as Ca2þ more easily

escapes the smaller dyad. The steady-state Ca2þ concentrations at the

juxtapositional RyR for a voltage step to 0 mV were 34.1 mM for the large

dyad and 30.0 mM for the small dyad. Because the LCC and the RyR were

positioned in the center of the dyad, this difference would be smaller for

positions closer to the rim. This fact has not been recognized by other

studies of coupling fidelity.
RESULTS

Animal and cell characteristics are shown in Table 1.
Marked congestion was observed in CHF animals as lung
weight/body weight ratios were more than double SHAM
values. Cardiomyocytes were significantly longer in CHF
than SHAM although cell widths were similar, indicating
cellular hypertrophy.

In comparison with SHAM, AP duration was significantly
prolonged in CHF myocytes at 20, 50, and 70% repolariza-
tion time (Table 1), consistent with a reduction in transient
outward Kþ current (Fig. S3). Representative APs (inset in
Fig. 1 A, left panel) were used to drive the computational
model of the dyad, and to predict the effect of AP prolonga-
tion on the time-course of ILCC before release. Fig. 1 A
shows that, in agreement with previous observations (36),
LCCs open during the repolarizing phase of the mouse
AP. With either a large (20 LCCs, 100 RyRs) or small
dyad (5 LCCs, 25 RyRs), slowed-repolarization during the
CHF AP triggered a larger number of LCC openings than
the briefer SHAM AP. However, due to reduced driving
force for Ca2þ entry during the failing AP, the model pre-
dicted delayed, prolonged, and reduced ILCC amplitude in
comparison with the SHAM AP (Fig. 1 B). This resulted
in delayed and more variable timing of triggered RyR open-
ings (Fig. 1 C, large dyad: SHAM AP 5.1 5 0.7 ms, CHF
AP 7.2 5 1.5 ms; small dyad: SHAM AP 8.0 5 1.8 ms,
CHF AP 13.3 5 3.5 ms). Thus, regardless of dyad size,
the computational model predicted that the prolonged
failing AP promotes greater dyssynchrony of SR Ca2þ

release. The model also predicted that smaller dyads are
less effective in triggering Ca2þ release, as the number of
included LCCs is smaller. When integrated, the current
traces in Fig. 1 B predicted that a larger number of Ca2þ

ions entered the cell during the CHF AP than the SHAM
AP (large dyad: SHAM AP 820 Ca2þ ions, CHF AP
1290 Ca2þ ions; small dyad: SHAM AP 830 Ca2þ ions,
CHF AP 1580 Ca2þ ions). The average total number of
LCCs needed to trigger release in the large dyad was 12.5
during the SHAM AP and 22.3 during the CHF AP. The
inverse of these numbers gives us the average coupling
Biophysical Journal 99(5) 1377–1386
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FIGURE 1 The dyadic model predicted reduced

ILCC magnitude/kinetics during the CHF AP, and

SR content-dependent effects on Ca2þ release

synchrony. (A) Representative SHAM and CHF

APs (inset of left panel) were incorporated in the

computation model of both a large (left panels)

and small dyad (right panels). A greater number

of open LCCs was predicted during the CHF AP.

At normal SR content, decreased driving force

for Ca2þ entry during the CHF AP reduced ILCC
magnitude and kinetics (B), and resulted in more

variable timing (dyssynchrony) of RyR openings

(C). Increasing RyR Ca2þ sensitivity (orange lines)

to model the effects of increased SR Ca2þ content

during the CHFAP (observed experimentally) pre-

dicted decreased variability in the timing of RyR

openings.
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fidelity—SHAM AP ¼ 0.08; CHFAP ¼ 0.045. The fraction
of channels that opened and reopened were, respectively,
SHAM AP ¼ 0.49, 0.11; and CHF AP ¼ 0.72, 0.30.
The low average coupling fidelity reflects the fact
that most channels opened when the AP was depolarized
(>20 mV).

Modeling predictions were tested by employing the same
representative APs as voltage-clamp waveforms in experi-
ments on normal murine cardiomyocytes. Myocytes were
stimulated with trains of SHAM or CHF APs at 1 Hz, as
illustrated in Fig. 2 A. Under this stimulation pattern,
spatially averaged Ca2þ transients triggered by the CHF
AP train were 32% larger than those elicited by SHAM
APs (SHAM AP F/F0 ¼ 2.61 5 0.34, CHF AP F/F0 ¼
3.13 5 0.45, P < 0.05). Interestingly, and in apparent
disagreement with the modeling prediction, line-scan
images showed similar synchrony of Ca2þ release during
SHAM and CHF APs (Fig. 2 B). This was confirmed by
measurements of the dyssynchrony index (Fig. 2 B, right
panel). The time course of ILCC was slowed during the
CHF AP train and peak current was reduced (Fig. 2 C).
Overall integrated ILCC was nevertheless increased (151%
Biophysical Journal 99(5) 1377–1386
SHAM AP values, P < 0.05). Greater Ca2þ entry during
the CHFAP was associated with increased SR Ca2þ content
(Fig. 2 D).

We hypothesized that the discrepancy between modeling
predictions and experimental observation of Ca2þ release
synchrony was due to effects of altered SR Ca2þ content
not included in the computational model. Specifically,
increased SR Ca2þ content induced by a train of CHF APs
would be expected to sensitize RyRs, which might theoret-
ically maintain Ca2þ release synchrony despite an altered
ILCC time course. To test this hypothesis, we increased the
Ca2þ sensitivity of the RyRs in the model and repeated
the simulations with the CHF AP. The sensitivity was
increased in such a manner that the total number of Ca2þ

ions entering through LCCs before release was similar to
that obtained during the SHAM AP (Fig. 1 C, orange lines,
large dyad: 770 Ca2þ ions; small dyad: 1050 Ca2þ ions).
Fig. 1 C shows that RyR sensitization resulted in more rapid
RyR openings (orange bars, large dyad: 6.1 5 1.1 ms;
small dyad: 11.25 2.8 ms), and a more narrow distribution
of these measurements (standard deviation for large dyad:
SHAM ¼ 0.7 ms, CHF ¼ 1.5 ms, sensitized CHF ¼ 1.1 ms;



FIGURE 2 Steady-state stimulation with the CHF AP increased Ca2þ

entry, SR Ca2þ content, and Ca2þ transient magnitude, and maintained

Ca2þ release synchrony. (A) Normal cardiomyocytes were stimulated

with trains of identical APs. (Lower panels) Representative spatially aver-

aged Ca2þ transients. (B) Line-scan images of Ca2þ transients and mean

dyssynchrony index measurements. (C) Representative ILCC and mean inte-

grated currents elicited by the SHAM and CHFAPs. (D) Estimation of SR

Ca2þ content based on the magnitude of caffeine-elicited Ca2þ transients.

For panels B–D, n ¼ 7, 9, 25; P < 0.05 versus SHAM AP.

FIGURE 3 Stimulation with alternating AP waveforms to prevent alter-

ations in SR Ca2þ content desynchronized Ca2þ release during the CHF

AP. (A) Alternating AP stimulation protocol (upper panel) and representa-

tive spatially averaged Ca2þ transients (lower panel). (B) Line-scan images

and mean dyssynchrony index measurements. n ¼ 6, P > 0.05 versus

SHAM AP.
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small dyad: SHAM ¼ 1.8 ms CHF ¼ 3.5 ms, sensitized
CHF ¼ 2.8 ms).

Further evidence supporting an important role of SR Ca2þ

content in regulation of Ca2þ release synchrony was ob-
tained from cardiomyocyte experiments. Myocytes were
alternately stimulated with SHAM and CHF APs (Fig. 3 A)
to prevent the SR Ca2þ loading observed during steady-state
CHF AP trains. In comparison with trains of like APs, this
stimulation protocol less markedly altered Ca2þ transient
magnitude, as transients elicited by CHF APs were only
13% larger than those elicited by SHAM APs (SHAM
AP F/F0 ¼ 1.71 5 0.06, CHF AP F/F0 ¼ 1.80 5 0.08,
P < 0.05). Importantly, line-scan images and mean data
(Fig. 3 B) show that the CHFAP triggered more dyssynchro-
nous Ca2þ release than the SHAM AP when the two AP
waveforms were alternated. Thus, both modeling and exper-
imental data suggest that the prolonged AP in failing cardi-
omyocytes promotes slowed dyssynchronous Ca2þ release,
but that this effect is offset by an increase in SR Ca2þ

content during steady-state stimulation.
We next examined whether our findings obtained in

normal myocytes were reproducible in myocytes from
failing hearts. Fig. 4 A shows that Ca2þ transients elicited
in field-stimulated cells were markedly more dyssynchro-
nous in CHF than SHAM, as indicated by an increase
in mean dyssynchrony index values (Fig. 4 B). As we
have observed previously (5), Ca2þ transients were also
larger in CHF myocytes (SHAM F/F0 ¼1.9 5 0.1, CHF
F/F0 ¼ 2.8 5 0.1, P < 0.05), and the rising phase was
slowed as indicated by increases in time to peak (Fig. 4 C).
In patch-clamped cells, we examined whether AP configura-
tion contributed to these alterations. During stimulation
with trains of identical APs, SHAM myocytes exhibited a
similar pattern of Ca2þ release when stimulated with the
SHAM and CHF AP (Fig. 5 A), as indicated by mean dys-
synchrony index measurements (Fig. 5 C). In CHF, Ca2þ

release synchrony was also similar during SHAM and
CHF AP trains (Fig. 5 B), although dyssynchrony index
values were significantly higher than those observed in
SHAM cells (Fig. 5 C). Thus, at steady state the failing
AP does not promote dyssynchronous Ca2þ release in
failing myocytes.

Fig. 6 shows that although the CHF AP did not alter
synchrony, it did influence Ca2þ transient shape. Represen-
tative spatially averaged Ca2þ transients (Fig. 6 A) and mean
measurements (Fig. 6 B) show that steady-state stimula-
tion with CHF APs increased transient magnitude in both
SHAM and CHF, similar to our observations in normal cells
(Fig. 2 A). However, upon close examination, we observed
that the CHF AP also slightly prolonged the Ca2þ transient,
resulting in increased time-to-peak values in cells from
SHAM, CHF (Fig. 6, A and C), and normal hearts (Fig. 2 A).
Thus, AP prolongation contributes to the prolonged rising
phase of the Ca2þ transient observed in CHF without pro-
moting Ca2þ release dyssynchrony.
Biophysical Journal 99(5) 1377–1386



FIGURE 5 In SHAM and CHF myocytes, Ca2þ release synchrony was

not altered by AP configuration during steady-state stimulation. Represen-

tative Ca2þ transients from a SHAM (A) and CHF (B) myocyte during stim-

ulation with SHAM and CHFAP trains (left and right panels, respectively).

(C) Mean dyssynchrony index measurements. ncells: SHAM ¼ 9, CHF ¼
15; yP < 0.05 versus SHAM cells.

FIGURE 4 Cardiomyocytes from CHF hearts exhibited slowed, dyssyn-

chronous Ca2þ release. (A) Representative line-scan images of Ca2þ

transients from field-stimulated SHAM and CHF myocytes. (B) Mean dys-

synchrony index measurements. (C) Ca2þ transient time-to-peak measure-

ments. ncells: SHAM ¼ 18, CHF ¼ 18; P < 0.05 versus SHAM AP.
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DISCUSSION

In this study, we employed a novel three-dimensional
computational model of the dyad in combination with
cardiomyocyte experiments to examine the control of SR
Ca2þ release by AP configuration in mice. We observed
reduced ITO and prolonged APs in CHF myocytes, which
resulted in a slowed and broadened ILCC time course. While
such alterations alone promote dyssynchronous RyR open-
ings, Ca2þ release synchrony was maintained during steady-
state stimulation with the CHF AP, as elevated SR Ca2þ

content increased RyR sensitivity. Although the failing AP
produced a slight prolongation of the Ca2þ transient, which
contributed to increased time-to-peak values in CHF
myocytes, the altered AP configuration did not contribute
to the greater Ca2þ release dyssynchrony observed in these
cells.

To our knowledge, this study is the first to examine the
effect of altered AP configuration on Ca2þ release
synchrony in mice. To address this issue with mathematical
modeling, we took into account recent reports indicating
that dyad size is highly variably in normal murine cardio-
myocytes, and that many dyads are much smaller than
previous estimates (3,23). In fact, the average dyad was
observed to contain almost an order-of-magnitude less
RyRs (eight, as estimated by Hayashi et al. (3)) than previ-
ously thought. Previous estimates were based on the
Biophysical Journal 99(5) 1377–1386
assumption that dyads are circular and that RyRs fill the
available space in the dyad (2). Both Hayashi et al. (3)
and Baddeley et al. (23) have shown that a dyad is not
circular, and Hayashi et al. (3) also suggest that the RyR
cluster is not densely packed. The larger dyad in our com-
putational model is based on the previous estimate of
dyadic size; it contains 100 densely-packed RyRs, while
the smaller dyad contains only 25 RyRs. Importantly, we
observed that the effects of the CHF AP on ILCC and Ca2þ

release synchrony were fundamentally similar with large
and small dyads, and that RyR sensitization synchronized
SR Ca2þ release in both cases.

Our simulations additionally provide insight into the
ability of Ca2þ channels to trigger Ca2þ release, the so-
called gain of CICR and its relation to dyad size. The
employed model of RyR activation includes fourth-order
activation kinetics, which has been suggested based on the
tetrameric structure of the RyR (33) and experimental
evidence (32). An interesting effect of these kinetics is
that the RyR is most probably triggered by locally posi-
tioned LCCs. Our simulations suggest (data not shown)
that the steady-state Ca2þ concentration at the juxtaposi-
tional RyR, given an open LCC, is approximately three



FIGURE 6 The CHF AP modestly prolonged the peak of the Ca2þ tran-

sient. (A) Representative spatially averaged Ca2þ transients from SHAM

and CHF myocytes (left and right panels, respectively) during steady-state

stimulation with SHAM and CHF APs (insets represent full scale). Mean

measurements of Ca2þ transient magnitude (B) and time to peak (C). ncells:

SHAM ¼ 9, CHF ¼ 15; *P < 0.05 versus SHAM AP; yP < 0.05 versus

SHAM cells.

Control of Myocyte Ca Release by the AP 1383
times larger than at any neighboring RyR. The probability
that a neighboring RyR is triggered instead of the juxtaposi-
tional RyR given an open LCC is then

4 �
�
1

3

�4

z
1

20
;

suggesting that Ca2þ is highly compartmentalized inside
a single dyad. Because a single LCC is almost exclusively
responsible for triggering the juxtapositional RyR, spark
probability is directly dependent on the number of LCCs
in a dyad. A higher spark probability will not only decrease
the time to release, but also decrease the variance of the
release time distribution (37), explaining the earlier and
more synchronous release for the larger dyad in our study
(Fig. 1 C).

The relationship between spark probability and the
number of LCCs in a dyad has previously been investigated
analytically by others (32,35,37). Our study differs from
these previous works; we were not limited to a voltage-
step protocol because we used dynamic voltage-clamp.
We show that the size of the dyad alters the coupling fidelity
by changing the diffusional properties of a single dyad, as
described in Materials and Methods. Ca2þ will more easily
diffuse out of a smaller dyad than a larger one, effectively
decreasing the chance that a single open LCC will trigger
release. Poláková et al. (32) suggest that several LCC chan-
nels need to open and also possibly reopen to trigger Ca2þ

release. Our model also requires several open LCCs to
trigger Ca2þ release. On average, 12 channel openings
were required to trigger release for the SHAM AP in the
large dyad, and as many as 22 for the CHF AP. This obser-
vation underscores the difference in average coupling
fidelity during the two APs (0.08 vs. 0.045), and is in agree-
ment with previous work indicating that more rapid repolar-
ization enhances CICR triggering efficiency (38).

The observation that a dyad with a smaller number of
LCCs causes more dyssynchronous Ca2þ release suggests
that the greater dyssynchrony observed in failing cardio-
myocytes (Fig. 4, A and B) could partly result from a
decreased number of LCCs due to T-tubule loss in this
condition (39). Thus, structural changes in T-tubules may
promote Ca2þ release by two different mechanisms: by
the creation of orphaned ryanodine receptors where Ca2þ

release is dependent on Ca2þ diffusion from other sites
(8–12), but also possibly by decreasing the number of
Ca2þ channels in the dyad.

Although our modeling predictions suggest that both
coupling fidelity and Ca2þ release synchrony are reduced
in smaller dyads, an interesting possibility is that several
small dyads separated by only a small distance (<100 nm)
might be functionally coupled to form so-called super clus-
ters (23). To investigate the possible impact a super cluster
might have on the time to release, we combined four smaller
dyads to form such a cluster. The shortest time to release
from any of the four dyads was measured as 6.4 5 1.1 ms
for the SHAM AP. This is larger than the mean time to
release from the larger dyad, 5.1 5 0.7 ms, which had the
same number of LCCs, i.e., 20. The discrepancy can be
explained by the higher coupling fidelity in the larger
dyad. We suggest that more-accurate models, featuring real-
istic geometries of single dyads forming super clusters (40),
are needed to disentangle the functional implications of
such clusters.

Previous work in rat cardiomyocytes showed that
reducing repolarization rate using voltage ramps promoted
nonuniform Ca2þ release of reduced magnitude (41).
Similar effects were observed when the stimulus waveform
was switched from a normal human AP to a failing human
AP. However, in both experiments the slowing of repolariza-
tion was more extreme than that which occurs in failing rats
or mice (5,42). Our modeling and experimental results show
that Ca2þ release synchrony is not altered by AP prolonga-
tion (slowed repolarization) within the pathophysiological
range after reduction in ITO. Importantly, AP prolongation
in this range increases Ca2þ transient magnitude. These
effects appear to be due to precise alterations in ILCC, which
are critical in determining whether Ca2þ-induced Ca2þ

release (CICR) is enhanced or impaired. While LCC open
probability (Fig. 1 A) and integrated currents (Fig. 1, B
and C) are increased during a longer AP, reduced driving
force results in a current which is delayed, prolonged, and
reduced in magnitude (Fig. 1, B and C). These effects are
exaggerated as repolarization is more dramatically slowed
(13). Reduced amplitude Ca2þ entry through single LCCs
Biophysical Journal 99(5) 1377–1386
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is less likely to trigger RyR Ca2þ release. As well, reduced
deactivation of LCCs during longer APs promotes LCC
reopening, which further reduces CICR gain. We observed
that when cells were alternately stimulated with SHAM
and CHF APs, Ca2þ transient magnitude was modestly
increased (Fig. 3 A). Therefore, during physiological AP
prolongation in murine cardiomyocytes, greater LCC open
probability more than offsets expected reductions in gain.
However, our results show that such effects cannot maintain
SR Ca2þ release synchrony alone.

During steady-state stimulation with prolonged APs,
increased net ILCC results in greater SR Ca2þ content
(5,14–16,43) because NCX-mediated Ca2þ extrusion is
either unaltered (5) or reduced (43). We observed that this
elevation of SR content is required to maintain Ca2þ release
synchrony during the failing AP, as RyR sensitization com-
pensates for reduction in unitary ILCC. Increased SR Ca2þ

content also contributes to the inotropic effects of AP
prolongation in mice, because we observed a more marked
increase in Ca2þ transient amplitude during steady-state
stimulation with the CHF AP than during alternating AP
waveforms. With more marked AP prolongation, such as
that which occurs in larger species, it appears that a critical
point is passed at which increases in SR Ca2þ content are
not capable of maintaining either Ca2þ transient magnitude
or Ca2þ release synchrony. Beyond this point, factors
favoring enhanced CICR (RyR sensitization and reduced
LCC deactivation rate) are outweighed by those which
reduce CICR gain (decreased unitary ILCC and greater
LCC reopening).

Our experiments in normal cardiomyocytes served as
proof of principle of the effect of the CHF AP on the
Ca2þ transient. We additionally verified that these findings
held true in failing cardiomyocytes despite known alter-
ations in Ca2þ handling protein localization and function
(12). As in normal cells, we observed that steady-state
stimulation with the CHF AP did not alter Ca2þ release
synchrony measurements. On close examination, we
observed that the CHF AP did, however, slightly prolong
the peak of the Ca2þ transient, and increase time-to-peak
measurements. This peak prolongation may have resulted
from slowing of the ILCC time course, as discussed above,
or a delay in NCX-mediated Ca2þ extrusion due to more
time spent at depolarized potentials. Therefore, AP alter-
ations minorly contribute to increased time-to-peak values
in Ca2þ transients observed in failing rodent myocytes,
but not the slowed rate of rise of [Ca2þ]i (5,8,9,11). Instead,
it appears that dyssynchronous Ca2þ release in these cells
(see Fig. 4) results from disrupted T-tubule structure, and
the formation of orphaned ryanodine receptors (8,9,11).
T-tubule reorganization also occurs during heart failure in
larger species, including humans (10,11,39). These changes
likely combine with AP alterations (prolongation and loss of
an early repolarizing notch) in these species to promote
slowed, dyssynchronous Ca2þ release (7). Slowed Ca2þ
Biophysical Journal 99(5) 1377–1386
release, in turn, slows contraction in failing cardiomyocytes,
importantly weakening the power of the heartbeat in this
condition (4,5,44).

While slowing of Ca2þ release and contraction appears to
be an important component of heart failure progression in
both mice and men (4,5,12), there are also dissimilarities.
In large mammals, heart failure is additionally associated
with reduced magnitude of Ca2þ transients and contractions,
and decreased SR Ca2þ content (4). We observe opposite
findings in post-MI mice, as Ca2þ cycling is enhanced
(Fig. 6 and (5,8,19)). We have presently demonstrated that
AP prolongation is an important underlying mechanism,
as it promotes both greater L-type Ca2þ entry and increased
SR content. In contrast, AP prolongation in larger species
reduces Ca2þ transient magnitude, as discussed above.
As well, reduction in SERCA levels and/or phospholamban
phosphorylation reported in large animal models (4) does
not occur in post-MI mice (5). In both failing rodents and
larger mammals, baseline Ca2þ current measurements are
unaltered (4,5).

Our observation that SR Ca2þ content regulates Ca2þ

release synchrony has implications for both normal and
pathophysiological conditions. Isoproterenol treatment
synchronizes SR Ca2þ release across the cell (45,46) and
increases the rate of rise of the Ca2þ transient. Our results
suggest that these effects result, at least in part, from RyR
sensitization due to elevated SR Ca2þ stores. Similarly,
increased SR Ca2þ content observed in postinfarction mice
(5,8) and some other rodent heart failure models (44,47)
would be expected to partially offset the desynchronizing
effects of T-tubule disruption. In contrast, reduced SR
Ca2þ stores observed in large animal models and human
heart failure (4) should exacerbate Ca2þ abnormalities
resulting from T-tubule and AP alterations. Thus, thera-
peutic strategies for heart failure aimed at increasing SR
Ca2þ content, by augmenting SR Ca2þ reuptake or reducing
Ca2þ leak, could be expected to improve both Ca2þ transient
amplitude and kinetics.

Some limitations of this work should be considered. We
simplified our mathematical model by including only trig-
gering of SR Ca2þ release and not the release process itself.
In addition, the model includes a somewhat simplistic
mechanism for RyR activation, in comparison with what
is currently known (33). We also recognize that our model
does not include Ca2þ buffering or realistic geometries of
the RyRs and LCCs in the dyad, both of which would be
expected to alter the time course and magnitude of alter-
ations in [Ca2þ]i after an LCC opening. RyR sensitization
was modeled somewhat arbitrarily, by equilibrating Ca2þ

entry through LCCs during the SHAM and CHFAP. In actu-
ality, we do not know the precise effect RyR of sensitization
on ILCC, and this will be the subject of future investigations.
Finally, we have not examined APs at physiological fre-
quency (8–10 Hz), because we found it was not possible
to record stable APs at high rates in murine cardiomyocytes.
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CONCLUSIONS

We observed that AP prolongation in failing murine cardio-
myocytes resulting from ITO reduction reduces the driving
force for L-type Ca2þ entry. Although such effects normally
promote dyssynchronous SR Ca2þ release, they are offset at
steady state by increased SR Ca2þ content, which increases
RyR sensitivity. Thus, other alterations such as T-tubule
disruption account for the spatially nonuniform Ca2þ

release in heart failure, and the resulting slowing of the
Ca2þ release and contraction in this condition.
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