

Software Effort Estimation as

Collaborative Planning Activity

Kristin Børte

Thesis submitted in partial fulfilment of the requirements for the degree of

Philosophiae Doctor

Department of Educational Research

Faculty of Education

University of Oslo

April 2011

© Kristin Børte, 2011

Series of dissertations submitted to the
Faculty of Educational Sciences, University of Oslo
No. 144

ISSN 1501-8962

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AIT Oslo AS, 2011.

Produced in co-operation with Unipub AS.
The thesis is produced by Unipub AS merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Unipub AS is owned by
The University Foundation for Student Life (SiO)

Acknowledgements
Pursuing a PhD is a learning process that can be compared to taking a ride on a roller

coaster. It can be slow, fun, exciting, demanding, and sometimes even scary.

Luckily, like the roller coaster, it has a solid support structure to secure a safe

completion of the ride, or in this case the writing of a thesis. I would therefore like to

thank my main supervisor Professor Monika Nerland for your dedicated readings of

numerous drafts, insightful and critical comments on my work and the interesting

discussions that we have had during my PhD. I am grateful that you included me in

the LiKE project at the University of Oslo. Being part of this research project has

been very valuable to me as my work is interdisciplinary. I would also like to thank

my two co-supervisors Professor Sten Ludvigsen and Professor Magne Jørgensen.

Your expertise and experience within analysing talk and interactions and software

effort estimation, respectively have been invaluable. Also your insightful and critical

readings of my work have been much appreciated. Working together with the three

of you has made it possible for me to finish this thesis. The philosopher Mikhail

Bakhtin once wrote: “the word of language is half someone else’s…” and I believe

that you are the ones that should be credited in that respect.

I would also like to thank the managing director at Simula Research Laboratory,

Aslak Tveito, and the former director of Simula School of Research and Innovation,

Kristin Vinje, for believing in me and giving me the opportunity to pursue a PhD.

Thanks to my colleagues at Simula Research Laboratory and in particular the

members of my research group. You have provided a productive, fun and inspiring

working environment. I would also like to thank the IT Operations for the excellent

help you provided when technical problems occurred. Also thanks to the members of

the LiKE project at University of Oslo, your comments and discussions of various

parts of my work have been much appreciated.

I would also like to thank Åsa Mäkitalo and Roger Säljö for your warm welcome in

relation to my research stay at the University of Gothenburg. The two months that I

spent working with your research group were of great value for me in terms of

understanding the theoretical perspective that I have employed as well as improving

my skills as an analyst of interactions.

When writing a PhD-thesis there are times when the writing and ideas seam brilliant

while the next day they are just not working. A heartfelt thanks goes to my family

and friends for following me throughout my PhD and most of all for still hanging

around afterwards. I have truly appreciated our talks and your encouragement over

the years.

April 2011

Kristin Børte

PART I: Extended Abstract

Table of Contents

�� ������	
��

���� ����	
�����
��
��������������
������	��������������������������	��������������������������

���� ������	��������
���������	���

���� �����	��

� �����������������	���

���� ���������������������������������	��	��������������������������	� ���������������������

���� �������	��������
�������
�	��
�����������	���!�

������ ����	
�
�
�����������������������������������	���

������ ����	
�
�
������
�������	����
���
�
�
��

���� ����������������
���	�"��
���	�#$������������������������������	���������������������

������ ����
������������	��
�� ��
����������������	�����
���
���

������ ����
������
��
!
���"��#��	����	��
�� ��
����������������	�����
���
�������������$�

������ ����
���������
�"���������
��������	����!�"��

���� �����	
���%����������	����	����������	�����������	��

�� ��������
��

���� ����
��
��������������
������	��������������������������	���������������������������������������

������ %����
����������	����	�������
��&'�

������ (��
��������
���&��

������ ���
�"�
���	���
�������
���	���
���"����
�!���&&�

����&� �
��	
�������#��	�
���&��

����)� %���	�"��������������
�
�
�����
�"�
���	���
���&$�

������ *������#���"
���
���������""���
!��	������	
�
��)'�

������ %������������"��	�"����"��)��

���� �����	
�����	�������	��	
���
�	
���!!�

�� ���
�����������������
��

���� �������#�&������	�����������������$�����#����	���������#���	�������
������!'�

&����� ����	
��
��

���� ��	����������
�����������������		�	
�������������
��

&����� ����	
��
��)�

���� ���������
�
���
�	���������	���

���� �	�����
������
���

&�&��� +���	���
������",�
���$�

&�&��� ��"���
��������	���	
�
���	����",�
�
�
���	���
���"���

&�&��� ��
������
��������	�������
��

��!� ���	
�
����$���������
���(!�

&�)��� *�"
��
"
�,��)�

&�)��� -�"
�
�,���$�

&�)��� .���	�"
���
��$'�

�� �	�����������������
���

!��� ����
���

!��� ����
���

!��� ����
��'�

 �
�����!	���������
��
�	��

���� ������
����	����������
���
�	���$����	��'��

������ ������	������	�����
���
��������""���	��
!���"���
�
����
!
�,�������������������������������/��

������ 0��	����������"��������
���	���
���"�������"
�����������������	��

� �����	�����
���
��''�

������ 0��	����������"���������
���	
��"�
���	���
�����������

� �	������#���"
���������������"�
�����������#��')�

����&� 0��	����������"�����������"����
��������
����
��������	������	��

� ����
���
�����	���'�

���� ���������
�
���
�	���$����	���

����
�	
�����	��

�� �������
���
��

PART II: The Articles
����
����% Børte, K., & Nerland, M. (2010). Software effort estimation as

collective accomplishment: An analysis of estimation work in a multi-

specialist team. Scandinavian Journal of Information Systems, 22(2),

p. 65–98

����
�����: Børte, K. (submitted). Challenges when utilizing historical

information in present working tasks: An analysis of the use of

analogies in team-based software effort estimation.

����
������% Børte, K., Ludvigsen, S., & Mørch, A. (submitted). The role of

concepts in expert work: Unpacking ‘the magic step’ in software

effort estimation.

����
���	�%�Co-author declaration

Part I

Extended Abstract

 1

1 Introduction
In today’s society, we have come to depend heavily on the use of computers and

computer systems. From the moment we wake up, turn off the alarm, prepare our

breakfast, commute to work, answer e-mails, shop groceries on our way home until

we order a summer vacation on the Internet, we have interacted with a number of

different software systems. We are even encouraged to use software systems when

we travel by public transport or hand in yearly our tax forms. Not all of the software

systems we use in our daily life are equally visible, but they are just as important. For

example, computers, and their requisite software, keep our food cool in the fridge

and make it possible for us to drive our car. It is not only we as individuals who

depend on software systems. The society as such depends heavily on them. For

instance, software systems control airplanes and air traffic, as well as monitor and

control oil platforms and public subway systems. The paradox is that even though

society depends on software systems for safety and utility, the information

technology (IT) industry has limited control in terms of predicting the amounts of

resources it takes to develop them. This lack of control increases costs and stresses

the development process, thus jeopardising the safety and utility that the software

system was meant to accommodate. However, total control is not possible to obtain.

This is because software development is concerned not merely with technical

aspects; it is also a social practice in which software professionals conduct the work.

This opens up for a need to understand social aspects in software development. In

research on computer-supported cooperative work, this has been an area of focus

(Dittrich, Randall, & Singer, 2009). However, there are important aspects of software

development, such as software effort estimation, in which the social aspects have yet

to be attended to.

In both newspapers and scientific articles we can read about “software project

failure”. These failures often refer to large budget overruns experienced by software

projects. In Norway, one of the recent software projects receiving this kind of

publicity in the media was the new electronic ticket system for public transport in

Extended abstract

2

Oslo. This system has exceeded the planned costs by millions of NOK and the

schedule for release of the system by years (Krogstad, 2010). One of the reasons for

large overruns in the software industry is believed to be inaccurate estimates of the

work effort it takes to develop software systems. The estimates of work effort that

are provided are often too optimistic when used as input for budgeting the costs of

developing a software system, which results in the planned costs being too low

compared to what is actually needed. Hence, large budget overruns are often a

consequence. Moreover, inaccurate estimates can also have other severe

consequences. Companies can lose contracts and new business opportunities because

of financial trouble. People can get fired from their jobs because of projects overruns

and the quality of the software can be compromised to meet the demand for delivery

on time, which again might result in unexpectedly high costs for maintaining the

system. Hence, it becomes clear that software development effort estimation has

significant consequences for individuals, organisations and society at large

(Grimstad, 2006). Understanding software effort estimation as a work practice will

therefore provide important knowledge for project management. This thesis seeks to

contribute in this respect by focusing on software effort estimation as collaborative

work.

In software development, effort estimates are used among other things for purposes

such as budgeting, planning and control (Boehm 2000). This implies that software

effort estimation rests on the assumption that it is possible to plan for the future and

that, if the plan is good and the actions are in accordance with the plan, software

projects will not experience the excessively large overruns, as is often the case today.

This assumption is in line with the planning model in cognitive science where a plan

is treated as a series of actions that have been outlined to achieve a particular goal

(Suchman, 2007). Plans are thereby perceived as determining action. Studies have

shown that this is a somewhat problematic assumption, because gaining control of

complex problem-solving processes such as planning is very difficult. Planning and

also control are not phenomena that can be reduced to processes that are 100%

controllable. Rather, Suchman (2007) has suggested that plans should be treated as

resources that people can use when talking and discussing about future possible

actions.

 Introduction

 3

The problems of planning and the societal consequences of inaccurate software effort

estimates have invoked research interest within the research field of software

engineering, because finding a solution to these problems would “improve the use of

scarce financial and human software development resources” (Jørgensen &

Grimstad, 2009, p. 383). Researchers have addressed issues concerning inaccurate

effort estimation of software development projects since the 1960s (Jørgensen &

Grimstad, 2009)1. Most of that research has been concerned with the use and

development of algorithmic and formal estimation models (Jørgensen & Shepperd,

2007). However, the most frequently used estimation method in the industry is called

judgement-based estimation (Bratthall, Arisholm, & Jørgensen, 2001; Heemstra &

Kusters, 1991; Hihn & Habib-Agahi, 1991; Jørgensen, 2004a). The term judgement-

based means that the quantification step, i.e., “the step where an understanding of the

software development estimation problem is translated into a quantitative measure of

the required effort” (Jørgensen, 2007, p. 450), is based on a judgemental process

rather than a deliberate mechanical calculation (Halkjelsvik & Jørgensen, submitted).

In the software industry, there is an increasing trend towards organising estimation

work in teams of software professionals (Haugen, 2007). Moreover, studies of group

estimation have also shown promising results regarding estimation accuracy when

estimating in teams (Moløkken-Østvold & Jørgensen, 2004; Moløkken-Østvold,

Haugen, & Benestad, 2008; Passing & Shepperd, 2003). Knowing that estimation

work is often carried out as teamwork in the industry, with software professionals

from different specialist areas in software development participating, there is a need

to investigate teamwork processes. The research reported in this thesis examines the

collaborative work in software effort estimation by analysing in depth the use of

three different estimation approaches.

Most studies of judgement-based estimation have had as the aim to improve the

accuracy of effort estimates in the industry. This is evident in the previous research

on both teamwork in judgement-based estimation and in the studies of individual

expert work in judgement-based estimation. After an inspection of the conducted

studies of teamwork in judgement-based estimation it seems that the amount of

1 See http://simula.no/BESTweb for an overview of all journal papers that have been
published on software cost and effort estimation.

Extended abstract

4

research that has been conducted is small in this area. Moreover, most of the studies

of teams are based on methodological individualism in which the individual expert is

taken as the unit of analysis. On the other hand, the research investigating individual

expert work in judgement-based estimation is quite extensive. Several research

methods have been used in this work, but the main method employed has been that

of small-scale experimental studies. Through a series of experiments, researchers

have revealed a number of different aspects that influence the decisions software

professionals make on an estimate, such as misleading or irrelevant information,

anchor information and wishful thinking (Halkjelsvik & Jørgensen, submitted). In

addition, research has also revealed important findings regarding the difficulties

software professionals have explaining the details as to how they arrive at an

estimate by analysing interviews, think-aloud protocols and video recordings

(Bratthall et al., 2001; Jørgensen, 2004a).

Previous research on judgement-based estimation has provided important

contributions and useful insight regarding the human judgement and decision making

that is involved in estimation work. Thus, the focus has therefore been on

understanding the cognitive steps when deciding on an estimate. The research

presented in this thesis focuses on collaborative work and not individuals. Studying

teams allows for a focus on collaborative work in software effort estimation;

however, the unit of analysis needs to be changed from the individual expert to the

social interaction. To do this, a theoretical perspective that account for the social is

needed.

1.1 Taking a sociocultural perspective on software effort estimation
The thesis employs a sociocultural perspective on software effort estimation work

because, when studying collaborative activities, an understanding of human activity

at different levels is needed (Valsiner & Van der Veer, 2000; Wells, 1999). The

sociocultural perspective rests on a set of basic premises that provides such an

understanding. It rests on an ontological assumption that humans are social in nature

and that human personality is developed through social experiences, which takes

place at the micro-genetic level, i.e., social interaction, through moment-to-moment

interaction by engaging in different types of activities and action (Billett, 2003; De

Graaf & Maier, 1994; Valsiner & Van der Veer, 2000). The epistemological

 Introduction

 5

assumptions rest on the idea of co-construction of knowledge, in which participants

in a practice construct knowledge together as part of an intellectual interdependency

(Valsiner, 1994; Valsiner & Van der Veer, 2000). This means that a sociocultural

perspective sees humans as inherently social and that we interact with each other and

with objects in our environment as ways of solving problems, sharing experiences,

and learning and developing our knowledge.

There are some core premises that follow the sociocultural perspective. The first

premise I will emphasise is the situated character of action. This implies that all

human action takes place in a cultural, institutional and historical context. This

means that human action is institutionally, historically and culturally situated.

Human action is thereby shaped by the different situational factors that are available

in a context. Moreover, the ways we solve problems are related to the context and the

different tools that are available (Suchman, 2007). The second premise I will

emphasise is that all human action is mediated (Wertsch, 1991). This implies that

individuals use different types of tools, both physical and intellectual, as part of

social practice. Artefacts and cultural tools have been developed to assist human

cognition and thinking. These artefacts and tools inhabit human knowledge and

experience, which has developed over time, thereby providing us with knowledge

and information, and, in effect, expanding our predisposed biological and intellectual

capabilities. The third core premise I would like to draw attention to is that

knowledge and understanding is achieved in social interaction. It is in social

interaction that knowledge is shared and constructed and where meaning making of

objects, events and actions occurs. Hence, it is in social interaction that people use

language and concepts, align their expertise and activate different types of resources

that constitute what they achieve in interaction. The sociocultural perspective

emphasise that we interact with, not only other people, but also cultural tools and

objects in our environment and that this is how knowledge comes into use (Greeno,

Collins, & Resnick, 1996).

When organised as teamwork, software effort estimation can be understood as a

collaborative activity in which software professionals work together to achieve a

predefined goal. It is also an institutional practice, which has developed over time as

part of the increasing demand amongst individuals and societies for more and better

Extended abstract

6

software systems. Further, the work is mostly conducted by software professionals

with specialist knowledge from the domain of software development. To grasp these

dimensions, a focus on social interaction is needed. Taking a sociocultural

perspective on this type of work opens up possibilities for investigating estimation

work at the level of social interaction. This makes it possible to understand the

collaborative activity of software effort estimation.

When following a sociocultural perspective, it is through social interaction that the

task of estimation gets solved, thus it is an interactional accomplishment among the

participants in the practice. A set of theoretical concepts is therefore needed to

explicate and understand these interactional achievements. In this thesis, I use the

concepts of distributed expertise, meaning making, meaning potential,

recontextualisation, collective remembering and tool-mediated actions to grasp these

interactional achievements that occur through the team’s collaborative work. This

makes it possible to attend to both the problem-solving aspect of estimation and the

planning aspect, as estimation work revolves around reasoning about a future event.

As an activity, planning can be described as a practice that is both discursive and

imaginative. This implies that it is through planning activities that reflections upon

what might occur in the future take place. In this thesis planning activities are

regarded as situated actions and as resources of action rather than controlling

structures (Suchman, 1987, 2003, 2007). Moreover, planning is dependent on the

moment-to-moment interactions that occur between different participants and

between the participants and the context in which the planning activity is conducted

(Suchman, 2007). Planning will therefore, in some sense, be vague because it is not

possible to specify the social interaction up front. In relation to estimation work, it is

thereby important to attend to both the actions that are projected in the future and

also their dependability in the estimation activity at large (Suchman, 2003).

1.2 Aims and research questions
The research presented in this thesis seeks to 1) explicate the teamwork processes of

software effort estimation and 2) to understand the estimation practice as more than

merely a decision about numbers of work hours, but as a collaborative planning

activity carried out through social interaction. Three different estimation approaches

 Introduction

 7

are investigated in depth, based on empirical data material gathered from two

separate cases: one quasi-experimental estimation study in the software industry and

one naturalistic case study of an ongoing large software development project. The

thesis employs interaction analysis (Derry et al., 2010; Jordan & Henderson, 1995)

as a means to investigate video recording of software professionals’ collaborative

work when estimating software development projects. In the analysis, both content

and what the participants achieve in the interaction are attended to by using a set of

analytical concepts as sensitising means.

The aim of this thesis is to make empirical, theoretical, and methodological

contributions to the research on software effort estimation. The empirical

contribution is twofold. Firstly, it contributes by providing an understanding of

software effort estimation as collaborative planning activity. Secondly, it contributes

to an explication of the complexity of software effort estimation work by proposing

three process models that demonstrate the following: 1) the interactional

accomplishments of software effort estimation; 2) how historical information

becomes recontextualised to be useful in new contexts; and 3) the mediating role of

cultural tools in software effort estimation. Thus, the models have an analytical

purpose.

The methodological contribution in this thesis is related to the introduction of a new

research method in the field of software effort estimation. By introducing interaction

analysis as a way of investigating video recordings of the collaborative work in

software effort estimation, it is possible to provide an understanding of the

collaborative processes that are involved. With an analytical focus on the social

interaction, the interactional achievements can thereby be explicated and thus an

understanding of what goes on in the estimation practice can be provided. Prior to

the work within this thesis, this approach to study judgement-based effort estimation

as a collaborative and interactional achievement has not been employed in estimation

research.

Extended abstract

8

The main research question that the research presented in this thesis seeks to answer

is:

− How can we understand software effort estimation as collaborative planning

activity?

To answer this main research question three sub-research questions have been

formed that have been addressed throughout three separate articles investigating

three different approaches to estimation work. The following sub-questions have

been formed:

i) What characterises software effort estimation as interactional

accomplishments?

ii) What kinds of challenges do estimation teams face when utilising

historical information in present working tasks?

iii) In what ways are estimation work mediated by cultural tools?

While the first sub-question runs through the three articles, it is especially dealt with

in Article I, in which the kind of work conducted by software professionals when

employing a bottom-up estimation approach is investigated. The next two sub-

research questions are especially addressed in Articles II and III. Article II focuses

on how teams of software professionals go about using historical information in

present estimation tasks, while employing a top-down estimation approach. Article

III focuses on how estimation work is mediated by different types of concepts and

how the software professionals invoke different types of knowledge when reasoning

about and reaching a decision on an effort estimate by investigating the planning

poker estimation approach.

1.3 Outline of the thesis
The thesis consists of two parts. The aim of Part I, the extended abstract, is to

account for the entirety of the research contribution. Part II consists of the three

articles that have been written as part of this project. This means that the thesis is

article based, and thus comprises three separate articles. Even though each represents

a separate research contribution the three articles are related in the sense that the

focus is on explicating the collaborative work of estimating a software development

project in teams of software professionals. Moreover, the articles follow one another

 Introduction

 9

by describing different parts of estimation work in depth. Together, the three articles

provide an understanding of estimation as collaborative planning activity taking

place in teams of software professionals as interactional achievements.

The extended abstract in Part I is outlined as follows: in Chapter 2 following this

introduction, a description is given of the phenomenon of software effort estimation

and some of the different approaches to estimation work. Thereafter, a review of

relevant research on judgement-based software effort estimation is presented. The

focus in this review is on previous research where estimating in teams has been

investigated. In addition, to provide an understanding of why software effort

estimation is a difficult problem-solving task, a short overview of some of the

relevant findings from studies of individual expert work in judgement-based effort

estimation that are regarded as important is presented. The main purpose of this

chapter is to provide an understanding of the phenomenon studied in this thesis as

well as give a background for arguing the need of researching the collaborative work

of software effort estimation.

In Chapter 3 the theoretical perspective employed in this thesis is presented. Here,

the sociocultural perspective will be described and important theoretical concepts

relevant for the study of estimation as collaborative planning activity will be

explicated. The main aim of this chapter is to provide a conceptual framework for

understanding estimation work as a social, collaborative planning activity that rests

on interactional achievements to be completed. Based on this background, an

analytical approach for studying the collaborative work in software effort estimation

will be introduced.

In Chapter 4, the data material from the two cases that have been investigated and

subject to analysis will be presented. This is followed by a description of interaction

analysis as the method that has been used as the means to investigate the data. The

analytical procedure of employing interaction analysis together with the intermediate

concepts that are used as sensitising means in the analysis are then described for the

three different articles that have been written as part of this thesis. Chapter 5 presents

a summary of the three different articles that constitute the main contributions in this

thesis, before the contributions of this work are discussed and concluded in Chapter

6.

Extended abstract

10

Part II of this thesis consists of the three articles that have been published or

submitted for publication, presented in the order in which they were written.

Article I: Børte, K., & Nerland, M. (2010). Software effort estimation as

collective accomplishment: An analysis of estimation work in a multi-

specialist team. Scandinavian Journal of Information Systems, 22(2),

p. 65–98

Article II: Børte, K. (submitted). Challenges when utilizing historical

information in present working tasks: An analysis of the use of

analogies in team-based software effort estimation.

Article III% Børte, K., Ludvigsen, S., & Mørch, A. (submitted). The role of
concepts in expert work: Unpacking ‘the magic step’ in software
effort estimation.

 11

2 The phenomenon studied: Software
effort estimation

In this chapter, I will first provide a description of the phenomenon of software effort

estimation and discuss the importance of attending to this in research. As part of this

description, some of the different approaches and techniques that can be employed

when conducting this type of work will be outlined. Thereafter, a review of related

research within judgement-based effort estimation will be presented and discussed.

As will be shown, a large part of this research has focused on the individual expert as

the unit of analysis and only a few studies have looked at teams. I will therefore

include a few but important contributions that have focused on the individual expert,

in addition to studies that have focused on teams. The aim of this review is to

provide an understanding of the research field on judgement-based software effort

estimation and argue the need for a focus on the social aspect in software effort

estimation work. To obtain this I need to include research contributions from both

strands of research.

2.1 What is software effort estimation and why is its study
important?

In the introduction, I stated that software systems permeate our daily lives and that

society as such depends on software systems for safety and utility. For instance, for

safe and efficient operation, airports, oil platforms and collective transportation all

rely on software systems. This means that the consequences of failure in one of these

systems can be severe. In 2008, the Norwegian information and communications

technology (ICT) sector as a whole had annual revenues of 241 billion NOK (SSB,

2008). A large part of this amount is connected to software development. Further, at

the time of writing, there are several huge software development projects in progress

in Norway. FLEXUS, which is a project for developing an electronic ticket system

for public transportation in Oslo, has, over the last 20 years, cost more than 600

MNOK (Krogstad, 2010). The Norwegian Public Service Pension Fund (SPK) has

started a project called PERFORM, the aim of which is to adapt to the new pension

Extended abstract

12

regulations and to replace existing technologies with a new solution. This project has

a cost frame of 888 MNOK (St.prp. nr. 1 [2008-2009]). The Norwegian Labour and

Welfare Service (NAV) is going to develop a new software system, which is the

largest public software project in Norway. At the time of writing, 1200 MNOK have

been budgeted for the first three years and it has a cost frame of 1000 MNOK2 for

the ICT parts. These examples show that the amount of money that is spent or

planned to be spent on software development is large. Also, large cost overruns have

been reported in relation to software projects. For example, the Tress-90 project,

which is known as the largest IT-project failure in Norway, was cancelled after three

years due to substantial delay and extreme cost overruns. A project revision showed

that while the initial estimate of the project was 383 MNOK, the cost that had been

spent after three years was 463,1 MNOK and to complete the project, it was

estimated that an additional 430 MNOK was needed3. In more recent times, the

above-mentioned FLEXUS project has received publicity due to delays and cost

overruns. This project has exceeded the planned costs by 110 MNOK and the

schedule for release by more than four years (Krogstad, 2010). These two examples

illustrate the limited control the IT-industry has when it comes to predicting the

planned costs for developing software systems, as the reported budget overruns are

large.

Developing a software system is a complex task, which comprises different software

processes such as specification, design, implementation, validation and evolution. It

is therefore challenging to create predictable software processes so that the software

project can meet the delivery on time, on budget and in a cost-effective manner

(Sommerville, 2007). As software development is dealing with future-oriented

aspects of a system that is yet to be developed, planning is essential to control and

monitor these software processes. In this respect, the estimation of work effort is a

core task, because it is used for purposes such as budgeting, trade-off and risk

analysis, project planning, control and software improvement investment analysis

(Boehm, Abts, & Chulani, 2000). In software development projects, the most

important cost driver is work effort. The reason for this is because, while the material

2 http://www.steria.no/id/11003784.0 retrieved 11.01.2011
3 http://www.stortinget.no/no/Saker-og-
publikasjoner/Publikasjoner/Innstillinger/Stortinget/1994-1995/inns-199495-210/7/ retrieved
14.04.2011

 The phenomenon studied: Software effort estimation

 13

costs of software development are low, the number of work hours software

professionals spend on developing a software system is large.

When carrying out the work of estimating a software development project, software

professionals engage in a particular institutionalised practice with certain rules and

constraints. In the industry, project managers seldom carry out estimation work

alone. Instead, they depend on input from specialists in different areas of software

development such as programmers, technical architects and database specialists in

order to provide an effort estimate. This implies that there is a need for different

kinds of specialist knowledge to conduct the estimation work. Further, it is an

increasing trend in the industry to organise estimation work in teams of software

professionals (Haugen, 2007). The estimation work is then organised in meetings

where a particular estimation method to use has been agreed upon. When working in

teams, the interactional and communicative processes become significant because of

the collaborative dimension that comes into play.

An estimate can be defined as a “prediction of how long a project will take and how

much it will cost” (McConnell, 2006, p. 3). In this thesis an effort estimate is

understood as the most likely number of work hours necessary to complete a

software development project as assessed by the managers and developers

responsible for delivery. For more about the different interpretations of the term

estimate, see Grimstad, Jørgensen & Moløkken-Østvold (2006).

Estimating the effort of a software development project is difficult and far from a

straightforward work process. The reason for this is twofold. First of all, estimation

is a future-oriented task that is concerned with making predictions about a system

that is yet to be developed. This future-oriented aspect can be perceived as the most

challenging part of software estimation work since predictions are made on grounds

of uncertainty. Moreover, software effort estimation rests on the assumption that it is

possible to plan for the future and thereby control the environment to a certain

extent. Estimation work can therefore be conceived as a planning activity due to this

future-oriented aspect.

Secondly, a description of the kind of software system that is to be developed is

needed for conducting the estimation work. In the work process, software

Extended abstract

14

professionals have documents called requirement specifications, which often are

structured documents describing the technical details of the system and how the

system should function (Sommerville, 2007). Usually the requirement specification

constitutes the main source of information for the estimation work. In spite of this,

no official standards exists for exactly what a requirement specification should

include or how it should look; hence, they come in all sizes and shapes of varying

quality. Due to this variation in quality, it constitutes a challenge for software

professionals to interpret this document and understand what kind of system that is

requested is being developed and thus estimated. Moreover, when the estimation

work is conducted in teams, achieving a shared understanding of the requirement

specification is crucial.

A typical estimation situation usually includes a customer and a software supplier

and may play out as follows: What happens first with regards to estimation is that a

customer has a request about how much the development of a software system will

cost and how much time it will take. The software system has been described, to the

best of the customer’s ability, in a requirement specification. This requirement

specification is then handed over to the software supplier so that they can provide an

estimate of the costs of developing the system. Usually, several software

professionals come together to discuss and make sense of the requirement

specification. In this process, the software professionals need to come to an

understanding of, for example, the technological aspects of the system and the need

for databases, among other things, so as to understand what kind of system is being

requested for development and thus needs to be estimated. This can be a time-

consuming activity, as iterations with the customer might be needed to clear up

ambiguities in the requirement specification. Further, making sense of the

requirement specification is crucial for understanding the kind of system that is

described. When such an understanding is achieved and discussed, an initial estimate

of the costs to develop the requested system is provided and presented to the

customer. In software development, effort estimates are provided for quite different

purposes such as bidding and budgeting. Thus, an initial estimate is just the first time

the software system is being estimated. This means that estimation work is not a one-

time engagement. Often there is a need to go back and re-estimate as the software

project moves and, for example, more accurate estimates are required for budgeting

 The phenomenon studied: Software effort estimation

 15

purposes. Therefore, the work of estimating the effort of a software development

project is a complex task that engages several software professionals multiple times

as well as at different times during the duration of the software development project.

2.2 Different approaches to conduct estimation work
There are a number of different estimation methods and approaches that exist to

achieve an effort estimate of a software system. These range from algorithmic

models to what are known as human judgement-based or expert judgement

estimations. One classification of different ways of achieving an estimate can be

found in Boehm (1984). The research presented in this thesis focuses on the method

that is known as judgement-based estimation. More specifically, the focus is on the

collaborative activity of achieving an effort estimate in teams of software

professionals. Even though judgement-based estimation relies on judgemental

processes as opposed to deliberate mechanical calculation (Halkjelsvik & Jørgensen,

submitted), the distinction between formal estimation models and judgement-based

estimation is not clear cut because formal estimation models also rely on human

judgement as input to the model.

Moreover, judgement-based effort estimation is not one unified method to perform

estimation work. It consists of judgement-based processes that can be conducted

based on pure intuition or be more or less structured and supported by historical data.

Over the years, numerous documents, processes and guidelines have been developed

to support judgement-based estimation.

When using a judgement based estimation method, there are several ways of

approaching the estimation work. In this thesis, I have chosen to explicate the two

approaches known as the bottom-up approach and the top-down approach, because

these are the most relevant ones for the in-depth studies that have been conducted in

Articles I and II. In addition, techniques for estimating in teams are presented in

which the planning poker technique is emphasised, as this is the technique that is

studied in depth in Article III. The planning poker technique can also be perceived as

a variant of the bottom-up approach, though specifically designed for teams.

Extended abstract

16

2.2.1 Describing the bottom-up and the top-down approaches

When following a bottom-up approach, the project work is usually divided into

different project activities or components before the effort of each activity or

component is estimated. The total effort estimate of the system development is then

the sum of each effort estimate of the different project activities, with a possible

addition of a buffer to cover unexpected events (Heemstra, 1992; Sommerville,

2007). A work breakdown structure can be useful to assist in the process of breaking

the project down into the different project activities (Tausworthe, 1980). When

following a bottom-up approach, expert knowledge on how to develop a software

system is necessary because the details of the system need to be investigated.

When following a top-down approach, on the other hand, the total effort of a

software project is estimated without breaking the system down into different project

parts or activities. Instead, the estimators look for similar previously completed

software projects to compare the current project with, and adjust for differences

before a total effort estimate is agreed upon. Thereafter, the total estimate is

distributed over the different project activities (Heemstra, 1992). The top-down

approach can be employed in various ways, depending on what is used as a point of

departure for finding similarities between completed software projects. This could,

for example, be an amount of resources such as number of people or previously

completed projects that are similar in size or complexity. The common aspect among

the different ways of employing a top-down approach is that the system level is what

is taken as the point of departure and not the different components (Heemstra, 1992).

Arguments in favour of a top-down approach state that it is more efficient, i.e., that it

is less time consuming and thereby cheaper to apply than a bottom-up approach

(Boehm, 1984). Other researchers have stated that it is an approach that is possible to

apply without much knowledge of how to build software (Jørgensen, 2004b;

Moløkken-Østvold & Jørgensen, 2005). Also, that it may reduce the bias towards

over-optimism in estimation, because it makes use of historical data from previous

projects to a greater extent (Moløkken-Østvold & Jørgensen, 2005). However,

Hughes point out that even if an independent group could produce a reasonable top-

down estimate, “subsequent detailed planning would still require low level estimates

 The phenomenon studied: Software effort estimation

 17

for individual activities which need the participation of people with more detailed

knowledge of the system to be implemented” (Hughes, 1996, p. 70).

Both of these approaches have their advantages and disadvantages. Researchers have

suggested that these are complementary in the sense that what are recognised as

disadvantages of the bottom-up approach are recognised as advantages of the top-

down approach and the other way around (Boehm, 1984; Hughes, 1996;

Sommerville, 2007).

2.2.2 Describing techniques for estimating in teams

The work of estimating a software project, whether a top-down or a bottom-up

approach is employed, is usually not a one-man job. Estimating in teams, also called

group estimation, can be done in various ways and a range of different techniques

has been developed to structure this kind of work. In the following, some of these

techniques will be described. The techniques that I have chosen to include here are

judgement-based estimation methods and can be categorised as ways of combining

individual estimates where teamwork is facilitated to a greater or lesser extent. The

process of combining decisions from several individuals can be done in a number of

different ways. It can be open or anonymous, structured or unstructured,

mechanically/statistically or it can be done through discussions. What distinguishes

these different ways of combining individual estimates is how and to what degree

teamwork is facilitated in the process.

One technique is called the Delphi technique. This technique was originally

developed by the RAND GROUP in the 1950s for the US Air Force, but has been

applied over a range of fields such as the health care industry, information systems,

education, transportation and engineering (Rowe & Wright, 1999). Rowe and Wright

(1999) summarised the key characteristics that are essential for the Delphi technique

as consisting of anonymity, iteration, controlled feedback and statistical aggregation

of group response. The technique uses questionnaires as a means to express the

different software professionals’ meanings and judgements anonymously. Thereafter,

iterations are performed where the different participants are given opportunities to

change their opinions. Before these iterations are conducted, the participants receive

controlled feedback about their anonymous team members’ opinions. The feedback

often takes the form of a statistical summary of the response of the whole group as

Extended abstract

18

mean or median values: however, information and arguments about values that

deviate can also be provided. After a number of iterations regarding the answers on

the questionnaires, a group decision is made by using the statistical average of the

participants in the final round (Rowe & Wright, 1999). The Delphi technique as

summarised above can be categorised as anonymous, where the combination of

individual estimates is conducted by statistical methods. Therefore teamwork as such

is not facilitated.

A modified version of the Delphi technique is called Wideband Delphi (Boehm,

1981). What differentiates this technique from the original Delphi technique is that

Wideband Delphi facilitates team discussions and allows for the participants to meet

and discuss issues of relevance both before and during the iterations of estimates.

Boehm summarises the wideband Delphi technique in six different steps: “1.

Coordinator presents each expert with a specification and an estimation form. 2.

Coordinator calls a group meeting in which the experts discuss estimation issues with

the coordinator and each other. 3. Experts fill out forms anonymously. 4. Coordinator

prepares and distributes a summary of the estimation on an iteration form. 5.

Coordinator calls a group meeting, specifically focusing on having the experts

discuss points where their estimates varied widely. 6. Experts fill out forms, again

anonymously, and steps 4–6 are iterated for as many rounds as appropriate” (Boehm,

1981, p. 335). The Wideband Delphi technique opens for team discussions

concerning issues where the estimates vary to a large extent. However the

quantification step is completed and combined anonymously.

Another technique that facilitates group discussion even more than the wideband

Delphi is what is named unstructured group discussion. Here, the software

professionals first provide an individual estimate before a team of software

professionals is formed that discusses the different estimates and through these

discussions agree on a total estimate for the task (Moløkken-Østvold & Jørgensen,

2004; Passing & Shepperd, 2003). This technique can be characterised as open and

unstructured.

There are also ways of achieving an estimate in teams that are based on carrying out

all of the estimation work in teams. One method that has been developed as

judgement-based group estimation is what Taff and colleagues called “estimeetings”

 The phenomenon studied: Software effort estimation

 19

(Taff, Borchering, & Hudgins, 1991). This approach was developed and reported on

as a way of achieving an estimate in the early phases of large software projects. The

estimeetings were organised as standardised working meetings, which experienced

software professionals with different areas of specialist competence attended on a

regular basis. How these differ from a regular meeting is the methodology that is

used to ensure that the estimeetings are “productive, successful and produce a

consensus estimate” (Taff et al., 1991, p. 843). The idea behind estimeetings is to

achieve an accurate estimate by bringing specific elements together. The different

elements mentioned are a group of estimators, a high-level requirement specification,

the responsible engineers who have the authority to change the requirements in the

meetings, the design proposal together with the engineers who created it and the

engineers who are specialists in the area of the proposed feature that is going to be

estimated. This method is quite complex and also demanding of resources, as it

requires attendance in meetings over a period of several weeks.

A fairly new technique that proposes a semi-structured approach when estimating in

teams is called planning poker (Grenning, 2002). This technique is investigated in

depth in Article III in this thesis. In planning poker, the participants are developers.

This includes programmers, testers, database engineers, user interaction designers,

etc. The number of participants typically does not exceed ten people (Cohn, 2006). In

planning poker, the team members are estimating what is called user stories. A user

story is a form of requirement that is formulated as a one-sentence statement about

what the user should do or wants to achieve in a particular situation. There is no

mandatory way to formulate such user stories but it can follow the following format:

“As a <type of user> I want <capability> so that <business value>” (Cohn, 2006, p.

26).

What is characteristic of planning poker is the special deck of cards that is used to

achieve effort estimates. The different numbers on the cards are called story points,

which are measures to express the overall size of a particular feature (Cohn, 2006)

and thus they represent the amount of work that is needed on a specific task. Story

points are relative, and in order to use them in a meaningful way, a baseline or a

reference task will have been estimated, which the participants use as a reference for

estimating new tasks in their estimation work. This baseline reference task can for

Extended abstract

20

example be chosen by finding the smallest user story the team will work on, and

giving it one story point, or choosing what seems to be a medium user story, which is

given a value that would be in the middle of the range that is expected to be used

(Cohn, 2006). All the other user stories are then estimated by comparing it to the first

that was estimated as reference. The story points have a relative value and a card

with two story points represents twice the amount of work of a card that has one

story point written on it. In the beginning of a planning poker session, each team

member is given a deck of cards where each card has a number written on it that is

used as the valid estimates. A deck of cards can for example include the numbers: 0,

1, 2, 3, 5, 8, 13, 20, 40: see Figure 1.

Figure 1 Illustration of a planning poker deck of cards.

A planning poker session often starts with a presentation of the user story that is

requested for estimation. The user story is often explained by a customer or by an

analyst from the estimation team. After the explanation, the team discusses the user

story and the work that is needed to implement it. This discussion continues until the

team feels that they share an understanding of the information that is needed to

estimate the effort. Next, the team members individually estimate the user story by

choosing a card from the card deck they have been given that represents their

estimate. The cards from each team member are kept a secret until everyone has

 The phenomenon studied: Software effort estimation

 21

chosen a card. Then, by flipping the card around and placing it on the table, the

numbers on the cards are shown to the rest of the group simultaneously. The team

members that have provided the lowest and the highest estimate are then asked to

justify their estimate to the group. After the justifications are provided, the team

continues the discussion a few more minutes before a new round of planning poker is

played, in which the team members re-estimate by selecting a new card. Again, this

is kept private until all the team members have selected a card and it is time to flip

the cards and show them to everyone simultaneously again. If the team did not reach

a consensus estimate, then the process is repeated again until a consensus is achieved

(Cohn, 2006; Grenning, 2002). Figure 2 shows the planning poker instructions, as

they are included in the planning poker deck of cards.

Figure 2 Instructions for planning poker.

What is special about planning poker is the way in which it is organised that ensures

all the team members’ participation, regardless of position, role or experience. In

addition, planning poker as a technique combines the opinions from several software

professionals representing different areas of expertise in software development.

Hence, this technique can be described as being open and facilitating team discussion

to a large extent.

Extended abstract

22

Above, I have described what kind of work software effort estimation is and argued

for why this is an important work practice to investigate. In addition, I have outlined

some of the different approaches to estimation work and some of the techniques that

describe how estimation works can be organised as teamwork. This description

provides a background for understanding the phenomenon of software effort

estimation, which is investigated in this thesis. In the following, I present a review of

the research that has been conducted within judgement-based effort estimation. The

aim of this review is to provide an understanding of the research field of judgement-

based software effort estimation. To do this, I need to include studies of teamwork in

estimation as well as a few significant studies that focus on the software professional

conducting estimation work as an individual expert.

2.3 Review of research on judgement-based software effort
estimation

A review of studies of software development projects shows that 70% to 80% of

such projects overrun their estimates and spend on average 30% to 40% more effort

than estimated (Moløkken-Østvold & Jørgensen, 2003). This indicates that providing

realistic effort estimates of software development projects is a challenge.

Judgement-based software effort estimation has existed as an estimation method for

a long time and is the most applied estimation method in the industry (Bratthall et al.,

2001; Heemstra & Kusters, 1991; Hihn & Habib-Agahi, 1991; Jørgensen, 2004a).

However, this estimation method did not receive much attention in the research field

before 1990. A systematic review of software cost studies published in journals

showed that only three journal papers focusing on judgement-based effort estimation

had been published before 1989. Further, 22 journal papers were published between

1990–99 on judgement-based estimation and as many as 21 journal papers were

published in the period 2000–04 (Jørgensen & Shepperd, 2007). This systematic

review has resulted in a database containing an overview of all the papers on

software cost estimation. The database is called BEST and can be found here:

http://home.simula.no/BESTweb/.

The aim of developing this database has been to provide researchers with an

overview of research papers addressing the issue of software cost estimation. Hence,

the selection of papers included in this review is based on searches in this database.

 The phenomenon studied: Software effort estimation

 23

As the main selection criteria, I have used judgement-based estimation, categorised

as expert estimation in the database. In addition, I have searched the database for

studies on teamwork and group estimation. The search in the BEST database showed

that the number of studies focusing on teamwork in judgement-based software effort

estimation was small. Out of the 64 publications focusing on expert judgement

estimation as method, only eight studies focused on teamwork or group estimation

techniques.4 In the following review, all eight studies are presented and discussed.

2.3.1 Studies of teamwork in judgement-based effort estimation

One of the first studies reporting on group estimation was conducted by Taff and

colleagues (Taff et al., 1991). They both developed and reported on the previously

described method called “estimeetings”. Accordingly, their study can be

characterised as exploratory. The method of “estimeetings” was used to estimate

three different releases of a large software-intensive project. The results that were

reported highlighted several benefits from employing the estimeeting technique. The

accuracy of the total effort estimates provided for the different releases tracked well

with the actual cost of the releases. Estimeetings used in practice facilitates

collaborative work between people with different backgrounds and from different

organisations. Thus, knowledge about project-wide issues is shared. Taff and

colleagues highlight 12 different benefits when employing estimeetings. The first

five mentioned benefits as follows: 1) better estimates; 2) earlier and closer

subsystem involvement because owners of subsystems participate in the work

meeting; 3) fostering of teamwork between different organisations and thus early

direct relationships are facilitated; 4) early expert high-level designs for the next

release is a positive by-product; and 5) problems are easier to detect because more

people can deliberate on the different issues. Apart from this initial study where the

method was developed, I found no other studies of how the approach is used.

A couple of studies have investigated the effect group discussions have on the

accuracy of effort estimates. Passing and Shepperd (2003) reported on a study

investigating how checklists and group discussion could help estimators in

improving the accuracy of their estimates. They conducted a study with 13 software

engineering students as participants. In this study, the participants were asked to

4 Search performed 13.12.2010

Extended abstract

24

estimate the size and the effort of a one-week software engineering project they were

supposed to complete as a part of their course. The data material collected consisted

of data from the forms the participants filled out and transcripts and protocols from

the group discussions. The study consisted of three rounds of estimation. First, the

participants estimated the project size and effort using their preferred estimation

method. Next, the participants were presented with estimation guidelines and then

given a chance to update their initial estimate. However, this time the form that they

should register their estimate on included a checklist that listed important items, one

for size and one for effort. Thirdly, the participants were introduced to group

estimation techniques, especially the Delphi technique. Then, the groups were given

statistics of the previous two rounds of estimation available for input and discussed

the estimation task in separate rooms. After the discussion session, the participants

individually estimated the project once again using the same form as in the second

round. The results that were reported related to group discussions showed that group

discussions improved the accuracy of the size estimate. In addition group discussions

improved the participants’ confidence in their own estimates.

Another study that also investigated the effects of group discussion was conducted

by Moløkken and Jørgensen (2004). Individual estimates tend to be over-optimistic

and therefore group discussion was investigated as a way of combining individual

estimates to see if it would reduce the bias towards over-optimism. Hence, an

experiment was conducted with 20 software professionals as participants to

investigate this issue. In the experiment, the participants first provided individual

estimates of a software project that was going to be developed. After this session, the

participants formed teams of four consisting of one representative from each of the

different company roles (engagement manager, project manager, user

analyst/designer and technical programmer). The task of each estimation group was

to discuss and agree on an estimate of the same project that they had estimated as an

individual task. The main result from the experiment was that after the group

discussions, the estimates that were provided were less optimistic in four out of the

five groups. Further, in the group discussion the participants were able to identify

more of the tasks required to complete the software project than what each of the

team members were able to do on their own.

 The phenomenon studied: Software effort estimation

 25

McDonald (2005) has reported on a study that compared the impact of a team’s

experience on the team’s estimation of a project’s costs. The participants were

software professionals who attended a course in software project management and

received a task where they should develop a detailed project plan for a software

development project and estimate the project’s costs. Participants were placed in

groups of 6–8 students working together on the project plan. A questionnaire was

used to gather data about the participants’ experience prior to assigning them to the

different groups. This was done to ensure a diversity of the technical knowledge that

is typically needed for planning this kind of software development project. Further,

the different participants’ years of experience in relevant areas were gathered.

Statistical analyses were performed and the results showed that there was a relation

between the estimated costs of the project and the average team experience. The

results also showed a relation between the estimated costs and the fact that a team

member had experience from a similar project. Thus, experience was shown to

correlate with higher and more realistic software cost estimates.

Haugen (2006) compared the use of planning poker with unstructured group

estimation to investigate whether introducing planning poker improved the

estimation performance. In this empirical study, data were collected from four

subsequent releases of a software development project. In the release planning,

unstructured group estimation was the common way of estimating. Data were

gathered from the first two releases using unstructured group estimation. Then, an

intervention was performed where planning poker was introduced as a technique for

estimating the next two releases. The intention of introducing planning poker was to

make the estimation process more efficient and also to involve all the team members

in the estimation work. Data were then collected from two releases that used

planning poker as estimation technique. The results of the study showed that by

using planning poker, estimates on familiar tasks were more accurate than using

unstructured group discussion. However, for unfamiliar tasks the use of planning

poker increased the inaccuracy of estimates.

The second study that investigated planning poker was conducted by Moløkken-

Østvold et al. (2008). The purpose of this study was to explore the group processes

of using planning poker and to compare the accuracy of estimates provided by

Extended abstract

26

planning poker and estimates achieved individually. Data from an experiment and

from interviews with the participants conducted after the experiment were gathered.

The estimation method that was normally used in the company was based on

individual estimates of the team member in charge of that task. In the experiment

half of the specific tasks that were estimated for an upcoming sprint were re-

estimated by a version of the planning poker technique. The existing way of

estimating in the company, individual estimates, constituted the control group in the

study. The results showed that the tasks that were estimated by using planning poker

were less optimistic than the results from a statistical combination of the individual

estimates. In addition, the tasks that were estimated with planning poker were more

accurate than the same tasks estimated individually and the statistically combined

ones. Moreover, the results regarding the group processes showed that the planning

poker technique influenced the work by making it easier to identify sub tasks and

challenges.

Also, more explorative experimental studies of estimating in teams have been

conducted. In 2004, Jørgensen reported on a large industrial study in which seven

teams of software professionals estimated two different real software projects

employing two different estimation approaches (Jørgensen, 2004b). The data that

were collected from this study consisted of video recordings of the different teams’

discussions, documentation, questionnaires and measurement. The analytic schema

that was used was a content analysis, in which the videotaped discussions were

categorised according to the different topics that were discussed before a

quantification of the time spent on the different discussion categories was made. In

this way, the estimation process of employing both a bottom-up approach and a top-

down approach was documented. The typical top-down estimation process was

reported to be a repeated sequence of searching for similar completed projects and

discussions of issues concerned with understanding the project or the requirement

specification. In between, there were instances of discussion related to how the

teams’ own estimation work should be conducted. When this sequence resulted in a

useful project analogy, the total estimate of the project was provided. Regarding the

estimation process of the bottom-up approach, this was divided into two types. One

was named “sequence”, where the different activity estimates were provided in

roughly the same sequence in which the software development project would be

 The phenomenon studied: Software effort estimation

 27

executed. The second estimation process used when employing the bottom-up

approach was termed “inside out”. Here, the activities related to programming, i.e.,

the inside of the project was estimated first before the other activities were estimated

as proportions of this. Further, the content analysis revealed that the teams had

difficulties in finding similar completed projects to use as comparison when

employing the top-down approach and that a considerable amount of time was spent

on understanding the requirement specification in the bottom-up approach. The

results further showed that, on average the bottom-up approach gave the most

accurate effort estimates.

The team discussions from the large industrial study described above have also been

the subject for subsequent analysis. Here, the aim was to understand how software

professionals arrive at an estimate understood as the step from understanding the

problem to quantifying the effort of solving the problem (Jørgensen, 2005). The

result from the analysis of the team discussions showed that software professionals

did not explicitly explain how they reached a quantification of an estimate. Instead,

the negotiations about whether to increase or decrease estimates were in most part

based on references to feelings and not rational details of how the decision was

made. The explanations provided by the software professionals were all concerned

with detailed explications of the steps preceding the quantification. This finding was

also supported by a second data set reported in the same article. Thus, the step from

understanding what the problem is all about to quantifying the number of work hours

to solve the problem was termed the “magic step” in judgement-based software effort

estimation because software professionals could not make a rational account of how

they decided upon an estimate.

These different studies of teamwork in software effort estimation show that the most-

used research approach appears to be experimental studies, in which different aspects

of teamwork or team discussions have been tested out to see if they might yield more

realistic estimates. Further, the reported results seem to be promising in this respect.

However, providing an overview of the research on teamwork in software effort

estimation is not adequate to obtain a solid understanding of the research field of

judgement-based software effort estimation. I the following I will therefore explicate

Extended abstract

28

some of the significant and relevant studies from the research that have focused on

the individual expert in judgement-based software effort estimation.

2.3.2 Studies of individual expert work in judgement-based effort estimation

At Simula Research Laboratory, a research group has focused on investigating

judgement-based software effort estimation in depth. This research group, called

BEST (Better Estimation of Software Tasks), has focused on conducting small-scale

experiments with roots in the cognitive tradition in order to understand the cognitive

steps involved when software professionals decide upon an estimate. Findings from

these experimental studies show that software professionals, when deciding upon an

estimate, are influenced by different factors such as anchor information (Jørgensen &

Carelius, 2004), request format (Jørgensen, 2006; Jørgensen & Carelius, 2004;

Jørgensen & Halkjelsvik, 2008) and wishful thinking (Jørgensen & Grimstad, 2008;

Jørgensen & Sjøberg, 2001). Further, the studies have shown that software

professionals are over-confident regarding their own estimates (Jørgensen, Teigen, &

Moløkken-Østvold, 2004) and that they are inconsistent (Grimstad & Jørgensen,

2007b). Some of the interesting findings reported by this research group are related

to irrelevant and misleading information in the requirement specification and

different ways of analysing the requirement specification for estimation purposes.

These studies are of particular relevance to the research conducted as part of this

thesis

As mentioned earlier, in estimation work, the requirement specification is considered

to be the main source of information. This applies regardless of how the estimation

work is organised. It is therefore important for software professionals to interpret this

document and come to an understanding of what the described software system is all

about. Jørgensen (2004b) briefly reported on this issue in his large estimation study

of estimation teams. In the study, it was reported that a significant amount of time

(49% in the bottom-up estimation approach) was spent discussing issues related to

understanding the requirement specification or the project context. This implies that

ways of formulating requirement specifications might have a significant impact on

software professionals’ understanding of the system that is going to be estimated, as

almost half the time was spent on discussing such issues.

 The phenomenon studied: Software effort estimation

 29

In 2007 and 2008, Jørgensen and Grimstad reported on a series of experiments that

looked into different ways of formulating and analysing such requirements to

investigate if irrelevant or misleading information have an impact on the effort

estimates provided (Grimstad & Jørgensen, 2007a; Jørgensen & Grimstad, 2008).

The first two separate experiments investigated the impact of irrelevant information

by letting the participants estimate four different versions of the same requirement

specification. Estimation-irrelevant information had then been added in two of the

versions of the requirement specification, one that was high level and one that was

detailed. In addition, a question was added in half of the estimation tasks in the

second experiment. In that case, the participants were asked to assess the relevance

of the different parts of the requirement specification for their effort estimates. The

results from the statistical analyses showed that participants who received the

requirement specifications in which irrelevant information had been added, estimated

on average, a higher number of work-hours than the participants estimating the

requirement specifications without irrelevant information. Further, the results from

both experiments showed that the most likely effort increased when software

professionals estimated the requirement specification that contained extra

information that was considered as irrelevant for estimation work (Grimstad &

Jørgensen, 2007a).

Jørgensen and Grimstad (2008) also reported on three different experiments in which

they investigated how misleading information could affect the decisions on effort

estimates. The reason for this focus is that when estimating software projects in the

industry, the estimators often have knowledge of, for example, the clients’ cost

expectations for the project or information about future business opportunities.

The first two experiments on misleading information investigated separately two

specific circumstances: how knowledge of a desired outcome could affect the

decision on an effort estimate and how information about future business

opportunities could affect the estimates provided. The results reported from the first

experiment indicated that the information given about the client’s expectations

affected the estimates provided by the estimators quite strongly. The group that

received information that the clients expected effort was for 800 work hours,

estimated on average 300 work hours. The other groups that received information on

Extended abstract

30

expected effort at 40 and 4 work hours, estimated on average 100 and 60 work hours

respectively. The control group, which did not receive any information regarding the

client’s expectations, estimated on average 160 work hours on the task. The result

from the second experiment showed that the group that received information that was

believed to induce low effort estimates, estimated a lower number of work hours than

the control group, 40 and 100 work hours respectively on average (median).

In the third experiment that was designed to study the effect of misleading

information, ways of formulating the requirement specification were investigated.

All the participants received the same specification for a programming task.

However, the words that were used to describe some of the requirements varied

slightly. One specification was written with words that are typically associated with

small and simple tasks, another included words that usually are associated with large

and complex development tasks, and a third was formulated with neutral wording.

The results revealed that the way requirements are formulated strongly affected the

estimates provided by the different groups. The specification with words associated

with small and simple tasks was estimated to an average of 40 work hours, the

specification with words associated with large and complex tasks was estimated to an

average of 80 work hours while the neutral specification was estimated to an average

of 50 work hours.

After discovering that software professionals’ decisions on estimates were affected

by the type of information available when conducting the estimation work, ways of

reducing this impact were investigated. In an experiment, different techniques of

analysing the requirement specification were tested to see if they could illuminate the

impact of irrelevant information. The two techniques that were tested were to

highlight the information that was relevant with a marker pen while reading the

specification, and to use a black pen and strike through the irrelevant information in

the specification before reading it again and then estimate it. The results from this

study indicate that there was no effect from highlighting the relevant information

when analysing the requirement. The group who stroked through the irrelevant

information with a black pen indicated a positive effect, but did not come close to

removing the impact.

 The phenomenon studied: Software effort estimation

 31

These findings highlight important aspects regarding the use of the requirement

specification in estimation work. Further, they show that both ways of formulating

requirement specification and providing information—for example, about future

opportunities—can have an impact on the effort estimate of a particular task or

requirement. Through conducting the above-described experiments, it was possible

to detect and establish this connection (Grimstad & Jørgensen, 2007a; Jørgensen &

Grimstad, 2008). However, if one wants to understand more about the processes

involved, i.e., how the requirement specification influences, guides and frames the

estimation work, one needs to look at the communication in order to understand what

is happening in the work process. My interpretation of these findings is that it is

important to investigate the sense-making processes that are at stake when software

professionals interpret a requirement specification, if aiming at understanding

estimation work. To do this, a closer examination of teams and particularly the

communicative work that software professionals do when estimating a software

project needs to be opened up and investigated in depth. Thus, the social aspects of

estimation work needs to be attended to in research on judgement-based software

effort estimation.

2.3.3 Studies of social aspects in software development

Studies focusing on the social aspects in software development have been addressed

broadly in a number of information systems (IS) journals and in related areas such as

computer-supported cooperative work (CSCW) and agile development. In an opinion

paper discussing the ranking of top IS journals the authors list 11 different IS

journals focusing on the social study of ICT (Willcocks, Whitley, & Avgerou, 2008).

To illustrate the broad use of theories and methods that have been used to investigate

software development, special issues have been published; for example, the

Scandinavian Journal of information Systems has a special issue focusing on

ethnography in IS research (Pors, Henriksen, Winthereik, & Berg, 2002). Also in the

journal Information Technology and People, a special issue on using social theory to

make sense of information systems was published in 2009, volume 22 (1). Other

journals in related areas have also published special issues focusing on social

aspects; for instance, the journal Computer Supported Cooperative Work (CSCW)

published a special issue on software development as cooperative work in 2009 (18

[5&6]) (Dittrich et al., 2009).

Extended abstract

32

In software engineering research the focus on social aspects and the use of

qualitative research methods is more scarce (Dittrich, John, Singer, & Tessem,

2007). There are several reasons for this; however, in Fugetta’s (2000) road map on

software processes, the author points out that there is a need to acknowledge that

software development is a human-centred process where teams of people engage in

creative activity and that process research from other fields should be looked into. In

2007, a special issue on qualitative software engineering research was published in

the journal Information and Software Technology, with the aim of making qualitative

research more visible and known in the software engineering field of research

(Dittrich et al., 2007). Thus, what have been called “soft” issues have been accepted

as valuable components to understand software engineering practices and the use of

research methods from other fields have been introduced to the research field of

software engineering. For example, Rönkkö introduced an ethnographic method

called the documentary method of interpretation as an explanatory framework to the

software engineering field through his PhD work (Rönkkö, 2005, 2007).

In the following, I will present some studies of particular relevance for the questions

addressed in this thesis, which highlight the significance of social processes in

software development. Although the presented studies do not address software effort

estimation as such, some of the findings are relevant for the research presented in

thesis.

Cohn, Sim & Lee (2009) have investigated what counts as software processes by

investigating the role different types of artefacts and the participants’ talk has when

negotiating between what the software process model prescribes and the eventualities

that arise from the software process enactments. By emphasising that, on the one

hand, software processes can be modelled and, on the other hand, are enacted in a

particular context, they propose that software processes are a bounded set of

practices that emerge through participants’ talk about models and their enactments.

Martin, Rooksby, Rouncefield & Sommerville (2008) have examined cooperative

work in software testing and showed how testers took the perspective of users in

order to decide what tests to run. Moreover, Rooksby, Rouncefield & Sommerville

(2009) have investigated testing as a situated practice and argue that testing is

concerned not only with technical details. Rather, it needs to be understood and

 The phenomenon studied: Software effort estimation

 33

treated as cooperative work if the aim is to improve testing practices. These studies

provide valuable knowledge toward understanding how software development work

is carried out by focusing on social aspects and collaborative work in software

development.

When dealing with future-oriented work such as software effort estimation, planning

is significant. Hence, studies focusing on this aspect are of relevance for this thesis.

In software development for example, it has been shown that planning is a recurrent

process. Rönkkö, Diettrich and Randall (2005) investigated the use of plans in a

software development project over several project phases. They showed how

coordination problems were dealt with in various ways and revealed that planning

documents, such as project plans and requirement specifications, provide the means

to identify and act upon deviations in addition to guiding the development work. In

the reported study, the requirement specification was identified as a planning

document, which did not prescribe the work needed for implementation. The project

members thereby had to develop new requirements and new plans in their ongoing

work to create a basis for the future project work. Also in software effort estimation,

the requirement specification forms the basis for attending to the planning aspect of

the activity, but how this interactional work is conducted has not been examined in

previous software effort estimation research. However, the study conducted by

Rönkkö et al. (2005) is relevant to the research presented in this thesis as they

demonstrate what software professionals do when the plan does not work out.

The short outline of studies above shows that the focus on qualitative studies and

social issues in software development is increasing and is considered as an important

contribution to the research field of software development (Cohn et al., 2009;

Rönkkö, 2005, 2007).

2.4 Summing up: What we know and what we need to attend to
In this chapter, I have provided a description of the phenomenon judgement-based

software effort estimation that is investigated in this thesis. Further, I have provided

a review of relevant research within the areas of group estimation and individual

estimation.

Extended abstract

34

The review of studies on teamwork in software effort estimation provided an

overview of the research that has been conducted of team-based software effort

estimation. Firstly, it showed that the amount of research on teamwork in this field is

small. Secondly, the results that have been reported about estimating in teams have

been promising in terms of achieving more realistic estimates. Also, teams remember

more tasks that need to be considered in estimation work than is possible by software

professionals working alone. Forgotten tasks have also been reported as one of the

major reasons for estimates being too low (Hughes, 1996). Thirdly, there seems to be

a shared focus on measuring the accuracy of the outcome estimate in the research on

teams. This implies that different aspects of teamwork have been tested to see if they

lead to more realistic estimates. As a result, the main data that has been gathered and

analysed when investigating group estimation have been quantitative. Only a few

studies have collected interactional data in the form of verbal protocols (Passing &

Shepperd, 2003) and video recordings (Jørgensen, 2004b). However, the analyses

conducted have mainly been quantitative in which the commonly used unit of

analysis has been the individual expert.

The research focusing on the individual expert showed that the interpretative work

software professionals do in order to understand the software system or task that is

described in a requirement specification is significant. However, the research

conducted did not provide any explanations as to how the interpretations are done

and how a shared understanding is achieved in the team. From a sociocultural

perspective, it can be argued that in order to answer questions related to how this

work is done and also how the requirement specification is used in estimation work,

we need to look at the communicative work conducted in teams. Doing this provides

a possibility for investigating the reasoning process of software professionals and can

provide an understanding of how an estimate is achieved in teams.

Rönkkö and colleagues (Rönkkö, 2007; Rönkkö et al., 2005) have pointed out the

need for suitable methods and concepts for understanding and incorporating the

social aspects involved in software engineering. Further, a focus on social aspects in

software development work is considered to be important to understand and improve

this type of work. The research presented in this thesis is a contribution with respect

to the focus on social aspects; however, there are a few important differences

 The phenomenon studied: Software effort estimation

 35

between my study and previous research. In relation to previous studies of social

aspects in software development, I investigate a different phenomenon; namely,

software effort estimation. This is a specific task, which takes place at different times

for different purposes during the course of a software development project. The

difference in relation to previous research on software effort estimation is that I have

chosen a different unit of analysis than what has been commonly used. While

previous research has mostly taken the individual as the unit of analysis, I have taken

the social interaction as unit of analysis. Further, I focus on the micro processes of

the moment-to-moment interactions when specific estimation tasks are solved. This

means that the time span that is investigated is short, which provides an opportunity

to investigate the specificities of the collaborative work in software effort estimation

and thus provide a detailed analysis of specific tasks.

Software development is a complex practice consisting of many different software

processes and tasks. Accordingly, an understanding of different types of tasks in

these processes is also necessary to improve the understanding of software

development work. By providing detailed analysis of the collaborative work in team-

based estimation, the research presented in this thesis focuses on one such specific

task; namely, software effort estimation. This has not, to my knowledge, been

employed in software effort estimation research prior to the work in this thesis.

In the following chapter, I will present the theoretical perspective employed in this

thesis and provide a conceptual framework for how to understand and investigate

collaborative work in software effort estimation.

 37

3 Theoretical framework
As a work practice, software effort estimation can be understood as a collaborative

activity in which software professionals work together to achieve a predefined goal.

Roschelle and Teasley (1995, p. 70) define collaboration as “a coordinated,

synchronous activity that is the result of a continued attempt to construct and

maintain a shared conception of a problem”. Rather than accomplishing a task by

dividing the work between the participants, Roschelle and Teasley emphasise the

participants’ mutual engagement and face-to-face interaction when a problem or task

is solved together. The review section in Chapter 2 showed that previous research on

software effort estimation has rarely taken the social aspects into account. Rather, the

research has been based on methodological individualism. In this thesis, I argue that

the work of estimating the effort of a software development system consists of two

different but equally important dimensions. First, software effort estimation is a

problem-solving activity in which problem solving is collaboratively accomplished

through social interaction. Second, the task of estimating is a planning activity

because it is concerned with predicting the future. Software effort estimation is

therefore a quite complex problem-solving process in which absolute control is not

possible. This is because of the future-oriented aspect of dealing with a system that is

yet to be developed. The research in this thesis addresses the social aspects of

software effort estimation work and argues that estimation work should be perceived

as collaborative planning activity rather than as individual decision making regarding

the quantification of the number of work hours.

As a collaborative activity, software effort estimation takes place in a context that is

negotiated, shared and constructed through an external mediational framework. In

this framework, the participants share the language used, the situation in which the

work takes place and the activity of solving the task (Roschelle & Teasley, 1995).

When solving a particular task together, a shared understanding of what the task is

all about is needed (Roschelle, 1992). In software effort estimation work, the

participants often come from different backgrounds in software development, which

Extended abstract

38

means that they bring different types of expertise or specialist competence to the

problem-solving activity. The main source of information about the estimation task is

the requirement specification document. This document is marked by a professional

terminology in which the software system that is going to be estimated is described

with text and diagrams that show the logic of the workflow in the software system.

Moreover, this requirement specification is often written and developed by software

professionals other than those who are conducting the estimation work. This means

that the software professionals who are conducting the estimation work need to make

sense of and achieve a shared understanding of this document in order to solve the

task. In addition, the participants also have to align their different areas of expertise.

Sharing skills and understandings are emergent in social interaction and can

therefore be understood as an accomplishment that is achieved through

communication.

3.1 A sociocultural perspective on software effort estimation
When studying the collaborative activity of software effort estimation, it is necessary

to have a theoretical perspective that provides an understanding of human activity at

different levels (Valsiner & Van der Veer, 2000; Wells, 1999). The three interrelated

aspects of human activity that need to be understood in relation to software effort

estimation work are 1) the institutional practice, 2) the individual development and

3) the dialogue and activity.

The institutional practice of software effort estimation can be understood as

historically driven. In this regard, concrete artefacts represent what can be named

collective knowledge or cultural resources that have evolved over time. These

artefacts include the requirement specification, a professional language from the

knowledge domain of software development and different techniques and approaches

to conduct the estimation work. For example, perceived as institutional practice,

software effort estimation rests upon certain ways of doing the work that are

embedded in routines, rules and different cultural tools. This means that in an

institutional practice, certain ways of understanding the activity prevail. For

example, estimation work is often organised in meetings. These are meetings that are

designed for the specific purpose of conducting the work of estimating a software

project. Thus, the interactional and communicative work that is carried out in an

 Theoretical framework

 39

institutionalised setting has a specific purpose, i.e., the work has an agenda

(Suchman, 2007). This agenda needs to be well known by the different participants

in order for them to carry out the work as intended.

Secondly, the software professionals who take part in the institutional practice of

software effort estimation hold sets of individual and personal knowledge and

experiences that they bring into the institutional practice and make use of when

solving the task. This individual knowledge is acquired both through specialised

education and work practices. It therefore needs to be made relevant to be utilised in

software effort estimation work.

Thirdly, when working in a team, it is through dialogue and interactional work that

the task of estimating a software development project gets solved. This takes place in

the intersection between the collective knowledge and cultural resources that the

institutional practice holds, and the personal knowledge and experiences that the

different participants bring into the practice. Thus, the dialogue and the interactional

achievements develops in the intersection between enacting upon cultural resources

and the personal knowledge held by the participants. Software effort estimation work

is accordingly conducted through series of moment-to-moment interactions amongst

the participants. Through this interactional work, they draw upon their own

individual knowledge and knowledge that are embedded in the social practice in

which the estimation work is conducted. Hence, when following a sociocultural

perspective, it is through social interaction that knowledge is used, sustained,

developed, and created.

The sociocultural perspective, also called the socio-genetic perspective, rests upon a

set of assumptions that makes it possible to understand human activity at these

different levels. This perspective has its origins in the work of Lev Vygotsky (1896–

1934) (Vygotsky, 1978, 1986) and rests upon an ontological and developmental

assumption that human minds are social in nature and that the human personality

emerges through social experiences (De Graaf & Maier, 1994; Valsiner & Van der

Veer, 2000). The sociocultural perspective also distinguishes between development

at different levels and in different time spans. The level of sociogenesis is concerned

with describing and explaining the development of social practices in their social and

historical context. It thereby relates to the development of institutional practices. The

Extended abstract

40

level of ontogenesis is concerned with the development of individuals, which is

socially constructed through their lives whilst at the level of micro genesis, a

description of the moment-to-moment actions of different individuals when engaging

in situated activities is the focus (Billett, 2003; Ludvigsen, 2009). It is at the level of

micro genesis that the phenomenon of software effort estimation work is played out.

This happens in interrelation with the individual’s ontogenesis, i.e., the participants

in the practice, and the sociogenesis, which is the institutional practice of software

effort estimation. In this thesis, therefore, it represents the empirical level of interest

(Ludvigsen, 2009).

The second important assumption in the sociocultural perspective is the

epistemological one, which rests on the idea of the co-construction of knowledge

(Valsiner, 1994). This means that participants in a practice construct knowledge

together as part of an intellectual interdependency (Valsiner & Van der Veer, 2000).

The sociocultural perspective thereby takes as point of departure the fact that human

beings are inherently social in character and that we interact with each other and with

objects in our environment as ways of learning, solving problems and sharing and

creating knowledge. In order to understand the basic assumptions underlying the

sociocultural perspective, there are some core premises that need to be explicated: 1)

situated character of action, 2) mediated action and 3) actions as interactional

accomplishments.

3.1.1 The situated character of action

A core premise in the sociocultural perspective is that all human action takes place in

a cultural, institutional and historical context, which means that human action is

institutionally, historically and culturally situated. This implies that action is shaped

by the different situational factors that are available and the way we solve problems,

reason or act is related to the context and the cultural tools that are made available in

a particular context. Situated actions are thereby emergent through moment-to-

moment interactions between the participants in a practice and between the

participants and the environment in which their actions take place (Suchman, 1987,

2007). Linell (2009) makes a distinction between realised context and contextual

resources. The realised context is what participants make relevant through

communication in situ. The contextual resources are what can potentially be made

 Theoretical framework

 41

relevant and meaningful in a given context. One such contextual resource is the

categories that are embedded in an institutional practice. Such institutional categories

are collective ways of understanding, clarifying and categorising people, actions and

events (Bowker & Star, 1999). Further, they are resources for sense making and

contextualising tools in which perspectives and sense making can be collectively

shared (Mäkitalo, 2003; Mäkitalo & Säljö, 2002). These categories are part of the

historical development and it is through using specific categories that certain aspects

of the institutional practice are made relevant and thus connect documents, drawings

and collective knowledge. A specific institutional practice, such as software effort

estimation, incorporates expectations, procedures, technologies and goals “that only

find actual form and purpose when they are enacted in particular ways in particular

circumstances” (Billett, 2003, p. 136). This means that the ways in which estimation

work is enacted will be shaped by different types of situational factors such as local

ways of interacting, ways of solving the estimation tasks, negotiations and different

kinds of artefacts.

Software effort estimation is thus situated and relational because the properties of

people, groups, communities and also material artefacts are developed and given

meaning only in relation to other people, groups or artefacts. These properties are not

independent of each other, they are not stable and they cannot be separated from

their social and historical context (Østerlund & Carlile, 2005). This makes software

effort estimation a situated activity and, by investigating situated activities, it is

possible to understand the ways in which problem solving is collectively

accomplished in specific situations.

In relation to the planning dimension of estimation work, the way planning is

understood is important. A well known and also common way of conceiving

planning is that plans determine action. This view is embraced by cognitive science

among others and has had a huge impact on how planning is understood. According

to this planning model, a plan is treated as a description of a particular sequence of

actions that are developed to achieve a particular goal (Suchman, 2007). This way of

conceiving planning was criticised by Suchman (1987), who proposed that plans

need to be understood as resources and discursive artefacts for the practical

deliberation that people engage in regarding their actions (Suchman, 2003, 2007).

Extended abstract

42

Following the sociocultural perspective, planning is thereby understood as a situated

action, in which people plan through communicative work by attending to what is

and what could be in the future. Hence, planning takes place through interactional

moves that go back and forth, and is situated in the institutional practice.

3.1.2 Mediated action

Following a sociocultural perspective, the second core premise I would like to

emphasise is that all human action is mediated. The notion of mediation implies that

we as humans use different artefacts and tools, known as mediational means, as

integrated parts of our social practices. This means that we do not interact with our

environment and surrounding world in a neutral and immediate way. Rather, we

perceive and make experiences through the use of different tools, that are products of

cultural and historical development, when interacting with our environment and each

other (Wertsch, 1991). The action that individuals do when employing mediational

means is referred to as “individual(s) acting-with-mediational-means” (Wertsch,

1991, p. 12). When following a sociocultural perspective, how individuals act with

mediational means is fundamental for understanding human learning, problem

solving and knowledge creation. The concept of mediational means or tools is

expanded beyond the common interpretation that a tool is a physical artefact. In

addition to physical or material artefacts also language, concepts, structures of

reasoning and types of discourse are considered as tools (Resnick, Pontecorvo, &

Säljö, 1997). Originally, Vygotsky distinguished between tools and signs (Vygotsky,

1978, 1986). However, this distinction has been shown not to be fruitful because,

often, the use of various types of tools requires some kind of intellectual capability.

Instead of separating the two, researchers have suggested that cultural tools should

be perceived as having a physical side and an intellectual side (Säljö, 2005).

Knowledge and experiences, which have been accumulated and developed over time,

are built into these different artefacts that we use in our everyday lives. The most

important mediating tool is considered to be language. It is a resource for creating

knowledge and meaning of the world, sharing experiences and solving problems.

This is because of the flexible relation between linguistic expression and the

phenomenon that the expression is referring to. All communicative activities are

mediated through intellectual tools such as language. In addition, language is an

 Theoretical framework

 43

important part of the communicative and interactional processes between people. It is

a tool for acting in practices as well as an arena for social interaction (Säljö, 2001b).

Also, specific types of languages make it possible to achieve a shared understanding

of a particular phenomena in expert work. Wertsch argues that “human action

typically employs ‘mediational means’ such as tools and language, and that these

mediational means shape the action in essential ways” (Wertsch, 1991, p. 12). To

understand mental action, there is a need for understanding the “semiotic devices

used to mediate such action” (Wertsch, 1991, p. 13). Hence, mediated action has as a

premise that there is a close link between communicative processes that are

inherently social and certain aspects of individual mental processes.

Wertsch has studied mediated action in depth and, in his book Mind as Action

identified ten different properties of this kind of action (Wertsch, 1998). Related to

the study of collaborative work in software effort estimation, I will highlight some of

these properties in the following as important for understanding the role of mediated

action in estimation work.

The first point that Wertsch makes is that “there is an irreducible tension between an

agent and the mediational means”. What this means is that certain mediational means

hold particular sets of qualities that make it possible to use and thus solve specific

problems. However, the mediational mean in itself is not enough to, for example,

solve a problem, and neither is the practitioner seen in isolation. Rather, it requires

active sense making by the practitioners. This implies that without such mediational

means it will be difficult to solve certain problems. In software effort estimation, the

requirement specification as a mediational mean holds a particular set of qualities,

which are needed for the task of estimating the effort of a software project. Without a

requirement specification, the estimation work would be even more difficult as no

description of the software system to be developed would exist other than perhaps in

the heads of the people or customers who want or need the particular system being

developed. However, the presence of a requirement specification does not magically

solve an estimation task; instead, it has to be used and made sense of by software

professionals who are skilled in understanding requirement specification documents.

The second point that is of relevance, which Wertsch put forth, is related to the

materiality of mediational means. As previously mentioned, mediational means can

Extended abstract

44

be physical objects, which are often termed artefacts or tools. For example, physical

objects or artefacts can be writings, such as books or documents, or technical

drawings involving the use of diagrams and different types of schemas, which are

turned into tools and used in social practices. Due to the materiality of such objects,

they can, as Wertsch puts it, “continue to exist as physical objects even when not

incorporated in the flow of action” (Wertsch, 1998, p. 30). In software effort

estimation work, for example, the requirement specification will be one such

material tool that will continue to exist throughout the software development process.

Even though it might be changed and improved as the development work goes along,

it will, in the end, become historical data about how a particular system was planned

and can thereby function as a resource when new tasks for solving arise.

3.1.3 Social interaction and interactional achievements

The third core premise in the sociocultural perspective that I would like to explicate

is that knowledge and understanding needs to be achieved in social interaction. It is

in social interaction that people use language, concepts, align their expertise and

activate different types of resources that constitute what they achieve in interaction.

It is through social interaction that knowledge is shared and constructed and it is

where interpretations and meaning making of objects, events and actions occurs.

Knowledge is therefore co-constructed as part of an intellectual interdependency

where people interact, not only with other people, but also with cultural tools and

objects in the environment. Thus, it is in the interaction between participants in a

practice and the different cultural tools that knowledge comes into use (Greeno et al.,

1996). The interdependency is a result of the communicative actions that are joint

activities in which people engage in interaction by taking turns at talking.

Communicative actions can thereby be conceived as collaborative accomplishments

(Linell, 1998a) in which knowledge is a resource that is made relevant for use. It is

therefore important to understand how these interactional accomplishments come

about. This means that we need to understand how software professionals make use

of the cultural resources available in the institutional practice as well as how they

draw upon their own specialist knowledge and previous experience in the estimation

work. Following the sociocultural perspective, interactional accomplishments are

carried out by activating individual knowledge and making sense of cultural

 Theoretical framework

 45

resources and this is how the task of estimating a software development system gets

solved.

As previously mentioned, the estimation task has an agenda, which the different

participants need to know well in order to carry out the work of estimating a software

project as intended. Even though there is an agenda for the interactional work, the

face-to-face interaction makes it possible to attend to and solve problems that can

emerge as the work proceeds. Hence, the agenda and other constraints do not control

the interaction. Rather, it is resources for the meaning-making actions and the

struggle for achieving shared understandings of the different problems that are

attended to in the team’s collaborative work.

However, relying on institutionalised and established ways of conducting this work

is not sufficient. The relational interdependencies among the participants, i.e., among

the software professionals, among the software professionals and the material

artefacts that they use and among individuals and collectives can be perceived as the

core of conducting estimation work in teams.

One of the main challenges in software effort estimation work is to achieve a shared

understanding of the requirement specification, i.e., the described software system

that is going to be estimated (Sommerville, 2007). Understanding this document

posits a challenge as it is marked by a professional terminology and often written and

developed by someone other than those who are doing the estimation work.

Seen from a sociocultural perspective, such understanding is achieved and shared

through interpretative work in which meanings and interpretations are produced on a

turn-by-turn/moment-to-moment basis through talk in interaction. People’s meanings

become known through social interaction, plus new ways of thinking, reasoning and

also acting can be apprehended when solving new or complex problems.

Communication can thereby be perceived as serving as a link between what we think

and what we do (Säljö, 2001b). However, people do not always reveal what they

think nor are they able to give an account of what they think. In short, some

cognitive processes are thus not possible to “be brought in to language in an

accountable manner” (Linell, 2009, p. 15).

Extended abstract

46

According to a sociocultural perspective, what takes place when people solve

problems and make decisions is the result of social interaction and communicative

work. From this perspective, what is attended to and what is said is “thus not an

external version of what is clear in our minds but rather an attempt to communicate

ideas to respond to initiatives in situated practices” (Säljö, 2001a, p. 114). The focus

on the interactional accomplishments provides possibilities for explicating how

estimation teams reason, what kind of work they do and also how they reach a

decision about an estimate. Above, I have explicated some of the relevant core

premises of the sociocultural perspective that are relevant for the research presented

in this thesis. This thesis focuses on software effort estimation as collaborative

activity and sees estimation work as an emergent practice that takes place within an

institutional environment. To understand the collaborative activity, there is a need for

investigating estimation work through social interaction. By following the situated

activity of software effort estimation and investigating the ways in which the

institutional level and the personal knowledge and experiences influence and play a

part in the collaborative problem-solving activity, we can develop our understanding

of the social aspects of software effort estimation. In the following, I will explicate

some of the important theoretical concepts that are needed to understand what kind

of interactional achievements are needed to accomplish the task of estimating a

software project.

3.1.4 Distributed expertise

Firstly, I would like to explicate the notion of expertise being distributed, which,

following a sociocultural perspective, comes as a consequence of the distributed

character of knowledge. That the expertise is distributed means that it is not stable or

well-defined acquired knowledge, rather it is emergent in the ongoing activity

(Engeström, 1992). Expertise is here seen as interactional accomplishments, which

means that expert knowledge resides not only in individuals’ heads but is alive in

people’s interaction and the environment that people interact in. Hence, expertise can

be perceived as a collective resource. As concerns to software effort estimation, the

software professionals that work together in a team often hold different kinds of

specialist competences in different areas of software development, such as

programming, databases, architecture, testing and project management. Though they

are sharing a professional language, the situation and the work activity, the team

 Theoretical framework

 47

members perceive and understand the different artefacts that are used, such as the

requirement specification, from their respective areas of expertise. The different

kinds of specialist knowledge and skills they hold therefore need to be aligned and

shared with the other team members so that they are able to accomplish the

estimation task collectively (Schatzki, 2001). Eklund, Mäkitalo & Säljö (2010) have

shown in their study of IT-support units the importance of sharing knowledge and

expertise to be able to continue in the work process.

The traditional view of expertise can be said to be vertical in the sense that some

individuals or participants in a practice have more knowledge than others. This view

is differentiating what can be termed levels of expertise, i.e., levels of knowledge and

skills, and assumes a uniform and singular model of what counts as expertise in a

particular practice. This vertical dimension of expertise is important to acknowledge

but, for a more complete understanding of how expert knowledge is acquired and

used, we also need to consider the horizontal dimension of expertise (Engeström,

Engeström, & Kärkkäinen, 1995). A horizontal dimension of expertise takes into

account how experts are moving between different contexts and therefore need to

negotiate and combine ingredients across contexts to solve particular tasks

(Engeström et al., 1995; Tuomi-Gröhn, Engeström, & Young, 2003). The horizontal

dimension of expertise also relates to the more-recent notion of networked expertise

because networked expertise arises through the co-construction of knowledge and the

collaborative work of solving problems (Hakkarainen, Palonen, Paavlova, &

Lehtinen, 2004).

In previous research on software effort estimation, the focus has been on the vertical

dimension of expertise. The reason for this is that a deeper and more specialist

knowledge about estimation work and relevant experience is believed to lead to the

achievement of more-realistic estimates. The horizontal dimension of expertise in

estimation, on the other hand, is concerned with how software professionals can

apply their specialist knowledge across contexts, as well as how they can realise the

different artefacts’ potential. This is an important aspect when collaborative problem

solving is at stake.

Developing and acquiring specialist or expertise knowledge in different fields shows

that knowledge is closely connected to the context in which it is acquired. This

Extended abstract

48

means that knowledge is dependent on communication to be kept alive across

generations (Linell, 2009). The use and also the development of different kinds of

expertise take place in a series of interactional achievements. It is then

communication that makes it possible to develop specialised forms of knowledge

through discursive practices in which precise communication about certain aspects of

the world is made possible in specific settings (Säljö, 1999).

3.1.5 The role of sense making in social interaction

To accomplish solving the estimation task through social interaction, interpretations

and meanings of different aspects have to be generated. This is achieved through

situated interaction and communication and depends on what is of interest to the

participants (Greeno, 1998; Rommetveit, 1992). The process of making meaning can

be termed sense-making practices. Following Linell (2009, p. 235) “sense-making is

about what is meant and made known in real-life situations, in which people make

certain interpretations relevant there and then”. In sense-making practices, it is

important to differentiate between meaning and meaning potential. While meaning is

related to situations, meaning potentials belong to what Linell calls “traditions of

languaging”.

The notion of meaning potential can be understood as a set of semantic resources that

together with contextual factors are used to achieve situated meaning. The meaning

potentials of lexical items and grammatical constructions have been defined by

Norèn and Linell as

the set of properties which together with contextual factors, including
features of the linguistic co-text as well as various situational conditions,
make possible all the usages and interpretations of the word or construction
that language users find reasonably correct, or plainly reasonable in the
actual situations of use (Norèn & Linell, 2007, p. 389).

It is the meaning potential that moves between contexts and inhabits both history and

structure, but the meaning potential needs to be realised in a particular context for it

to give meaning. Linell (2009) uses a set of concepts to describe distinctive features

of meaning potentials, which are open, abstract, structured and rich. Being open

means that meaning potentials are open to a certain extent, because no meanings

 Theoretical framework

 49

exist that are “entirely fixed, stable and always valid” (Linell, 2009, p. 342). That

potentials are structured refers to the possibility that there may be an abstract core

aspect. That meaning potentials are rich means that the boundary between what are

defined and what is encyclopaedic semantics is not clear cut. Since meaning

potentials are abstract, they can only contribute to the making of meaning in certain

contexts. Meanings, hence, what people mean in situ, are interactional

accomplishments. Thus, meaning making occurs through the articulation of meaning

potential and interpretations of, for example, texts or communicative actions that are

relevant for the participants’ interaction and exchanges of talk in a particular context

(Linell, 2009; Rommetveit, 1992; Van Oers, 1998).

To demonstrate the importance of meaning potentials, I would like to recount the

story about Mr. Smith created by the sociologist Herbert Mentzel and extended by

the psychologist Ragnar Rommetveit (2003) as an illustration: Mr Smith, who is a

fireman, one Sunday morning is out in the garden pushing a machine around his

lawn. His wife Mrs. Smith, is in the kitchen drinking her morning coffee. What is

interesting about this setting is the different ways sense-making of what is going on

in the garden occurs:

A neighbour prying into the miserable marital relations of the Smiths may
tell us that she “sees” Mr. Smith avoiding the company of his wife. And that
may indeed be what Mrs. Smith feels, left alone in the kitchen with her
morning coffee. But when the phone rings and her friend Betty asks, “That
lazy husband of yours, is he still in bed?” Mrs. Smith answers, “No, Mr.
Smith is working, he is mowing the lawn.”

A short time afterward, Mrs. Smith receives another call, this time from Mr.
Johnson, who, she takes for granted, is ringing up to find out whether her
husband is on the job or free to go fishing with him. So, when he asks, “Is
your husband working this morning?” she answers, “No, Mr. Smith is not
working, he is mowing the lawn.” Mrs. Smith is telling Betty that her
husband is working and Mr. Johnson that he is not working, but on both
occasions is telling the truth(s) about Mr. Smith’s mowing their lawn.
(Rommetveit, 2003, p. 215)

The meaning potential of the word “working” is here situated and realised by the two

people who are having the conversation at the time when Mrs. Smith is talking to

Extended abstract

50

Betty and when she is talking to Mr. Johnson. Even though both Betty and Mr.

Johnson share a common language, the ways of understanding Mr. Smith’s activity is

quite different. This story demonstrates quite nicely that a word or linguistic

expression does not have just one lexical meaning that is common across contexts.

Further, the story shows that we always have to make meaning in a concrete context

and share this understanding so that it can be collectively understood amongst the

participants.

Engaging in sense-making practices and thus realising the meaning potential of

different cultural tools is an important and also a large part of software effort

estimation work. Achieving a shared understanding of the main cultural tool, i.e., the

requirement specification, is both necessary and crucial for both the problem-solving

aspect and the planning aspect of estimation work. In such meaning-making

activities, a tacit shared understanding exists of the kinds of actions that are

appropriate. As concerns software effort estimation, this takes the form of topics that

are acceptable to talk about and how elaborations about these certain topics are

performed. Suchman (2007) calls this mutual intelligibility of action. To be able to

participate in this action and elaborate on relevant topics, different types of

knowledge need to be made sense of and used.

3.1.6 Recontextualisation and collective remembering

 As previously mentioned, the software professionals that take part in the estimation

work hold a set of individual and personal knowledge and experiences that they use

in their work process. However, using knowledge and experiences across contexts is

not a straightforward process. Before knowledge and experiences can be used in

different contexts and in different ways, they need to be articulated, made relevant

and adapted so that they fit the specific context in which they are intended to be

used. This process of adaptation or transformation is known as recontextualisation.

Recontextualisation is defined as “the dynamic transfer-and-transformation of

something from one discourse/text-in-context to another” (Linell, 1998a, p. 154).

This means that some parts or aspects from one context are adapted or transformed to

fit a different context. For example, this can be knowledge, facts, arguments or ways

of seeing, thinking or acting. Through a recontextualisation process, parts or aspects

are often subject to change such as simplifications, explications or shortenings and

 Theoretical framework

 51

thus “recontextualisation is never a pure transfer of a fixed meaning” (Linell, 1998a,

p. 155).

Recontextualisation can occur in at least three different ways (Linell, 2009). Firstly,

it can occur within the same conversation. Secondly, it can occur as reuse between

discourses. Thirdly, it can occur between genres or activity types. When

recontextualisation occurs within the same conversation, it implies that the

participants in a particular interaction are making use of the same or similar ideas

and expressions multiple times. Recontextualisation as reuse between discourses

implies that elements from one specific discourse are related to a different discourse.

The third type of recontextualisation is more abstract and involves, for example, the

use of routines from one event that are used in a different event in the sense that

genre or activities are borrowed from one context or discourse to another. What is

common across these three types of recontextualisation is that they involve, though

at different levels, the generation and reinterpretation of meanings (Linell, 1998a;

Van Oers, 1998). Realising meaning potentials, interpreting documents and sharing

understandings through social interaction require the use of knowledge in some

ways. As a result of this knowledge needs to be remembered before it can be

recontextualised and used.

Moreover, when using knowledge and previous experiences to solve present working

tasks, it is crucial that the appropriate knowledge and experiences are remembered.

Following the sociocultural perspective, the act of remembering in itself can be

conceived as an interactional accomplishment. The act of remembering is thereby

understood as a “social activity where individual experience is necessarily mediated

by collective experience” (Middleton & Brown, 2005, p. 12). This means that rather

than seeing memory as a way of storing past experiences that are retrieved whenever

needed, as would be the case for a cognitive perspective, memory is conceived as

“accomplishments that occur in the course of communicative action” (Middleton &

Brown, 2005, p. 85). Social interaction is therefore fundamental to the act of

remembering. Understanding the act of remembering in this way opens up a

discursive approach to remembering and thus understand how remembering is

accomplished and organised through communicative action.

Extended abstract

52

When people remember, they often reconstruct something from their past in the

present so that it can be used in the actions that they are engaged in at the moment. In

this sense, remembering is shaped by the fact that we are living in a sociocultural

world, sharing our experiences with others. Further, what is remembered is selected

and transformed by means of communicative actions and thus mediated through

language (Middleton & Brown, 2005; Wertsch, 2002). Hence, remembering is

situated. There are, however, some key elements that need to be taken into

consideration when treating remembering as a situated communicative practice and

thus a discursive practice.

When people are communicating, they take turns at talking by acting towards and

responding to one another. Thus, the conversation is sequentially organised. This is

necessary to keep a conversation going. Such conversational action where people

engage in joint remembering, also known as collective remembering (Middleton &

Brown, 2005), is quite common as part of both our daily lives but also in work

situations where, for example, teams are solving problems and need to remember

their past experiences. As software effort estimation work is interactional and

communicative, it is by engaging in collective remembering that software

professionals recall their experiences and jointly remember appropriate experiences

and knowledge that can be used in the work process.

Closely connected to remembering as interactive and sequentially organised is the

co-option of other speakers into engaging in remembering activities. As Middleton

and Brown (2005, p. 92) put it, “In the course of such conversations, there are

particular points at which the participants seem to ‘stand back’ from what they are

doing and put into words that they are remembering or trying to remember or had

forgotten”. Moreover, to assist in remembering activities, different artefacts and

cultural tools are used. Language is one such tool and the construction of narratives

is therefore one way that remembering is mediated by the recall of past events

(Wertsch, 2002). Being co-opted into a project of remembering is linked to the

membership of recollecting an event or a past experience. Through experience

claims, others that participate in the conversation become interactively committed to

the relevance of these claims and thus it becomes a collective concern rather than

only an individual one.

 Theoretical framework

 53

I have briefly stated that acts of remembering are mediated by cultural tools. Radley

(1990) states that some objects are even designed for the purpose of helping us

remember. We need to take into account that we live in a material world where not

only social interaction with other people helps us remember, but also our interactions

with different objects and tools in our surrounding environment are a part of our

remembering activities. Such objects and artefacts are a part of the material world

and have the capability that they can outlive humans. Therefore, they not only

function to evoke memory but to sustain ideologies, traditions and knowledge about

individual people, as well as cultures (Radley, 1990; Wertsch, 2002).

Connecting the notion of collective remembering to estimation as a work practice,

we know that in this work practice different resources for remembering are used.

However, as estimation work is interactional and communicative, it is through what

is termed conversational remembering that software professionals recall their

experiences and engage in joint remembering. Moreover, both sense-making and

remembering are mediated by different types of cultural tools or artefacts (Linell,

2009).

3.1.7 The use of cultural tools

In an institutional practice, cultural tools have developed over time and contain what

can be named collective knowledge or resources. Related to software effort

estimation, there are several cultural tools that are used as mediational means. First

of all, there is the communication and interaction between the different team

members. In this interaction, a professional language is used and to be able to follow

and participate in the communicative work, knowledge about and familiarity with

this professional language is necessary. Language, as a cultural tool, is thereby

crucial for the software professionals to interpret, make meaning and construct

knowledge of the different material tools to accomplish the estimation work. Thus,

language and concepts can be conceived as the most important cultural tools that we

as humans can use (Wertsch, 1991, 1998).

The main material artefact that is used in estimation work is the requirement

specification document. This document is marked by a professional terminology in

terms of concepts from a particular knowledge domain as well as particular ways of

Extended abstract

54

representing software systems. Design solutions and flow diagrams are such ways of

representing the logic of the workflow in software systems. The diagrams, called

flow diagrams, have the character of being inscriptions, as they are “graphical

representations recorded in and available through some medium (e.g., paper,

computer monitor)” (Roth & McGinn, 1998, p. 35). In estimation work, these

inscriptions represent the software system, and by existing in a material form, they

can be shared with others. Further, they can be the object that is talked about when

problems are solved, thus transposing the activity of developing a software system

from the heads of the designers of the system to social arenas where the different

parts of the software development process take place. These inscriptions may

facilitate communication between participants in a practice, though knowledge about

what is represented in the inscriptions is needed to be able to participate in the

related activities.

In an institutional practice like software effort estimation, these cultural tools are

resources that are used when solving new estimation tasks. Hence, the estimation

work is mediated through communicative actions that take form as professional

language in talk and also in physical artefacts where professional language is used in

written form. It is through communicative action like interpreting and negotiating

that shared understandings of the described system are achieved in the team. This is

crucial to be able to estimate the effort of a software system.

The cultural tools make it possible to engage in the planning activity of estimation

work. The requirement specification is of particular relevance in this aspect as it is a

document describing what should be or is going to be developed in the future. The

use of the requirement specification as a planning document in software engineering

has been studied by Rönkkö et al. (2005), but they did not focus on the requirement

specification as a resource for planning activity. In software effort estimation, the

requirement specification as a cultural tool is a resource for the planning activity and

functions as a framework for solving the task, though it is dependent on particular

social and material circumstances in this context (Suchman, 2007). It is by

interpreting the requirement specification that the software professionals engage in

the planning activity. Further, as the requirement specification is in need of

interpretation, it also posits challenges and problems that the team needs to elaborate

 Theoretical framework

 55

on and achieve shared understandings of. Hence, investigating how the requirement

specification is used in estimation work provides a possibility to understand the

situated character of planning (Suchman, 2007).

These different cultural tools that are available in the institutional practice create

direction as well as serve as a framework for conducting the estimation work. Thus,

the cultural tools are a point of departure as well as guiding principles in the work

process. The routines, rules and different cultural tools have been developed,

improved and changed over the course of time and can therefore be conceived as

historically driven events. They represent the collective knowledge available when

solving an estimation task. Thus, it is crucial to understand how software

professionals use these different cultural tools in their collaborative problem solving.

3.2 Summing up and presenting a conceptual framework
A theoretical perspective provides a set of lenses for how the world, society and

human development can be perceived. It provides ontological and epistemological

assumptions about human activity and development and guides and structures

research by providing a set of concepts as well as themes and parts that are

interesting to focus on. The point of departure for the research within this thesis is to

investigate the collaborative activity in software effort estimation. In this chapter, I

have outlined a theoretical perspective with core concepts that are central to how

software effort estimation can be understood as collaborative planning activity.

The sociocultural perspective has as a premise that all human action is historically

and culturally situated. A second premise is that all human action is mediated by

different types of mediational means such as language and physical artefacts. The

third premise is related to the importance of social interaction because it is through

social interaction that knowledge is constructed shared and developed. With these

core premises as a backdrop, a set of concepts that explicates how software effort

estimation can be understood as collaborative planning activity is summarised into a

conceptual framework for how it is studied in the research that is presented in this

thesis.

When following the sociocultural perspective, it is through social interaction that the

estimation work is conducted. This is also how the estimation task gets solved.

Extended abstract

56

Software effort estimation is part of an institutional practice that has developed over

time and holds a set of collective knowledge that is used as a resource in the

estimation work. This knowledge is represented in different types of cultural tools.

These cultural tools can, for example, be the professional language from the

knowledge domain of software engineering, the requirement specification document

that describes the software system, the different estimation techniques and guidelines

that are used in the estimation work. In addition to the collective knowledge in the

institutional practice, the different software professionals bring with them their

personal knowledge and experiences into the practice. It is in the intersection

between the resources available in the institutional practice and the personal

knowledge the participants bring to the practice that the estimation work gets done

through social interaction.

At the core of this conceptual framework are interactional accomplishments. In

software effort estimation work, participants in a team need to engage in different

types of tool-mediated actions. They engage in meaning-making processes to make

sense of the particular estimation task, achieve shared understandings, close gaps,

make knowledge relevant and use the different material cultural tools, which makes

it possible to move on in their work. This is accomplished by realising meaning

potentials in situ. Tools and concepts do not have a fixed meaning that can be used

across contexts. Rather, the meaning potentials need to be realised in a particular

context for them to have meaning that is relevant here and now. Engaging in

meaning-making processes is, however, not the only type of interactional work that

participants in software estimation work need to engage in. For the software

professionals to be able to utilise their personal knowledge and experiences, these

have to be transformed and adapted to fit the context where such are intended to be

used. The process of adapting knowledge is called recontextualisation and it is a

crucial process for understanding how software professionals draw on and use their

individual knowledge, experiences and collective resources when solving present

working tasks. Moreover, as expertise is distributed it also needs to be aligned,

shared and made relevant in the interactional work. Closely connected to the

recontextualisation process is the act of remembering. Before previous knowledge

and experiences can be recontextualised, they need to be made sense of and the

appropriate knowledge also needs to be remembered. The act of remembering is

 Theoretical framework

 57

referred to as collective remembering, because it is understood as an interactional

accomplishment that occurs through joint effort.

The theoretical perspective employed in this thesis has some implications for the

analytical approach that is chosen. When following a sociocultural perspective, it is

what people say and do that is the focus of attention and thus possible to follow and

not how and what people think (Säljö, 1994, 2001a). This does not mean that

thinking is excluded, but no claims are made about thinking. Language can therefore

be conceived as a medium for action and is used for concrete purposes in specific

contexts. In Säljö’s words, “when you talk, you do thing” (Säljö, 1996, p. 14).

When investigating the collaborative activity in software effort estimation, it is

important to grasp how software professionals’ work is mediated by the different

cultural tools. This means that it is the level of social interaction that needs to be

attended to and investigated. Accordingly, the research conducted as part of this

thesis is a study of practice following moment-to-moment interaction in the micro-

genesis but it also takes into account how the socio- and ontogenesis implicates what

goes on in this activity. The level and unit of analysis thereby needs to be adapted to

this specific research project (Säljö, 2009), which aims at understanding the

collaborative work in software effort estimation. Thus, the level of analysis that is

chosen is social interaction, in which the moment-to-moment interaction constitutes

the unit of analysis.

In addition to the theoretical conceptual framework that explicates the interactional

achievements, I also need a set of intermediate concepts as sensitising means that can

open up the interactional achievements and meaning-making processes. To open up

the different meaning-making processes and grasp the different types of interactional

achievements and specify the different situated actions that occur, I have used the

following intermediate concepts: elaboration, clarification, specification,

orientation, positioning and justification. As an analytic concept, on the other hand,

recontextualisation is used to grasp what happens with knowledge over time and

across contexts. These analytical concepts will be explained in the next chapter

describing the method and analytical approach in depth.

 59

4 Description of empirical material and
methods

Investigating the collaborative work in software effort estimation requires a solid

data set. The research presented in this thesis consists of three separate in-depth

studies of three different estimation approaches to explicate software effort

estimation as collaborative planning activity.

The first section of this chapter provides a description of the empirical context and

the data material that have been gathered through two separate studies—one quasi-

experimental study and one naturalistic study—that constitute the empirical basis for

investigating the three estimation approaches: bottom-up, top-down and planning

poker. The second section discusses the methodological considerations and the

analytical procedures for how interaction analysis has been employed in the three

different articles. This includes how the data have been prepared, selected and

analysed by using a set of analytical concepts as sensitising means. The third section

discusses the credibility of the research that has been conducted as a part of this

thesis in regards to the issues of validity, reliability and generalisation.

4.1 A quasi-experimental study of the bottom-up and the top-down
approaches

Articles I and II in the second part of this thesis build upon a set of data that was

gathered through a quasi-experimental design as part of a large software effort

estimation study. The study was conducted in a Norwegian branch of an international

IT-consultancy company in 2002. It was designed to investigate the two different

estimation approaches known as top-down and bottom-up. As part of the data

collection from this study, video recordings were made of the different teams’

discussions when they conducted the work of estimating software projects. The

results from this large industrial estimation study have previously been reported in

Jørgensen (2004b; 2005), in which the analytical schema used has been content

analysis and quantification. I was given permission to use the video recordings as

Extended abstract

60

part of the empirical data for my PhD project. The in-depth analyses that have been

conducted and reported in Articles I and II in this thesis thereby build upon and

expand the results that Jørgensen previously has reported.

The setup of this large software effort estimation study was quasi-experimental in

character. The following description is adapted from the detailed description of the

study provided in Jørgensen (2004b). In this estimation study, seven teams of

software professionals were organised and asked to estimate two legitimate software

projects. Even though the study is quasi-experimental in character, authenticity of the

estimation process was aspired to in the design of the study. Therefore, the real

requirement specifications received from the company’s customers were used as

estimation tasks, and software professionals working in the given firm were hired as

participants. Each team consisted of one project manager and one or two developers.

A senior manager in the company put the teams together and ensured that the teams

had sufficient development and estimation competence to perform realistic

estimation of the two software projects.

The estimation teams had access to the information they normally have when they

are estimating projects in their daily work at the company. These consisted of real

requirement specifications of software projects, the company’s online database of

completed projects and the opportunity to phone colleagues and to collect documents

from their own offices and computers while conducting the estimation work. The

software projects the participants were estimating in this study had already been or

were in the progress of being developed by other employees in the company at the

time of data collection. The participants were therefore not allowed to talk to the

employees who had worked on the development of the system during the quasi-

experiment. Further, the participants received instructions on how to employ the two

estimation approaches: bottom-up and top-down together with a work breakdown

structure that was identical to what was applied to most of the projects in the

company when estimation work was conducted. These descriptions are enclosed as

appendixes in Articles I and II in Part II of this thesis.

The participants were divided into two groups and first estimated project A and then

project B. Group 1 were instructed to employ a bottom-up estimation approach on

project A and a top-down estimation approach on project B. Group 2 employed the

 Description of empirical material and methods

 61

estimation approaches in opposite order. Table 1 below shows the order in which the

estimation approaches were employed when.

Participants group Project A Project B

Group 1 Bottom-up Top-down

Group 2 Top-down Bottom-up

Table 1 The order of estimation approach employed in the two groups.

The study was conducted at the company’s premises and the participants were seated

in a meeting room during their work process. In addition to the team, an experiment

leader was also present in the room, and a video camera recorded the team’s

discussions. The camera was placed on a tripod in a corner of the room facing the

participants. As preparation, each of the team members had spent approximately 30

minutes reading and understanding the requirement specification and the instructions

regarding which estimation method to employ and how to employ it. After the

preparation phase, the teams started the collaborative work of estimating the software

project. This phase of the study was videotaped. When the teams had agreed on an

estimate of the project, the team members individually answered a short

questionnaire that was collected after the estimation session. The time frame for the

two tasks was set at approximately 90 minutes for the bottom-up estimation task and

60 minutes for the top-down estimation task. This difference in time use aimed at

reflecting the believed difference in workload between the two estimation

approaches.

4.1.1 Description of data

As shown in Table 2, the data material that was gathered through this experimental

setup consisted of video recordings and a set of documents. These documents were

the requirement specifications, the participant’s notes and drawings, answers to a

questionnaire and the experimental information. The 17 hours of video recordings

that captured the collaborative work done by the seven different teams when

estimating the two software projects constitutes the core empirical data in Articles I

and II in this thesis. The different documents have been used to contextualise the

analysis.

Extended abstract

62

The previously reported results from this estimation study are found in Jørgensen

(2004b; 2005). The analytical scheme that Jørgensen used for analysing the video

recordings was based on a content analysis and quantification of the time spent on

different discussion categories. In addition, quantitative analysis was conducted to

measure estimation accuracy. As a part of the work of reporting these results, rough

transcripts had been made of the participants’ talk. The interactional work of

achieving estimates in teams of software professionals was, however, not attended to

in the previous reported results from this estimation study. I was allowed to use the

existing rough transcripts as the point of departure for my own analytical work.

However, they were refined through multiple viewings of the video recordings to fit

my level of analysis.

Study Type of data Description Status of data

Quasi-
experiment

Video recordings 17 hours in total. Capturing the
different teams’ discussion when
estimating two software project
using a bottom-up estimation
approach and a top-down
estimation approach.

Core data
analysed

 Documentation Requirement specification.
Technical description of the
software projects that were
estimated.

Background
and
contextualising
information

 Documentation Notes and drawings. The team
members’ notes and drawings
taken during the discussion

Additional
secondary data

 Documentation Form filled out by the different
teams with the resulting total
estimates together with answers
on a short questionnaire.

Additional
secondary data

 Experimental
instructions

Top-down and bottom-up
instructions. Work breakdown
structure.

Background
and
contextualising
information

Table 2 Type of data that were collected through the quasi-experimental setup and its status.

4.2 A naturalistic study of the planning poker approach
Article III in the second part of this thesis builds upon a set of data collected as part

of a case study of an ongoing large software development project for administrating

pensions and loans (PERFORM) during the spring 2010. The aim of this case study

is to investigate release planning in practice in a large agile software development

project. In short, agile development methodology comprises a set of best practices

 Description of empirical material and methods

 63

for delivering software on time that is of high value for the customer (Fowler &

Highsmith, 2001). At the core of agile development are customer collaboration and

the capacity of responding to changes in the requirements. This is an ongoing case

study where the first set of data was collected over a period of four months from

December 2009 to March 2010. The data collection was in large part conducted by

members of the research project: Planning in large agile software projects

(PLASMA) at Simula Research Laboratory, where the aim is to understand and

address challenges in planning effectiveness specific to large agile projects.

The following description is based on the information provided in Hannay and

Benestad (2010). Three software suppliers are involved in the development of the

project that is investigated. One is the in-house team from the customer whose

project is developed, and the two other software suppliers are external consultancy

companies. A total of 88 developers and 88 business experts participate in the work

and they are organised according to Scrum in 11 different teams. Scrum is an

“iterative and incremental process for developing any product or managing any

work” in agile software development (Sliger & Broderick, 2008, p. 324). To support

these 11 Scrum teams, there are one crosscutting architectural team, one crosscutting

test team and one crosscutting development environment team. The project has its

own premises where all the project members from the different software suppliers

are co-located and conduct their daily work.

The actual development of this large software system is planned to last for three

years altogether. The system is released incrementally with about three releases per

year. Each release is divided into a set of five to six sprints in which each sprint last

for about three weeks. The three different software suppliers are contracted on an

individual basis to deliver an agreed set of features for a given release. As a part of

realising this large project, all the development tasks that need to be completed in the

project are specified in a master plan backlog. Figure 3 shows how the different tasks

in the master plan are divided into different releases where one release has its own

specific release backlog containing the different sub-tasks that are going to be

completed in that release. Prior to the start-up of the work on a release, the key

stakeholders meet to achieve a joint understanding of the release backlog. During

this meeting, tasks are specified, changed and refined. Then the release backlog is

Extended abstract

64

split into three different sprint backlogs, one for each subcontractor containing the

different sub-tasks that are going to be completed in a sprint. Each of the

subcontractors estimates the tasks in their designated sprint backlog using their

preferred estimation method.

�������	
��	��
�������	��
�

�����
�	�

�����
�	��

�����
�	���

�������������	�

�������������	��

�������������	���

�
��������

�
��������

�
��������

��
�������	�������
 ��
���	
�����������
	 �������	��
���
	
�����������
	

�����
�
	�
��	
�����

�����
�	�������	
��	��
�

������	�������	
��	

������������
�
��������	�

	�
��	
�����

Figure 3 Illustration of how the software project is organised into the sub-tasks that are
estimated.

In addition to splitting up the tasks in different types of backlogs, the tasks need to be

specified as requirements at various levels of abstraction. These levels of abstraction

correspond to the different backlogs of tasks as shown in Figure 3. At the master

level, what are named master plan elements have been developed, approximately 300

in total. These master plan elements serve as high-level requirement specifications

and are written as user stories, one for each master plan element. A user story is a

description written in a natural language of what a user should do in a given situation

from the users’ own perspective. A typical example from the case reads: “As an

agency official, I can reconstruct NAV- and AORD information so that I can see

which data was registered at a certain point in time”. Each master plan element is

also given a priority according to how important or urgent the functionality

represented by the element is for the user. Based on the priorities and initial

 Description of empirical material and methods

 65

estimates that were collected at project inception, the master plan is divided into

three releases.

As part of the release planning, the master plan elements are further specified and

developed into design specifications that describe how the master plan elements and

the subtasks to be included in the release should be implemented. The work of

developing a design specification is a continuous task that goes on over a longer

period of time. In the design specification, the requirements are also here formulated

as user stories but the descriptions are more detailed than the ones in the master plan.

In addition to user stories, the design specification also comprises flow charts and

detailed descriptions of information useful for understanding how the task should be

implemented as well as how the user interface should be designed. Each

subcontractor develops design specifications for the tasks they are going to perform.

Prior to the start-up of the development, the number of work hours on the different

tasks needs to be estimated. The estimation work of one release was conducted in a

series of meetings where representatives from the (scrum) teams that were going to

develop the task participated. The number of participants in the estimation meetings

range from 3 to 12 persons at the different subcontractors depending on the

estimation approach employed. The estimation work of one release was spread out

on different meetings that were held during one week in March 2010.

When the estimation work of the release was finished, the total estimate that was

achieved through these meetings was presented to the project management and used

as a starting point for negotiating a target cost for the release. At this point,

adjustments to the estimates can be made. The responsibility for the target cost is

shared 50–50 between the project management and the different subcontractors for

over/under runs.

4.2.1 Description of data

The data material that has been collected in this case study regarding the estimation

work consists of a set of video recordings from three estimation meetings, one at

each of the three subcontractors. This was recorded during the week the estimation

work took place. At each recorded estimation meeting, a camera was placed on a

tripod in one corner so that it captured all the team members as well as what was

Extended abstract

66

projected on a whiteboard. The videotaped meetings lasted 2.04, 3.41 and 2.43 hours

respectively. To complement the video recordings, I collected the relevant

documents that were used in the meetings. These documents were registered in the

project-planning tools JIRA and Confluence 5. The documentation consisted of the

master plan elements with the associated design specifications and flow diagrams

that were discussed and presented with a projector on a whiteboard during the

meetings. Two of the subcontractors used the estimation approach referred to as

planning poker, which is studied in depth in Article III in this thesis. The third

subcontractor used a variant of the bottom-up estimation approach supported by the

company’s own model, which was based on historical data from the company. The

project management in the PERFORM project approved the use of this material for

my research purpose. The following Table 3 provides an overview of the type of data

and how it has been used in the analysis.

Study Type of data Description Status of data

Planning poker
study

Video recordings Three estimation meetings. In
total 8.5 hours. Two meetings
where planning poker was
used that amounts to 6 hours
and 20 minutes.
One meeting where a bottom-
up estimation approach was
used.

Core data

 Design
specification

More-detailed specification of
user stories comprising
description of how the user
stories should be developed
and flow diagrams.

Background
and
contextualising
information

 Master plan
elements

High-level requirement
specifications formulated as
user stories.

Additional,
secondary data

 Planning poker
cards

A special deck of cards that the
teams used when estimating
the effort.

Background
and
contextualising
information

Table 3 The type of data collected through the case study and its status.

4.3 Methodological considerations
To examine the collaborative activity of software effort estimation, interaction

analysis is used as a means to investigate the communicative and interactional work

5 For more information about the project planning tool JIRA and Confluence, see the
developer site where the software can be purchased http://www.atlassian.com/software/jira/

 Description of empirical material and methods

 67

that software professionals do in depth. The data materials that are used as an

empirical basis for addressing these issues are, as explained above, from two quite

different settings, namely a quasi-experimental setup and a real-life estimation

meeting taking place as part of the work of developing a large software system.

The dataset from the quasi-experimental setup was analysed in depth in Articles I

and II in the second part of this thesis. Using data from a quasi-experimental setup is

not unproblematic in a sociocultural tradition. However, the experimental setup was

regarded as being very close to a real-life estimation situation. First of all, real

requirement specifications were used from customers who had hired the specific

company to develop the systems that were estimated. Secondly, software

professionals with sufficient estimation competence from the company were hired as

participants. Thirdly, the information available for the participants when conducting

the estimation work was similar to the information the participants would normally

have when estimating software projects. In addition, Jørgensen (2004b) has also

stated that there was a striving for realism in the design of the study and that the

realism was assessed as high.

The second data set, which is analysed in depth in Article III, was collected from

authentic real-life estimation meetings. After repeated viewings of the data material,

it became apparent that even though the settings in which the data material were

gathered were different, the situations did not differentiate significantly between the

two studies. Rather, similar patterns were discovered across both data sets. Further,

three different approaches to the conducting of estimation work have been

investigated and also here similar patterns were discovered across the different

approaches.

Even though the two studies have been designed for other purposes than

investigating the interactional work that teams of software professionals do when

estimating software development projects, the video recordings provided

opportunities for focused examinations of teamwork in software estimation at a later

point. The recording from the estimation study made it possible to investigate the

kind of work that was conducted in teams when the two most common estimation

approaches were employed. This opportunity to compare models of estimation

approaches with what actually goes on when the work is conducted provides

Extended abstract

68

valuable information in regards to how the estimation practice can be supported and

improved.

The video recordings from the case study provided data from real-life estimation

meetings. Hence, it was a unique opportunity to study the estimation practice in

teams. Also, this second data set provided opportunities to confirm and strengthen

the results reported in the first two articles. Although the estimation work that is

conducted in the two different studies is organised according to different

development traditions, software effort estimation as a task needs to be done

regardless of how the software development work is organised. As my interest is to

study effort estimation as a phenomenon, it is not a problem to look at studies that

are situated in different software development traditions.

The increased use of teamwork in estimation (Haugen, 2007) calls for research that

takes teamwork processes under scrutiny and examines them in order to reveal

critical instances that may be of help to understand, support and improve the

estimation practice. The empirical material available for analysis was therefore

considered as suitable for investigating the collaborative work of software effort

estimation and to address the research questions that were raised in the introduction,

section 1.2.

4.4 Analytical procedures
Investigating the collaborative work of software effort estimation requires analytical

procedures that open up the communicative and interactional work of estimating a

software development project so it can be investigated in depth. The methodological

approach chosen as a means to do this has been interaction analysis.

4.4.1 Interaction analysis

As a method to study video recordings, interaction analysis (Jordan & Henderson,

1995) builds upon different methodological approaches, which have in common that

they approach talk and interaction. Among others these are ethnomethodology

(Garfinkel, 1984), conversation analysis (Silverman, 1998) and discourse analysis

(Wetherell, Taylor, & Yates, 2001). In their now almost classical article Jordan and

Henderson describe interaction analysis as:

 Description of empirical material and methods

 69

an interdisciplinary method for empirical investigation of the interaction of
human beings with each other and with objects in their environment. It
investigates human activities such as talk, nonverbal interaction, and the use
of artefacts and technologies, identifying routine practices and problems and
the resources for their solution (Jordan & Henderson, 1995, p. 39)

What is special about interaction analysis is the way in which Jordan and Henderson

emphasise that it is not only concerned with verbal talk but also takes into

consideration the participants use of artefacts as an important part of the analysis.

Interaction analysis rests on a sociocultural notion and

finds its basic data for theorizing about knowledge and practice not in the
traces of cranial activity (for example, protocol or survey interview data),
but in the details of social interactions in time and space, and particularly in
the naturally occurring everyday interactions among members of
communities of practice (Jordan & Henderson, 1995, p. 41)

The work by Jordan and Henderson has been taken further by Derry et al. (2010),

who addresses four specific challenges that are of importance when analysing video

recordings in depth. The four challenges that they discuss concern selection, analysis,

technology and ethics. In the following, I will explicate how I have addressed issues

concerned with the selection and segmentation of data and in addition, how I have

approached the analytical work.

The use of video recordings makes it possible “to analyze ‘situated’ action; as it

emerges within its ordinary ecologies” (Heath & Hindmarsh, 2002, p. 103).

Hindmarsh and Heath (2007) have shown how video-based studies are important for

understanding different types of work practices. Video-recorded data provide a

unique possibility for investigating details in interactional work. The reason for this

is because the data can be viewed multiple times and at different times during the

research project. Further, it can be viewed with different people. This can be quite

useful when analysing the data because a particular segment of the video can be

discussed and analysed jointly to gather different interpretations, which strengthen

the validity of the results. In addition, video data captures what people are doing and

how they are using different artefacts, which are important issues for in-depth

Extended abstract

70

investigations (Derry et al., 2010). In the three video-based studies that are a part of

this thesis, interaction analysis has been employed to investigate the work that teams

of software professionals do when estimating a software project. Interaction analysis

can be performed in different ways according to the purpose. In this thesis, the

analysis that has been conducted follows the content dimension and the moment-to-

moment interactions in the different teams to reveal the different problems the teams

engage with in their collaborative work of achieving an estimate.

In order to explore the collaborative work of software effort estimation, the details of

the interactional work of the different teams needed to be opened up and made

accessible for analysis. To do this, a set of intermediate concepts has been used as

sensitising means. These concepts vary to some extent between the different articles

as different topics have been investigated. In addition, two types of concepts are

used, empirically driven ones and theoretically driven ones. The empirical concepts

are close to the empirical material and are used to capture the kind of work that the

teams are conducting. The theoretically driven concepts are used analytically in the

analysis. These two types of concepts make it possible to focus on both the content

and the interaction that unfolds during the teams’ work process. Thus they make it

possible to look beyond what is obvious (Lindwall, 2008).

In Article I, the aim was to investigate the kind of work software professionals do

when estimating. The intermediate concepts used were orientation, elaboration,

clarification and positioning. Furberg and Ludvigsen (2008) and Rasmussen (2005)

originally developed these concepts as ways of opening up the details in interactional

work. In the analysis in Article I, these concepts have been adapted and fine-tuned

so that they fit the specific purpose of the analysis conducted. Further, they are

empirically driven, which make them suitable for explicating interactional

accomplishments.

In Article II, the aim was to identify and investigate the kind of challenges that

software professionals face in using historical data when solving present working

tasks. The intermediate concepts that were used to open up the details of the

interactional work for analysis were recontextualisation, elaboration and

clarification. Again, the concepts of elaboration and clarification were adapted to fit

the specific analysis conducted in Article II. In addition to these two empirical

 Description of empirical material and methods

 71

concepts, recontextualisation was used as an analytical term. This concept has been

derived from theory, as described in Chapter 3. However, in the analysis of Article

II, the concept is used as an analytical term to capture the ways in which the teams

are able to adapt and make meaning of past experiences and knowledge.

In Article III, the use of concepts in professional work is investigated with the aim to

achieve an understanding of how software professionals invoke different types of

knowledge when reasoning and reaching a decision on an effort estimate of a

software development project. The intermediate concepts that were used in this

article were elaboration, clarification, justification and specification, which are all

empirical. Also, here the concepts of elaboration and clarification were adapted to fit

this specific analysis. In addition, the two concepts of specification and justification

were used to grasp how a decision was reached in the teams’ collaborative work.

4.4.2 Selection and preparing for analysing interactional data

Video-based studies usually generate lots of data. This poses a challenge for the

researcher in terms of data selection. It is not possible to investigate all the collected

data in depth. The video-recorded data material that forms the empirical basis of this

thesis amounts to a total of 25.5 hours. Analysing all of this data in depth is too time

consuming for a PhD project, thus, a selection needs to be made. Selecting particular

segments of data that would at a later time be analysed in depth has been done in

accordance with the research questions of interest and the theoretical framework that

is used (Derry et al., 2010). The selection of data material that I have done

coordinates with the main topic of the three articles that have been written. However,

certain precautions were made when the data set was selected.

In Article I, the bottom-up approach was investigated in depth. First of all, the data

material were narrowed down to include only the team discussions concerning the

bottom-up approach because we wanted to investigate the kind of work software

professionals do when estimating a software project. The bottom-up approach is the

most commonly used judgement-based estimation approach amongst software

professionals. Also, a common problem in software effort estimation is over-

optimistic estimates, and thus the data material was further reduced to a team that

displayed this problem. Making the selections based on these criteria was possible

Extended abstract

72

because of the quantitative data analysis that Jørgensen (2004b) had conducted and

reported on earlier.

In Article II, the challenges software professionals face when utilising historical

information in present working tasks was investigated. First of all, I narrowed the

data down to include only the team discussions in which a top-down approach was

employed. Before selecting teams, I did an overall analysis of all the teams’

interactional processes, which showed a large variety in the teamwork that was

conducted. To display the large variety, two teams were selected that solved the task

in quite different ways, to ensure a solid dataset. Further, I ensured that the teams

that were chosen had conducted the estimation tasks in the same order since the data

was from an experimental setup. The first task was estimated by employing the

bottom-up approach and the second task was estimated employing the top-down

approach. Another careful decision was regarding the estimation accuracy of the

selected teams. Again, it was the analysis already conducted and reported by

Jørgensen (2004b) that made this possible. In addition, continuity in the empirical

data was sought so that one of the teams that was selected in Article II was the same

team that was followed in Article I.

In Article III, we investigated the use of concepts in professional work, with the aim

of understanding how software professionals invoked different types of knowledge

when reasoning and reaching a decision on an effort estimate. In this article, the data

was first narrowed down to the two teams that employed the planning poker

approach when estimating. The choice of investigating the planning poker approach

was because this made it possible to investigate the negotiations that follow a round

of planning poker in which team members need to justify and explain their individual

estimate to the group. Thereafter, we decided to analyse in depth the interactional

work conducted by one of the teams to get a closer look at the collaborative problem

solving in this work. The selection of teams was based on the richness of the

interaction. One of the teams that employed the planning poker approach was the in-

house team to the customer. This team therefore knew the project to be developed

hands on and their discussions therefore reflected that a lot was taken for granted as

common knowledge amongst the team members who were working on the project.

 Description of empirical material and methods

 73

Hence, we chose to follow the team from the external subcontractor that used

planning poker as estimation approach.

The richness of the interaction in the teams was important to ensure a solid dataset

for the in-depth analysis. It thereby formed a general selection criterion across the

three articles. Further, across Articles I and II the quantitative analysis of the entire

corpus of data conducted by Jørgensen (2004b) also provided important information

for selecting which teams to follow.

After selecting the different teams that would be subject for in-depth analysis,

transcripts of the teams’ interactions were written. Transcripts are an important way

of preparing the data for analysis. The level of details included in a transcript varies

across research traditions and can be done in several ways. As the analysis focuses

on the moment-to-moment interaction and the content, the level of details and

elaboration corresponds to these analytical interests (Jordan & Henderson, 1995).

In the data material from the experimental setup rough transcripts of the different

teams’ interactions had already been made and I was allowed to use them as a point

of departure for my own work. In the naturalistic study, however, rough transcripts

were written after choosing which team to follow in depth. A master student was

employed to conduct the work of transcribing the team’s interactions roughly. These

rough transcriptions were used to “flesh out”, as Derry et al. (2010) puts it, which

segments of data were important to pursue in-depth analysis of. Thereafter, I wrote

more-detailed transcriptions of the different segments that were selected.

4.4.3 Segmentation and presentation of data

An empirical sensitive analysis was first conducted of the different teams’

interactional processes. This was done through repeated viewings of the video

recordings together with repeated readings of the rough transcripts. Through this

empirically sensitive analysis, I formed an understanding of what kind of work the

teams conducted, and specific patterns emerged in the data that allowed me to select

extracts. The segmentation of extracts in the different articles was done in slightly

different ways.

Extended abstract

74

In Article I, extracts were chosen that followed the sequential order of events with an

aim to demonstrate the kind of work that was conducted to achieve an estimate.

Hence, the analysis followed the content dimension of the different events that

occurred along a timeline. In Article II the interactional process of two teams was

investigated. Through the initial empirically sensitive analysis, I was able to

indentify the key challenges that the software professionals faced when using

historical information in their work. In this case, the selection of excerpts were an

event sampling of the key challenges; instead of following a sequential order of

events, the analysis is presented thematically to demonstrate the different ways of

overcoming the challenges that were faced. In Article III, the collaborative work of

one team was followed. The video recordings were used as an ethnographic frame to

give an overview of the material and the setting for estimation. After multiple

viewings of particular episodes a few episodes that demonstrated typical actions and

sequences of talk were chosen. These episodes were selected based on what seemed

to be important to the data and the activity itself, which in these data was the goal of

reaching consensus. Further, it was also a theoretical sampling based on how

estimation practice is conceptualised in software development.

After choosing particular segments that were interesting to pursue for in-depth

analysis. I wrote up detailed transcriptions, ensuring that both talk and important

actions that were performed were included. To display the transcripts, I have

followed what Jordan and Henderson (1995) called “parallel columnar transcripts”.

Here, it is possible to include both verbal talk and also different activities that

happened in side-by-side columns. Three different columns were used in Articles I

and II and two columns in Article III. The first column included the numbered turns

in the interaction together with initials indicating who did the speaking. The second

column included the verbal communication between the participants placed

horizontally in line with the speaker in column 1. The third column was included in

the transcripts in Article I and II and consisted of the description of actions. These

were placed horizontally in line with the utterances that were spoken when the action

took place. In Article III, the description of relevant actions was included in the

running interactions. After I finished making the detailed transcripts for the different

extracts, I began the analytic work.

 Description of empirical material and methods

 75

In conducting the analytic work, I read the different extracts multiple times and also

discussed them with supervisors and colleagues in sociocultural research groups at

both the University of Oslo and the University of Gothenburg. Typically, several

more extracts were analysed than what was included and displayed in the different

articles. All the analyses were conducted on transcripts in Norwegian—hence, the

transcripts were translated into English for the purpose of communicating the

research in international articles. Doing this ensured that important information was

not lost for analytical purposes in the translation (Temple & Young, 2004). Further, a

professional translator with a background in software development was hired to

translate the transcripts into English.

4.5 Doing credible research
Doing credible research is just as important when using qualitative data as it is when

using quantitative data. However, the way credibility is reached is slightly different

due to the difference of the data material. While quantitative research has established

forms and ways of doing this such as retesting and sampling data, qualitative

research has other ways of achieving credibility. In the following, I will explain what

I have done to ensure the credibility of the research that is a part of this thesis. I will

start by explaining how reliability is achieved before I continue with discussing the

validity of the research and issues concerning generalisation.

4.5.1 Reliability

Reliability in qualitative research concerns the quality of the data material that has

been gathered to investigate a particular phenomenon. In my research project, the

phenomenon investigated is collaborative work in software effort estimation. To

investigate this phenomenon, I have used two different types of data, in which three

different estimation approaches were employed. The first data set that was used in

Articles I and II was video recordings gathered through an experimental setup in

which teams of software professionals estimated real software development projects.

The second set of data, used in Article III, was video recordings of real-life software

estimation meetings where teams of software professionals estimated parts of a

specific release of a software development project. Even though these two data sets

were gathered from two different settings, one experimental and one naturalistic, the

data displayed the same type of characteristics concerning how the teamwork was

Extended abstract

76

conducted. For example, the extensive sense-making processes that were necessary

to achieve a shared understanding of the requirement specification, i.e., estimation

task, were found in both data sets. Also, the need to elaborate beyond the information

given in the different requirement specifications was evident across the data sets.

That the same characteristics were identified in both the data from the experimental

setup and the data from the naturalistic setting strengthens the reliability of the

present research.

Whether tape recordings of natural occurring talk might influence the participant’s

interactions in some way is an issue that has been much debated. Will the presence of

a recording device inhibit the interaction, or affect what occurs in the estimation

work? Jordan and Henderson point to the fact that participants get accustomed to the

presence of a camera quite quickly: “In the long run, and in particular as people

become involved in tasks other than worrying about the camera, camera effects

visibly wear off” (Jordan & Henderson, 1995, p. 56). The research presented in this

thesis focuses on how the participants reason to reach a decision on an effort estimate

in their collaborative problem solving and not their actions in other respects. The

actual estimation work was therefore not particularly affected by the presence of a

camera. In the two data sets used as an empirical basis for this thesis, orientation

towards the recording devices occurred just a few times. In the experimental setup a

joke was made concerning the use of the recordings, that it was a good thing that the

recordings were not for management purposes. In the naturalistic study, in particular,

in one episode, orientation towards the camera was obvious. This occurred when a

new participant entered the meeting room a while after the meeting had started, and

another participant gestured that he should move to the left a little bit so as to not

block the camera view. However, it is difficult to be certain that the participants’

collaborative work was not influenced at all. One way of assessing the potential

effects of the camera’s presence is to analyse the interactions in which the

participants orients towards the fact that their talk is being recorded (Speer &

Hutchby, 2003). This kind of assessment has not been done in a systematic way on

the video-recorded material included in this thesis; however, this does not affect the

quality of the data in relation to the phenomenon that is being investigated.

 Description of empirical material and methods

 77

The two sets of video recordings were analysed by means of interaction analysis. The

ways in which the video recordings are described and transcribed are an important

part of increasing reliability. My efforts regarding this issue have been to make the

data and research process as transparent as possible. Therefore, I provided thorough

descriptions of the context in which the two different data sets have been gathered. In

addition, I have provided a thorough description of the way the data material have

been segmented and the selection criteria of choosing particular episodes for an

analysis in depth. This thesis is article based, which means that the research has been

written up as scientific articles. The journals to which these articles have been

submitted to or published in usually have a word limit, thus it is often the empirical

description that suffers on this account. Therefore, a detailed description of the

empirical context and the segmentation of data are included in this extended abstract.

Further, the transcripts have been written and presented in such a way that they are

easy to follow, in terms of both readability and of following the analysis that has

been conducted of the different excerpts. When employing interaction analysis, the

level of detail that is included in the transcripts is adapted to the analytical interest of

the researcher. As the level of analysis and the focus of the research within this thesis

are not on a detailed linguistic level, but focus on the content dimension and the

interactional work, I have chosen to include a set of conventions that I perceive as

relevant to the level of analysis that is employed in my research. In the following

Table 4, the different transcription symbols that have been used throughout the

transcripts in the three articles are presented.

Notation Meaning

[] Indicating overlapping talk between participants

(x,x) Indicating a pause in the interaction timed in seconds

… Indicating a short break in a participants utterance

< > Comments on actions

() Indicating that it was not possible to interpret what was said

. , ? Punctuation, commas and question marks have been used to ease the reading
of the transcript

Table 4 Transcript notations used in the three articles.

The way in which the transcripts are displayed in the three articles makes it possible

for readers to follow the analysis step by step and also to read and follow the

Extended abstract

78

interaction as it unfolded. In addition, what the participants did and how they orient

towards the material artefacts in their work process could be followed, as

descriptions of the participants’ actions were included in a separate column in

Articles I and II. Thus, it provides the reader with a possibility to form his or her own

opinion of the analytic work that has been conducted and if the interpretations that

are made are reliable.

As a last point, I want to emphasise that the analysis was conducted on the

Norwegian transcriptions, thus the transcriptions were not translated into English

before the analyses were complete. This was done to avoid losing important

information in the translation, which can be problematic due to language differences

(Temple & Young, 2004).

4.5.2 Validity

The issue of validity is concerned with whether the claims that are made about the

phenomenon that is studied can be regarded as solid and thus fits the phenomena that

it refers to (Silverman, 2006). Hence, validity is concerned with how the data

material is interpreted and the premises that the interpretations are built upon. My

main aim with the research that has been conducted as part of this thesis was to

investigate the collaborative work in software effort estimation. In the following, I

will argue that the video recordings of estimation teams, where software

professionals worked together to achieve an effort estimate of a software

development project using three different estimation approaches, served the purpose

of answering the research questions outlined in this thesis.

This extended abstract describes in detail the context and setting of the study, the

participants and also how I have used interaction analysis as a means to investigate

the video recordings. The intention with providing such a thorough description is to

make it easier for the reader to follow how the analysis has unfolded as well as assess

the claims that are being made about the phenomenon investigated. It is thereby a

means to strengthen the validity of the research that has been conducted (Creswell &

Miller, 2000).

In the process of writing up the analysis, resources from two different research

communities have been drawn upon in terms of theory, methods and domain

 Description of empirical material and methods

 79

knowledge. My point of departure when starting the work on the research presented

in this thesis was within the domain of software effort estimation. Given that this

thesis is interdisciplinary, knowledge and understanding of the domain software

effort estimation as well as of the theory and methods employed were needed. To

obtain this, supervisors from different fields were recruited that have the competence

necessary for studying estimation and employ the chosen theoretical perspective and

methods. Further, the theoretical perspective and methods that have been used were

suitable for studying the collaborative work of software effort estimation.

Establishing this close connection to two communities of research, by having

supervisors representing both, was an important part of the work to ensure that the

interpretations and analysis conducted were regarded as valid across both research

communities. This also strengthens the validity of the research that has been

conducted as part of this thesis.

The different excerpts and initial analysis have also been presented and discussed

with colleagues in sociocultural research groups at both the University of Oslo and

the University of Gothenburg. The critical comments and also the collaborative

efforts of analysing jointly the excerpts strengthen the validity of the analysis in the

three articles that have been conducted, because the quality has been controlled on

different stages of the work process (Kvale & Brinkmann, 2009). Further, in the

different articles that constitute Part II of this thesis, all the transcripts that have been

analysed in depth have been included in the running text. Hence, possibilities for

readers to form their own alternative interpretations are made available.

One validity issue that has been highlighted in the study of social interactions is

validation through the next turn (Peräkylä, 2011). In interactions, the utterances

produced are interpreted by the other participants, which is usually displayed in the

next set of actions. By including the transcripts of the analysed episodes in the

different articles, it is made transparent if the interpretation and analysis of the

utterances are in accordance with how the participants treat the utterances in the next

turn or not. Validation through the next turn also relates to what Maxwell (2002)

named interpretative validity, where the interpretative validity is concerned with the

inferences made from actions made by the participants in the context they are

studying. Such interpretative validity has been ensured by drawing on resources from

Extended abstract

80

the two research communities that have been involved in this work through

supervision. The articles have also been submitted to scientific journals and thus

have been or are in the process of being peer reviewed as part of the process of being

accepted for publication. Accordingly, I will argue that this also strengthens the

validity of the claims that are being made in the analysis.

4.5.3 Generalisation

In qualitative research, the type of generalisations that are made are called analytical.

Analytical generalisation is based upon an analysis of similarities and differences

between two situations. In order to analyse similarities and differences, thick

descriptions of both the context in which the study was conducted and the context to

which one wishes to generalise are necessary (Schofield, 2002). Schofield proposes

three targets of generalisation: to what is, what may be and what could be (Schofield,

2002, p. 80). Generalising to “what is” concerns findings about what is typical,

general or common in a situation. When aiming at generalising to “what may be”,

issues for the future is the main concern, in terms of what are the current trends and

what is likely to happen in the future. The third target for generalisation is “what

could be”. In this context one focus on situations that are ideal or exceptional in

some ways and investigate them to see what is actually taking place here. Another

concept that has been raised concerning generalisation issues is “possibility”.

“Generalising to social practices that are possible, i.e., possibilities of language use,

are the central objects of all conversation analytic case studies on interaction in

particular institutional settings” (Peräkylä, 2011, p. 375). Given these different ways

of generalising in qualitative research, Derry et al. (2010) emphasise the importance

of explicating the logic of inquiry that is used in the study. This is important to be

able to meet criticism about the generalisability of findings. It therefore includes

explicating the approach that was used for selecting episodes and recordings and the

processes for which explanations and claims have been generated.

The research within this thesis has studied different approaches to estimation work

independent of each other and under different conditions. As part of increasing the

reliability and validity of the research, I have provided thorough descriptions of the

context in which the studies were conducted, the methods used and the analytical

procedures for analysing the video recordings. Thus, the logic of inquiry that Derry

 Description of empirical material and methods

 81

et al. (2010) emphasise as important has been thoroughly explicated. Moreover, to

ensure valid interpretations, resources from two different research communities have

been drawn upon in terms of theory and domain knowledge. The way in which

reliability and validity issues have been attended to and ensured in this research has

made it possible to make some generalisations regarding general characteristics

across the three estimation approaches that have been investigated. The most evident

one was the need for sense-making processes. Across the analyses, it was found that

the different teams studied had to go through sense-making processes in order to

make sense of and achieve an understanding of the estimation task. This is a finding

that has both theoretical and empirical support across the estimation approaches

investigated and across the teams that were investigated. Thus, it can be considered a

general characteristic in this type of collaborative work and can be considered to be

of the “what is” kind of generalisation using Schofield’s (2002) terms. Further, the

analytical generalisations that are made in this thesis are raised as more general

claims in the concluding section of each of the three articles, in which generalisations

are based on relating the findings to the theoretical point of departure and the review

of related research.

 83

5 Summary of the articles
5.1 Article I
Børte, K., & Nerland, M. (2010). Software effort estimation as collective

accomplishment: An analysis of estimation work in a multi-specialist team.

Scandinavian Journal of Information Systems, 22(2), p. 65–98

This article examines how a team of software professionals goes about estimating the

effort of a software project using a judgement-based bottom-up estimation approach.

Providing realistic software effort estimates have been shown to be a huge challenge

in the software industry. It has been reported that as much as 70–80% of software

development projects overrun their estimates (Moløkken-Østvold & Jørgensen,

2003). Software effort estimation is also an important part of software development

as it is used for purposes such as budgeting, project planning and control (Boehm et

al., 2000; Grimstad, 2006). Previous research on judgement-based software effort

estimation has its roots in the cognitive tradition of empirical research and has

mainly been concerned with investigating the individual reasoning when expert

judgements are made.

Estimation work is increasingly carried out as teamwork in the industry (Haugen,

2007). In spite of this the research on judgement-based estimation processes in

groups seems to be limited. Studies of collaborative work have, however, been

conducted in other areas of software development. For example have cooperative

work in software testing been researched (Martin et al., 2008), how collaborative

processes are organised in distributed software teams have been investigated (Boden

& Avram, 2009) and the way planning are recurrent process in software development

have been studied (Rönkkö et al., 2005). The use of qualitative methods in software

engineering research is scarce (Dittrich et al., 2007). Thus, few studies provide a

minute analysis of planning activities as such. This article examines the details of

how software professionals identify, explore and negotiate the issues at stake in the

different estimation steps and how they make further collective decisions.

Extended abstract

84

By employing a social practice perspective that highlights the distributed character of

expertise and perceives actions as mediated by cultural tools, this article analyses the

interactional process through which the estimation tasks were collectively explored,

negotiated, and accomplished. An analytical focus on the communicative and

collaborative aspects of software effort estimation has not been employed in

estimation research before. The analysis of the team’s interaction was guided by the

following research questions:

− What characterises software effort estimation as a collaborative activity in a

multi-specialist team?

− What types of communicative and explorative work are needed to accomplish the

planning task and agree on an estimate?

The data that constitute the empirical basis in this article consisted of video

recordings that were gathered as part of a large software effort estimation study in

the Norwegian branch of an international IT-consultancy company in 2002. The

design was quasi-experimental in character in the sense that seven estimation teams

were organised and asked to estimate two legitimate software projects using two

different estimation approaches known as bottom-up and top-down. The data

material was narrowed down to include in-depth analysis of one team that employed

the bottom-up estimation approach. The analytic focus is on what kinds of problems

the team needs to explore and what they collectively achieve by the actions taken.

The video recordings were analysed by means of interaction analysis.

The findings show how software effort estimation is carried out through a complex

series of explorative and sense-making actions, rather than by applying assumed

information or routines. The quantification of the number of work hours is

accomplished through extensive elaboration and clarification in which expertise is

mobilised and coordinated through social interaction. Interpreting the requirement

specification posited a challenge for the team and the sense-making processes called

for quite thorough technical elaborations because the information provided in the

requirement specification was ambiguous and thus not possible to use in a direct

manner. The team members had to move back and forth between technical

elaborations and integrative windups as new information or ways of understanding

emerged. The sense-making processes thus alternated between addressing the

 Summary of the articles

 85

planning aspect of the estimation practice—that is, questions related to how the

software project could be developed and organised—and the problem-solving aspect

of the practice, reflected in issues and questions that needed further elaboration and

clarification. The conducted planning work is both imaginative and future oriented

and thus it does not rest upon existing skills and routines, but is accomplished

through a series of tool-mediated explorative and sense-making actions. In this work

process, the requirement specification serves both as a recurrent object for

exploration and as a tool for collaborative problem solving. Thus the requirement

specification served several mediating functions in the interactional process, through

which expertise was mobilised and coordinated. The article argues that to grasp the

complexity of software estimation, there is a need for more research that accounts for

the communicative and interactional dimensions of this activity and that existing

research needs to be supplemented and expanded to incorporate methodological

approaches that are sensitive to the communicative and interactional dimensions of

this activity. Moreover, by revealing the interactional details of a planning activity,

the article contributes to our understanding of the future-oriented and constructive

dimensions of social practices.

Extended abstract

86

5.2 Article II
Børte, K. (submitted). Challenges when utilizing historical information in present

working tasks: An analysis of the use of analogies in team-based software effort

estimation.

Making use of historical information from databases and previous experiences when

solving present working tasks is a complex issue. Numerous workplaces develop

databases and archives to make historical information accessible; however, many

also experience difficulties in utilising such information in productive ways. In this

respect, software effort estimation is an interesting case as it is often organised as

collaborative work. Moreover, specific estimation approaches request the use of

historical information as a way of achieving an estimate. Software effort estimation

is considered an important aspect of software development work (Kjærgaard,

Nielsen, & Kautz, 2010), as it is used for planning, controlling and budgeting

software projects (Boehm et al., 2000). This article examines the collaborative work

of how teams of software professionals go about to use historical information, and

what challenges they face, when applying a specific estimation approach called

analogy-based, top-down estimation. An analogy-based, top-down estimation

approach is an idealised model of how to achieve an estimate by using historical data

from previously completed software projects, which are identified by analogies.

Researchers have argued that this estimation approach is more efficient, less time

consuming and therefore cheaper to apply than a bottom-up approach (Boehm,

1984). The argument is also made that it can be applied without much knowledge of

how to build software, and that it may reduce the bias towards over-optimism, due to

the greater use of historical data from previous projects (Moløkken-Østvold &

Jørgensen, 2005). The use of analogies in software effort estimation has been

investigated in previous research, which have revealed that there are difficulties

connected both to identifying and using historical data. However, few studies have

looked into what causes these difficulties and how they are dealt with.

By employing a sociocultural perspective on knowledge and communication, this

article analyses the collaborative process through which two teams of software

 Summary of the articles

 87

professionals achieve an effort estimate using an analogy-based, top-down estimation

approach.

The following research questions are addressed:

− What challenges do teams of software professionals face when applying an

analogy-based top-down estimation approach and how do they occur?

− What kind of work is needed to utilise knowledge from former software projects

when estimating new ones?

The empirical basis for the analysis in this article was videotaped data from a large

quasi-experimental software estimation study conducted in the Norwegian branch of

an IT-consultancy company in 2002. Seven estimation teams estimated two real

software projects employing two different estimation approaches known as top-down

and bottom-up. The data material was narrowed down to include an in-depth analysis

of two teams that employed the top-down estimation approach. The analytical focus

is on explicating the challenges encountered by the teams when setting out to use

historical information when solving present working tasks, how they occurred and

how they were dealt with in the teams’ collaborative work process. The video

recordings were analysed by means of interaction analysis.

The findings revealed three concrete challenges related to the use of historical

information in the teams collaborative work: 1) finding similar completed projects,

2) exploring and negotiating comparable dimensions and 3) making comparisons to

quantify the number of work hours. To overcome these challenges, the teams

engaged in collective remembering and recontextualisation processes and

constructed boundary concepts. Through collective remembering, knowledge and

experiences were shared and relevant historical information was jointly remembered

and explored in detail to achieve a shared understanding for conducting the work.

Achieving such shared understanding was important and both the project to be

estimated and potential relevant historical information were investigated in detail

through communicative work. The findings revealed how the teams performed a

double sense-making process to achieve this and to find possible connection points

between the present estimation task and historical information. Further, the teams

performed extensive recontextualisation processes of the historical information to

adapt it so that it could be utilised in the new task. In these processes, meaning

Extended abstract

88

potentials were realised and meanings were generated, articulated and reinterpreted

in the teams’ communicative work by way of elaboration and clarification. When

possible connection points were found between the project to be estimated and

historical information, the teams constructed boundary concepts that could facilitate

the use of knowledge across contexts.

The article concludes by arguing that the idea of analogy-based, top-down estimation

does not take sufficiently into account that knowledge needs to be recontextualised to

become meaningful in new situations. The analogy-based, top-down estimation

approach rests upon the idea that mapping knowledge between contexts is possible;

however, the analysis in this article revealed the importance of sharing, exploring

and adapting knowledge, experiences and understandings through communicative

work to be able to utilise historical information across contexts. This implies that

communicative work is necessary for utilising historical information across contexts

and that problem solving is grounded in the communicative work conducted through

elaborations, specification and negotiations between team members. This article

therefore contributes to the research field of software effort estimation in that it

provides an understanding of the communicative work required for using historical

information when solving present working tasks. However, to understand and

facilitate these processes in estimation work, more research is required to account for

the communicative and collaborative dimensions of this activity.

 Summary of the articles

 89

5.3 Article III
Børte, K., Ludvigsen, S., & Mørch, A. (submitted). The role of concepts in expert

work: Unpacking ‘the magic step’ in software effort estimation.

This article examines the use of concepts in professional work by analysing the

specialised work of software effort estimation. The aim is to achieve an

understanding of how software professionals invoke different types of knowledge

when reasoning and reaching a decision on an effort estimate of a software

development project. When engaging in problem solving, professionals draw on

resources that originate in research and developmental work in a particular

knowledge domain together with experience-based knowledge. Through education

and training, professionals acquire a professional language and artefacts that they use

to solve work-related problems. Language consists of concepts that do not in general

have any set of fixed meanings, but rather they need to be understood in relation to

what people are trying to achieve in collaborative activities.

Many studies of expert judgement-based estimation use the individual as the unit of

analysis and the social aspects are rarely taken into account. In estimation work, the

step from reasoning to deciding on an effort estimate has been referred to as “the

magic step” in software effort estimation (Jørgensen, 2005). This is because software

professionals have not been able to explain how they reached the decision on a

particular number of work hours. However, new estimation techniques, such as

planning poker (Grenning, 2002), which facilitate social interaction to a larger

extent, have been developed. In this article, the planning poker technique is

investigated in depth to study the use of concepts in the work of professionals as well

as how explanations are produced. The planning poker technique provides a good

case for studying this as it facilitates social interaction during the construction of an

estimate by asking for justification when participants present different estimates. It is

in social interaction that the individual participant’s knowledge gets connected to the

concepts and artefacts that are part of the collective resources needed by the

participants to activate and reason with when achieving an estimate.

Extended abstract

90

We propose that by taking a socio-genetic perspective on concepts in activities,

which allow for a focus of three interrelated levels of understanding—institutional

practice, individual knowledge and dialogue and activity—the ways in which

software professionals reach a decision can be unpacked. The following research

questions raised in this article are:

− Which types of concepts create the direction of the participants’ talk and guide

their decision-making process?

− What kinds of knowledge are invoked in the work of achieving an effort estimate,

and where does this knowledge come from?

To investigate these questions, the empirical focus is on how a team of software

professionals creates estimates of the work effort needed to develop new components

of a software system using the planning poker estimation technique. The data

material that constitutes the empirical basis for the investigations are video

recordings of real estimation meetings of a large ongoing software (re)development

project governing public pensions and loans. In the analysis of data we used

principles from interaction analysis, meaning that we used the ethnographic video-

data to frame and analyse the selected episodes, considering them to be

demonstrations of sense-making and participation structures. The interactional

achievements were interpreted through the use of the analytical categories of

clarification, elaboration, justification and specification.

The results from the empirical analysis showed that the user story mediates between

the historical practices on the one hand and between the use of generic and specific

knowledge on the other, to make assumptions clear and specify what the problem is

about. The user story as mediated resource makes it possible for the participants to

invoke the different types of knowledge involved. The analysis revealed how

concepts from the knowledge domain are used as framing elements for how the task

should be approached and accomplished. Through the communicative work, the

participants reach a level of intersubjective understanding in which they share

enough information that serves as a common ground for taking the next step in the

problem-solving activity. In the talk amongst the participants, concepts are not used

in a systematic way. Domain-specific concepts are used to frame the task but it is

historical experience that seems to be the dominating orientation when it comes to

 Summary of the articles

 91

specifying the work needed to solve the task. The domain-specific concepts seem to

be invoked only when there is a problem that needs to be framed or reframed.

The phenomenon is interpreted at the intersection between the institutional practice,

the individual knowledge and the dialogue and activity. The analysis shows that the

participants bring systematic knowledge from the domain of information systems and

personal experiences, when negotiating about and framing how the task should be

solved. Moreover, the interaction oscillated between the institutional level and the

individual level through the level of social interaction. At the institutional level,

reaching a consensus is achieved through justification by connecting the social

aspects and the use of different types of technical knowledge. The different

analytical concepts explicate how this work is done at the level of social interaction,

by processes of narrowing down and achieving a shared, satisficing understanding

and decision making on an estimate, whereas the domain-specific knowledge serves

to frame the task.

The article reformulates the notion of the magic step proposed by (Jørgensen, 2005)

and concludes by arguing that the magic step is unpacked in the analysis of the social

interaction. In social interaction, the concepts used are anchored in the knowledge

domain of software engineering and in the historical experiences of the participants

and subsequently become activated. Moreover, the step from reasoning about the

task to deciding on an estimate is not perceived as magical, but a step that is

categorically different and thus differentiating two conceptual schemas. The

theoretical assumptions used as points of departure for investigating a specific

phenomena matters in terms of understanding a phenomenon in different ways. In

our view, it is through detailed multi-level analysis of how estimation practice is

framed within larger social and knowledge structures that we can improve practical

procedures for estimation work.

 93

6 Contribution and conclusion
The research within this thesis focuses on the social interaction of software effort

estimation work and seeks to understand it as collaborative planning activity.

Through the review of relevant research within the field of software effort estimation

that was presented in Chapter 2, a focus on the social aspects of estimation work was

justified. To investigate this, an appropriate theoretical perspective and related

methods are needed. In this extended abstract, I have provided a conceptual

framework for how the collaborative work in software effort estimation can be

understood and explicated. In addition, I have provided a thorough description of the

methods and analytical procedures that have been employed in the research

presented in this thesis and summarised the results of the three articles that have been

written as part of this work. The three articles have together investigated and

provided answers to the following three sub-research questions:

i) What characterises software effort estimation as interactional

accomplishments?

ii) What kinds of challenges do estimation teams face when utilising

historical information in present working tasks?

iii) In what ways are estimation work mediated by cultural tools?

In the following, I will synthesise the research results from the three articles that

constitute Part II of this thesis and discuss the empirical, theoretical and

methodological contributions of the research presented in this thesis. As a part of the

empirical contribution, I will also explicate and discuss how software effort

estimation can be understood as collaborative planning activity, which is the main

research question addressed in this thesis.

6.1 Empirical and theoretical contributions
The empirical contribution in this thesis is twofold. Firstly, it provides an

understanding of software effort estimation as collaborative planning activity and,

secondly, it explicates the complexity of software effort estimation work. To discuss

Extended abstract

94

these issues, I will present three process models that describe different aspects of the

collaborative work in software effort estimation. These models are derived from the

findings and need to be understood in relation to each other. Together, they show

how software effort estimation can be perceived as collaborative planning activity

that plays out in social interaction by way of meaning-making and

recontextualisation processes and different types of tool-mediated actions. Hence,

they represent the theoretical contribution of this thesis.

The background for proposing these process models is an in-depth investigation of

three different estimation approaches that have been explicated in the three articles

that constitute Part II of this thesis. The three approaches studied are named bottom-

up, top-down and planning poker (Cohn, 2006; Grenning, 2002; Heemstra, 1992;

Jørgensen, 2004b; Sommerville, 2007). Previous studies of these approaches have

been conducted with a focus on the individual. The bottom-up and the top-down

approaches prescribe two quite different approaches to estimation work, which were

described in Chapter 2. The planning poker technique can be understood as a variant

of the bottom-up approach. It has been specifically developed and tailored for

estimating in teams when agile development practises are followed. However, when

employed in practice, all three of these approaches will be realised quite differently

than the proposed course of action following a specific estimation approach. Hence,

it will not be a one-to-one mapping between the idealised course of action proposed

by the three estimation approaches and what actually takes place empirically when

teams use these approaches. This is because the different estimation approaches

represent principles and orders for actions and are thus guides to a process. It is

therefore important that these models are treated as approaches to different ways of

conducting estimation work and not as models of how estimation work is conducted.

The research presented in this thesis has, however, revealed a common problem

across the three estimation approaches that have been investigated. This problem is

related to the fact that the three approaches do not take sufficiently into account the

necessity of sense-making and specification work that is needed in complex

collaborative problem solving such as software effort estimation.

Although there is a need for normative approaches and models that give direction

and guidelines for how to conduct estimation work, understanding estimation work

 Contribution and conclusion

 95

and providing descriptive process models is also important if the aim is to understand

and support the practice of software effort estimation. The research in this thesis

contributes empirically in this respect by proposing three process models. The three

process models proposed show how specification and sense-making processes are

conducted and accomplished as interactional achievements in the collaborative work

of software effort estimation. Through investigating collaborative work in software

effort estimation it has been possible to explicate the challenges faced by software

professionals in this work. The process models presented therefore mark a

contribution with respect to expanding and clarifying the investigated estimation

approaches in order to account for teamwork processes in software effort estimation.

Moreover, the process models have an analytical purpose in contributing to the

understanding of the complexity of software effort estimation work.

Other researchers have also been interested in the way models and methods in

software development are enacted in software processes. For instance, Cohn et al.

(2009) have investigated the interplay between software process models and software

process enactments. They found that the software process is a generative system,

which emerges through conversation in the interplay between models and enactments

in which artefacts plays a central role. The research presented in this thesis relates to

Cohn et al. (2009) in the sense of how to understand models of estimation

approaches that prescribe a description for how the work can be conducted and what

is actually taking place in practice. Cohn et al. (2009) have looked at the role of

artefacts and software process in software development by following regular work in

progress in two software companies over a week. They collected data through

interviews, observations of meeting and work in progress as well as by documenting

the artefacts that were used in the work. I have on the other hand investigated the

work of solving one specific and important task in software development over a short

time span. Here, the details of software professionals’ collaborative problem solving

in estimation work were outlined by following the micro processes in moment-to-

moment interaction.

In the following, I will discuss and present three process models of software effort

estimation work and show how they together provide an understanding of software

effort estimation as collaborative planning activity.

Extended abstract

96

6.1.1 Software effort estimation as collaborative planning activity

The three articles within this thesis have investigated three different approaches to

estimation work in teams of software professionals: the bottom-up approach

(Heemstra, 1992; Sommerville, 2007), the top-down approach (Heemstra, 1992;

Jørgensen, 2004b) and the planning poker technique (Cohn, 2006; Grenning, 2002),

which is understood as a variant of the bottom-up approach. Previous researches on

judgement-based estimation that are related to these approaches have for the most

part been conducted with a different theoretical underpinning than the research

presented in this thesis. In most previous research studies, the individual has been

taken as the unit of analysis, and experiments have been the dominating research

method (Halkjelsvik & Jørgensen, submitted; Haugen, 2006; Jørgensen, 2004b;

Moløkken-Østvold et al., 2008). These researches have, however, provided important

contributions with regards to understanding what influences the decisions of software

professionals on an estimate, which have been shown in, for instance, Jørgensen and

Sjøberg (2001), Jørgensen and Carelius (2004), Jørgensen (2006) and Jørgensen and

Halkjelsvik (2008). In addition, these researches have explored which estimation

approach yields more realistic estimates, shown in, for instance, Jørgensen (2004b),

as well as the question if team-based estimation might yield more realistic estimates

than individual estimation, shown in, for instance, Moløkken-Østvold and Jørgensen

(2004) and Moløkken-Østvold et al. (2008)

Since I have employed a sociocultural perspective in my research, this has allowed

for a different focus, a different unit of analysis and a different set of premises for

investigating and understanding estimation work. With a focus on the interactional

and communicative work I have explicated the teamwork processes when teams have

used the three estimation approaches investigated. The results from my analyses

show that a similar type of work process is found across the three estimation

approaches studied. However, there were some variations due to specific requests or

rules following a specific estimation approach.

The main finding across the three estimation approaches, which also was common

among all the teams studied, was the need for sense-making processes. Rather than

acting on the assumed information directly, the teams needed to make sense of the

task, by interpreting the requirement specification or the user story to achieve a

 Contribution and conclusion

 97

shared understanding of what the task was about. Such an understanding needed to

be achieved in interaction as a way of making the collaborative problem-solving

work move on. The degrees of shared understanding that the participants achieve in

their work can be labelled satisficing (Børte, Ludvigsen, & Mørch, submitted). The

use of the label satisficing was proposed by Simon (1996) and refers to, here, the fact

that the understanding achieved is “good enough” to take the next step in the

problem-solving activity, rather than perfect or correct. Jørgensen (2004b) showed in

his study of the bottom-up and top-down approach that a large amount of time was

spent on the discussion category he called “specification and project understanding”.

He reported that when the teams employed the top-down approach, 31% of the time

was spent on this discussion category and when the teams employed a bottom-up

approach, 49% of the time was spent on this discussion category. The research

presented in this thesis has, in addition to finding similar patterns as Jørgensen,

expanded his findings. While Jørgensen (2004b) used an analytical scheme based on

quantification and content, I have demonstrated and specified how the sense-making

occurred through the teams’ moment-to-moment interactions. In other words, I have

explicated how the work is done. To achieve this satisficing, shared understanding,

results across the three articles in this thesis showed that this takes place by way of

elaboration, clarification and specification. For instance, through elaborating on

technical details and clarifying issues of ambivalence, expertise was mobilised

through the communicative and interactional work that was conducted. What is

interesting about these sense-making processes that are conducted to achieve this

satisficing, shared understanding is the way the communicative work goes beyond

the information that is initially given in the requirement specifications. This will be

discussed in the following.

Through a series of experiments, Jørgensen and Grimstad showed how the

information provided in the requirement specification could influence the decisions

on an effort estimate (Grimstad & Jørgensen, 2007a; Jørgensen & Grimstad, 2008).

These authors were able to detect and establish a connection between what kinds of

information were provided in the requirement specification, in terms of irrelevant

and misleading information, and the achieved effort estimates. However, I have

expanded these findings by describing how teams make sense of the information

provided in the requirement specification. In addition, the analyses across the three

Extended abstract

98

articles have demonstrated how the requirement specification did not contain enough

information to conduct the estimation work and the teams therefore needed to add

information in the form of assumptions regarding the context, customers and

technical platforms. Rönkkö et al. (2005) made a similar point in their study of the

use of planning documents in software development, where it was found that the

requirement specification did not prescribe the work needed for implementation.

Therefore, the project members had to develop new requirements as the work went

along. However, what differs between this study and my analyses is first of all the

fact that the time span that has been investigated is different. While I have

investigated the moment-to-moment interactions when a specific task is solved,

Rönkkö et al. (2005) have looked at a much longer time span that goes across

different project phases. The focus on the interactional details within a limited time

span made it possible to reveal how issues of ambivalence that were discovered were

clarified and specified through technical elaborations. It also made it possible to

show how assumptions were made about an imagined future context through sense-

making processes in the moment-to-moment interactions. Thus, the planning aspect

comes into play as a way of solving the estimation task and not as a way of creating

more concrete requirements for development purposes.

In this way, the sense-making processes open for explicating the planning aspect of

software effort estimation by revealing how the teams made assumptions about a set

of attributes that are assumed to exist in an imagined context. This was

demonstrated, for example, in Børte and Nerland (2010), in which properties were

assigned to the context and the customer to resolve issues of ambiguity and in Børte

et al. (submitted), where the team assumed the existence of a GUI-table (Graphical

User Interface) to be able to move on in the work process. By making these

assumptions, problems that emerge during the teams’ interactional work were solved

but also the planning aspects of the estimation work were situated in the same

sociocultural context as the problem solving (Suchman, 2007). In software effort

estimation, the requirement specification can be perceived as a plan, and the way this

plan is used as a resource in the planning activity has been shown in the

communicative work software professionals’ conduct in which the plan provides

topics and issues of discussion as a point of departure. However, the teams also have

 Contribution and conclusion

 99

to move beyond the information that is initially given in the requirement

specification to fulfil the planning dimension of estimation work.

Across the three articles the analyses showed that the communicative work was both

extensive and important. This was particularly apparent in regards to interpreting and

understanding the requirement specification or user stories as cultural tools. In the

conceptual framework, the importance of realising meaning potentials to achieve

relevant meaning in situ and how this is an interactional accomplishment was pointed

out. The results presented in Børte (submitted) showed how the sense-making

process also had to include making sense of historical information to be able to

utilise it in the present estimation task. Børte et al. (submitted) showed how the

sense-making process also had to include the perspective of the users of the system

in terms of what they would need to do in a particular situation. The focus on users

here can be seen in connection with the agile development practices, which were

followed in the project that was studied in this article. The importance of taking the

perspective of users has also been demonstrated by Martin et al. (2008), who showed

how testers of software systems took the perspective of users in order to decide

which tests to run. However, I have, in addition, explicated the sense-making

processes that occur through moment-to-moment interactions and showed how the

participants created narratives, in terms of an imagined course of action the user of

the system must take if the task is implemented in a particular way.

These processes were, however, not straightforward in dealing with one problem

after the other as a routine. Rather, the work process went back and forth as

achievements were of a temporarily character. This can be considered a result of the

co-construction of knowledge, which occurs through the teams’ interactional work.

This new knowledge is available at a later point in time in the teamwork process and

may thereby contribute to new understanding and a need to go back and rework

issues that have been attended to in the past.

Another finding that was evident across the three estimation approaches investigated

was the need for decomposing the task, i.e., the software system requirement

specification, into manageable parts. This was done regardless of the fact that the

top-down estimation approach studied in Børte (submitted) specifically requested

that the software development system should be viewed as a whole and not broken

Extended abstract

100

down into parts. Jørgensen (2004b) also pointed out that the teams had problems

following the instructions of the analogy-based, top-down approach and instead

performed incomplete bottom-up processes. He argued that this was related to the

teams’ difficulties of finding similar previously completed projects and thus useful

analogies. However, from a sociocultural point of view, we may argue that such

decomposition is a necessary means in sense-making processes. This is because

meanings have to be generated, articulated and communicated through social

interaction in order for others to take part in collaborative problem solving and thus

achieve a shared understanding of issues or topics that are attended to (Linell, 2009).

This requires interpretations, which are relevant for the teams in the specific situation

of use. Doing such interpretations at a surface level when working in teams is not

possible because meaning potentials (Rommetveit, 2003) of the different parts need

to be realised for the task to have meaning in situ and for the team to achieve the

necessary and satisficing, shared understanding to continue their work process. The

importance of achieving shared understandings when working in teams has been

explored in previous research by Eklund et al. (2010) in their study of team shifts in

an IT-support unit. They showed how continuity in collaborative work is a matter of

coordinating and securing a minimum of shared understanding to make it possible to

continue.

6.1.2 A process model of the interactional accomplishments of software effort
estimation

The three estimation approaches that have been studied in this thesis have previously

been outlined as idealised models to guide the estimation work. The bottom-up

approach holds that an effort estimate is achieved by dividing the project work into

different project activities or components before the effort of each activity is

estimated (Heemstra, 1992; Sommerville, 2007). Thereafter the different estimates

are added up with the possible addition of a buffer to cover unexpected events to

form the total effort estimate of the system (Heemstra, 1992; Sommerville, 2007).

The top-down approach suggests that a total effort estimate is achieved without

breaking the system down into different project parts or activities. Instead, the

estimators look for similar previously completed projects that are compared to the

current project in which differences are adjusted for before a total estimate is agreed

upon. Thereafter, this estimate is distributed over the different project activities

 Contribution and conclusion

 101

(Heemstra, 1992). There are different ways of employing a top-down approach

depending on what is used as the point of departure for finding similarities between

completed software projects; however, what is common is that it is the system level

that is taken as the point of departure and not the different components. The top-

down approach that has been studied in this thesis is a variant that can be termed

analogy based, hence it emphasises that the participants shall find project analogies

between previously completed projects and the project to be estimated (Jørgensen,

2004b). The third estimation approach studied is the planning poker technique,

which is a variant of a bottom-up approach, but specially designed for use in teams

when agile development practices are used (Cohn, 2006; Grenning, 2002). The

instructions for playing planning poker roughly follows these steps: 1) the estimation

task is presented; 2) the task is discussed in the team; 3) each participant privately

selects a card representing his/her estimate; 4) once all the participants have selected

a card, the cards are flipped over simultaneously; 5) if all the cards show the same

number, then that is the estimate; 6) if the cards are not the same, the group discusses

by focusing on the outlying values; 7) steps 3–6 are repeated until the estimates

converge (Cohn, 2006; Grenning, 2002).

By employing a sociocultural perspective and taking an interactional approach when

studying these three estimation approaches bottom-up, top-down and planning poker

in depth, it has been possible to develop process models of how software effort

estimation work takes place through a series of interactional accomplishments.

Hence, the idealised way these approaches previously have been outlined has been

expanded in terms of explicating the interactional work that actually takes place

when these approaches are realised empirically. When understanding software effort

estimation work as interactional accomplishments, the sense-making processes are

central together with the oscillation between the planning aspect and the problem-

solving aspect of the activity. In Figure 4, a process model of how estimation work

takes place through series of interactional accomplishments is presented.

Extended abstract

102

���������	
�
�
������
��	

���		�	����
��

�������������	����
��

���
��
���
	�

���
�	�
��
�	�

�
��
	��
��	
�

����	
��	��
����

�������	�
�

�����
���
���
�
���������

Figure 4 Process model of the interactional accomplishment of software effort estimation.

Across the three articles it was shown that the requirement specification document

(formulated as user stories in the study in Article III) represents the main material

cultural tool in estimation work. This document describes the software system that is

going to be developed and is thus the main source of information about the system

(Sommerville, 2007). Though there are no official standards for what a requirement

specification should contain, the research in this thesis explicates through sense-

making processes the kind of information that is missing and thus needs to be added

in the form of assumptions. To estimate a software system, whether it is described in

a requirement specification document or formulated as user stories, one crucial task

in estimation work is to interpret and understand this document.

Figure 4 shows how the estimation work takes the requirement specification as the

point of departure, but the sense-making processes concerning this document are not

achieved once and for all time. The two-way arrow indicates the back-and-forth

actions between attending to the requirement specification document and the

interactional work of making sense of this document. Across the three articles, it was

found that interpreting and making sense of the requirement specification was

challenging and also a demanding task in the different estimation teams’ work

process. In previous research on judgement-based software effort estimation, it has

been found that software professionals are influenced by irrelevant or misleading

information that is provided in the requirement specification when estimating

software tasks and that the way the information is written also influences the final

decision on an estimate (Grimstad & Jørgensen, 2007a; Jørgensen & Grimstad,

 Contribution and conclusion

 103

2008). However, previous research has only established this influence through a

series of experiments. The research in this thesis contributes to an understanding of

the sense-making processes at stake in software effort estimation work and through

this provides an understanding of how the information in the requirement

specification guides and frames the estimation work conducted by teams.

Rönkkö (2007) has in previous research introduced the documentary method of

interpretation from ethnomethodology (Garfinkel, 1984) as a framework for

understanding how humans interpret information. This work can be seen in relation

to the growing acceptance of what have been called “soft issues” in software

engineering and the need for appropriate methods to investigate these issues. The

term “soft issues” refers to the social and cultural dimensions of software

engineering practice. In his work, Rönkkö (2007) introduced a model with belonging

concepts for how to understand the ways in which people understand, interpret and

interact with each other. What is different about the research within this thesis is that

it opens up the interactional accomplishments and shows how meanings and meaning

potentials are realised through communicative work in a specific task in software

development in addition to providing analytical concepts for how to understand

social interaction.

Through the analysis across the three articles, it has been made evident that the

sense-making processes oscillate between the problem-solving aspect and the

planning aspect in estimation work. This was particularly emphasised in Børte and

Nerland (2010). Secondly, the results showed that these processes were conducted by

way of elaborating on technical issues and clarifying issues of ambiguities by adding

information, to take an example. This belongs to the problem-solving aspect of

estimation work. One way the participants resolved ambiguities in the requirement

specification was to make assumptions and, for example, in this way, attribute

contextual dependencies regarding customers, existing software systems, technical

platforms etc. to an imagined context (Børte et al., submitted; Børte & Nerland,

2010). Making such assumptions about an imagined context demonstrates how the

planning aspect in estimation work comes into play in the participants’ interactional

work.

Extended abstract

104

The planning aspect of estimation work is situated in the here and now context.

However, since the participants need to deal with the future-oriented aspect of a

system that is yet to be developed, the planning work is also situated in an imagined

context. This imagined context comes about through different imagined scenarios, in

which solutions are tested, plus issues related to how the software project could be

developed and organised are elaborated on. This was collaboratively achieved

through elaboration, clarification and specification in which the planning aspect and

the problem-solving aspect of the activity were attended to. For example, in planning

poker, the perspective of the user is important in relation to understanding user

stories. Throughout the interactional work, there are instances of problem solving,

which often are solved by either making assumptions or achieving shared

understanding. By revealing how estimation work oscillates between the problem-

solving aspect and the planning aspect of the activity, the research presented in this

thesis shows what makes estimation work difficult. Further, this research also opens

up for understanding the kind of difficulties that occur connected to the sense-

making processes of the requirement specification. Figure 4 illustrates how these

processes are performed through interaction by oscillating between problem solving

and planning by way of elaboration, clarification and specification. Hence, it shows

how estimation work consists of a series of interactional achievements in which

planning and problem solving constitute two equally important dimensions. Further,

it demonstrates how the assumptions about a future imagined context situates and

frames the interactional work, making it possible to achieve an effort estimate.

Explicating software effort estimation as interactional accomplishments also

demonstrates the need for understanding different types of interactional

achievements, in terms of understanding how and what can be achieved through

social interaction. The next process model that I will present and discuss is related to

understanding how historical information can be used when solving present

estimation tasks. Accordingly, this next model provides a more detailed description

of specific interactional accomplishments so that different dimensions of the

interactional work be explored in more depth.

 Contribution and conclusion

 105

6.1.3 A process model of how historical information becomes recontextualised
to be useful in new contexts.

Above, I have presented and discussed a process model of how estimation tasks get

solved through social interaction and that this happens by way of elaboration,

clarification and specification as interactional achievements. Software effort

estimation work also takes place in an institutional practice that holds a set of

collective resources the participants can make use of. In addition to the collective

resources, the different participants bring into the practice their sets of individual

personal experiences and knowledge. To make use of this knowledge,

recontextualisation as a theoretical notion was emphasised in the conceptual

framework as a way of understanding how knowledge is adapted and transformed to

fit the context in which it is intended to be used (Linell, 1998b; Linell, 2009).

Recontextualisation was also used as an analytical concept in Børte (submitted), to

capture what happens with knowledge over time and across contexts. By placing an

analytical focus on recontextualisation as a process, it was possible to explicate the

kind of challenges that are associated with utilising historical information in present

estimation tasks.

First of all, using knowledge across contexts is not straightforward (Konkola, Tuomi-

Gröhn, Lambert, & Ludvigsen, 2007). This has been shown through several studies;

for example, of the transfer between school and work published in Tuomi-Gröhn and

Engeström (2003). The reason why such transfers are not straightforward is because

of the close link between the knowledge that is acquired and the context in which it

was acquired (Säljö, 2005). Knowledge needs to be adapted and transformed to fit

the context in which it is intended to be used. Recontextualisation is a process that is

accomplished interactionally by way of elaboration, clarification and specification, in

which complex meaning-making processes take place and meaning potentials are

realised (Linell, 2009). When different types of information are drawn upon when

solving present working tasks, different ways of recontextualising knowledge are

performed.

Linell (2009) articulated three different ways that recontextualisation could occur:

within the same conversation, as reuse between discourses or between genres or

activity type. By using recontextualisation as an analytical concept, I have explicated

Extended abstract

106

the mechanisms and challenges that are involved in recontextualisation processes and

showed how knowledge is adapted and transformed through realising meaning

potentials and creating meanings. For example, in the analyses presented in Børte

(submitted), I have shown how recontextualisation occurred as reuse between

discourses when the team made use of the same reasoning approach they had used

previously when estimating another task. This happened even though the use of a

different estimation approach was requested. Through the analysis, I also

demonstrated how recontextualisation occurs within the same conversation through

the ways the teams constructed boundary concepts. The need for recontextualisation

has been demonstrated in Ackerman and Halverson’s (2004) study of organisational

memory. In addition to demonstrating the need for recontextualisation, I have

expanded their findings by opening up the mechanisms and identifying the

challenges in recontextualisation processes.

As historical information can include collective resources such as the requirement

specification and databases containing information about completed software

projects, it also includes the individual knowledge and experiences that the

participants hold. Personal experiences and expert knowledge also need to be made

relevant and articulated in the teams’ interactional work to establish who speaks from

where. In addition, when making meaning of collective resources like the

requirement specification, the personal specialised knowledge that the participants

holds needs to be aligned. This is done so that different interpretations and

understandings can be made relevant and a shared understanding for how to conduct

the work can be established. Further, as part of making relevant historical

information, it is necessary to engage in collective remembering (Middleton &

Brown, 2005). Collective remembering is conducted interactively and is thus a joint

effort taking place through conversation, which makes it possible to make relevant

and share the different types of knowledge and experiences that are distributed in a

team of software professionals. Collective remembering is thereby a necessity for

recontextualisation to occur because different types of knowledge and experiences

have to be remembered.

 Contribution and conclusion

 107

In the following Figure 5, I will present a process model of how historical

information becomes recontextualised so that it can be useful in new contexts and

thus for solving present work tasks.

���	��
�����	�������

	��������
	����
����	���	��
��
�����

�����������
�������

��
���
����

	

����
�
�	

��
���
������

�	

��
��

����
	��
����

��

���
���
�

��	

���
�
�

���	

����
�	��

�����
	

��!�
��

���

����������	
��
	��
�����	��!�
��
���	������������������	�
	
��
�
����	��
�����	

��������

����
���

	

���
��

���
��
���

	

���
���

	

��
���
���

�

Figure 5 Process model of how historical information becomes recontextualised to be useful in
new contexts.

In the process model shown in Figure 5, it is demonstrated how historical

information becomes recontextualised through interactional achievements so that the

knowledge can be used in other contexts. Being able to utilise historical information

when estimating new software projects is considered to be useful when pursuing

more realistic effort estimates. The point of departure for conducting the estimation

work is the new software development project that needs to be estimated. This

project is usually described in a requirement specification, as was discussed earlier,

and consists of details at multiple levels.

Extended abstract

108

In this thesis, historical information is understood as consisting of several types of

knowledge. It includes the specialised knowledge about software development that

the different participants bring to the work. It includes the experiences of the

different participants from software development projects and includes the

information about former and completed software projects that the institutional

practice holds; for example, such that the company has collected in a database.

Together, this historical knowledge and information can be considered as resources

that can be utilised in the estimation work of a new software system. However, using

knowledge and experiences across contexts rests on extensive communicative work.

In the process model proposed in Figure 5, recontextualisation is placed at the centre

of the figure between the new project that is to be estimated and the available

historical information. The curved arrows that oscillate between the new project and

recontextualisation and historical information and recontextualisation demonstrate

the interactional meaning-making processes the participants have to conduct to make

sense of both historical information and the new project. What is interesting about

these processes is that the details need to be attended to and meaning potentials need

to be made relevant and articulated in order to find possible connection points that

can be utilised across contexts and time. Through realising meaning potentials of, for

example, different concepts in my study, recontextualisation processes in which

knowledge was adapted and transformed occurred in the participants’ interactional

work.

One way to facilitate the use of knowledge across contexts is the construction of

boundary concepts in the teams’ interactional work (Børte, submitted). The notion of

boundary concept is inspired by the term boundary object (Star & Griesemer, 1989),

which holds common features from different contexts. The use of boundary object

has been investigated in different types of workplace studies. For example,

Ludvigsen, Havnes & Lahn (2003) investigated how sales engineers move in and

between different activity systems and how drawings serve as boundary objects.

They showed how a boundary object created a common ground for the

communicative work and a joint focus for the participants. What I have shown, in

addition, is how boundary concepts are constructed by finding possible connection

points in which meaning potentials are realised through teams’ interactional work.

 Contribution and conclusion

 109

Even though a drawing is an object, which is different from a concept, they are both

cultural tools for which meaning needs to be attributed in different contexts. Thus,

both boundary objects and boundary concepts are subject to recontextualisation

processes because meaning potentials need to be realised in the context of use and by

the participants that intend to use them (Linell, 2009; Rommetveit, 2003).

An example from the analysis is found in Børte (submitted), where the concept of

windows was constructed into a boundary concept. In constructing this boundary

concept, the participants adapted knowledge from former software projects and

thereby made it possible to use historical information about the concept of windows

across contexts to establish size and complexity related to the new software project.

However, before this could happen, the meaning potential of windows needed to be

realised (Linell, 2009; Rommetveit, 2003). In everyday language, one common

interpretation of the concept of windows is that a window is something you can see

through and it has a framework of wood or maybe metal, which contains a piece of

glass that is built into a wall. This artefact thereby admits light and if opened up it

can admit air. The situated meaning of windows in estimation work is, however,

rather different. The following definition is provided in Wikipedia: “In computing, a

window is a visual area containing some kind of user interface. It usually has a

rectangular shape. It displays the output of and may allow input to one or more

processes”.6 When talking about windows in an estimation context, it is this last

interpretation that the teams are using, but the meaning potential has to be realised

even further concerning in particular the complexity of the windows and the number

of windows that are needed in a particular system. After clarifying these issues, it

was established that the concept of windows had the potential of becoming a

boundary concept as it holds common aspects that could be used and understood

across contexts. Windows were thereby constructed into a boundary concept, by

adapting historical knowledge and information. In this way, it could facilitate the use

of historical information across contexts because it could assist in assessing the

complexity of the software system that was estimated in the task.

The use of boundary concept in this thesis has demonstrated how particular domain-

related concepts are constructed into boundary concepts, which made it possible for

6 Retrieved 12.02.2011 from http://en.wikipedia.org/wiki/Window_(computing)

Extended abstract

110

the teams to use historical information in present working tasks (Børte, submitted;

Børte et al., submitted). Constructing such boundary concepts was, however, only

possible when investigating and making sense of the details in both the present task

to be solved and the relevant historical information. This is because connection

points need to be established and meaning potentials need to be realised.

The process model presented in Figure 5 demonstrates the importance of

recontextualising historical information if the aim is to use it in present working

tasks. It also provides an understanding of how recontextualisation is conducted

through adapting and adjusting knowledge by way of realising meaning potentials

and creating meaning. Moreover, it shows why using information from former

software projects poses a challenge for software professionals and that storing

knowledge in a decontextualised manner is not sufficient or possible if the intention

is to use it as collective resources when solving new tasks.

 Recontextualisation processes are, however, also mediated by different cultural

tools, like software effort estimation work in general. Several different cultural tools

may help in this process, which leads to the presentation of the third process model

of software effort estimation work.

6.1.4 A process model of the tool-mediated actions in software effort
estimation work

One of the basic assumptions following the sociocultural perspective is that all

human actions are mediated by cultural tools (Wertsch, 1998). In software effort

estimation work, several cultural tools are used in the interactional work to achieve

an estimate. First of all, collective resources, such as the routines, rules and

guidelines that follow a task with a specific agenda, are available through the

institutional practice of software effort estimation. The different estimation

approaches studied provide structure, a setting for what kinds of aspects and topics

that are relevant to attend to in the interactional work and a known framework and

specific guidelines for how to conduct the estimation work. The planning poker

approach that was investigated in Børte et al. (submitted) can be considered the most

distinct approach in which a set of rules for the game was provided that needed to be

followed to accomplish the task and reach a decision on an estimate.

 Contribution and conclusion

 111

Further, there is the collective knowledge that belongs to the software engineering

profession, which is crystallised in different documents, descriptions and ways of

talking as a shared platform for conducting the estimation work (Cohn, 2006;

Sommerville, 2007). The most dominating and also the most important material

cultural tool that belongs to the collective resources is the requirement specification

document, which also is formulated as user stories in agile development practices.

This document is both a technical description of a software system and a planning

document as it is describing something that is not yet developed but is going to be

developed in the future. It also has a character of being an inscription device (Roth &

McGinn, 1998), as it holds graphical representations of a software system and can

therefore be shared amongst the participants.

In the estimation work the requirement specification as a mediational mean frames

the estimation task, creates direction and provides the different discussion topics of

interest in the team’s interactional work. It is also the main issue of investigation in

the meaning-making processes because the information provided is ambiguous, and

meaning potentials therefore need to be articulated so that the team’s interactional

achievement generates meaning that is relevant in situ. These findings relate to the

results reported in Cohn et al. (2009), who studied artefacts in use in agile software

development. They found that, among other things, user story cards, as part of the

documentation in agile development, are perceived as the most important artefact in

software processes and that it served as a mediational mean not only in the work

process of developing it but also as a tool for providing topics of discussion.

However, in addition to establishing what the requirement specification was used for

in estimation work, I have shown how it is used in the moment-to-moment

interaction between software professionals and thus revealed how the meaning-

making processes related to the requirement specification occur and how this is a

challenge for the participants. This was demonstrated in the analyses across the three

estimation approaches investigated.

Being able to create meaning of a requirement specification requires that the

software professionals in the team be familiar with this way of representing software

systems as well as the professional terminology and concepts used. Language and

concepts from the knowledge domain of software engineering are therefore

Extended abstract

112

important semiotic tools (Sommerville, 2007; Wertsch, 1991), which are available as

a part of the institutional practice from software development as a profession and

also a part of the individual specialised knowledge that software professionals hold

and bring to the practice. It is through language as a semiotic mediational means that

the meaning making occurs. However, it is conducted through micro processes of

moment-to-moment interaction by way of elaboration, clarification, specification and

also justification.

In Figure 6, a process model of the complex structure of the tool-mediated actions in

software effort estimation work is presented.

���������	�
���

������
����	���������
��	�
���

��������	������

�
��
��
�	

��
	�

��
��
��
��

��
�	 ����������

�

�������
�����

������
�����

�

��������	���	����������

����������	���	��
��� �����	�����	���
�

�����

������	�	��!��������	��	�	��������

�����

���

��

��
�	����
���
�������

��������
�������
�����
��	������

Figure 6 Process model of the tool-mediated actions in software effort estimation work.

The process model proposed in Figure 6 shows the complex structure of the tool-

mediated actions that participants in estimation work conduct in the intersection of

the three levels of human activity (Valsiner & Van der Veer, 2000). At the top is the

 Contribution and conclusion

 113

institutional practice of software effort estimation with its belonging collective

resources. Thereafter follows the individual specialist knowledge that the participants

bring to the practice to solve the specific estimation task. Then it is the level of social

interaction in which moment-to-moment interactions are mediated by the cultural

tools through talk by way of elaboration, clarification, specification and justification.

The solid arrows between these three levels show how the interactional work draws

upon both the individual knowledge and the cultural resources form the institutional

practice. The dotted arrows illustrate the structural level and show that over time this

interactional work gets more and more specified in order to reach a consensus and

agree upon an estimate.

An example of the mediating role of language is contained in Børte et al.

(submitted), where the role of concepts in professional work was investigated in

depth. The results showed that in the participants’ talk, the frequency with which

domain-specific concepts were used in the elaborations were low. Rather, the team

used everyday concepts that were given estimation-relevant meaning in the situated

work practice. Domain-specific concepts were, however, used when the teams

encountered a problem that needed to be framed or reframed. The participants

therefore combined their personal knowledge and experiences with the collective

knowledge from the knowledge domain as part of their sense-making processes. This

happened by way of giving the domain-specific concepts the characteristics of

boundary concepts so that they facilitated the use of knowledge across contexts.

Moreover, the domain-specific concepts as mediating tools narrowed down, framed

the task and solved problems in the team’s interactional work. This has been shown

across the three articles through the use of imaginary scenarios (Børte & Nerland,

2010), the construction of boundary concepts (Børte, submitted) and the analyses of

the use of concepts in Børte et al. (submitted). The domain-specific concepts

therefore make relevant and connect the collective knowledge and resources

available in the institutional practice with the individual specialist knowledge held by

the participants.

It is through social interaction that meaning-making processes, recontextualisation

processes or different types of tool-mediated actions are achieved. Moreover, these

processes are all conducted with the planning dimension of the estimation work in

Extended abstract

114

mind. The planning activity in software effort estimation work is therefore situated

through these interactional achievements. What is evident in this work is that even

though plans, such as the requirement specification, can be elaborated on

indefinitely. The participants elaborate only to the extent that they find it useful, until

the elaboration is satisficing. This relates to estimation work in the sense that the

work to achieve shared understanding of the task, and the work it takes to develop a

task, is accomplished when the team reaches a satisficing, shared understanding. It is

a matter of achieving a “good enough” understanding to take the estimation and

problem-solving process further rather than achieving a perfect and correct

understanding that makes it possible to solve the estimation task. This was

particularly visible in the investigations of the planning poker technique in which a

satisficing, shared understanding had to be achieved for the team to play a round of

planning poker (Børte et al., submitted). Further, it is in particular the requirement

specification that mediates the planning dimension of the estimation work, by

serving as a resource in the work process. The use of plans in software development

projects has been investigated in Rönkkö et al. (2005); however, their focus was on

the situations when plans did not work out and what kind of means were necessary to

provide for dealing with such situations in software development projects. Hence,

they did not investigate how a requirement specification mediates the planning

activity as such, which is what I have done.

Even though, a range of mediating tools is used in the work, language is the most

important mediational means in software effort estimation, because it is an important

part of the communicative and interactional processes between people. Thus,

language becomes a tool for participating in specific practices (Säljö, 2001b;

Wertsch, 1991). In a practice, such as software effort estimation, the participants can

attend to and understand particular aspects of the phenomenon because they are

sharing a professional language from the knowledge domain of software engineering.

Language thereby makes it possible to articulate meanings in order to share expertise

and achieve shared understandings. It is through the use of language that, in software

effort estimation work, the participants communicate ideas and meanings, provide

justifications or elaborate on a relevant topic to respond to other utterances or

initiatives in the estimation work.

 Contribution and conclusion

 115

By presenting and discussing the three process models above— 1) the interactional

accomplishments of software effort estimation, 2) how historical information

becomes recontextualised to be useful in new contexts and 3) the mediating role of

cultural tools in software effort estimation—it was possible to demonstrate the

complexity of the interactional work conducted by teams of software professionals

when estimating software development projects. The empirical contribution of this

thesis is thereby twofold; firstly, it provides an understanding of software effort

estimation as collaborative planning activity. Secondly, it explicates the complexity

in software effort estimation work and thereby expands, for analytical purposes, the

existing models of the three estimation approaches that have been investigated.

The existing models of the three estimation approaches investigated in this thesis,

initially described in Heemstra (1992), Grenning (2002), Jørgensen (2004b) and

Cohn (2006), are to be understood and treated as idealised models. The in-depth

analysis of the approaches that have been conducted as part of the research in this

thesis has provided an alternative understanding and way of interpreting the models

other than those in which they have been treated and used in previous research. First

of all, the research presented in this thesis expands the three estimation approaches

by providing an understanding of the teamwork processes and in particular by

incorporating and explicating the sense-making processes that are needed in

estimation work. Both the bottom-up approach and the planning poker technique in

some sense have considered the need for understanding the software system that is

described in a requirement specification. The bottom-up approach does this by

emphasising how the project should be broken down into different project activities

(Heemstra, 1992). The planning poker technique, on the other hand, does this by

emphasising the need for a satisficing, shared understanding before a round of

planning poker can be played (Cohn, 2006; Grenning, 2002). However, the

approaches did not take sufficiently into account the extent of the sense-making

processes that needs to be conducted. Accordingly, the process model presented in

Figure 4 contributes an expansion and an understanding of the interactional

achievements in software effort estimation work.

The variant of the top-down approach that was investigated in this thesis rests on

premises that are a bit more problematic because of the large gap between the

Extended abstract

116

idealised model of the approach and what empirically took place in the interactional

and communicative work. Hence, the way in which the top-down approach was

realised in the teams that have been studied in this thesis deviates from the idealised

model to such an extent that it may benefit from a reconceptualisation. However, the

research presented in this thesis has in relation to the top-down approach, expanded

the understanding of the communicative work that is needed to use historical

information across contexts, by explicating the recontextualisation process and

demonstrating the challenges that are connected to adapting and adjusting

knowledge. Hence, the process model presented in Figure 5 contributes an

understanding of why it posits a challenge for software professionals to utilise

information from previous software projects.

In addition to developing analytical and prescriptive models of processes of

interactional achievements and communicative work, the importance and the use of

different cultural tools in the estimation work have been explicated. This applies in

particular to the use of the requirement specification and the user stories. None of the

existing idealised models of the estimation approaches have sufficiently taken into

account the significant role of the requirement specification in estimation work. The

research presented in this thesis provides an understanding of how estimation work is

framed and guided by the different cultural tools that are available and used in the

estimation work. Also, the process model presented in Figure 6 illustrates the

complex relationship of tool-mediated actions.

6.2 Methodological contribution
The research conducted as part of this thesis also contributes methodologically to the

software effort estimation research field, by introducing interaction analysis (Derry

et al., 2010; Furberg & Ludvigsen, 2008; Jordan & Henderson, 1995) as a way of

investigating video recordings. Previous research on teamwork in software effort

estimation has rarely taken the social aspects into account. Instead, such research has

been based on research approaches, which take the individual expert as the unit of

analysis. To investigate the collaborative work in software effort estimation, as the

research within this thesis does, the unit of analysis has to move from the individual

to the social interaction/mediated action. The methodological contribution of this

thesis is first and foremost connected to the research method that has been employed

 Contribution and conclusion

 117

to investigate the collaborative work of software effort estimation. It might be

considered easy to argue the methodological contribution when a new approach is

used to investigate a known phenomenon. However, introducing a new method and

new ways of approaching and analysing data to a research field is important. First of

all, by introducing a different method a different set of assumptions from a different

theoretical perspective follows. This means that the basic underlying assumptions

need to be thoroughly explicated together with the acknowledgement of any

convincing results in a field where the common methods comprise experiments and

statistical tests.

In the research presented in this thesis an interactional approach has been employed

to make it possible to attend to the collaborative processes of achieving an estimate.

By focusing analytically on the social interaction and the communicative work that is

carried out in teams of software professionals, it was possible to open up and

describe what goes on in the estimation practice. The reason for choosing an

interactional approach and an analytical focus on social interaction is because

software effort estimation as an institutionalised practice is increasingly carried out

as teamwork in the industry. Further, it is through the use of the collective resources

available in the institutional practice together with the specialist competence that the

different software professionals bring to the practice that the estimation task is jointly

solved through collaboration. This, in turn, implies that it is important to attend to the

teamwork processes as such and investigate in depth the kind of work that is

conducted to achieve an effort estimate if one aims at supporting and improving the

estimation practice.

Interaction analysis is a suitable method for investigating such issues, as it is

concerned with the interaction between people and between people and the artefacts

that they use in their environment. Therefore, employing interaction analysis as a

way of explicating teamwork processes can provide important information about

how such work practice is executed and what kind of work the software

professionals have to do to achieve an estimate of a software project. As a method

interaction analysis stays close to the practice that is investigated, and thus claims

about practice can be made in other ways than what experimental data and statistical

analysis can provide. By employing interaction analysis as a means to investigate the

Extended abstract

118

interactional and communicative work of software professionals, it was possible to

investigate the following in depth: 1) what kind of work it takes to achieve an

estimate in teams; 2) how previous knowledge and experiences are used; 3) how

participants make an account of their arguments; 4) how explanations are produced

and perceived as legitimate in the team; and 5) how cultural tools mediate the work

practice and team processes.

With this in mind, it is clear that taking an interactional approach to the collaborative

work of software effort estimation explicates other dimensions of the estimation

practice than what has been revealed by previous research. I will therefore argue that

introducing new methods to a well-established field of research is an important

methodological contribution, because it opens up for broadening the understanding

of the phenomenon under study. This means that different interpretations and

different claims provide different results about work, which in this case is software

effort estimation. Further, as software effort estimation is a common work practice

within software development, a broad understanding is necessary if one aims at

improving the practice. It is not enough to attend to the individual expert and achieve

understanding of the individual cognitive processes when deciding upon an estimate

when the work is carried out in teams. The three process models that have been

developed and presented above show how a shift in theoretical perspective, research

methods and unit of analysis can shed light on different aspects of software effort

estimation and thereby explicate the teamwork processes in estimation work.

6.3 Conclusion
In this thesis, I have argued that a focus on collaborative work and the teamwork

processes in software effort estimation is necessary to provide solid insight into the

estimation practice. The previous research that has looked into teamwork in

estimation is sparse. As was shown in Chapter 2, I was only able to find seven

studies in which the focus was on group estimation that had been conducted in a

software engineering context with software professionals as participants. More

importantly, most of this research had also taken the individual expert as the unit of

analysis and thus the collaborative work of software effort estimation had not been

addressed. The previous research on teamwork in estimation has therefore explored

 Contribution and conclusion

 119

certain kinds of problems in which certain kinds of inferences were made, but it has

left out important aspects of teamwork processes.

The research presented in this thesis have addressed the teamwork aspects and

explicated the kinds of challenges that are present in software effort estimation tasks.

Thus, it has contributed to a more complex understanding of software effort

estimation work. However, this is just one step in the direction of understanding the

social aspects in software effort estimation. Researchers have argued the need for

attending to the social aspects in software development by making use of qualitative

research methods (Dittrich et al., 2007; Dittrich et al., 2009; Fuggetta, 2000; Rönkkö,

2005). This thesis can thus be considered a contribution in this respect, within the

specific area of software effort estimation.

The analysis of software effort estimation work that has been presented through the

three articles only provides an understanding of software effort estimation at the

level of social interaction. Moreover, it is the moment-to-moment interactions that

have been taken as the unit of analysis to investigate the interactional work. This

provides a somewhat detailed understanding of how software effort estimation work

is carried out as practice in teams of software professionals. Further, the employment

of the sociocultural perspective as a theoretical lens for understanding the

communicative and interactional work allowed for certain types of claims to be made

according to how the work is conducted, what is achieved through interaction and

how meanings, explanations and decisions are produced.

Further research is needed to provide a thorough understanding of software effort

estimation as a practice. The different levels of development that the sociocultural

perspective distinguishes between consist of the sociogenesis, the ontogenesis and

the micro-genesis, all of which provide opportunities for taking different types of

unit of analysis in multiple time and space constellations. The work in this thesis has

had an empirical focus on the level of micro genesis because this is where the

software effort estimation work plays out. However, how it plays out was understood

in interrelation with the participants’ ontogenesis and the sociogenesis of the

estimation practice.

Extended abstract

120

One direction that future research can take is to place an empirical focus at the level

of sociogenesis and investigate how the institutional practice of software effort

estimation develops under different constraints; for example, by different software

development practices/methodologies. However, by placing an empirical focus on

the development of software effort estimation as institutional practice, this needs to

be understood in interrelation to how participants enact the estimation practice in

different circumstances as well as how situational aspects shape the ways in which

estimation work is enacted. Software effort estimation is a recurrent task in software

development, thus re-estimation might occur several times during a software project

for different purposes. Therefore, combining an empirical focus on the level of

sociogenesis by following the trajectory of estimation work in the course of a

software development project might reveal important aspects of software effort

estimation as institutional practice.

Another possible direction is to place an empirical focus at the level of ontogenesis

and investigate how software professionals become skilled estimators through their

participation in the estimation practice. Thus, the analytical focus will be on the

intersection between social practices and the cognitive individual work that is

conducted. Again, by placing an analytical focus on participants in a practice, this

needs to be understood in interrelation to the institutional practice of software effort

estimation and the activity of conducting the estimation work. Thus, following

estimation work of software professionals across different software development

projects might explicate important aspects with regards to the development of

estimation competence.

In these ways, future research can broaden and expand the research that has been

presented in this thesis and thus contribute to a more solid understanding of software

effort estimation as a phenomenon.

 121

7 References

Ackerman, M., & Halverson, C. (2004). Organizational memory as objects,

processes and trajectories: an examination of organizational memory in use.

Computer Supported Cooperative Work, 13, 155-189.

Billett, S. (2003). Sociogeneses, Activity and Ontogeny. Culture & Psychology, 9(2),

133-169.

Boden, A., & Avram, G. (2009). Bridging knowledge distribution - The role of

knowledge brokers in distributed software development teams. Paper

presented at the Proceedings of the 2009 international workshop on

Cooperative and human aspects of software engineering, CHASE'09,

Vancouver, Canada.

Boehm, B., Abts, C., & Chulani, S. (2000). Software development cost estimation

approaches - A survey. Annals of Software Engineering, 10, 177-205.

Boehm, B. W. (1981). Software engineering economics. New Jersey: Prentice-Hall.

Boehm, B. W. (1984). Software engineering economics. IEEE Transactions on

Software Engineering, 10(1), 4-21.

Børte, K. (submitted). Challenges when utilizing historical information in present

working tasks: An analysis of the use of analogies in team-based software

effort estimation.

Børte, K., Ludvigsen, S., & Mørch, A. (submitted). The role of concepts in

professional work: Unpacking the 'magic step' in software effort estimation.

Børte, K., & Nerland, M. (2010). Software effort estimation as collective

accomplishment: An analysis of estimation practice in a multi-specialist

team. Scandinavian Journal of Information Systems, 22(2), 65-98.

Bowker, G. C., & Star, S. L. (1999). Sorting things out. Cambridge: MIT Press.

Bratthall, L., Arisholm, E., & Jørgensen, M. (2001). Program understanding

behavior during estimation of enhancement effort on small Java programs.

Paper presented at the Product Focused Software Process Improvement,

Kaiserslautern, Germany.

Extended abstract

122

Cohn, M. (2006). Agile estimating and planning. Massachusetts: Pearson Education

Inc.

Cohn, M. L., Sim, S. E., & Lee, C. P. (2009). What counts as software process?

Negotiating the boundary of software work through artifacts and

conversation. Computer Supported Cooperative Work, 18(5-6), 401-443.

Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry.

Theory into Practice, 39(3), 124-130.

De Graaf, W., & Maier, R. (1994). Sociogenesis reexamined: An introduction. In W.

De Graaf & R. Maier (Eds.), Sociogenesis reexamined (pp. 1-16). New York:

Springer-Verlag.

Derry, S. J., Pea, R. D., Barron, B., Engle, R. A., Erickson, F., Goldman, R., Hall, R.,

Koschmann, T., Lemke, J. L., Sherin, M. G., & Sherin, B. L. (2010).

Conducting video research in the learning sciences: Guidance on selection,

analysis, technology and ethics. Journal of the Learning Sciences, 19(1), 3-

53.

Dittrich, Y., John, M., Singer, J., & Tessem, B. (2007). Editorial for the special issue

on qualitative engineering research. Information and software technology, 49,

531-539.

Dittrich, Y., Randall, D. W., & Singer, J. (2009). Software engineering as

cooperative work. Editorial. Computer Supported Cooperative Work, 18(5-6),

393-399.

Eklund, A.-C., Mäkitalo, Å., & Säljö, R. (2010). Noticing the past to manage the

future: On the organization of shared knowing in IT helpdesks. In S.

Ludvigsen, A. Lund, I. Rasmussen & R. Säljö (Eds.), Learning across sites.

New tools, infrastructures and practices. (pp. 122-137). Oxford, U.K.:

Pergamon Press.

Engeström, Y. (1992). Interactive expertise. Studies in distributed working

intelligence. Helsinki: University of Helsinki, Dept of Education.

Engeström, Y., Engeström, R., & Kärkkäinen, M. (1995). Polycontextuality and

boundary crossing in expert cognition: Learning and problem solving in

complex work activities. Learning and Instruction, 5(4), 319-336.

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development,

9(8), 28-35.

 References

 123

Fuggetta, A. (2000). Software process: A roadmap. In A. Finkelstein (Ed.), The

future of software engineering (pp. 25-34). New York: ACM.

Furberg, A., & Ludvigsen, S. (2008). Students' meaning-making of socio-scientific

issues in computer mediated settings: Exploring learning through interaction

trajectories. International Journal of Science Education, 30(13), 1775-1799.

Garfinkel, H. (1984). Studies in ethnomethodology. Cambridge: Polity Press.

Greeno, J. G. (1998). The situativity of knowing, learning and research. American

Psychologist, 53(1), 5-26.

Greeno, J. G., Collins, A. M., & Resnick, L. B. (1996). Cognitions and learning. In

D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology

(pp. 15-46). New York: McMillian.

Grenning, J. (2002). Planning poker or how to avoid analysis paralysis while release

planning. Retrieved 28.05, 2010, from

http://www.renaissancesoftware.net/files/articles/PlanningPoker-v1.1.pdf

Grimstad, S. (2006). Software effort estimation error. PhD thesis, University of

Oslo, Oslo.

Grimstad, S., & Jørgensen, M. (2007a). The impact of irrelevant information on

estimates of software development effort. Paper presented at the Australian

Software Engineering Conference, Melbourne.

Grimstad, S., & Jørgensen, M. (2007b). Inconsistency of expert judgement-based

estimates of software development effort. The journal of systems and

software, 80, 1770-1777.

Grimstad, S., Jørgensen, M., & Moløkken-Østvold, K. (2006). Software effort

estimation terminology: The tower of Babel. Journal of Information and

Software Technology, 48(4), 302-310.

Hakkarainen, K., Palonen, T., Paavlova, S., & Lehtinen, E. (2004). Communities of

networked expertise. Professional and educational perspectives. Oxford, UK:

Elsevier.

Halkjelsvik, T., & Jørgensen, M. (submitted). From origami to software

development: A review of studies on judgment-based predictions of

performance time.

Hannay, J. E., & Benestad, H. C. (2010). Perceived productivity threats in large

agile development projects. Paper presented at the International Symposium

Extended abstract

124

on Empirical Software Engineering and Measurement (ESEM 2010),

Bolzano-Bozen, Italy.

Haugen, N. C. (2006). An empirical study of using planning poker for user story

estimation. Paper presented at the AGILE 2006, Minnesota.

Haugen, N. C. (2007). Moderne systemutvikling og estimering [Modern system

development and estimation] Presentation held at Estimation seminar 24

October, 2007. Retrieved 20 October, 2009, from

http://simula.no/research/engineering/projects/best/seminars/Estimation%20S

eminar%2024.10.2007

Heath, C., & Hindmarsh, J. (2002). Analysing interaction: Video, ethnograpy and

situated conduct. In T. May (Ed.), Qualitative research in action (pp. 99-

120). London: Sage Publications.

Heemstra, F. J. (1992). Software cost estimation. Information and Software

Technology, 34(10), 627-639.

Heemstra, F. J., & Kusters, R. J. (1991). Function point analysis: Evaluation of a

software cost estimation model. European Journal of Information Systems,

1(4), 223-237.

Hihn, J., & Habib-Agahi, H. (1991). Cost estimation of software intensive projects: A

survey of current practices. Paper presented at the International Conference

on Software Engineering, Austin, TX, USA.

Hindmarsh, J., & Heath, C. (2007). Video-Based studies of Work Practice. Sociology

Compass, 1(1), 156-173.

Hughes, R. T. (1996). Expert judgement as an estimating method. Information and

Software Technology, 38(2), 67-75.

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice.

The Journal of the Learning Sciences, 4(1), 39-103.

Jørgensen, M. (2004a). A review of studies on expert estimation of software

development effort. Journal of Systems and Software, 70(1-2), 37-60.

Jørgensen, M. (2004b). Top-down and bottom-up expert estimation of software

development effort. Information and Software Technology, 46(1), 3-16.

Jørgensen, M. (2005). The "magic step" of judgement-based software effort

estimation. Paper presented at the International Conference on Cognitive

Economics. New Bulgarian University, Sofia, Bulgaria.

 References

 125

Jørgensen, M. (2006). The effects of the format of software project bidding

processes. International Journal of Project Management, 24(6), 522-528.

Jørgensen, M. (2007). Forecasting of software development work effort: Evidence on

expert Judgement and formal models. International Journal of Forecasting,

23, 449-462.

Jørgensen, M., & Carelius, G. (2004). An empirical study of software project

bidding. IEEE Transactions of Software Engineering, 30(12), 953-969.

Jørgensen, M., & Grimstad, S. (2008). Avoiding irrelevant and misleading

information when estimating software development effort. IEEE

Software((May/June), 78-83.

Jørgensen, M., & Grimstad, S. (2009). Software development effort estimation:

Demystifying and improving. In A. Tveito, A. M. Bruaset & O. Lysne (Eds.),

Simula Research Laboratory - by thinking constantly about it (pp. 381-404).

Heidelberg: Springer.

Jørgensen, M., & Halkjelsvik, T. (2008). The effects of request formats on

judgement-based effort estimation. Journal of Systems and Software, 83(1),

29-36.

Jørgensen, M., & Shepperd, M. (2007). A systematic review of software

development cost estimation studies. IEEE Transactions of software

engineering, 33(1), 33-53.

Jørgensen, M., & Sjøberg, D. I. K. (2001). Impact of effort estimates on software

project work. Information and Software Technology, 43(15), 939-948.

Jørgensen, M., Teigen, K. H., & Moløkken-Østvold, K. (2004). Better sure than

safe? Over-confidence in judgement based software development effort

prediction intervals. Journal of Systems and Software, 70(1-2), 79-93.

Kjærgaard, A., Nielsen, P. A., & Kautz, K. (2010). Making sense of project

management: A case of knowledge sharing in software development.

Scandinavian Journal of Information Systems, 22(1), 3-26.

Konkola, R., Tuomi-Gröhn, T., Lambert, P., & Ludvigsen, S. R. (2007). Promoting

learning and transfer between school and workplace. Journal of Education

and Work, 20(3), 211-228.

Krogstad, J. R. (2010). Ikke akkurat på skinner. En analyse av iverksettingen av IKT-

prosjektet Flexus i Oslo og Akershus [Not exactly on track. An analysis of the

Extended abstract

126

execution of the ICT-project Flexus in Oslo and Akershus]. Master Thesis,

University i Oslo, Oslo.

Kvale, S., & Brinkmann, S. (2009). Interviews. Learning the craft of quality research

interviewing. California, USA: SAGE publication Inc.

Lindwall, O. (2008). Lab work in science education: Instruction, inscription, and the

practical achievement of understanding. PhD, Linköping University,

Linköping.

Linell, P. (1998a). Approaching dialogue: Talk, interaction and contexts in

dialogical perspectives (Vol. 3). Amsterdam: John Benjamins Publishing

Company.

Linell, P. (1998b). Discourse across boundaries: on recontextualisation and the

blending of voices in professional discourse. Text: an interdisciplinary

journal, 18(2), 143-157.

Linell, P. (2009). Rethinking language, mind, and the world dialogically. Charlotte,

NC: Information Age Publishing Inc.

Ludvigsen, S. (2009). Sociogenesis and cognition. The struggle between social and

cognitive activities. In B. Schwarz, T. Dreyfus & R. Herskowitz (Eds.),

Transformation of knowledge through classroom interaction (pp. 302-317).

New York: Routledge.

Ludvigsen, S. R., Havnes, A., & Lahn, L. C. (2003). Workplace learning across

activity systems: A case study of sales engineers. In T. Tuomi-Gröhn & Y.

Engeström (Eds.), Between school and work. New perspectives on transfer

and boundary-crossing (pp. 291-310). Oxford: Elsevier ScienceLtd.

Mäkitalo, Å. (2003). Accounting practices as situated knowing: Dilemmas and

dynamics in institutional categorization. Discourse Studies, 5(4), 495-516.

Mäkitalo, Å., & Säljö, R. (2002). Talk in institutional context and institutional

context in talk: Categories as situated practices. Text, 22(1), 57-82.

Martin, D., Rooksby, J., Rouncefield, M., & Sommerville, I. (2008). Cooperative

work in software testing. Paper presented at the Proceedings of the 2008

international workshop on Cooperative and human aspects of software

engineering, Leipzig, Germany.

Maxwell, J. A. (2002). Understanding and validity in qualitative research. In A. M.

Huberman & M. B. Miles (Eds.), The Qualitative Researchers Companion

(pp. 37-64). Thousand Oaks, California: Sage Publications.

 References

 127

McConnell, S. (2006). Software estimation demystifying the black art. Washington:

Microsoft Press.

McDonald, J. (2005). The impact of project planning team experience on software

project cost estimates. Empirical Software Engineering, 10(2), 219-234.

Middleton, D., & Brown, S. D. (2005). The social psychology of experience. Studies

in remembering and forgetting. London: SAGE publications Ltd.

Moløkken-Østvold, K., & Jørgensen, M. (2003). A review of surveys on software

effort estimation. Paper presented at the International Symposium on

Empirical Software Engineering (ISESE 2003), Rome, Italy.

Moløkken-Østvold, K., & Jørgensen, M. (2004). Group processes in software effort

estimation. Empirical Software Engineering, 9(4), 315-334.

Moløkken-Østvold, K., & Jørgensen, M. (2005). Expert estimation of web-

development projects: Are software professionals in technical roles more

optimistic than those in non-technical roles? Empirical Software Engineering,

10(1), 7-30.

Moløkken-Østvold, K. J., Haugen, N. C., & Benestad, H. C. (2008). Using planning

poker for combining expert estimates in software projects. The journal of

systems and software, 81, 2106-2117.

Norèn, K., & Linell, P. (2007). Meaning potentials and the interaction between lexis

and contexts: An empirical substantiation. Pragmatics, 17(3), 387-416.

Østerlund, C., & Carlile, P., R. (2005). Relations in practice: Sorting through practice

theories on knowledge sharing in complex organizations. The Information

Society, 21(2), 91-107.

Passing, U., & Shepperd, M. (2003). An experiment on software project size and

effort estimation. Paper presented at the International Symposium on

Empirical Software Engineering, Rome, Italy.

Peräkylä, A. (2011). Validity in research on naturally occuring social interaction. In

D. Silverman (Ed.), Qualitative research: Issues of theory, method and

practice (3rd ed., pp. 364-382). London: Sage Publications.

Pors, K. J., Henriksen, D., Winthereik, B. R., & Berg, M. (2002). Challenging

divisions: Exploring the intersections of ethnography and intervention in IS

research. Scandinavian Journal of Information Systems, 14(2), 3-7.

Extended abstract

128

Radley, A. (1990). Artefacts, memory and a sense of the past. In D. Middleton & D.

Edwards (Eds.), Collective remembering (pp. 46-59). London: Sage

publications Ltd.

Rasmussen, I. (2005). Project work and ICT: Studying learning as participation

trajectories. PhD thesis, University of Oslo, Oslo.

Resnick, L. B., Pontecorvo, C., & Säljö, R. (1997). Discourse, tools, and reasoning.

Essays on situated cognition. In L. Resnick, R. Säljö, C. Pontecorvo & B.

Burge (Eds.), Discourse, tools, and reasoning. Essays on situated cognition

(pp. 1-20). New york: Springer.

Rommetveit, R. (1992). Outlines of a dialogically based social-cognitive approach to

human cognition and communication. In A. Wold (Ed.), The dialogical

alternative: Towards a theory of language and mind (pp. 19-45).

Rommetveit, R. (2003). On the role of "a psychology of the second person" in

studies of meaning, language, and mind. Mind, Culture, and Actvitity, 10(3),

205-218.

Rönkkö, K. (2005). Making methods work in software engineering. Method

deployment - as social achievement. PhD thesis, Blekinge Institute of

Technology, Karlskrona.

Rönkkö, K. (2007). Interpretation, interaction and reality construction in software

engineering: An explanatory model. Information and Software Technology,

49.

Rönkkö, K., Dittrich, Y., & Randall, D. (2005). When plans do not work out: How

plans are used in software development projects. Computer Supported

Cooperative Work, 14, 433-468.

Rooksby, J., Rouncefield, M., & Sommerville, I. (2009). Testing in the wild: The

social and organisational dimensions of real world practice. Computer

Supported Cooperative Work, 18, 559-580.

Roschelle, J. (1992). Learning by collaborating: Convergent conceptual change.

Journal of the Learning Sciences, 2(3), 235-276.

Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in

collaborative problem solving. In C. O' Malley (Ed.), Computer supported

collaborative learning (pp. 69-97). Berlin: Springer.

Roth, W.-M., & McGinn, M. (1998). Inscriptions. Toward a theory of representing as

social practice. Review of educational Research, 68(1), 35-59.

 References

 129

Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting tool: issues

and analysis. International Journal of Forecasting, 15, 353-375.

Säljö, R. (1994). Minding action: Conceiving of the world versus participating in

cultural practices. Nordisk Pedagogik, 14(2), 71-80.

Säljö, R. (1996). Minding action - Conceiving of the world versus participating in

cultural practices. In Dall'Alba & Hasselgren (Eds.), Reflections on

Phenomenography - Towards a methodology (pp. 19-34). Gothenburgh: Acta

Universitatis Gothoburgensis. Retrieved from

http://www.ped.gu.se/biorn/phgraph/misc/constr/mindac.html.

Säljö, R. (1999). Learning as the use of tools: A sociocultural perspective on the

human-technology link. In K. Littleton & P. Light (Eds.), Learning with

computers Analysing productive interaction (pp. 144-161). London:

Routledge.

Säljö, R. (2001a). The individual in social practices. Comments to Ference Marton's

"The practice of learning". Nordic Educational Research, 2, 108-116.

Säljö, R. (2001b). Læring i praksis. Et sosiokulturelt perspektiv [Learning in

practice. A sociocultural perspective]. Oslo: Cappelen akademiske forlag.

Säljö, R. (2005). Lärande och kulturella redskap. Om lärprocesser och det kollektiva

minnet. [Learning and cultural tools. On processes of learning and collective

remembering]. Stockholm: Nordstedts Akademiska.

Säljö, R. (2009). Learning, theories of learning, and units of analysis in research.

Educational Psychologist, 44(3), 202-208.

Schatzki, T. (2001). Introduction: Practice theory. In T. Schatzki, K. Knorr Cetina &

E. von Savigny (Eds.), The practice turn in contemporary theory (pp. 1-14).

London: Routledge.

Schofield, J. W. (2002). Increasing the generalizability of qualitative research. In A.

M. Huberman & M. B. Miles (Eds.), The qualitative researchers companion

(pp. 171-203). Thousand Oaks, California: Sage Publications.

Silverman, D. (1998). Harvey Sacks - Social science & conversation analysis.

Cambridge: Polity Press.

Silverman, D. (2006). Interpreting qualitative data (Third ed.). London: Sage

Publications.

Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge: MIT Press.

Extended abstract

130

Sliger, M., & Broderick, S. (2008). The software project manager's bridge to agility.

Boston: Pearson education Inc.

Sommerville, I. (2007). Software Engineering (8 ed.): Pearson Education Limited.

Speer, S., & Hutchby, I. (2003). From ethics to analytics: Aspects of participants'

orientations to the presence and relevance of recording devices. Sociology,

37(2), 315-337.

SSB. (2008). Informasjonssektoren. Sysselsetting omsetning og verdiskapning

[Information sector, Employment, turnover and value added]. from Statistics

Norway http://www.ssb.no/iktoms/

Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, 'translations' and

boundary objects: amateurs and professionals in Berkeley's museum of

vertebrate zoology, 1907-39. Social Studies of Science, 19, 387-420.

Suchman, L. A. (1987). Plans and situated actions: the problem of human-machine

communication. Cambridge: Cambridge University Press.

Suchman, L. A. (2003). Writing and reading a response to comments on Plans and

Situated Actions. Journal of the Learning Sciences, 12(2), 299-306.

Suchman, L. A. (2007). Human-machine reconfigurations. Plans and situated action

2nd edition. New York: Cambridge University Press.

Taff, L. M., Borchering, J. W., & Hudgins, J. W. R. (1991). Estimeetings:

development estimates and a front-end process for a large project. IEEE

Transactions on Software Engineering, 17(8), 839-849.

Tausworthe, R. C. (1980). The work breakdown structure in software project

management. Journal of Systems and Software, 1(3), 181-186.

Temple, B., & Young, A. (2004). Qualitative research and translation dilemmas.

Qualitative Research, 4(2), 161-178.

Tuomi-Gröhn, T., & Engeström, Y. (Eds.). (2003). New perspectives on transfer and

boundary-crossing. Oxford: Elsevier Science.

Tuomi-Gröhn, T., Engeström, Y., & Young, M. (2003). From transfer to boundary-

crossing between school and work as a tool for developing vocational

education: an introduction. In T. Tuomi-Gröhn & Y. Engeström (Eds.),

Between school and work: New perspectives on transfer and boundary-

crossing (pp. 1-15): Elsevier Science.

 References

 131

Valsiner, J. (1994). Bidirectional cultural transmission and constructive sociogenesis.

In W. De Graaf & R. Maier (Eds.), Sociogenesis reexamined (pp. 47-70).

New York: Springer-Verlag.

Valsiner, J., & Van der Veer, R. (2000). The social mind: Construction of the idea.

New York: Cambridge University Press.

Van Oers, b. (1998). From context to contextualizing. Learning and Instruction,

8(6), 473-488.

Vygotsky, L. (1978). Mind in society. The development of higher psychological

processes. Cambridge MA: Harvard University Press.

Vygotsky, L. (1986). Thought and language. USA: MIT.

Wells, G. (1999). Dialogic Inquiry. Toward a sociocultural practice and theory for

education. Cambridge: Cambridge University Press.

Wertsch, J. (1991). Vocies of the mind. A sociocultural approach to mediated action.

Cambridge MA: Harvard University Press.

Wertsch, J. (1998). Mind as action. New York: Oxford University Press.

Wertsch, J. (2002). Voices of collective remembering. Cambridge: Cambridge

University Press.

Wetherell, M., Taylor, S., & Yates, S. (Eds.). (2001). Discourse theory and practice.

London: Sage Publication.

Willcocks, L., Whitley, E. A., & Avgerou, C. (2008). The ranking of top IS journals:

a perspective from the London School of Economics. European Journal of

Information Systems, 17(2), 163-168.

�

Part II

The Articles

Article 1

Børte, K., & Nerland, M. (2010). Software effort estimation as collective

accomplishment: An analysis of estimation work in a multi-specialist team.

Scandinavian Journal of Information Systems, 22(2), p. 65–98

�

������������	
��
���	��	����
������	�������

� �������	
�������
��������

����������

�������������������������������������� �
!����"���#����$�!������%�����������������
"��������������&���'�"�������������
(�������)*���
�������	
�
��
������������	�+�����,
�
���������

,

����-��������.
����
�������������	��
,�+

,���
,/�0�/
��

,

�1����
����
�������
�21���
�3
���3��1���
��,
���
��
���������
,�������
�3��
�����
����1
�����,�
���0��/�4
���,�����
,��,���
,/�,
5�
,��
��,
��
4
�,4
��
��
,��3�������3�
,�
��1
��6�/�
/��,����
�
��
4�
���������
,�������
�3��
�����
��
���
����,4
��
��
,	�0��
����
,�
�� �����
�3�
��,��

�2

���
���,/�/����
��
,
�7���	�������,�
,/�����
,/	��
,�+
����������
4�8
����44
��������
��
,�
���
������5��
��
�0���1��,���
,�
,
�3����
4������
��
,
0�
�������,�
��������0���
�������
�	� �
��������������������������������������
����	
�
��������
��	�
��������

5
��
����
���1��0�
����

��,��

�2 �9�� 5
��� ���� �

© Scandinavian Journal of Information Systems, 2010, 22(2), 65–98

Accepting editor: Samuli Pekkola

�������	
����	

������	�
	���������	
��������
�����

��	�����
�
	��	�
������	�������	��	�	�����
�������
�	����

������	
���

������	�
�
����	�����������	������	
����
�����	��	 ����	!
"����
��	��	#$��������	�
�
�����	������	
�������	
���
��������

%���&�	�
����$
����
�����	��	 ����	!
"����
��	��	#$��������	�
�
�����	������	
�
������������
������
��

��
������	'���	"�"
�	
(����
�	���	�	�
��	��	��)���
	"���
��������	*�
�	�����	
������*	
��
	
+���	��	�	��)���
	"��,
��	����*	�	,�$*�
��-���
$�	��.��-�"	
�������	�""�����/	

�	
�"�����*	�	������	"�����
	"
��"
���
	����	��*���*���	��
	$��������
$	�������
�	��	
("
�-
��
	��$	����
��
�	������	��	�
$���
$	��	��������	������	��
	"�"
�	�����0
�	��
	���
������-
��	"���
��	�����*�	�����	��
	
�������	���&�	�
�
	����
���
��	�����"����
$/	'�
	1�$��*�	
����	���	��)���
	
+���	
�������	��	�����
$	���	�����*�	���"�
(�
��
�	��	
("������
	
��$	�
��
-��&��*	�������	����
�	����	��	�""����*	�����
$	����������	��	�����
�/	!����*	
��
	
("������
	���&�	��
	�
��	���
����
$	�
��

�	��
	"������*	��$	��
	"����
�	������*	
��"
���	��	��
	�������/	'�
	�
2���
�
��	�"
��1�����	�
��
$	�
�
���	�
$����*	��������	
��	��
	���
��������	"���
���	�����*�	�����	
("
���
	���	�������
$	��$	����$����
$/	'�
	
"�"
�	��*�
�	����	��	*���"	��
	���"�
(���	��	��)���
	
��������	��
�
	��	�	�

$	���	���
	
�
�
����	����	��������	���	��
	�����������
	��$	���
��������	$��
������	��	����	�������/	
%��
��
��	��	�
�
����*	��
	���
��������	$
�����	��	�	"������*	�������	��
	"�"
�	���������
�	
��	���	��$
�����$��*	��	��
	�����
-���
��
$	��$	����������
	$��
������	��	������	"�����
�/	
	

1

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

����
����	��)���
	
+���	
��������	$��������
$	
("
���
�	�
�����&�	�
$���
$	������	
���
������	��������/

�	 ����!�����

A software project is developed through software processes in which common activities com-
prise specification, design and implementation, validation and evolution (Sommerville 2007).
Several of these processes have a future-oriented character in the sense that they are concerned
with planning activities and products that have yet to be realised. A critical challenge is to create
predictable software processes so that the software project can be completed on time and in a
cost-effective manner (Sommerville 2007). Moreover, the work related to software development
is typically multi-specialist in character, in the sense that it depends on different kinds of special-
ist competencies being combined and aligned in different phases (Faraj and Sproull 2000). Thus,
software development may be described as a knowledge-intensive and collaborative practice that
unfolds over time by way of complex processes of exploration, negotiation, and decision-making

To monitor and control the software processes, planning is significant. The estimation of work
effort is a core task in this regard as it is used for purposes such as budgeting, trade-off and risk

Software effort estimation, however, is a huge challenge, particularly as it is an area in which
miscalculations can result in delays, low quality software, or the loss of contracts. A review of
studies of software development projects shows that 70 to 80% of such projects overrun their

plans and budgets are based on effort estimates that are too low experience severe management
and delivery problems. Thus, more knowledge about the estimation practice of software profes-
sionals and the challenges faced in such work is important for project management.

Most research on estimation has been concerned with developing different kinds of formal
estimation models. However, judgment-based estimation is the most frequently applied esti-

software professionals does when estimating the effort of a software project using a judgment-
based approach. An effort estimate is here understood as the most likely number of work hours
necessary to complete a software development project as assessed by the managers and develop-

“the step where an understanding of the software development estimation problem is translated
-

mental process as opposed to an algorithmic calculation. How this judgmental process comes

2005). This paper aims to contribute to filling this gap by examining the work conducted to
arrive at an effort estimate as a social and communicative practice. To disclose the details of this

2

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

practice we focus on the social interactions through which the estimation tasks are collectively
explored, negotiated, and accomplished.

A requirement specification describing the details of the project to be developed forms a
point of departure for the estimation process. Usually, this document outlines what the software
system should do in detail, including the services and functions the system should provide and
the constraints under which the system must operate (Sommerville 2001). This paper sees the
constitutive elements of the interactional process as the team’s way of approaching the informa-
tion provided in the requirement specification and the way of using this as a basis for collective

strands of research.

"	 #�����!	��
�����

research as a backdrop: studies of judgment-based estimation and studies of collaborative work
in software engineering.

"��	 ���!��
	��	$�!%�������
�!	�
������

Previous research on judgment-based software effort estimation has been largely rooted in the
cognitive strand of empirical research with the aim of improving the accuracy of estimates. One
avenue of this research focused on professionals’ reasoning processes when estimating effort.
Here, research showed that the reasoning process is based more on intuition than on deliberate
reasoning (Hughes 1996). A series of experimental studies revealed that software professionals’
decisions on an estimate were influenced by factors such as anchoring, over-optimism, and

Furthermore, researchers have explored the accuracy of different estimation approaches. In
a large industrial study, two estimation approaches—top-down and bottom-up—to estimate

up approach, in which the project work is divided into different project activities and the effort
of each activity is estimated separately and then added up, on average, gave the most accurate
estimates. The results further show that almost half the time (49%) was spent on discussions
related to understanding the requirement specifications and the project context and on discus-

(2004b) study is that, in many cases, the software professionals were unable to explain how they
accomplished the actual quantification step of the estimation process.

As these studies illustrate, the research on judgment-based effort estimation has mainly been
concerned with investigating individual reasoning when expert judgments are made. Estimation
work is, however, now increasingly carried out as unstructured group work in the industry. A
survey conducted at JavaZone in 2007, where answers from 101 software developers were col-

3

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

lected, indicates that 40% use group work when estimating. This is an increase of approximately
30% over the last five years (Haugen 2007). In spite of this, research on judgment-based esti-
mation processes in groups seems to be limited. For instance, Taff et al. (1991) developed and
studied “estimeetings” as a structured method for estimating in groups. They found that the
estimates achieved in “estimeetings” corresponded well with the actual effort expended on the

-
ing and discussing estimates arrived at on an individual basis and found that the estimates were
more accurate after group discussions when compared to the average of the individual estimates.
However, neither of these studies has focused on group discussions as such, or attempted to
reveal the collective explorations undertaken in these processes.

"�"	 ���!��
	��	������������	���&	��	
������	!����������

Software development projects face a number of challenges due to size, geographic distribution,

This points to the need for coordination on different levels. One strand of research has focused
on how software tools can facilitate coordination between software professionals in distributed

have, respectively, developed a software tool (Al-Ani et al. 2008), proposed semantic technolo-
gies for sharing knowledge (Happel et al. 2008), and shown how obstacles in coordination occur
when using software tools (Panjer et al. 2008).

Another strand of studies has focused on different types of roles in teams and their effect

a planning discourse, Sarkkinen (2004) showed how ways of representing issues in a planning
frame could become a power struggle, in the sense of not including the other participants in the

at how collaborative processes are organised. They showed how small software companies rely
upon the role of engaged team members as knowledge brokers to share knowledge across distrib-
uted software development teams. Martin et al. (2008) examined cooperative work in software
testing and showed how testers took the perspective of users in order to decide what tests to run.
These studies are relevant for research on estimation in that the capacity to imagine events that
can occur during the development and use of a system is constitutive of the planning process.

Planning is significant when dealing with future-oriented work such as estimation, and stud-
ies that focus on this aspect are thus of particular relevance for the present article. Some studies

who looked at the use of plans in a software development project over several project phases,
show how coordination problems were dealt with in various ways. They revealed that planning
documents, such as project plans and requirement specifications, provide means to identify and
act upon deviations in addition to guiding the development work. In the reported study, the
requirement specification was identified as a plan that did not prescribe the work needed for
implementation. Hence, the project members had to develop new plans and requirements as the
work went along to create a basis for the future project work. This means that the specification
served as a tool for identifying aspects where re-negotiations and re-planning were necessary.

4

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

Also, in estimation work, the requirement specification constitutes the basis for the planning ac-

process among team members is not examined in this context.

development, few studies provide minute analyses of planning activities as such. This may be
due to the generally limited use of qualitative methods in the software engineering research field
(Dittrich et al. 2007). Micro-oriented studies have, however, been shown to generate important
insights in the ordering and accomplishment of other types of collaborative work. Studies of
“planning talks” in other areas have revealed how language practices often imply movement
between different activities and types of work in ways that do not follow a predefined sequence
of actions (Asmuss and Svennevig 2009). For instance, drawing on data from different studies
and workplaces, Holmes and Stubbe (2003) showed how exploratory meetings involve multiple
shifts between activities such as planning, brainstorming, and problem solving, and how the
topical structure of such interaction both allows for and depends on digression rather than a
linear development. Housley (1999) found that members of multidisciplinary teams in the area
of social care regularly contest, negotiate, and accomplish various roles in meetings where they
plan activities. In both cases, the shifts were mediated and accomplished by way of language-
based communication. Opening up the details of the communicative practice may thus increase
our understanding of how planning is actually carried out.

"�'	 #�
�����	��$�����
	

Even though the above described strands of research have produced sound knowledge about
what influences judgments and accuracy of estimates and about collaborative work in software
development more generally, few studies have combined the two. Moreover, most studies that
examine collaborative processes in software development have selected longer time frames—
stretching over days, weeks, and sometimes months—as their unit of analysis. As a result, the
collaborative process of making sense of a requirement specification and arriving at an estimate
is not sufficiently described. To gain insight into this process, we need to examine the details of
how software professionals identify, explore, and negotiate issues at stake in the different estima-
tion steps and how they make further collective decisions.

This paper addresses this gap by analyzing the collaborative practice of software effort esti-
mation in a multi-specialist team. Even though effort estimation may be seen as a recurrent ac-
tivity in software development projects, we argue that it forms a distinct process in such projects,

can gain a better understanding of this kind of work. To investigate how the estimation task is
approached, negotiated, and resolved as an unfolding process, we will focus on the interactional
dimensions of estimation work. The questions we raise are as follows:

1. -
cialist team?

2. -
ning task and agree on an estimate?

5

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

This analytical focus on the communicative and collaborative aspects of software effort estima-
tion has not been employed, to our knowledge, in previous research on estimation. Thus, the
analysis in this paper will explicate dimensions of estimation practice that have not been inves-
tigated in detail before to enrich our understanding of the challenges practitioners face in this
kind of work.

The paper is organised as follows: In section 3, we outline a theoretical perspective on estima-
tion as a social practice taking form by collective accomplishment. In section 4, we describe the
data material and analytical strategy. Section 5 presents the data analysis, which reveals how a
multi-specialist team goes about accomplishing the task of arriving at an effort estimate. Section
6 summarizes and discusses the main findings in relation to our research questions and previous
research. Finally, section 7 concludes by pointing to some implications for research on software
effort estimation.

'	 (���������	��������&)	�������	�����	�
������	
�
	
�����	�������	

'��	
���%��%	
�����	�������

As a theoretical point of departure, we regard software effort estimation as social practice. This
perspective highlights the dynamic interdependencies between humans, between humans and

properties attached to individuals or artefacts as stable and independent of each other, a core
premise in practice theories is that such properties are developed and given meaning only in

2001). As a consequence, practice theorists typically take situated activities as their unit of analy-
sis and attempt to reveal how ways of knowing and acting are collectively constructed in activity
in specific ways. During recent decades, a differentiation of approaches has emerged, highlight-
ing different dimensions of social practice. Some emphasise the regulative power of rules, habits,
and embodied repertoires of action, and stress how the practice in question is historically consti-
tuted and reproduced. Others place their analytical interest in the productive aspects of practice,

space and time. Some contribute to theory by revealing the mechanisms by which practices are
-

ute by examining the interactional dynamics by which people make sense of and engage with

This paper follows the latter approach to examine how estimation tasks are made sense of
and accomplished in the context of teamwork. Although recognizing that a social practice like
software effort estimation rests on institutionalised and established ways of doing certain types

6

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

need to develop shared understandings of specific problems (Schatzki 2001). As pointed out by
Suchman and Trigg (1996), the maintenance of social practices over time includes ad hoc behav-
iours in which specific, non-routine problems are dealt with against the backdrop of established
routines. In this perspective, the order of practice is not given, but rather produced in local,
ongoing activities. Hence, this paper takes a micro-oriented position in the field of practice
studies where practice is understood as situated accomplishments of people taking part in local

and make sense of concrete tasks by drawing on established rules and institutionally generated
patterns of action.

'�"	

������	�������	�
	���������	��������
�����

The practice of software effort estimation is typically organised as a collaborative activity in
which software professionals with different specialties combine their forms of expertise to ac-
complish a given task (Haugen 2007). To understand and explore this practice as a collective
and situated accomplishment, two notions are of special importance: the notion of distributed
expertise and the notion of mediated action.

The notion of distributed expertise contests the traditional view of cognition and expertise
as properties of individuals. Instead, these are understood as constructed in encounters and

-
sequence, expertise is not seen as stable or well-defined capabilities, but rather as emergent in
activities and collectively accomplished. Previously achieved ways of knowing need to be nego-

Multi-specialist teams comprise specialists in different areas of software development, and
hence somewhat different forms of expertise. Estimating the effort of a software development
project is thus seen as a matter of collectively exploring, negotiating, and making relevant the
different experiences and forms of knowing present in the team as resources for achieving a
shared understanding of the given task. This may include resources that derive from other con-
texts of practice. For instance, visual models, concepts, or technologies generated in other ac-

1995). Coordination of perspectives is needed even when practitioners do not move across
contexts. Their framing of problems, as well as their exploration of possible solutions, may draw
on resources from other contexts, which are introduced and made relevant in the given activity.

The notion of mediated action underscores that people always make sense of and engage in
social practices by means of cultural artefacts and tools. Thus, ways of knowing and performing
practical work are both embedded in and constituted by cultural tools. The tools we have at our
disposal influence what kind of problems we can solve, and they may provide suggestions for
how the problems can be approached. Sociocultural perspectives on practice highlight two types
of tools: semiotic tools—such as language, sign systems, and professional vocabularies—and

to constitute the space for possible actions.

7

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

but emergent in activities. Their actual use is a product of negotiations and sense making in

agents concerned all the time to retain coordination and alignment with each other in order to
bring them about.”

Communication is crucial for this work, not just for sharing knowledge but also as a joint
dynamic engagement in which collective exploration of ideas may result in a new and shared
understanding. The communicative actions may be marked by habits and conventions about
how work is carried out in specific domains. It may also be marked by improvisation and imagi-
nation. To reveal how social practices emerge as situated accomplishment, we need to examine
how actors communicate and interact with each other in specific settings through the use of

In the context of software effort estimation, achieving a shared interpretation of the require-
ment specification and how it can be used as a basis for inventive and future-oriented activities
is a central task for estimation teams. Such an interpretation is most likely not established once

plans are revisited and explored in a continuous manner in software development. Eklund et al.
(2010) make a similar point in their study of team shifts in an IT support unit, showing how
achieving continuity in collaborative practices is a matter of coordinating and securing a mini-
mum of shared understanding in different stages of the process to make it possible to continue.
The present paper contributes to this strand of research by examining what it takes to proceed
and accomplish effort estimation as a specific process in software development projects.

*	 +���	��������	��!	���������	
�����%��

The analysis presented in this paper is a re-reading of videotaped data from a large study of
-

sultancy company in June 2002. The design of the study was quasi-experimental in character,
in the sense that seven teams of software professionals were organised and asked to estimate
two legitimate software projects by applying the two estimation approaches of bottom-up and
top-down. Considerable efforts were made to ensure the authenticity of the estimation process.
Actual requirement specifications of software projects received from the company’s customers
were used as estimation tasks, and software professionals working in the given firm were hired as
participants. To resemble actual estimation teams as much as possible, each team comprised one
experienced project manager and one or two developers.

The setup of the study allowed for focused examinations of the challenges faced by estima-
tion teams in ways that could have been difficult to explore in software development projects
that evolve over longer time frames. Even though we don’t follow the estimation process as it
plays out in a real development project, the data are suitable for investigating core processes in
teamwork. More concretely, the design provided opportunities for examining the interactional
activity by making negotiations and collaborative ways of reasoning within a focused and re-

8

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

searchable timeframe accessible. It also provided access to how the requirement specification
was used for estimation purposes. The entire corpus of data has previously been analysed and

-
ing description can be found enclosed in Appendix A.

To gain insight into estimation as collaborative practice, we have chosen to analyze the in-
teractional process of one team that applied the bottom-up estimation approach. This approach
is the richest in interactional work and, to the participants in the study, it is the preferred and
best-known approach. The selection of a team was based on the analysis of the entire corpus

to the typical characteristics identified in the quantitative analysis, we used the richness of the
interaction among team members as a criterion for selection to ensure a solid dataset. The esti-
mate provided by the chosen team was too low compared to the actual effort expended on the
project. Such over-optimism is a known problem in effort estimation and the choice of team
may explicate this issue.

Our analytical interest is oriented towards the collaborative actions by which the team ap-
proaches, makes sense of, and produces collective knowledge as they engage with the problem
(Orlikowski 2006). Thus, the analysis focuses on what kind of problems the team needs to ex-
plore and what they collectively achieve by the actions taken. The video recordings are analysed
by means of interaction analysis, which is an interdisciplinary method for studying how people
interact with each other and with the cultural tools that are available in their particular environ-

the socio-cultural notion that knowledge and actions are social in their character and situated in
the interaction between members of a particular practice. The focus on the participants’ collabo-
rative achievements makes the method appropriate for studying social processes in estimation
teams. It allows for an investigation of how participants make sense of each other’s actions and
aligns their expertise with each other to solve the estimation task (Jordan and Henderson 1995).

Interaction analysis can be performed in different ways for different purposes. Our approach
is to follow the content dimension of the interactional process. In line with the theoretical per-
spective on practice as situated accomplishment, we focus on the moment-to-moment interac-
tions of the team to reveal which problems they need to engage with, how different resources
are made relevant in their task accomplishment, and how they go about achieving a collective
understanding that allows them to proceed towards an estimate. To open up the details of the
interactional practice and make these issues accessible for analysis, the following concepts are
used as sensitizing means: orientation, elaboration, clarification, and positioning. These concepts

for this specific analysis. Orientation refers to how the participants orient themselves towards
the estimation task and the problem-solving activity. Elaboration describes how the team opens
up and makes sense of problems by adding information and trying out different solutions and
ways of thinking. Clarification allows the team to narrow down problems and to close gaps as a
means to achieve shared understanding of the task. Positioning captures the dynamic aspects of
who speaks from where in the interaction and how shifting positions enhance the alignment of
different types of expertise.

9

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

The video-recorded data from the selected team add up to a total of 80 minutes. First, the
whole team process was analysed inductively through repeated viewings of the data and a sort-
ing of the discussion in relation to content. Then, excerpts were chosen for an in-depth analysis
of the interactional process. These have been presented and discussed in research workshops to
refine and validate the analysis. The excerpts presented below are chosen for their capacity to
display the dialogue as it progresses and the role it plays in the process of accomplishing the esti-
mation task. Some of the excerpts are condensed, which is illustrated by […] in the transcript1.

,	 (��	������������	�����

	��	�
�����%	�	
������	
���$���		

The team we follow in this analysis consists of one project manager, one developer, and one data-
base specialist. Hence, they form a multi-specialist team that is temporarily put together to solve
this specific estimation task. The main artefact the team has available for solving the estimation
task is the requirement specification. This document is developed for software professionals, so

for relevant participation. Software estimation is characterised by interpretations and discussions
concerning the requirement specification and the future-oriented aspect of relating to a project
that has yet to be realised. After completing an inductive analysis through repeated viewings of
the whole estimation process and sorting the discussion in relation to content, three main phases
of work were identified. In Figure 1, we have visualised the content and type of work conducted
in the team that followed after each team member had read the requirement specification and
the estimation process instructions.

-
tive analysis of the team’s discussion

As Figure 1 shows, we identified three different main phases in the team’s estimation process.
From these phases, a total of five excerpts were selected to illustrate the types of work conducted

Phase 1
Making sense of

the task

Phase 2
Estimating by

breaking down into
project activities

Phase 3
Concluding

with an
estimate

Excerpt 1
 Achieving shared
understanding of
the requirement

specification

Excerpt 2
 Exploring and
estimating the

system
component

history

Excerpt 5
Calculating

and assessing
to conclude
with a total
estimate

0 MIN 80 MIN70 MIN20 MIN

Excerpt 3
Going back

and adjusting
an estimate

Excerpt 4
 Exploring and

estimating
administration

and testing
activities

10

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

�

Figure 2: Diagram of the software system adapted from the requirement specification2

and the main turns taken in the discourse, where some things are temporarily solved, making it
possible to proceed in the work.

In the first phase, making sense of the task was the main objective. To achieve this objective,
the team referred to the estimation instructions, which included the work breakdown structures

11

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

The team decided to begin their estimation work by addressing the project activities related to
the design and programming of the software system. These project activities could be consid-
ered the most familiar and concrete parts of software development work and can therefore be
perceived as the easiest to estimate. The team, therefore, did not choose to follow the sequence

system together with text that explained the different elements of the diagram, was the object

a checklist for the project activities the team had to address. Excerpt 1 illustrates how the team
achieved a shared understanding of the task at hand by actively making use of the requirement
specification.

In the second phase of the discussion, the team explored the different project activities in
depth and assigned estimates. Excerpts 2, 3, and 4 show the explorative and complex expert
work needed in the estimation practice. In the third phase of the estimation discussion, esti-
mates from the different project activities were added up to form the total effort estimate of the
software development project. Excerpt 5 illustrates how the team reached a conclusion on a total
effort estimate.

,��	 ��������%	
����!	��!��
���!��%	��	���	��-��������	

����.�����		

As a starting point for solving the estimation task, the team needed to interpret and comprehend
what the project to be estimated was about. The requirement specification serves as an impor-
tant mediating tool and as an object of investigation in this process. The team used it in two

process at the beginning of the estimation discussion where the sequencing of the work process
was about to be set and an elaboration of the work needed for developing the software system

a project manager (PM).

Turns Verbal communication Description of
actions

The first thing we have to do at any rate is that we have to implement what
it says here, then we’ll see if it’s right. diagram. PM

is picking up
a pen, looking

requirement
specification
together

looks in her
requirement
specification.

2. PM:
And of course that takes some time, so we have a one-off job here.

understand why they are going to do this, but it is (5,3). The challenge here
is that. It says at the back here, that they don’t have, they don’t have any
Oracle installations themselves. So the question is whether we can assume
that they have access to an existing Oracle installation so that we can get it
over, access the database directly, or whether we have to get it on files and
define the file format.

4. D: Of course, there’s not supposed to be any online interface [at all]

12

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

we have to
6. D: Everything will just go on files. PM looks

in the
requirement
specification
while talking.

7. PM: I see it also quite clearly as the e::h e::h transfer of historic data. Then,
someone whether or not it is a part of this, I am not quite sure at the
moment, which then extracts it from the Oracle, but of course the most
important part of the job here is to get the data put into the database. So
that you. The format is different, so you can’t just plop it in.

one-off job. It’s something you do just once. (2,2) This is a bit difficult since
I don’t know how much data is supposed to be transferred. It doesn’t say
very much about it.

All three team
members
look in their
requirement
specification
while talking.

9. PM: In my opinion, it needs to be interpreted based on that we have defined, or
we are now defining the database we want. Then we will need some data,
and we have to take that from the old one, which we will actually have

available in one form or another in the old one.
10. D: Mm

Mm
in the
requirement
specification
while talking.
PM starts
taking notes.

As I interpret the text here, there is at least wholesale data that we are

we, that is, if we assume they can retrieve it for us, and if not, we will need

possible to make an import program in the other database.

Excerpt 1.

The requirement specification first serves as a guide in sequencing the work process of the
team, clearly shown in the language used and indicated by the repeated term “here” when the
team follows the documentation (lines 1-3). This sequencing of the work process initiates an
elaboration about the meaning the requirement specification has for the software development,
which shifts the artefact’s use to one of a means of discussion. This change in use happens when
the database specialist questions a lack of information in the requirement specification (line 3).
Through the elaborations that follow, the team employs different orientations where a dual focus
on the technical details and the overall functionality is taken care of by the database specialist
and the developer respectively. The elaborations conducted (lines 1–6) identify problems and
ambiguities (line 3) that are resolved in lines 4–6.

Solving these problems is achieved in two ways in the interaction: by clarifications or by
making assumptions. Clarification happens when the requirement specification is directly used
to clear up overlooked features in the elaboration. For instance, the developer clarifies some in-
tent in the requirement specification and thus rejects an assumption about it with the utterance
in line 4. Assumptions are used to both delimit and resolve a problem that often takes the form
of assigning properties to the context or, in this case, to the customer. This is what is happening
with the database specialist’s utterance in line 12.

13

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

In this interplay between elaborations and clarifications, assumptions drive the interaction
forward and create possibilities to pinpoint and narrow down the elaborations. This narrowing
down is achieved through an articulation of the main challenges at the close of the elabora-
tion and establishes a shared understanding, making it possible for the team to continue in
their work. This is what happens with the project manager’s utterance in line 7. The articula-
tion also leads to another aspect of the estimation discussion—namely, planning. Planning the
development of the software system activates the future-oriented dimension in the estimation
discussion, which is of vital importance for assigning the number of work hours needed for de-
velopment. Moreover, this articulation creates a connection between the two aspects of problem
solving and planning, making switching between them possible. The articulation also closes
down the problem solving conducted through elaborations and establishes a shared understand-
ing that facilitates the planning of the software development before new problems are identified
and elaborated on. These connections thereby function as prime movers in the dialogue.

This form of elaborating, together with the contributions that emerge according to the dif-
ferent positions team members take on, allows the team to make their different forms of exper-
tise relevant. The database specialist’s expert knowledge on the technical part of programming
and development is made relevant when he elaborates on the technical details connected to the
issue at stake, positioning as a technical expert in the interaction in line 3. The developer’s capac-
ity to interpret and hold the overall focus by making clarifications becomes relevant because it
allows her to elaborate in line 4, which positions her as a team facilitator. The project manager
articulates the main challenges, demonstrating a capacity to ensure progress in the dialogue,
which positions him as a lubricator, as illustrated in line 7. Collectively, the team is able to
achieve a shared understanding of the requirement specification that enables them to continue
the estimation work.

The analysis of Excerpt 1 shows that the team’s work is oriented towards making sense of
the task, both in terms of what issues the team members are trying to resolve and the sequential
organization of these issues. The requirement specification shifted from being an organizing tool
that sequenced the work process to serving as the means of discussion for achieving a shared
understanding through elaborations. In the interaction, the continual switching between the
problem solving aspect and the planning aspect served as a mover in the dialogue, ensuring that
different tasks were completed. In addition, the team members aligned their different forms of
expertise with each other by taking on different positions in the interaction.

,�"	
/������%	��!	�
�����%	���	
�
���	���������	��
����	

to explore the different project activities in depth, and assigned estimates to these, making the
requirement specification the main object of investigation. In Excerpt 2, the team is exploring
the system component history, illustrating how this type of exploration facilitates the assigning

when members suggest a solution for how to handle the system component history.

14

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

Turns Verbal communication Description of
actions

Only some of the fields in the stock register will follow a history. In
other words, the very hard part here is that they don’t tell me what fields
should be history, when it should be transferred to history tables, and
how long it should be kept.

the requirement
specification while
talking.

2. D:
So then you need some way of finding out which values he wants to
track and then create the history of it, and just ignore all the others.

D looks in the
requirement
specification.

drawing while
talking.

And then we, what we are actually saying is we have a, If you have one
of these, stock reg

4. D: Mm
(6,0)
and then you have a table named “hist”, for example, which is identical
to it, and just copy it over, we can, for example, have a help table that
tells us which fields should be copied over.

PM is turning
pages in his
documents and
start taking notes.

6. D: Mm
Then you could just let the database do it itself. Then you have some
time interval or another that you copy over when you.

8. D:
except to be updated with the new values, while this one here will grow
and grow and grow and grow.

D is pointing in
the drawing made

grow grow grow grow. And what is usually done is that you have. That

right?
drawing while
talking.

10. D: Mm

build it up depending on what you want, then you delete it or transfer
it to tape when a long time has passed.

12. D: Mm that depends on how much data we’re talking about? They said it
was a million lines a year.

D looks in the
requirement
specification and
PM takes notes.

Mm. That’s not a lot….
14. D:

16. D:
think is very difficult.

17. PM:
18. D:

15

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

in many places. I think we should build a standard component for

table and then we create a history table over it because they don’t know
which fields, so we have a help table that tells us which fields should
include history and when they should be run, every 14 days, then you
have a “cron job” that runs in the background that just copies it over
continuously.

in his drawing
while talking.
D is looking in
the requirement
specification.

20. PM: Mm
(4,0)
And then, to save the history data you will spend, or I guess you
will spend (2,5), 16 + 16, 16 hours for design, and 16 hours for
development to create history material and then you get it for free for
everyone (3,0). Then its automat - that is for all the tables for which you
want history. I’ve made this before.

PM takes notes.

22. PM:
[…. Time leap, 30 seconds]

23. PM:

simple, is it 8 for each of them or …
8+8 The import of the stock register, it is 8 for each of them.

25. PM: Import stock plus trade, that makes 16 then.

Excerpt 2.

In Excerpt 2, the requirement specification serves as the main object of investigation. The
team elaborates on the specifications of the system to be developed by identifying gaps and
adding information. This is what happens with the utterance made by the database specialist in
line 1. The elaboration then moves on to try solving the different problems that are uncovered
by imaginary scenarios concerning design solutions that are supported by drawings and expla-
nations (lines 2–11). The capacity to engage in such imaginary solutions is dependent on the
orientation taken towards problem solving. The database specialist and the developer’s orienta-
tion is solely toward technical details, but is held in two ways: by imagining being a part of the
solution—as one who performs the actual programming work (line 1)—and by keeping an eye
on the overall results (line 2).

The kind of elaboration that creates imaginary scenarios also makes a certain type of expert
knowledge relevant, and by negotiating, problematising, and challenging suggested solutions,
the different kinds of expertise are combined. This is what happens when the developer explains
how the solution is envisaged (line 8), challenging the database specialist’s scenario by seeking
further explanations (lines 9-11). The explanations provided are supported by drawings. The
negotiations and problematising that emerge show that collective achievement of understanding
is necessary to be able to move on in the elaborations. It is not enough that only one member

clarifications seen in lines 2–11.

16

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

direction of the teams work. A funny remark allows the team to go on elaborating a new project
activity, but this remark triggers a need for a leader to direct and ensure that the work regarding
one project activity is completed and an estimate assigned. This is achieved through the project
manager’s utterance in line 17, where the team’s focus shifts back to the original project activ-
ity, which makes possible a connection between the discussion around problem solving and the
discussion about planning the time necessary for developing the suggested solution.

In the planning discussion that follows, elaborations are almost absent. Instead, the team
employs culturally shared categories of numbers of work hours, which correspond to one or two
days of work. This is what happens with the database specialist’s utterance in line 21. The use
of these shared categories is also evident in the further interaction in lines 22-26. The assign-
ing of work hours for a project activity closes a gap in the teams understanding. After the work
hours are determined, the discussion about importing the two registers is closed by an estimate
(line 25), and the team is then able to continue in their estimation work by addressing the next
problem to solve (line 26).

The imaginary scenarios created are made possible by the positioning as technical experts
of both the developer and the database specialist. Through this positioning, different technical
expertise is made relevant and, by supporting the elaborations with drawings and explanations,
the team is able to align the members’ technical expertise with each other to achieve a shared un-
derstanding. The developer attends to the overall functionality and ensures that what is required
of the system due to the specification is followed. Her utterance in line 2 activates her capacity to
keep an overall perspective on the task and pay attention to the guidelines relevant for the crea-
tion of imaginary scenarios. The database specialist’s capacity to imagine carrying out the actual
developmental work required of the technical solutions suggested in line 5 activates his technical
know-how and makes it relevant in this particular practice. These different forms of expertise
that are combined during the elaborations make it possible to achieve a shared understanding
that, in turn, facilitates the assigning of estimates to the project activity.

The analysis of Excerpt 2 shows that the capacity to form imaginary scenarios and add infor-
mation is central in achieving a shared understanding of a project activity. In this example, the
team used drawings and explanations to try out solutions, activating different forms of technical
expertise, which again allowed the team to close the gaps and conclude this project activity.

,�'	 0���%	���&	��!	�!$�
��%	��	�
�����

Our analysis of the estimation practice revealed that this was not a linear process but rather a
process marked by returns and digressions. Excerpt 3 illustrates some of this complexity. In an
interactional loop in the team’s work, the team needs to return to a previously solved problem to

concerning a particular window about control functions and the project manager is summing
up the elaborations made.

17

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

Turns Verbal communication Description of
actions

1. PM: That control moves on to these that have an error. It is entered into its
own temporary table

Everyone is looking
in the requirement
specification.Mm

3. PM: There you actually get a window where you have access to all the

supposed to have a screen so then, so then, so then you can bring
anything up in the table and make corrections.

PM is taking notes

Mm. That’s fairly straightforward
5. D:

across, right? That is in facts an 8 as I see it.
7. D: It is fairly a simple read and copy from a list, or a

It’s just that you need a long screen
9. D:
10. PM: A very long screen

A very long screen
12. PM: Expensive assumption

got it then
14. PM:

after the control functions the data will be, directly into the wholesaler
table. That is that when you make a correction here, as well as the

control isn’t much. Is it a big deal to get it over? It has - there is so little
data here, so it’s nothing

Excerpt 3a.

The articulation of the main points from the elaboration conducted prior to Excerpt 3a al-
lows the team to achieve a shared understanding of the project activity and to make the switch
to the planning aspect of assigning estimates. This is what happens with the utterance made by
the project manager in lines 1-3.

In the ensuing dialogue, an assessment concerning the level of difficulty is conducted and
a corresponding estimate is assigned, which serves as a gap closing of the elaborations on one
project activity while opening up for exploration of the next. This is illustrated by the utterances
in lines 4-14, where a closure of elaborations is made (line 13) and the team continues elaborat-
ing (line 14).

In the following 2 minutes, the team continues elaborating and assigns estimates on the next
project activity. Through the elaborations they achieve a deeper understanding of the project
activity that, the team realizes, affects a previous estimate of another project activity (shown in

discovered through the team’s elaborations.

18

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

Turns Verbal communication Description of
actions

And then there are the two others who go into error condition. They go
down to the left. The one that is over there, there at the diagram in

the requirement
specification
while talking.

2. D: Mm
They are the ones who - that have failed. Then you go over here, where
you make error corrections, then they go down into the wholesaler
table. Then there’s the window that you have here. It must be, really
then, from a users’s point of view you should be able to see the content
of the other tables too.

4. D: Mm
It will be much easier for them that is

6. PM: Okay, it says here that they have access to a lot. So maybe that window
is a little more complex then?

8. D:
If we are going - build it into the screen already in that window

10. D:
Then we’ll increase it

12. PM: Is it up to 16, or will it be more?

because the application’s functionality lies in those two functions
14. PM:

That screen and the import functionality are what are hardest to
estimate

16. D: Mm
(5,0)
Do you agree?

18. PM:

Excerpt 3b.

The elaborations conducted in Excerpt 3b are characterised by clarifications and explana-
tions of the sequencing of one elaborated project activity in Figure 2. The sequencing of the
technical aspects performed opens up for taking a different perspective on the suggested solution
to the problem. This change in perspective initiates the interactional loop in the team’s work,
and happens with the utterance made by the database specialist in line 3.

For the team to perform the interactional loop being initiated, the new argument put for-
ward during the elaborations needs to be acknowledged and clarified by the team members
before they can be considered acted upon. This clarification and acknowledgement is what takes
place in the utterances in lines 6-9, before a decision to act upon the new argument is proposed
in line 11.

19

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

Identifying the need for such an interactional loop calls for a combination of different kinds
of expertise. In positioning as a user held by the database specialist, activating the capacity to
form an argument from another perspective is made relevant. Speaking from the perspective of
a user of the software system opens up for exploring other solutions than the one decided upon.
However, the interactional loop cannot be performed without combining it with the knowledge
of how to make connections and moving back and forth across time in the problem solving,
a process maintained by the project manager who acts from a position of lubricator, ensuring
progress. In the utterances made in lines 1-12, this interactional loop takes place.

The analysis of Excerpt 3 shows how an interactional loop is performed and how it rests
upon the team’s capacity both to take different perspectives during elaborations and problem
solving and to preserve an overview of the entire work process.

,�*	
/������%	��!	�
�����%	�!����
������	��!	��
��%	
�������

In addition to the technical aspects, different project-related activities need to be explored to
complete the estimation task. Excerpt 4 shows the explanatory work conducted by the team

the database specialist initiates the discussion of the first non-programming project activity,
namely, administration.

Turns Verbal communication Description of
actions

And administration and such, isn’t that about 10% of the total time?
2. PM:

4. PM:
development work, including the database, will take about 490 hours

PM looks in his
notes.

(3,0)
5. D: M[m]

 [Mm]
7. PM: How much testing should we have for it?

(5,0)
It’s good we have [name of developer] here who is a testing expert, so can’t
you please tell us.

9. D: I’m not an expert. I think when you say 8 hours for a single window, then
I think they say 1 or 2 of those hours are for testing. 1 hour.

10. PM:
that come afterwards for them. I see that as included in the test. Those 8
include the self-test

11. D:
weeks right?

D is looking in
the requirement
specification.[... Time leap, 33 seconds]

20

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

12. D: A week for testing and error correction?
Mm

14. D: Mm. Then you have 10%, I don’t think that’s so
10 %

16. D: wrong.
17. PM: 10% or approx. 50 hours are testing.

testing and error correction?
19. D: or a week’s work for testing and error correction
20. PM: a week’s work?
21. D: no, or 40 hours then
22. PM: I think that’s a bit optimistic

I think that is too little, yes
24. D: too little?
25. PM: yes, I think 10% is too little, I’d like to increase it to at least 20
26. D: yes, then its 2 weeks until PM looks in

the requirement
specification
and takes notes

no, it’s just twice as many people
28. D: 80 hours

twice the number of people
30. D: Mm, yes it is

Excerpt 4.

In Excerpt 4, elaborations concerning the project activity administration are missing in the

of thumb usages are products of collective ways of knowing that are culturally and historically
preserved in practices involving similar types of work and are made relevant and utilised by our
multi-specialist team in this particular practice.

The team use rule of thumb in lines 1 and 2 to come to an understanding of the scope of
the project activities as well as an indicator for calculating the number of hours necessary. In the
interaction, there seems to be a shared pre-understanding of what the administration activity
consists of, because it is left unelaborated. The team’s work here is mainly concerned with plan-
ning rather than with problem solving. Orientations are taken towards an overall assessment
of the calculated estimate of the design and programming activities, which is held by both the
project manager and the database specialist. The utterances in lines 1 and 2 show this employ-
ment of rule of thumb.

Apart from a clarification of one rule of thumb that is needed to achieve a shared under-
standing of the notion of testing (lines 9–10), the team’s explanatory work—which at this point
is mostly concerned with the planning aspect of the project—is oriented toward the future. The
primary debated factors at stake here are time and work hours. This kind of discussion is open-
ing up to a more extended debate on the suggested percentages for estimates than that which
characterised the previous planning discussions of the interaction. The arguments used, how-
ever, are treated as given, leaving explicit elaborations out of the work process. The interaction
from lines 11–25 illustrates this point well.

21

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

The different forms of expertise necessary to assign estimates to the non-programming ac-
tivities are made relevant both explicitly and implicitly. An explicit request for the specialist
competence of the developer to address testing is made. The developer activates her rule of
thumb knowledge, though with a little hesitation, with the utterance in line 9. A more implicit
activation of expert knowledge is provided through the project manager’s positioning as an ad-
ministrative leader when he both leads the interaction (lines 4–7) and comes up with what he
thinks is the relevant rule of thumb to be employed (lines 2 and 25).

The analysis of Excerpt 4 shows that rule of thumb is employed to a large extent when es-
timating the non-programming project activities such as administration and testing. The team
draws upon a shared body of knowledge, unlike their collective exploration of project activities
related to programming and design. Different types of tasks seem to generate different interac-
tional patterns.

,�,	 ���������%	��!	�

�

��%	��	������!�	����	�	�����	
�
�����	

After the different project activities have been estimated, the discussion enters the third phase,
where the team concludes with a total estimate of the software project. Excerpt 5 illustrates the

different project activity estimates for one of the three total estimates they were asked to come
up with in the estimation task (Appendix A).

Turns Verbal communication Description of
actions

1. D:
fun.

PM is taking
notes. D looks in

2. PM: yes, that’s fun, mmmm
(7,0)

3. D: you have completed the estimates here too
4. PM:

started summarising here?
D reaching for
the calculator.

his, but put it
back on the table.

5. D: can start. If you say, no, if you just say the numbers as we move down, it’s
easier for me.

6. PM
7. D:
8. PM: 8 20 16 16 56 40 24 8 16 8 40 16 16 16 40 192 8 40 16 80 PM is reading the

estimates from his
notes out loud.

pays attention to
PM.

9. D: 80?
10. PM:
11. D: 764
12. PM:

14, that is 153.
(10,0)

22

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

13. PM: Maybe it takes 764 times 15% of the (mumbles) PM takes notes.
D uses the
calculator.

(16,0)

15. PM: yes, but I want 15%
Ah, you are to have 15, excuse me PM is taking

notes.17. PM: That makes 15 hours for that, and I will get 5%, which works out to
one-third of it

Excerpt 5.

A call for summarizing in line 1 initiates the practical work of adding up the different project
activity estimates. This makes the team change the main artefact from the requirement specifica-
tion to the notes taken throughout the estimation discussion, which serve as the most important
semiotic tool for the work conducted. A calculator is also introduced in this phase, serving as
the material tool for helping the team perform the calculations of the different project activity
estimates. In the work that follows, orientations taken towards the calculation are twofold. One
orientation is directed towards the details and the act of calculating performed by the developer
(lines 1 and 5), and the other—performed by the project manager—is directed towards the
result of the calculation and the subsequent act of assessment (lines 12-13).

The team does not embark on any elaborations, but instead their work is characterised by
being directed towards closing on a total estimate. The work it takes to reach a conclusion on a
total effort estimate does not call for exploration in the same way that the work in the previous

The exchange in lines 4 and 5 between the project manager and the developer shows the linear
strategy they agree to follow.

-
ries are frequently repeated. The numbers for hours of work, 8, 16 and 40, which correspond
to one work day, two work days, and one week of work, respectively, have been used extensively
throughout the estimation work of the previous phase. After summarizing and closing in on
an acceptable estimate, the team refines the estimate further by calculating the different rules
of thumb that were applied as indicators for the non-programming estimates, which are then
added to the total. The kinds of expertise activated to conduct this form of work are project
management and prior experience with this type of administrative work, which is facilitated
by the project manager’s positioning as an administrative leader, shown in his utterance in line
12. Administrative expertise is combined here with a competence in calculation and the act of
using the calculator to provide different answers, functions employed by the developer who is
positioned as someone who completes. Together, the team is able to close on a total estimate.

The analysis of this last excerpt shows that even though elaborations are absent, the team’s
work still calls for different types of expertise, together with an extensive use of artefacts so that
they can complete the estimation task. The team spent less time on this part, which was marked
by a different interactional pattern characterised by few elaborations and a more straightforward
form of work.

23

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

1	 2��!��%
	��!	!�
��

���	

Our analytical interest in this paper has been to reveal the collaborative and communicative
work that comprises software effort estimation in teams. The aim was to explicate the details of
the work that needs to be done to arrive at an estimate and to enrich our understanding of the
challenges that software professionals face in this work. In the introductory section, we formu-

-
tive work are needed to accomplish the planning task and agree on an estimate?

The analysis of the social interaction in the selected estimation team shows that arriving at
an estimate is a complex process, which requires considerable communicative and intellectual

the time frame of the activity, one outcome of our analysis is that the process of software effort
estimation is not so much about quantification as it is about identifying and exploring problems

minutes, the different phases were characterised by extensive discussions and explorative work
before the quantification of project activities was realised. Thus, we find the same overall pattern

into what it takes to understand the tasks at hand and how the team collectively accomplishes
the estimation task and finally agrees on an estimate.

One challenge in this regard was related to the interpretation of the requirement specifi-
cation as a basis for achieving a shared understanding of the project to be estimated. As the
analysis shows, the information provided in this document was ambiguous and difficult to use
in a direct manner. The team members needed to add information and explore different aspects
of the identified problems to be able to proceed. Excerpt 1 showed how assumptions in the
form of assigning properties to the context or to the customer were used to solve problems of
ambiguities and achieve a shared understanding of the requirement specification. Excerpts 2, 3,
and 4 showed, in different ways, how the team needed to explore the information beyond what
was given through elaboration and clarification. This process also involved adding information
through visualization—for instance, with drawings—as a means of creating and testing imag-
ined scenarios. In this work, the team members took different positions and oriented themselves
differently towards the problems at hand, which generated resources for the collaborative pro-
cess of producing an estimate. Although the quantification steps at first seem rather straight,
the analysis shows how these steps rely on and require considerable explorative work so that the

-
ware professionals were unable to explain how they reached the quantification step, and hence
described this as the “magic step”. However, the analysis presented in this paper reveals how this
step emerges from extensive elaborations and clarifications in the preceding discussion in which
the details of the software project to be developed are collectively explored by mobilizing and
coordinating expertise through social interaction.

Moreover, our analysis shows that software effort estimation does not play out as a straight-
-

tional structure was characterised by shifts in times, topics, and roles. Several achievements had a

24

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

temporary character and needed to be reworked later in the process as new information or ways
of understanding emerged. The process was brought forward as the team members collabora-
tively resolved a series of dilemmas by moving back and forth between technical elaborations
and integrative windups. Their sense-making process thus alternated between addressing the
planning aspect of the estimation practice—that is, questions related to how the software project
could be developed and organised—and the problem solving aspect of the practice, reflected in
issues and questions that needed further elaboration and clarification to be resolved and (re)
positioned in the planning strategy.

development was characterised by recurrent processes of planning along an extended timeline.
Our analysis shows that a similar pattern characterizes the micro-processes of estimation within
the timeframe of a team discussion, and point to how planning is taken forward by continually
opening and resolving new problems and questions for the team to engage in. Shifts in topics

-

context of software effort estimation. As shown in the present study, planning in software effort
estimation is partly a matter of specifying the technological consequences of the information
provided in the requirement specification and partly a matter of creating imaginative scenarios
through which different solutions are tested. The identified need to move back and forth in
collaborative exploration, and for alternating between planning and problem solving, suggests
that planning should be understood as a continual aspect of such processes, which forms an
important basis for problem solving.

Figure 3 visualizes the interactional pattern of the activity performed by the team. The undu-
lating arrows indicate how the discussion oscillated between the planning and problem solving
aspects. The circular arrows indicate how the team was able to move back in time to problems
already addressed when new levels of understanding were achieved in the interaction.

-
ning and problem solving aspect

Phase 1
Making sense of

the task

Phase 2
Estimating by

breaking down in
project activities

Phase 3
Concluding with

an estimate

Excerpt 1
 Achieving

shared under-
standing of

the
requirement
specification

Excerpt 2
Exploring and
estimating the

system
component

history

Excerpt 5
Calculating

and
assessing to

conclude
with a total
estimate

0 MIN 80 MIN70 MIN20 MIN

Planning aspect

Problem solving aspect

Excerpt 4
 Exploring

and
estimating

administration
and testing
activities

Excerpt 3
Going back

and adjusting
an estimate

25

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

To understand the conditions for such collective accomplishment, we need to understand
the role of the available cultural tools. Sharing a professional language allowed the team to col-
lectively engage in elaborations and clarifications in a mutually constitutive process where these
aspects of the sense-making process both inform and trigger each other. For instance, it allowed
the team members to add important information necessary to solve the given tasks, as shown
in the analysis of Excerpt 1. At the same time, the team members were experts in different areas
of software development and displayed somewhat different interpretations of the technologi-
cal concepts pertaining to this activity. To accomplish the tasks at hand they needed to align
themselves constantly with each other’s knowledge and perspectives and at the same time keep
an overview of the whole estimation process. Our findings thus relate to Eklund et al. (2010), in
that the capacity to coordinate information and articulate a minimum of shared understanding

Eklund et al. (2010) investigated these aspects in the context of shift meetings in a 24/7 support
organization, our analysis reveals that such “gap closing” is also a continual challenge in ongoing
planning activities, and that its accomplishment rests on practitioners’ capabilities to identify
and explore problems by elaborating, specifying, and positioning themselves in flexible ways
through the planning discussions.

The mechanisms of alignment cannot be understood, however, without taking into account
the significant and shifting roles of the requirement specification. In general, material artefacts
can serve several functions in communicative practices. They can be objects that evolve through

multiple functionality and gives specificity to the argument by revealing how the shifting posi-
tions of the requirement specification in the activity both resulted from ongoing interactional
accomplishment and served to take the interactional process forward. The requirement specifica-
tion allowed team members to align their different forms of expertise and to collectively explore
different facets of the activities. It also provided the team with issues to be resolved as well as
with a sequential structure for engaging with these issues. Furthermore, it served as an area of
exploration in itself and contributed to generating new questions as different problems were
accomplished. In a wider perspective, a requirement specification incorporates established and
historically generated knowledge, which were utilised as resources by the team in their concrete
work. In this way, the team’s engagement with the requirement specification both gives specific-
ity to and contributes to the continuation of social practices in software development.

in estimation work, this study also contributes insights for theorizing social practices more gen-
erally. First, practice theories still tend to emphasise the recurrent and routine-based elements
of practice, which are understood with reference to the past, both in the context of histori-

knowledge-intensive society, however, we may argue that this approach is not sufficient. More
social practices are geared towards a changing future and require models of performance other

175), “creative and constructive practice—the kind of practice that obtains when we confront
non routine problems—is internally more differentiated than current conceptions of practice

26

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

as skill or habitual task performance suggest”. As a planning activity oriented towards future
scenarios, software effort estimation represents a form of creative and constructive practice. The
findings of the present study suggest that practice theories need to account for movements back
and forth between time frames, for instance, between making sense of given information and ex-
ploring imagined scenarios. Moreover, we suggest that a vocabulary that distinguishes between
different forms of elaboration and clarification in explorative practices is helpful in this regard
and should be tried out in other fields of practice.

studies conducted at a range of analytical levels. At the same time, however, practice-oriented

Carlile 2005). This paper contributes to the understanding of communicative practices in teams
within a specific domain of practice—namely, estimation of work efforts in software develop-

the paper shows the complexity of such a practice and how it is accomplished by a series of tool-
mediated, explorative, and sense-making actions, rather than by applying assumed information
or routines. In this way, it shows how social practices are simultaneously historically constituted
and emergent, and that these dimensions come together in productive ways at the level of social
interaction.

3	 ���������
	���	��
�����	��!	�������	

This paper contributes to the research on software effort estimation by revealing and specifying
the details of estimation practice in multi-specialist teams. Moreover, by exploring the micro-
dynamics of the practice in one team we have highlighted the distributed character of expertise

expertise employed to resolve the estimation task is located and realised in the social interac-
tion among team members and their material resources. Two issues emerge as important areas
for further research and work. First, the significant role of the requirement specification calls
for a greater attention towards this artefact in efforts at researching and supporting estimation
practice. Although this has been addressed in the wider context of software development (e.g.,

is sparse. Further research on this issue may reveal important aspects as to how estimation prac-
tice can be supported and improved. Second, the shifts between the planning aspect and the
problem aspect of the activity described in this study shows that aligning different positions and
perspectives in concrete problem solving is a critical issue. As a consequence, we will argue that
relying upon selected team members’ sharing of previously attained knowledge across distrib-

other specialists in the work process (Martin et al. 2008), is not sufficient for solving estimation
tasks. Instead, these processes require extensive communicative work to be opened up and dealt
with in a collaborative manner. These dimensions need to be highlighted in future research and
efforts to support the estimation work of software professionals.

27

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

To reveal the collaborative work of software effort estimation and make it accessible for
analysis, a methodological approach is needed that accounts for the communicative and inter-
actional dimensions of an activity and that is sensitive to how expertise is distributed and made
relevant in ongoing practice. The method applied in this paper provides significant opportuni-
ties for improving our understanding of estimation practice by opening up the collective sense-
making process as it emerges in moment-to-moment interaction. Moreover, it provides insights
into how collective achievements in estimation work relate to available cultural tools and to
infrastructures of knowledge. In our case, the interactional approach allowed us to recognize

complex and collective problem-solving activity that needs to be fine-tuned for each software
project that is estimated.

Finally, the complexity of the practice examined in this paper calls for more context-specific
studies of work and learning in different estimation teams. Our analysis focuses on only one
team, selected because of the richness of their interaction and by their representation of the
common problem of being over-optimistic when estimating. More studies of teams in different
professional contexts are needed, and the increased use of group work in the industry (Haugen
2007) makes it even more important to uncover and investigate team processes in estimation
as such. Since estimation is a core task in planning, monitoring, and controlling software pro-
cesses, being able to provide realistic estimates is important. Examining this practice by means
of a variety of types of studies and research approaches paves the way for a more comprehensive
understanding of software effort estimation as a complex form of work. This, in turn, opens up
possibilities for endeavours of estimating work efforts in software development projects.

4	 5���

1.
the interactions between the team members into English. Transcriptions were made con-

the level of elaboration and details to be included in the transcripts should correspond to
the researchers’ analytical interest. For our purpose, we have included information about
non-verbal behaviour that we regarded as relevant for the way the interaction proceeded.
In the excerpts, names of people, projects, and customers have been removed to ensure the
anonymity of participants.

2.
made to correct or clarify issues beyond what was actually included in the requirement
specification when translating and drawing Figure 2.

28

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

6	 ��&�����!%�����

very helpful comments and suggestions on earlier versions of this paper.

�7	#��������

-
nation within the Context of Cooperative and Human Aspects of Software Engineering. In:
Proceedings of the 2008 international workshop on Cooperative and human aspects of software
engineering, CHASE’08

Aranda, J., and Easterbrook, S., (2005). Anchoring and Adjustment in Software Estimation.
Software Engineering Notes, (30:5): 346-355.

Journal of Business Com-
munication, (46:3): 3-22.

The Practice Turn in Contemporary Theory, T.

Computer Supported Cooperative Work, (11): 13-37.

Proceedings of the 2009 interna-
tional workshop on Cooperative and human aspects of software engineering, CHASE’09, IEEE,

-
es—A survey. Annals of Software Engineering, (10): 177-205.

-
ing estimation of enhancement effort on small Java programs. In Product Focused Software
Process Improvement, -
slautern, pp. 356-370.

-
tive. Organization Science, (12): 198-213.

team interactions. In: Proceedings of the 2009 international workshop on Cooperative and hu-
man aspects of software engineering, CHASE’09

-
tative engineering research. Information and software technology, (49): 531-539.

On the organization of shared knowing in IT helpdesks. In: Learning across sites. New tools,
infrastructures and practices. -
mon Press, Oxford.

29

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

Interactive Expertise. Studies in distributed working intelligence, Dept. of
Education, University of Helsinki.

Computer Supported Cooperative Work, (8): 63-93.
-

ry crossing in expert cognition: learning and problem solving in complex work activities.
Learning and Instruction, (5:4): 319-336.

Man-
agement science, (46:12): 1554-1568.

Fuggetta, A., (2000). Software process: A roadmap. In: The future of software engineering, A.

Computer mediated Settings: Exploring learning through interaction trajectories. Interna-
tional Journal of Science Education, (30:13): 1775-1799.

Hand-
book of educational psychology
pp. 15-46.

Software Effort Estimation Error, PhD thesis, University of Oslo.

Journal of Information and Software Technology, (48:4):
302-310.

semantic web. In: Proceedings of the 2008 international workshop on Cooperative and human
aspects of software engineering, CHASE’08

-
ment and estimation] Presentation held at Estimation seminar 24 October.
http://simula.no/research/engineering/projects/best/seminars/Estimation%20Seminar%20
24.10.2007.

estimation model. European Journal of Information Systems, (1:4): 223-237.
IEEE Software, (18:2):

16-20.
Hihn, J., and Habib-Agahi, H. (1991). Cost estimation of software intensive projects: A survey

of current practices. In: International Conference on Software Engineering, IEEE Comput.

Holmes, J., and Stubbe, M., (2003). Power and politeness in the workplace
-

ings. Sociological Research Online -
sley.html.

Information and Software
Technology, (38:2): 67-75.

The
Journal of the Learning Sciences, (4:1): 39-103.

30

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

Journal of Systems and Software, (70:1-2): 37-60.

effort. Information and Software Technology, (46:1): 3-16.

International Conference on Cognitive Economics,
pp. 105-113.

Judgment and Formal Models. International Journal of Forecasting, (23): 449-462.

“The winner’s curse”. In: Proceedings of IEEE CONIELECOMP, IEEE Computer Society,
Puebla, Mexico, pp. 280–285.

IEEE Software, (May/June): 78-83.
The Practice Turn in Contemporary Theory, T.

models. Philosophy of Science, (70): 1484-1495.
-

ing and learning to do mathematical word problems in the context of digital tools. Instruc-
tional Science.

Mind, Culture and Activity, (15:4): 296-321.
-

tems. Mind, Culture and Activity (7:4): 273-290.
The Practice Turn in Con-

temporary Theory -
don, pp. 131-148.

software testing. In: Proceedings of the 2008 international workshop on Cooperative and hu-
man aspects of software engineering

Seventh International Software Metrics Symposium (METRICS’01), IEEE Computer Society,

-
timation. In: International Symposium on Empirical Software Engineering (ISESE 2003),

-
tion. Empirical Software Engineering, (9:4): 315-334.

European Journal of Information Systems, (15): 460-466.
Scandinavian Journal of

Information Systems, (20:1): 7-40.

31

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

-
The Information Society, (21:2): 91-

107.

in a distributed software development project. In: Proceedings of the 2008 international work-
shop on Cooperative and human aspects of software engineering, CHASE’08,

Project work and ICT : studying learning as participation trajectories, PhD
thesis, University of Oslo.

Communications of
the ACM, (42:1): 87-92.

used in software development projects. Computer Supported Cooperative Work, (14): 433-
468.

Lärande och kulturella redskap. Om lärprocesser och det kollektiva minnet.
[Learning and cultural tools. On processes of learning and collective remembering]
Akademiska, Stockholm.

Sarkkinen, J., (2004). Examining a planning discourse: How a manager represents issues within
a planning frame and how the others could do the same. In: Participatory design conference,
ACM, Toronto, Canada.

Schatzki, T., (2001). Introduction: Practice theory. In: The Practice Turn in Contemporary Theory,

Sommerville, I., (2001). Software Engineering
Sommerville, I., (2007). Software Engineering,

Understanding
practice. Perspectives on activity and context -
versity Press, Cambridge, pp. 144-178.

-
mates and a front-end process for a large project. IEEE Transactions on Software Engineering,
(17:8): 839-849.

Mind in society. The development of higher psychological processes, Harvard
University Press, Cambridge, MA, .

Vocies of the Mind. A Sociocultural Approach to Mediated Action, Harvard
University Press, Cambridge, MA.

Mind as action
FOSE’07, IEEE, pp.

214-225.
-

tivity. In: WISER’06, ACM, Shanghai, China.

32

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

��	�����!�/	�)	(��	�
������	�����

	��
�������
	���	
��8�����	�
������

Experimental setup: The participants sat in a meeting room at their own company’s premises.
Each team member had individually prepared for the estimation task by reading the estimation
process instructions and the requirement specification. The teams then began the discussions in
which they agreed upon an estimate of the software project.

The following instructions for how to employ a bottom-up estimation strategy, adapted

Estimation strategy. Use a ‘bottom-up’ estimation process, i.e. an estimation process based on
a break-down of the project in activities and estimation of these activities individually. Use the

structure.

Instruction for the estimation task.
already got the contract of developing the software described in, the requirement specification
not included in this paper of confidentiality reasons. The task of your estimation team is to
estimate the effort for the purpose of the planning of the project.

Most of the analysis phase is already completed and shall not be included in the estimate.
In addition to the most likely effort, you are supposed to provide the minimum (best case) and
maximum (worst case) effort, and the probability that the actual effort will be between the
minimum and the maximum effort.

who the project members will be. Assume that the participants are normally skilled employees
of your company.

Work break-down structures. The following work breakdown structure was given out as a
guide for dividing the project into different project activities. If necessary the teams were al-
lowed to break the activities further down. The different project activities are listed sequentially

structure used in most of the company’s projects.
1. Administration

2. Meetings

3. Analysis (not already completed)

4. Design

5. Programming

6. Data base work

33

Børte and Nerland: Software Effort Estimation as Collective Accomplishment

Produced by The Berkeley Electronic Press, 2010

7. Test

8. Documentation

9. Installation/system integration

�"	�����!�/	9)	(���
�������	���������
	

The following transcription conventions were used in the data excerpts:

[…..] xx min, xx sec Indicating that a timed part of the interaction is
not included

(3,0) Indicating timed pause
[] Indicating overlapping talk

34

Scandinavian Journal of Information Systems, Vol. 22 [2010], Iss. 2, Art. 4

http://aisel.aisnet.org/sjis/vol22/iss2/4

Article II

Børte, K. (submitted). Challenges when utilizing historical information in present

working tasks: An analysis of the use of analogies in team-based software effort

estimation.

Challenges when utilizing historical information
in present working tasks: An analysis of the
use of analogies in team-based software effort
estimation

Kristin Børte 1&2
1Simula Research Laboratory, P.O. Box 134, 1325 Lysaker; 2University of Oslo,

Department of Educational Research, P.O. Box 1092 Blindern, 0317 Oslo

Abstract: Making use of historical information from databases and previous
experiences when solving present working tasks is a complex issue. Several
work places develop databases and archives to make historical information
accessible, however, many also experience difficulties in utilizing such
information in productive ways. Software effort estimation is an interesting
case in this respect. This paper examines how teams of software professionals
go about to use historical information, and what challenges they face, when
applying an analogy-based, top-down estimation approach. By employing a
sociocultural perspective on knowledge and communication, the paper
analyzes the collaborative process through which two teams achieved an effort
estimate. The findings explicate the kind of challenges encountered by the
teams, how they occurred and how they were dealt with. To be able to use
historical information the teams needed to establish shared understanding for
conducting the work. This was achieved by exploring details of both previous
projects and the new project. Furthermore, the teams needed to articulate
potential meanings of the historical information and create boundary concepts
to be able to use knowledge across boundaries. The results indicate that the
idea of analogy-based, top-down estimation does not take sufficiently into
account that knowledge needs to be recontextualized to become meaningful in
new situations. To understand and facilitate these processes in estimation work,
more research is required that accounts for the communicative and
collaborative dimensions of this activity.

Keywords: top-down estimation, collaborative work, recontextualization processes,

collective remembering and boundary concepts.

: ;<�=>?@A��><B

In today’s working life, drawing on historical information when solving tasks is a

way of making solid, well-grounded decisions. In many professions, much time is

K. Børte

2

devoted to developing databases, repositories, and archives that store information so

that it can be utilized in the future for solving related tasks. Making use of historical

information is not only about using databases or archival information; it also

concerns making use of previous knowledge and experiences that people have

acquired over the years, through both working life and education. Moreover, when

solving specific tasks at work people often collaborate and work together in teams to

achieve a solution. To understand how teams make use of previous knowledge and

experiences in their collaborative problem solving a focus on the work process as

such is needed. The present paper is a contribution towards this, by investigating

software effort estimation work, with specific attention given to the challenges

software professionals face when utilizing historical information in present working

tasks. A focus on understanding cooperative activities in software development have

also been emphasized by researchers in the area of computer supported cooperative

work (Dittrich, Randall, & Singer, 2009).

The empirical focus in this paper is on how teams of software professionals go about

to estimate the work effort needed to develop a software system. This task is an

important and recurrent activity in software development projects (Boehm, Abts, &

Chulani, 2000; Kjærgaard, Nielsen, & Kautz, 2010; Sommerville, 2007). When

planning and developing software systems, effort estimates are used for purposes

such as budgeting, trade-off and risk analysis, project planning, control and software

improvement investment analysis (Boehm et al., 2000). Moreover, software effort

estimation is often organized as teamwork in the industry and some estimation

approaches specifically requests the use of historical information to achieve an effort

estimate of a new software project. This makes software effort estimation an

interesting case to investigate with regards to how practitioners utilize historical

information in present working tasks and the challenges they face.

Providing realistic effort estimates has proven to be a difficult task in the software

industry. A review of surveys on software effort estimation reported that 70 to 80%

of software projects overrun their estimates on average by spending 30 to 40% more

effort than estimated (Moløkken-Østvold & Jørgensen, 2003). The consequences of

using inaccurate estimates can be severe, leading to large financial losses, lost

contracts, delays or low quality software for the involved company. Thus, insight in

 Challenges when utilizing historical information in present working tasks

3

how estimation work is done and can be supported is important for professionals as

well as project management in software development.

The most frequently used estimation method in the software industry is called

judgment-based estimation (Bratthall, Arisholm, & Jørgensen, 2001; Heemstra &

Kusters, 1991; Hihn & Habib-Agahi, 1991; Jørgensen, 2004a). Being judgment-

based means that the quantification step is achieved by the decisions of experts rather

than by a mathematical algorithm (Jørgensen, 2007). When a judgment-based

estimation method is employed, those doing the estimation can either follow a top-

down approach or a bottom-up approach. The main distinction between these two

approaches is that when following a bottom-up approach the work is usually divided

into different project activities before the effort of each activity is estimated. These

estimates are then summed up to form a total estimate of the whole software

development project. In a top-down approach, on the other hand, the total effort of a

software project is estimated without breaking the system down into different project

activities. Instead, the estimators look for similar previously completed software

projects to compare with the current project and adjust for differences before a total

effort estimate is agreed upon (Heemstra, 1992; Sommerville, 2007). This means that

a top-down approach explicitly incorporates the use of historical information.

While there are advantages and disadvantages of both approaches, researchers have

argued that a top-down approach is more efficient than a bottom-up approach

because it is less time consuming and thereby cheaper to apply (Boehm, 1984). It can

be applied without much knowledge of how to build software (Jørgensen, 2004b;

Moløkken-Østvold & Jørgensen, 2005), and it may reduce the bias towards over-

optimism, due to the greater use of historical data from previous projects (Moløkken-

Østvold & Jørgensen, 2005). However, not much research has been done to

investigate how software professionals actually use historical information in

estimation work and the challenges they face.

This paper investigates in depth how teams of software professionals utilize

historical information in present working tasks when employing an analogy-based

top-down estimation approach. The aim is to reveal critical instances of the work

process and details of the challenges that are faced in this work. The analytical focus

K. Børte

4

is on the communicative and interactional work the teams need to do to

collaboratively achieve an estimate.

The remainder of the paper is organized as follows. First is a background on how

analogies have been utilized in software effort estimation provided. Then, in section

3, a theoretical perspective that takes social action and knowledge as situated in

practice is presented, while section 4 describes the data and the analytical strategy

that were used. This is followed by the data analysis, which reveals how challenges

of using historical information occur and are dealt with in the collaborative work of

achieving an effort estimate. In section 6 the findings are discussed in relation to

previous research and their contribution to the field of research on software effort

estimation. The paper concludes by pointing to some implications for research on

software effort estimation.

� C<DE>F�GHBD<?BH>I�JD=GBGII>=�BGH��KD��><B

Software effort estimation is a specific type of task that is conducted as part of

planning and developing software systems. In the industry this work is often

organised and conducted in teams of software professionals (Haugen, 2007). This is

due to the multi-faceted character of the estimation task where input from specialists

within different areas of software development, such as programming, databases,

architecture, and project management are needed. The common point of departure for

conducting the estimation work is usually a requirement specification describing the

details of the project to be developed (Sommerville, 2001). This specification needs

to be interpreted to achieve an understanding of the kind of system that is going to be

developed. To estimate the work effort that is needed for developing software

systems, a number of different estimation approaches and models have been

developed. Some of these approaches incorporate the use of historical information by

for example proposing the use of analogies.

The idea of using analogies is rooted in a cognitive tradition and is a widely

researched phenomenon in cognitive science. According to the cognitive science

perspective, analogical thinking involves the ‘ability to think about relational

patterns’ (Gentner, Holyoak, & Kokinov, 2001, p. 2). Inferring such relational

patterns relies on mapping the salient features of one situation (the source) to the

 Challenges when utilizing historical information in present working tasks

5

situation for which one wishes to make inferences (the target) (Holyoak, 2005). Thus

the cognitive science perspective assumes the existence of a shared complex

representational structure in which people mentally represent knowledge in schemas

that enable such mappings (Gentner, 1983). In addition to this mapping, analogical

thinking comprises several basic constituent processes, such as accessing possible

sources (analogues), making inferences about the target, adapting the inferences to

the current situation and learning in terms of generating new knowledge (Gentner et

al., 2001). Following the cognitive science perspective, when for example solving a

problem by analogy, one first needs to access one or more instances in long-term

memory that appear to be relevant analogues to the current problem. Thereafter, one

has to map systematic correspondences between features belonging to the chosen

analogue and the target problem at hand. This mapping provides a base for making

inferences about the problem that may then be used to solve it in the current

situation, leading to the creation of new knowledge (Gentner et al., 2001; Holyoak,

2005).

In the research field of software effort estimation this has taken form as a means to

utilize historical data from completed software projects (Keung, 2009). The use of

analogies has been incorporated in different estimation approaches, one of which is

called estimation by analogy (Boehm, 1981). Researchers studying this approach

have focused on formalising and developing software tools that can measure

analogies between different software projects (Mair, Martincova, & Shepperd, 2009).

The results from using such tools, ANGEL (Shepperd, Shofield, & Kitchenham,

1996) being one, have shown to lack consistency when it comes to accuracy in

predicting estimates compared to other estimation methods (Mair & Shepperd,

2005).

Walkerden and Jeffery (1999) compared the performance of software tools and

human judgment in finding analogies. They found that people outperformed software

tools in identifying analogies between software projects. Also a recent literature

review about expert problem solving related to estimation and the use of analogies,

proposes that software tools do not incorporate the complex problem solving that

human judgments involve (Mair et al., 2009). As these studies show, identifying

K. Børte

6

analogies is not a straightforward process that can be easily automated and made

algorithmic for software effort estimation.

Furthermore, the studies referred to above relate to formal estimation models. In

judgment-based estimation, finding analogies depends upon people’s capacity to

remember. This can be done with or without the help of supporting tools (Jørgensen,

Indahl, & Sjøberg, 2003). One judgment-based estimation approach that explicitly

incorporates the use of historical data from earlier software projects is the analogy-

based, top-down approach studied in this paper. This estimation approach proposes

an idealized model of how to achieve an estimate by using historical data from

previously completed projects that are identified by analogies (see Figure 1). The

model proposes a structured line of work, where the software project is seen as a

whole, in the sense that one does not investigate the requirement specification in

detail or estimate activities of the project separately. Instead, an assessment of size

and complexity, for instance, is formed after reaching an overall understanding of the

requirement specification. Then the effort is estimated by taking the total effort

expended on one or more similar previously completed projects as the point of

departure. The previously completed projects have been identified based on

analogies between the project to be estimated and completed ones. A comparison is

then conducted for the purpose of making inferences about an estimate on grounds of

analogies. Thereafter, differences between the projects are adjusted for, before a

total effort estimate is agreed upon. Finally the total estimate is distributed across the

different project activities (Heemstra, 1992; Jørgensen, 2004b). For further details of

how to employ this top-down approach, see appendix A.

 Challenges when utilizing historical information in present working tasks

7

��������	
����
���������������	���	���
��

����������	��
�������������	���
�

�	���
�
�

�	���
��
� �	���
��

�

�	���
��
�

������������������
������	���	���
��

������

�	��	������ �������

��
����������

������������

��������	�����

���� ����
��	!

�	���
��
�

"����#$��%��	��������	��������

"����&$�"��	
'���	�������	�
�	���
��

"����($������	�������������
��	������	��
���

"����)$�����	� �������������
����	���
���
��������

"����*$���	��������������
��������

�	���
��
�

����������	��
������������

�	���
�

Figure 1. Visualization of the idealized estimation approach investigated in this paper.

Across the different estimation approaches, research has shown, that deciding on an

estimate is difficult. One strand of research have found that factors such as

anchoring, over-optimism, irrelevant information and wishful thinking can influence

the decision software professionals take (Grimstad & Jørgensen, 2007; Jørgensen &

Carelius, 2004; Jørgensen & Grimstad, 2005; Jørgensen & Grimstad, 2008). Lack of

relevant experience, along with incomplete available information, also makes the

task difficult. A study that compared the accuracy of two different estimation

approaches—the analogy-based top-down approach studied in this paper and a

bottom-up approach—found that the top-down approach only led to accurate

estimates when very similar previously completed projects were recalled (Jørgensen,

2004b). Of the seven estimation teams in that study, only four were able to find

K. Børte

8

similar previously completed projects and out of those four only two teams were able

to benefit from the completed projects in their estimation work.

Another study that contributes to the understanding of how people make judgments

when planning development projects was conducted by Busby and Payne (1999).

They identified what was called ‘suspect strategies,’ i.e., practices that seemed

unsuitable to the task in some way. Busby and Payne found that people relied too

much on anchor projects when estimating, that tasks where decomposed instead of

using past experiences on a general level and that, according to the authors view, the

uniqueness of the tasks where overrated so that earlier experiences where not

regarded as relevant.

Although the use of analogies in estimation has been subject to scrutiny in the

literature, which has revealed that there are difficulties connected to both identifying

and using historical data, few studies have looked at what causes these difficulties

and how they are dealt with. Previous research on estimation has in large part

focused on individual reasoning and decision-making, but the collaborative work

involved in using historical information in estimation work is not sufficiently

described. To investigate the collaborative processes and how they unfold, the

communicative work conducted when estimating a software project needs to be

opened up and explored (Cohn, Sim, & Lee, 2009). In other words, the details of

what kind of work teams of software professionals do when using historical

information from previously completed software projects needs to be examined. This

paper addresses this gap by studying how teams of software professionals employ

one specific top-down estimation approach. The following research questions are

addressed:

1. What challenges do teams of software professionals face when applying an

analogy-based top-down estimation approach and how do they occur?

2. What kind of collaborative work is needed to utilize knowledge from former

software projects when estimating new ones?

This analytical focus on the collaborative aspects of estimation work has only been

employed in estimation research to a minor extent. Investigating the collaborative

work when teams employ an analogy-based top-down estimation approach might

 Challenges when utilizing historical information in present working tasks

9

explicate important aspects of how teams of software professionals utilize historical

information when estimating a new software project. In this paper the use of

historical information is understood as a question of utilising previous knowledge

and experiences.

� CBH>A�>A@E�@=DEB�G=H�GA��LGB><BM<>JEG?FGBD<?B

A>EEDN>=D��LGBJ>=MBB

To open up and investigate the collaborative processes of the team’s work in depth, a

theoretical perspective that takes social action as point of departure and allows for

studying interactional processes is needed. This paper therefore employs a

sociocultural perspective on knowledge and collaboration.

In the sociocultural perspective, knowledge and collaboration is understood as

embedded in the interaction between participants in a practice and the tools and

artefacts they use (Greeno, Collins, & Resnick, 1996). In software effort estimation

work, this means that the knowledge and experiences participants bring into the

team, together with the available artefacts used, such as the requirement

specification, form a context in which a particular problem is solved and knowledge

is made relevant through communicative work. Furthermore, this perspective

assumes a close link between knowledge and the social practice in which it is

acquired (Säljö, 2001). Because of this close link, knowledge needs to be articulated,

made relevant and adapted to be utilized in other contexts.

When articulating and making meaning of knowledge in different contexts, the

distinction between meaning and meaning potential is important. Meanings are

generated in communication and ‘…are properties of situations, utterances,

contributions to interaction situated cognitive events, etc.’ (Linell, 2009, p. 235).

Sense-making is when people interpret something a certain way at a certain time.

Hence, it concerns what is meant and made known in a particular setting. The notion

of meaning potential has been explicated by Linell (2009) as semantic resources that

together with contextual factors are used to achieve situated meaning. Meaning

potential can thereby be conceived as that which moves between contexts and thus

inhabits both history and structure. Furthermore, meaning potentials are multiple, in

K. Børte

10

the sense that there is not one meaning for a concept, an artefact or a tool. It consists

of a ‘set of properties which together with contextual factors ...make possible all the

usages and interpretations of the word or construction that language users find

reasonably correct, or plainly reasonable in the actual situations of use’ (Linell, 2007,

p. 389). The meaning potential, therefore, always needs to be articulated in a specific

context for it to provide a meaning that is relevant. In software effort estimation

work, meaning potentials are articulated by a team of software professionals and are

thus realized through various fields of expertise (Engeström, 1992).

In relation to meaning making, the process of making knowledge and experiences

relevant and adapted to other contexts is important. This process is called

recontextualization and is conducted through articulation and communicative work in

which knowledge is shared, elaborated and clarified amongst the team members.

Linell defines recontextualization as ‘the dynamic transfer-and-transformation of

something from one discourse to another’ (1998b, p. 145). This means that some

parts or aspects from one context are adapted or transformed to fit a different context.

These parts or aspects can, for example, be knowledge, arguments, facts or different

ways of seeing, thinking and acting. Through this recontextualization process, these

parts are often subject to change because ‘recontextualisation is never a pure transfer

of a fixed meaning’ (Linell, 1998a, p. 155). Moreover, the degree of adapting and

adjusting knowledge through recontextualization might also vary. The three concepts

that Carlile (2004) articulates ⎯ transfer, translation and transformation ⎯ provide

an opportunity to distinguish between different levels of recontextualization that

might be useful when investigating the use of historical information.

Another important aspect related to recontextualization is the act of remembering.

Knowledge and experiences needs to be remembered in order to be recontextualized.

Remembering is here understood as a social activity, an accomplishment which

occurs through conversations with others in a specific context (Middleton & Brown,

2005; Middleton & Edwards, 1990). In the top-down estimation approach studied in

this paper, the use of historical information from similar completed software projects

constitutes an essential part of the work process. The finding of similar projects is

proposed through either the act of remembering alone or by the support of databases

containing distributed stored information about completed software projects. Such

 Challenges when utilizing historical information in present working tasks

11

stored information will then function as a resource for remembering (Middleton,

1997). Even though information is standardised and stored in a decontextualized

manner, it needs to be recontextualized before it can be used in another context

(Ackerman & Halverson, 2004). A related term in this respect is boundary objects

(Star & Griesemer, 1989) which contain shared information from intersecting

worlds. Boundary objects work because they contain details that are understandable

in both contexts, but also here ‘the information, if not supplied by the same

individual, must be reunderstood for the user’s current purpose’ (Ackerman &

Halverson, 2004, p. 176). A variant of boundary objects, boundary factors, also

describe the elements that are meaningful across borders and can be represented and

displayed the same way in, for example, different hospital information systems

(Bjørn, Burgoyne, Crompton, MacDonald, Pickering, & Munro, 2009). Boundary

objects can facilitate the use of knowledge from different contexts, but the

knowledge still needs to be recontextualized.

When teams of software professionals employ the analogy-based, top-down

estimation approach investigated in this paper, it is expected that the teams utilize

knowledge and experiences from earlier projects on a general level. How this work is

conducted in teams of software professionals is thus a core interest in this paper. In

the following section the data material available for analysis is presented together

with the analytical approach taken.

O �D�DBKD�G=�DEBD<?BD<DEP��ADEBD��=>DAQBB

The analysis presented in this paper is an expanded reading of videotaped data from

a quasi-experimental software estimation study conducted in a Norwegian branch of

an international IT-consultancy company in 2002. The authors of the study’s design

pursued authenticity of the estimation process, and therefore real requirement

specifications from customers were used as estimation tasks and software

professionals from the given firm were hired as participants. A total of seven teams

were organised by a senior manager in the company where the study was conducted.

The senior manager ensured that the team members had sufficient estimation

competence to perform realistic estimates of the software development projects. In

order to resemble actual estimation teams, each team consisted of one project

K. Børte

12

manager and one or two developers. The teams solved two estimation tasks where

two different estimation approaches, top-down and bottom-up, were employed. The

entire corpus of data have previously been analysed and reported in Jørgensen

(2004b) and an in-depth study of the bottom-up estimation approach has been

reported in Børte and Nerland (2010).

The empirical setting was as follows: The participants sat in a meeting room on their

own company’s premises. To solve the estimation task, they were provided with a

support structure consisting of a computer with access to the company’s online

database of previously completed projects, and a phone, so calling informants was

possible. As preparation for the task, the participants each took 30 minutes to read

and understand the requirement specification, the estimation task and the estimation

process instructions describing the estimation approach to apply. The estimation task

and the process instructions can be found in appendix A.

The requirement specification served as the main source of information about the

task, while the support structure together with the knowledge and experience

embedded in the team served as additional information sources for finding previously

completed projects. After the preparations the teams began the discussions in which

they would agree upon an effort estimate of the software project. These discussions

were recorded on video, which constitutes the data material available for further

analysis. The participants were asked to employ a specific variant of the top-down

estimation approach, i.e., analogy-based, in which an estimate should be achieved

through a comparison with similar previously completed projects. In addition they

where told that it was not necessary to distribute the estimate on to the different

project activities. Hence, the experimental setup was designed to investigate steps 1

to 4 in the top-down estimation approach, as visualised in Figure 1.

Even though the purpose of this estimation study was to investigate the accuracy of

two different estimation approaches, the setup provided opportunities for focused

examinations of the collaborative work in software effort estimation. Such

collaboration is difficult to explore as software development projects and estimation

work evolve over long periods of time. Moreover, this study also allowed for

examining the interactional and communicative work conducted when particular

estimation approaches were employed. This would otherwise have been difficult to

 Challenges when utilizing historical information in present working tasks

13

research, because the top-down estimation approach is not the estimation approach

most commonly employed amongst software professionals (Moløkken-Østvold &

Jørgensen, 2005).

To gain insight in the employment of the top-down estimation approach and thus

how historical information is used, the interactional process of two different teams of

software professionals were chosen. The selection of teams was based on the

analysis of the entire corpus of data conducted by Jørgensen (2004b), together with

an overall analysis of the seven estimation teams’ top-down work process. The

overall analysis revealed considerable variation in how teams approached, made

sense of and solved the estimation task at hand. Furthermore, Jørgensen (2004b)

reported that only four out of seven teams were able to find project analogies. Thus,

for the purpose of this article, two teams were selected, one that found analogies and

on that did not, to reflect the variety of how challenges were faced in their

collaborative work and how these were dealt with in different ways. Common criteria

for selecting the two teams were the richness of the interaction and the order of the

estimation tasks, i.e., the top-down was the second task in the estimation study for

both teams. By conducting an event sampling of the data from the selected teams’

interactional work, it is possible to demonstrate some of the key challenges of this

top-down approach. The selected teams A and B correspond to the teams 3 and team

2, respectively, in Jørgensen’s study (2004b).

To explicate the collaborative process of making use of knowledge embedded in

previously completed software projects an analytical approach that emphasise

communication must be taken. Interaction analysis rests on a sociocultural notion

and finds its basic data for theorising about knowledge and practice in the details of

social interaction (Jordan & Henderson, 1995). The focus on the collaborative

processes makes this an appropriate method for studying social interaction in teams.

The interaction, as such thereby constitutes the unit of analysis. This way of

analysing video data is ‘an interdisciplinary method for empirical investigation of the

interaction of human beings with each other and with objects in their environment’

(Jordan & Henderson, 1995, p. 3).

Jørgensen (2004b) has previously identified the typical top-down estimation process

the teams conducted as a repeated discussion sequence between topics related to

K. Børte

14

searching for similar projects and topics related to understanding the requirement

specification, context or previous projects. In between there were also instances of

discussions on how to go about and estimate the task. Furthermore, Jørgensen also

pointed to some challenges of employing this analogy-based top-down approach,

such as problems with finding similar previously completed projects and using

historical information in the estimation work (Jørgensen, 2004b; Jørgensen, 2005).

The analytical focus in this paper is on explicating the challenges of utilising

historical information that the teams face, and investigate what causes them and how

they are dealt with in the collaborative work. This is investigated by following the

turns and analysing the data in relation to both context and processes. First a

chronological analysis was conducted with focus on the content dimension of the

interactional process in the two teams. This analysis was conducted through repeated

viewings of the whole collaborative process in both teams, before the discussions

were sorted in relation to content. Through this first reading, the main challenges the

teams faced in their work were identified and then event samplings of data were

conducted that followed the identified challenges. Thereafter, by following the

micro-chronology, in-depth analysis of the different data excerpts were conducted

and presented thematically. In the following analysis, one excerpt from each team

illustrating the identified challenges will be presented. However, the last challenge is

illustrated by one excerpt from team B, because this was the most relevant one to

analyse in order to understand the challenge.

The main analytical concept used in the analysis is recontextualization. This

analytical term characterizes the ways in which the teams are able to adapt and make

meaning of past experiences and knowledge embedded in previously completed

projects and brings this to bear on the estimation task. To open up the details of the

collaborative interaction, the concepts of elaboration and clarification are used to

capture the communicative work the teams conduct to achieve recontextualization.

The chosen excerpts are organised in columns to document the participants’ talk and

actions that are regarded as relevant for how the interactions proceeded. The

transcripts have been translated from Norwegian into English for the purpose of this

paper. To ensure anonymity of participants, the names of people, projects and

 Challenges when utilizing historical information in present working tasks

15

customers have been removed. The transcript conventions used can be found in

appendix B.

R �QDEEG<FGHB �QD�B >AA@=B �<B �QGB A>EEDN>=D��LGB �=>AGHHB >IB

D��EP�<FBDB�>�S?>J<BGH��KD��><BD��=>DAQB

After completing a chronological analysis, the same challenges that Jørgensen

(2004b) pointed to were identified. In addition, a search for a pattern between the

types of main challenges that occurred across the two teams was conducted. The

main challenges identified are then used as a point of departure to understand the

work of utilising historical information in software effort estimation. Figure 2

visualises, these challenges together with corresponding excerpts displaying the

events that will be analysed in depth.

���������		

������	
��������"	
���
�����	
�������

���������	�
�#
������	���	�����������	
���
������	����������

���������	�
������	���
�������	��	
�������"	������	��	$���	

�����

�#���
�		 �#���
�	� �#���
�	� �#���
�	� �#���
�	

�����������
	
�����
��

Figure 2 Visualization of the challenges faced by the teams and the corresponding excerpts.

As Figure 2 shows, the first challenge the teams encountered was to find similar

previously completed projects. The second challenge was to negotiate and explore

comparable dimensions, and the third was to compare previous projects with the

project to be estimated. Even though the teams faced the same types of challenges,

rather different approaches were chosen to deal with these challenges and solve the

estimation task.

In the following, episodes collected from two teams displaying the challenges of

using historical information will be analysed in depth. The two teams consist of two

and three team members, respectively. Team A consists of one experienced

developer (D) and one project leader (PL). Team B consists of one developer (D),

K. Børte

16

one database specialist (DB) and one project leader (PL). The main artefacts the

teams had available were the requirement specification and a database containing

distributed stored information about previously completed software projects.

RT: U�<?�<FB�=GL�>@HEPBA>K�EG�G?B�=>	GA�HB

The first challenge, to find similar previously completed projects for comparison,

required the teams to open up and make relevant their own experiences so the

searching could occur. In addition, the appropriate experiences from previously

completed projects needed to be made relevant. Excerpts 1 and 2 illustrate how the

two teams initiated the search for earlier completed projects. We enter the video-

recorded process of team A in Excerpt 1 when the developer closes the discussion on

how they should relate to the work process of prototyping and initiates searching for

previously completed projects:

Excerpt 1

����� ���	
��
������

����

�������	�

����
���
�
��	�
�	����	�	
��
��	�����
�����
�
���
	�
��
��
��

����	���

	��	�����
����
��

��	��

���
�����������

�����

������

�����	�

�����

������

�����	�

�����

������

�����	�
������
�����	�

������
�����	�

������������������������������� �!���"�#$"��! ���
��%�� ��$&����&�! � �'��!� ������(&�""�����!��)$�
����*�+ !,�����!-����"� $�+�+�"&$""�������. ������
! �
�����*,���('�!��� ������'����+�($!+��"�� ��('�� �/�!+
" ����(#�&�"������&�!����& ���(�+���������"� !���'����
�!+��������0���&�$���'����!�& ������+��
1����2
���'��$"���%�"���"$(��'
1����2
�$!! ���(�
����
1
��2
������& "���"�(�����0��'�"��������!��" �/�(��"�*�&�!
"�������(�,"�&�(���!�'���� �+� /���!$������!�"���(�
����
1����2
� $�!��+�� ���0��� ������ (���!+���" ���!$����!�('
3��
4!+���" �' $�!��+�(���!+�(�" �$�� !"�����'�"� $�+!,�
����$� ����+�" ��������-�"����"�������. �#$"�� !�
(�� (�� !��0�('���!��
3���������!+ �"����!5��
*��(���"�0�!�������"���

A call for finding similar previously completed projects is initiated in line 3. Finding

such projects appears to be limited to the act of remembering, which is shown in the

utterance, ‘What I’m trying to get my head round is to try to find some projects that

can be compared with this one, yeah, and that have actually been completed’ (line 3).

 Challenges when utilizing historical information in present working tasks

17

This utterance is followed by 12 seconds of silence, which is interrupted by a

confirmatory utterance: ‘They must exist, surely’ (line 4). The confirmatory

utterance functions as a suggestion in the interactional work and leaves the floor

open for any of the team members to remember. Again a period of 12 seconds of

silence follows. The silence is broken by the statement ‘dunno, erm’ (line 5), which

indicates that finding previously completed projects by remembering alone is

difficult. The utterance also closes down the initiative of remembering alone and

shows that the team is unsuccessful at this point. The failure of not remembering

previously completed projects initiate’s elaborations concerning the task. The

elaboration that follows, in lines 7−12, is concerned with making meaning of the task

at hand and opens up for engaging in joint remembering.

The object of the participants’ investigation is the requirement specification, where

the elaborations take form as a walkthrough of the different components and

functionality of the described system. During the elaborations, main features are

articulated before being clarified (lines 10-12). The clarifications serve the function

of grasping both the size and the complexity of the task, and in addition close down

the elaborations, making it possible for the team to move on. The elaborations

performed are mainly concerned with articulating and counting different parts of the

system to be developed, thereby serving two purposes: first, achieving a shared

understanding of the task and particularly the relevant parts for the purpose of

remembering previously completed projects for comparison, and second, identifying

and preparing possible points of connection between the task and previously

completed projects. Possible connection points investigated were size (line 7),

complexity (line 10) and number of windows (lines 11−12).

To decide upon which points of connection i.e., size, complexity, or number of

windows, that can be utilized in the further work, meaning potentials need to be

articulated. Articulating meaning potentials has to happen before the connection

points can be created boundary concepts that can facilitate the bridging of knowledge

between two projects. The meaning-making process, which is conducted through the

elaborations, brings the team closer to jointly remembering appropriate experiences

needed to solve this task. As this excerpt shows, the act of remembering is closely

K. Børte

18

linked to team members’ own experiences with former projects, where the relevance

dimension serves as both a guide and as selection criteria.

Team B chose a different approach for finding similar, previously completed

projects. We enter the interaction of team B in Excerpt 2 when the project leader

closes the previous discussion by stating that it is a good idea to agree upon some

assumptions:

Excerpt 2

����� ���	
��
������

����

������
������	����

���

����
����
�
����������

���������
���	
����

������

����	�
��
���������
������	����
��
�
�������
��

���
�����������

�����

������

����	�

����
������

����	�

�����
����	�
������

��,"�������������"�����(�����(�����������"���������
�����������'����
 �����������������0��������������,(�������������(�
��������������"��������"�����(����'����������"������
�������������!�"�����������%��(�����"��,0��������"������
����������0������(���������������������(�$��������
�������"��#$"���(������$���"�������������"��$���!��
���������!���������!�����������������������$������"�
���������(��������"������(�������(������$"����(�� �����
�(���������"�(���"����������,"���(����"�������������
��0�����$"��$�"$���	�"������������(��$"����"���������
��"���"�������������,"�%$����(�������(����������"�(���"�
�����������������$�����0��#$"��"��������������������
"����������(������"�������������������������!����
&��
'�������(���(����(������$"����("������(����!�����(�
������$�����������(�"������(������������'���0�����"�����
�(��$��������'�$����,�������������������"�'��������
'�����������(��������'�$��!$����������(����'��������
��$�����0��!�����$����$���%$����(���������$�����0��$"���
�(��$��"����(��'�$�����#$"��������������(�����"�(���"�
�"�'�$�����((���)�����(�����������,"�����(������������
����������������������"�����!�$����"��������'�
���(�����"����"��$�����0������������$"����(��
&���
*�(�������"��"�$"$�����(�"�������������������
+�������(��������"���'������(���(���"�����'������$�����
��0���(�"�������������������

In the elaborations and clarifications that follow the prompt to agree on some

assumptions, imaginary scenarios are used as means to make experiences relevant

(lines 2–8). This is conducted by imagining how to perform the development

process, which is indicated by the utterance in line 2: ‘… so what I think now, based

on the experiences I’ve had, is that then we have to create a data model, a rough data

model’. Not only are team B imagined as the people who will conduct the work,

indicated by the repeated term ‘we’, but also the creation of such scenarios makes it

possible to articulate members’ own expert knowledge. Through the process of

 Challenges when utilizing historical information in present working tasks

19

creating imaginary scenarios, the team is able to identify those parts of the

development process where they need to add information in the form of assumptions.

‘Another thing that’s important, which we need to make a decision about, is how

many iterations we should have with the customer ‘ (line 5). The assumptions agreed

upon (line 8) narrow down the task and establish a framework of the task for the

team to work within as they continue.

For team A the main challenge at this point was connected to the act of

remembering. As this could not be accomplished alone, the team elaborated on the

task at hand to achieve a shared understanding so that they were able to engage in

collective remembering. Team B, however, chose to narrow down and frame the task

by agreeing upon a set of assumptions rather than engaging in remembering. By

doing this the team contextualised the task so that imaginary scenarios could serve as

a means to make meaning and achieve a shared understanding.

In these two excerpts, a recontextualization process is gradually taking form through

the meaning-making performed and the shared understanding achieved. Because

team A had to engage in collective remembering, they were not able, at this stage, to

adapt and transfer knowledge from previous projects. As team B chose to

contextualise the task by adding information in the form of assumptions, they were

able to transfer experiences in the form of principles related to the development

process. Hence, they were able to establish a shared point of departure for the

conversation, making it possible to proceed.

RT� VW�E>=�<FBD<?B<GF>��D��<FBA>K�D=DNEGB?�KG<H�><HBB

During the work process of the two teams, a second challenge arose: exploring

comparable dimensions that could be used as bridges between the task and a previous

project. Different approaches were taken once again, and we enter the data of team A

in Excerpt 3 when the project leader suggests windows as a comparable dimension:

K. Børte

20

Excerpt 3

����� ���	
��
������

����

�������	
�����	

�	���
��	�	
����
���

���
�����������

�����

�������

������
	������

�����
�������
������

������

������
�������

������
�������

������
�	�����

�
����
�������
������
�
�����

������
�������
������
�������
������
�	�����

��������������������������6�������6���������� !"������
6����6#���#�"�������������������
3!!�
��$$����7#������7#����"�"$8�������$8�!��# ���6����%��
����������
3!!
&�!
*�7#����"�"$8�'���������8������%���������������!
6�$$��#�!��#��������%���'�$8�#�!�$����������6�7���
���#��������!��������#��������#���������#�����#��
6����6#���!�$�9�
(�#������#�6�������6������������������������#�#��'�����
�����#��!�������*��6�7�����$8�'���'������%�������) �����
8� �$��*����6�����6������7#��"� ���8���+�,� ���%��
������������������������#���
�!!�
���������8� ���%��6����6���$��7#���$$������
��%�$��!�������#���-.�������8� ���%����#���'�����
��#��$$�������/������6����%��#�!����9���!��* �#���������
��� ����'�#� ����
�!!�
#�����6�������� ����������������'���������������$������
��%�$��!���������6���� $����%����*���������%�$��!����
�����������������#��$�����6���/���� ���
�!!�
� �����#���*�����*�!�8"��#�!��������#��������"������,� �
�$6�8#����������#�����#�0�8� ��$6�8#���������
��#��$$���������#���*�7#���������##���$8������
����##���$8������������������� !"������6����6#������'���
���
����������!!�
,�����8����������7#����������������������������
,�����" �����8� 7���'������8� 7���'�����#��� �����
��%����!�����6�������8� �!�*�����6�������6����6#����
6�������8� �!�*���
�
8����
������#�7��!�*����8������������
1���������#�7��
2�����#�����#����7#����"�"$8�����$8��������������
8����
����� !"������6����6#����#��������

In Excerpt 3 we see that team A has a clear vision of what comparison dimension to

use (lines 1–3): ‘We need to find a project with a, where the number of windows has

been recorded then…. It’s probably the only measure we have here then. ‘ Despite

the clear statement of a comparison dimension, a large amount of elaborative work is

still needed to make the dimension both valid and relevant to use for comparison

purposes. This is what happens in lines 6 to 23. The concept of windows is here

elaborated on in order to achieve a shared understanding. This shared understanding

makes it possible for the team to use the concept of windows as a boundary concept

 Challenges when utilizing historical information in present working tasks

21

that facilitates bridging of knowledge. To accomplish this, team A first agrees upon

the windows complexity (lines 6–15), making rule of thumb knowledge relevant and

suggesting it be applied to the windows. What is clearly shown here is how the

meaning potential of the concept of windows moves between contexts, but also that

meaning-making has to occur for it to be relevant in this specific setting.

The team thereafter elaborates on the concept of windows in a larger context in order

to assess the relevance of windows in an overall picture of the development process

(lines 7–23). Hence, the team goes out of the task frame to make sense of the concept

of windows. To support the elaborations conducted, a drawing is made parallel to

articulating different phases in the software development process (line 7–9): ‘You

have a project initiation phase, and then you have what we, let’s call it a development

phase, OK, then you have testing and installation.’ Both the articulation and drawing

of the different project phases allow an assessment of the relevance of windows in

those different phases, which is what takes place in the elaborations that follow. To

be able to elaborate and relate the concept of windows to a larger context on a

general level, expert knowledge from project management is made relevant. When

assessing the relevance of the concept of windows, the development phase is singled

out as one possible comparison dimension. The other phases are then ruled out: ‘You

always need a test phase; you always need an installation phase. It’s not necessarily,

not necessarily dependent on the number of windows that get created’ (lines 13−15).

Ruling out these phases is problematised in line 16, which opens up for more

thorough elaborations, where imaginary scenarios are created to function as support

for the conclusion but also create distance from what is perceived as irrelevant (lines

17-19): ‘You’re gonna set up an environment, whether you make it with 28 windows

or whether you make 14, it doesn’t make any difference.’ Creating imaginary

scenarios helps clarify and support previous arguments, and also helps to convince

the other team member. The team is here able to establish a shared framework,

making it possible to proceed in their communicative work.

In Excerpt 4 a different approach to this challenge is taken. We enter the data of team

B when the developer raises the issue of using similar projects as a basis:

K. Børte

22

Excerpt 4

����� ���	
��
������

����

������
���������
��	����		���
�����
��������
�������	�
�		���	�	���
�
	�������
�����

���
�����������

�����

������
��������

����)�
������
�������

�����

�������

������
�����)�
�������

������
�������

�
����
�������
������
�
�����
������

�������
������
�����)�

������
�����)�

�
����

),-������;������	��
��������
�����������
������������
���
���
����������
����	;
�������
�������
��������������5
������������
�������
������������152������
��������
��
�����
������
���
��������	���
����
���	�
�������
�����	������
;��
���
��	�������������
���	�
�������	���
���������	�������������
��������������������
��
;����
	�
����
��
�
��	����
�
��	���	���������	�����
;�������
��
���
�
��	��
�������
��������	�����	��
�

�

�
)�
���
��	���
������������	����	��	
�����	���
����
��
�������������������	������
��������	���
��
���
��
�	���
���������
�������
���
��	��
������
�

�
)�
���
��
������
��������	��
��	������������
���������

��	�������	�������������������
�
��
��4�
��������
 	�
������)!����
���	��
��������
������
��
�
������
��
�
��	�����;�����	��
�	��
�
������������	�������
��
���
����;�������
�����	��
"������
����
�
����������������
����������	����;���	�������	��
��
�
��������	;
5�
#���
����	����	��
��
��������
�����������
��
��
���

�����
��
��
�������������������
��	�
�	�������
������
)�

�����������������
�������	�����������	�
���������
����
��
�����������	����
��	�
�	������������
���������
�
�������������
��������������
�

�
��
��
������
���������	���������	����	��
��������
�������
��
����
��
�	��<�
��
;������
����������
�����
�������
�	
��
�

�

Excerpt 4 shows that comparable dimensions are not given, nor is it obvious what to

use. Several different possible comparison dimensions are articulated in line 6, which

shows the variety of options the team can choose from. The articulation of possible

comparison dimensions raises the question of what to use, thereby opening up further

elaborations and clarifications to explore several dimensions. This is what happens in

line 7, where the project leader makes his experience relevant and starts elaborating.

During the elaboration the project leader is not only making relevant his own

experience, but is also aligning it to the assumptions the team established as a

framework for the task (see Excerpt 2). When aligning with the assumptions, the

elaboration takes the form of ruling out: ‘But with the framework conditions we have

 Challenges when utilizing historical information in present working tasks

23

set here, I think we can free ourselves from that’. An attempt to make relevant the

experiences of other team members is made during the elaborations (line 12): ‘After

all [name of database specialist] is trying to suggest here that this is something

you’ve done many times, so you know exactly what you’ll use’. This attempt is

unsuccessful and reveals what appears to be a lack of relevant experiences in the

team (line 15): ‘No, I’ve never done that’. This denial creates a tension in the

interaction and closes down the elaborations. To be able to proceed, an alternative is

suggested, where the problem of lack of experience is attempted solved by

suggesting another point of departure (line 17). What happens is that the team is

choosing an alternative approach than what was requested and makes use of

information from the task as point of departure for reasoning. Using this alternative

approach causes the team to violate the top-down instructions (line 20). In this

alternative approach the team makes relevant the experiences from the previous task

they just solved (line 20): ‘What you can do, you can typically say that you are done

within ten weeks, a bit like what you worked out a while ago’. As the experiences

from the task just solved are the nearest ones in time, they form a natural part of the

knowledge that can be recontextualized. The team does not know the outcome of

their performance. Not knowing this should make the experiences less relevant and

less valid for use. What the team does is not adapt the knowledge; instead, the

reasoning process from the previous task is transferred as a method and applied in

the same way in a new context.

In Excerpt 3, team A works quite purposefully to explore a comparison dimension

and create a boundary concept that facilitates bridging of knowledge. This was

conducted through an extensive recontextualization process, where knowledge

embedded in a previously completed project was made relevant, transformed and

aligned with the task at hand. A vast amount of elaborative work had to be conducted

in order to make this happen. Excerpt 4 shows the explorative approach team B

chose, and how this leads to violating the top-down instructions due to lack of

experience.

RT� XDM�<FBA>K�D=�H><HB�>BY@D<��IPB<@KNG=B>IBJ>=MBQ>@=HBB

The third challenge the teams faced was that of performing comparisons and using

them as input for the quantification of number of work hours required for the task.

K. Børte

24

To understand why making comparisons can be perceived as a challenge, it was most

relevant to look at team B, because they chose to explicate the details of the project

to be estimated by breaking it down into project activities. We enter the data of team

B in Excerpt 5 when the database specialist starts elaborating by breaking the task

down into project activities:

Excerpt 5

����� ���	
��
������

����

���
��
����
���
��
����
��	�
�������
�
��
�
���
�
��

���
�����������

�����

$%��3&'

(%������
�������
	������

������

������
�������

�����

�������
�������
������
�������

�������

�	����
�
�����

������
�������
�
����
�������
������
�������

������

���=�������=���������	������������ ����!��������������
������!���������"������������#$��%����������������%���
#!�������$�%��������=���������=�%��%�=���������������
%��%��&�%�=�������%�%�!���%�$������%�������%��%����
%�%���=��������#���%���	����!��#�!��'!�����'���=��>���
"�%�%�!����%�!�%������������=��>���"�%������%�!�%����
#�!��'!�������%������!������=��>���"�%�������!��#�!�
�'!���
($$
)����=��>���"�%����%�$����	�����'�����%�!�������!������
	������
	����=�����*�'%�=��%����=��>���"�%����!�����	���
���!��%��%�������%������������
($$�
)������>���"�%�%�!����%�!�%������%�%������!����'��
+���'���=�����=�����$�'�����������#$��%���%����%��
%�%���&��"�%,�����%�	���
��#�!�'��%,
($$
����"������������#$��%�����&��%����#�!�'��%�
����"������������#$��%�-.�����%����%�������/��%�%��=0
�����������������������-)��%>����'�����"�����%������0
��%�&�����%���
1�����������$��%����'��!��������%�����%�&�����%��%>��
"�%�%��&�������%��������%����=��>���"�%�%������$#�!%�
!��%����������%����'���%��%�����������$����! ��
($$�
2���%��!�>�������$��=��$#�!%�������%��"���,�3���%��!��
����4��%������������>%�%��!�,�1���!�'�������������
$������������"�
1���2
.�������%����$#�!%�!��%������%��!�>����%��!�������!�
%��!�>��$��������%!=����%������!��>%���##�����%��&!�� �
�%������
5�
5��������!��>%�
��%����!�
��%���������%�
-1��������%���%�!%���%����$�%���"�0�
-��%���������%����=���$�%���"�����0��!���������%����=
	���
6!$�����!�'����������������"�%�%��$���%��%�&����
)������=�&�������!�'�$#�!����������������%��%�=�����=�
=��������&���������$���!�#!�/�'%��%��%���!��%��7$����
��! ��"�����#�!����$��������7$����%��%���! �������#�!�
'��%���!��"�%���#!�/�'%�#�!����

As a result of the lack of identifying a comparison dimension, team B performs

incomplete bottom-up reasoning processes to arrive at estimates.

 Challenges when utilizing historical information in present working tasks

25

In the elaborations that take place in line 1, the expert knowledge of the database

specialist is articulated through creating imaginary scenarios of the development

process of windows. In the imaginary scenarios the experiences from the earlier

completed task is made relevant and aligned with the knowledge concerning the

development process of the task at hand. Through the use of imaginary scenarios the

team is able to estimate the number of work hours on windows by employing an

incomplete bottom-up approach (lines 3−5).

To complete the calculations of number of work hours on the task, the team makes

rule of thumb knowledge relevant (lines 8–10). It is obvious that the rule of thumb

knowledge applied here is not a knowledge that is shared by the whole team but

rather a part of the project leader’s expert knowledge: ‘Design and development is

about 60%’. Applying this rule of thumb knowledge leads to a quantification of an

estimate, which in turn leads to an assessment of size (line 11): ‘Well, then this is

just tiny’.

This assessment opens up for further elaborations and clarifications, where the

elaboration first takes form as explanations before it turns into an investigation of the

different parts (line 15): ‘How many imports was it again? ‘ The investigations come

to a sudden halt when the database specialist realises that he is breaking the project

down into activities: ‘But we weren’t supposed to break it down’ (line 15). This

utterance shows that during their own elaborations, a sudden awareness of the

instructions from the task is made relevant and abruptly stops the elaborations (lines

16–17). Making the task instructions relevant is followed by a justification of why

the project is broken down into activities (lines 19−22). The justification functions

as a defence for not being able to remember and make relevant appropriate

experiences to find comparison dimensions or finding previously completed projects:

‘But we have to say something or we have to say 400 ‘ (line 20−21).

The justification also makes the team articulate what they know and can use as a

point of departure for solving this task (line 22): ‘The only basis for comparison we

have is that you say you have been on similar projects that were ten-man’. This

articulation shows that resources in a project, understood as number of people, is the

K. Børte

26

knowledge team B is able to make relevant and transfer, so that it can function as a

boundary concept between a former project and the task at hand.

Excerpt 5 shows how team B articulates their knowledge by breaking the project

down into activities and using imaginary scenarios, instead of transforming

knowledge from another project and making comparisons. The team faces a

challenge when they realize that what they are doing is a bottom-up process. Due to

the lack of a comparable dimension, the need to explore alternative reasoning

processes to achieve a number of work hours to complete the task is needed. Hence

team B relied upon what can be perceived as the first level of recontextualization,

namely transfer (Carlile, 2004). This involved reusing the reasoning process from the

first task in the estimation study, instead of adapting knowledge from completed

projects.

Z ��HA@HH�><BB

The aim of this paper has been to explicate the challenges of using historical

information in present working tasks. The analytical focus has been on opening up

and exploring the communicative and collaborative work of how the challenges

emerged and were dealt with in the teams’ interaction. These issues were explored by

investigating the collaborative processes of employing an analogy-based, top-down

estimation approach. The following two research questions guided the analysis: 1)

what challenges do teams of software professionals face when applying an analogy-

based top-down estimation approach and how do they occur, and 2) what kind of

work is needed to utilize knowledge from former software projects when estimating

new ones.

The analysis of the social interaction in the selected teams revealed that employing

an analogy-based, top-down estimation approach was far from the straightforward

work process as proposed by the idealized model (see Figure 1). Not only were

considerable amounts of communicative work needed, but also a number of

challenges had to be resolved for the teams to complete the task and arrive at an

estimate. The analysis revealed three concrete challenges that occurred at rather

critical instances in the teams’ collaborative work. The first challenge was finding

similar completed software projects, the second was exploring and negotiating

 Challenges when utilizing historical information in present working tasks

27

comparable dimensions, and the third was making comparisons to quantify number

of work hours. The results from this analysis support Jørgensen’s (2004b) findings:

that it was difficult to find similar completed projects and use information from these

projects. Furthermore, the analysis presented in this paper offers insight into why

these challenges occur and how they are dealt with in the teams’ collaborative work.

Finding similar completed projects and using information from these projects

requires that the information not only is remembered but also is recognised as

relevant at a general level. The analysis showed that this was difficult and the teams

did not achieve this at an early stage in the work process. In Excerpt 1, the teams

relied upon the capacity to remember alone, even though a database containing

information about previous completed projects was available. To be able to find

relevant software projects, the teams needed to interactively engage in collective

remembering as a communicative practice (Middleton & Brown, 2005), because

knowledge is distributed amongst team members. Finding similar projects requires

that the team members talk to each other and thus share their knowledge and

experiences, so they can jointly engage in remembering information relevant for the

task at hand.

To be able to utilize information from former software projects in the estimation

work, details of the different projects had to be investigated. First of all, the project

to be estimated had to be opened up and explored in detail to establish a shared point

of departure for conducting the communicative work. Achieving a shared

understanding and point of departure required extensive elaborations and

clarifications of the task at hand. In addition, comparable former software projects

had to be elaborated in detail so they could be identified as relevant. A double sense-

making process was therefore undergone, because both the new project to be

estimated as well as the historical information available needed to be made sense of.

Thus, these findings correspond with the results of Busby and Payne (1999), in that

there is a strong reliance on decomposing a task, even though it is not suitable or

asked for in a given context. The analysis in this paper expands this finding by

explicating both the reason behind the need for decomposing and the focus on the

details in teams’ collaborative work. Busby and Payne (1999) suggested that the

uniqueness of tasks was overrated and that this was perceived as a reason for earlier

K. Børte

28

experiences not being regarded as relevant. With the theoretical perspective

employed in this paper, a team context, and the analytical focus on collaborative

work, establishing shared understanding for solving a task in teams is necessary for

conducting the work. This cannot be established without exploring details to a certain

extent, because a shared understanding of both the new project to be estimated and

the historical information have to be achieved. Hence, task uniqueness can be

understood as a reason for exploring details so that historical information can be

utilized.

Furthermore, the focus on details is also a result of the recontextualization processes,

which must take place in order for teams to utilize historical data. The reason for this

is the close link between the knowledge acquired and the context it was acquired in

(Säljö, 2001). Knowledge needs to be adapted and transformed to fit the context in

which it is intended to be used. Hence, recontextualization processes are conducted

through the communicative work of elaborating and clarifying information from

similar software projects. The analysis showed that the recontextualization processes

varied considerably in the teams’ collaborative work. Some were quite extensive, in

which boundary concepts were created to facilitate bridging of knowledge across

contexts. An example is contained in Excerpt 3, which shows how meaning

potentials of a possible boundary concept (the concept of windows) are recognised

and how sense-making processes have to occur to give specificity and meaning in a

given context. This illustrates the complexity of utilising knowledge across contexts

and also the importance of articulating what Linell (2009) calls meaning potentials.

Other recontextualization processes were easier. As illustrated by Excerpt 4, the

concern was adapting a reasoning process, which required less elaboration and

clarification to achieve. Through investigating the details, the teams first established

shared frameworks that made it possible to proceed in their work and thereby

perform the necessary recontextualization processes for adapting and adjusting

historical data. Through this collaborative work, the teams were able to utilize

knowledge and experiences from previously completed software projects, though not

in the way proposed by the analogy-based top-down estimation approach.

Seen together, the collaborative work conducted was more complex than the search-

find-compare-adjust sequence outlined by the idealized top-down model (Figure 1).

 Challenges when utilizing historical information in present working tasks

29

Through the analyses the work carried out to find similar projects and utilize

historical information has been thoroughly unpacked and the results are striking

regarding the extent of the collaborative work conducted. Figure 3 provides a

visualisation of how historical information becomes recontextualized, when teams

attempt to employ an analogy-based, top-down estimation approach. The curved

arrows indicate how the interactional processes moved back and forth between

addressing the project to be estimated and recontextualization processes and between

addressing information about different completed projects recontextualisation

processes. When connection points where found, boundary concepts were created to

facilitate bridging of knowledge to the project to be estimated. These interactional

processes are what constitute the recontextualization processes that have to occur for

teams to adapt knowledge and experiences from former software projects. Thus, to

utilize knowledge from former software projects to achieve a total effort estimate of

a new software project, several recontextualisation processes of various degrees have

to be performed.

���	��
���	�	�	�����

�����	����	���������	���	��
�	������

�������������������

��
���
����

	

����
���	

�	�
����

�	��
��

��	�
	

���
���

��

���
�����

��	

���
���

���	

����
�	��

���	�
	

��!����
����

����	�����	
	��	��
���	�	��!��������	�	��������������	�	�
	
���������	��
���	�	

�	������

����
���

	�
���
��

������
���

	

����
���

	

��
���
����
�

Figure 3 Visualization of how historical data becomes recontextualized to be useful in new contexts.

K. Børte

30

Utilising knowledge and experiences embedded in teams of software professionals or

historical information when estimating a new software project is not a one-to-one

mapping process. The idea of analogical thinking, however, rests on the assumption

that mapping is possible (Gentner et al., 2001). This mapping is done by first

accessing one or more relevant analogues that are stored in long-term memory and

then secondly this analogue is mapped to a target analogue so that similarities can be

identified. When investigating what kind of work is conducted to find similar

software projects and use historical information for solving a new task in teams

collaborative work. Communication and articulation of knowledge are necessary

because knowledge is situated. Mapping between projects is therefore difficult to

obtain, as teams needs to achieve a shared understanding that requires knowledge to

be articulated, adapted and adjusted. Hence, what happens in practice is that

recontextualization processes is performed instead, which can be both extensive and

difficult. As Figure 3 illustrates, practice does not occur in pure form: it tends to be

much more complex than models, which are simplified and idealised versions of the

world. Moreover, models always need to be contextualised to have meaning in a

given context.

The analysis showed that a considerable amount of the teams’ collaborative work

consisted of such recontextualization processes, in which meaning potentials were

recognized, articulated, negotiated and specified to make meaning in a new context.

Hence, the use of recontextualization in this paper further exands Carlile’s (2004),

account of the concepts transfer, translation and transformation, by explicating the

mechanisms and challenges that are involved in the context of using historical

information. Thus, this expansion provides insight into how knowledge from former

software projects can be used.

Moreover, the use of boundary concepts in this paper is related to the term boundary

objects developed by Star and Griesmer (1989). However, in the current study the

communication and language used are at the core of the team’s collaborative work.

Hence, it gives meaning to use the term boundary concepts instead as the time frame

are short and the issues that are dealt with relates to the concepts the participants talk

about and not objects in the sense Star and Griesmer outlines. As with boundary

objects, boundary concepts contain common features from different contexts, but in

 Challenges when utilizing historical information in present working tasks

31

addition, the process of creating boundary concepts reveals how the bridging of

knowledge is facilitated in a short time scale in teams’ collaborative work.

[�><AE@H�><B

In estimation work, software professionals often collaborate in teams to achieve an

estimate of a software development project. These professionals enter the team and

the work assignment with different types of specialist knowledge and experiences

that, in combination, is valuable for solving the specific task. A platform is thus

needed whereby the communicative work can be conducted and the participants can

share and explore their knowledge, experiences and understandings. The analysis

presented in this paper shows how communicative work is crucial for utilising

historical information across contexts. As solving problems is grounded in the

communicative work conducted through elaborations, specifications and negotiations

between team members, understanding the collaborative processes that unfolds

reveals a dimension of estimation work that has not previously been investigated.

Most research on judgment-based effort estimation has been rooted in the cognitive

tradition of empirical research that takes the individual expert as a unit of analysis.

The results from these studies explicate one important dimension of software effort

estimation—that of uncovering aspects that influence decisions experts make about

estimates. In turn, this means that the communicative work to achieve an estimate

has not been made visible to any extent. Nevertheless, Jørgensen (2004b) revealed

that there are difficulties in employing an estimation approach that requires the use of

historical data on a general level, i.e., an analogy-based, top-down estimation

approach. This paper has investigated these difficulties further by employing a

communicative approach called interaction analysis. With this analytical approach, in

which the social interaction constitutes the unit of analysis, it was possible to

explicate what kind of challenges teams of software professionals encountered, as

well as how they occurred and were dealt with, when employing an analogy-based,

top-down estimation approach. Hence, this paper contributes to the research field of

software effort estimation in that it provides an understanding of the communicative

work required for using historical information to achieve an estimate.

K. Børte

32

As estimation work is often performed in teams achieving an estimate can be

conceived as a collaborative process. It is therefore a need for explorative studies

with a communicative approach that can explicate the collaborative dimensions of

estimation work. This paper is one contribution to such explorative work. Combining

different types of studies employing different research methods and unit of analysis

provides opportunities for fostering theory-building in estimation. A set of studies

that examine these different dimensions by addressing both individual aspects as well

as collaborative aspects of the estimation work will provide a solid understanding of

what the phenomenon of software effort estimation is all about. More studies are thus

needed, particularly context-specific studies, to explain and understand what actually

happens in practice.

Acknowledgements

I would like to thank Professor Monika Nerland, Professor Sten Ludvigsen and

Professor Magne Jørgensen for their very helpful comments and suggestions on

earlier versions of this paper.

References

Ackerman, M., & Halverson, C. (2004). Organizational memory as objects,

processes and trajectories: an examination of organizational memory in use.

Computer Supported Cooperative Work, 13, 155-189.

Bjørn, P., Burgoyne, S., Crompton, V., MacDonald, T., Pickering, B., & Munro, S.

(2009). Boundary factors and contextual contingencies: configuring

electronic templates for healthcare professionals. European Journal of

Information Systems, 18, 428-441.

Boehm, B., Abts, C., & Chulani, S. (2000). Software development cost estimation

approaches - A survey. Annals of Software Engineering, 10, 177-205.

Boehm, B. W. (1981). Software engineering economics. New Jersey: Prentice-Hall.

Boehm, B. W. (1984). Software engineering economics. IEEE Transactions on

Software Engineering, 10(1), 4-21.

Børte, K., & Nerland, M. (2010). Software effort estimation as collective

accomplishment: An analysis of estimation practice in a multi-specialist

team. Scandinavian Journal of Information Systems, 22(2), 65-98.

 Challenges when utilizing historical information in present working tasks

33

Bratthall, L., Arisholm, E., & Jørgensen, M. (2001). Program understanding

behavior during estimation of enhancement effort on small Java programs.

Paper presented at the Product Focused Software Process Improvement,

Kaiserslautern, Germany.

Busby, J. S., & Payne, K. (1999). Issues of organisational behaviour in effort

estimation for development projects. International Journal of Project

Management, 17(5), 239-300.

Carlile, P., R. (2004). Transferring, translating and transforming: An integrative

framework for managing knowledge across boundaries. Organization

Science, 15(5), 555-568.

Cohn, M. L., Sim, S. E., & Lee, C. P. (2009). What counts as software process?

Negotiating the boundary of software work through artifacts and

conversation. Computer Supported Cooperative Work, 18(5-6), 401-443.

Dittrich, Y., Randall, D. W., & Singer, J. (2009). Software engineering as

cooperative work. Editorial. Computer Supported Cooperative Work, 18(5-6),

393-399.

Engeström, Y. (1992). Interactive expertise. Studies in distributed working

intelligence. Helsinki: University of Helsinki, Dept of Education.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy.

Cognitive Science: A Multidiciplinary Journal, 7(2), 155-170.

Gentner, D., Holyoak, K. J., & Kokinov, B. N. (Eds.). (2001). The analogical mind.

Perspectives from cognitive science: Massachusetts Institute of Technology.

Greeno, J. G., Collins, A. M., & Resnick, L. B. (1996). Cognitions and learning. In

D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology

(pp. 15-46). New York: McMillian.

Grimstad, S., & Jørgensen, M. (2007). The impact of irrelevant information on

estimates of software development effort. Paper presented at the Australian

Software Engineering Conference, Melbourne.

Haugen, N. C. (2007). Moderne systemutvikling og estimering [Modern system

development and estimation] Presentation held at Estimation seminar 24

October, 2007. Retrieved 20 October, 2009, from

http://simula.no/research/engineering/projects/best/seminars/Estimation%20S

eminar%2024.10.2007

K. Børte

34

Heemstra, F. J. (1992). Software cost estimation. Information and Software

Technology, 34(10), 627-639.

Heemstra, F. J., & Kusters, R. J. (1991). Function point analysis: Evaluation of a

software cost estimation model. European Journal of Information Systems,

1(4), 223-237.

Hihn, J., & Habib-Agahi, H. (1991). Cost estimation of software intensive projects: A

survey of current practices. Paper presented at the International Conference

on Software Engineering, Austin, TX, USA.

Holyoak, K. J. (2005). Analogy. In K. J. Holyoak & R. G. Morrison (Eds.), The

Cambridge handbook of thinking and reasoning. New York: Cambridge

University Press.

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice.

The Journal of the Learning Sciences, 4(1), 39-103.

Jørgensen, M. (2004a). A review of studies on expert estimation of software

development effort. Journal of Systems and Software, 70(1-2), 37-60.

Jørgensen, M. (2004b). Top-down and bottom-up expert estimation of software

development effort. Information and Software Technology, 46(1), 3-16.

Jørgensen, M. (2005). The "magic step" of judgement-based software effort

estimation. Paper presented at the International Conference on Cognitive

Economics. New Bulgarian University, Sofia, Bulgaria.

Jørgensen, M. (2007). Forecasting of software development work effort: Evidence on

expert Judgement and formal models. International Journal of Forecasting,

23, 449-462.

Jørgensen, M., & Carelius, G. (2004). An empirical study of software project

bidding. IEEE Transactions of Software Engineering, 30(12), 953-969.

Jørgensen, M., & Grimstad, S. (2005). Over-optimism in Software Development

Projects: “The winner’s curse”. Paper presented at the Proceedings of IEEE

CONIELECOMP, Puebla, Mexico.

Jørgensen, M., & Grimstad, S. (2008). Avoiding irrelevant and misleading

information when estimating software development effort. IEEE

Software((May/June), 78-83.

Jørgensen, M., Indahl, U., & Sjøberg, D. I. K. (2003). Software effort estimation by

analogy and "regression toward the mean". Journal of Systems and Software,

68(3), 253-262.

 Challenges when utilizing historical information in present working tasks

35

Keung, J. (2009). Software development cost estimation using analogy: A review.

Paper presented at the 20th Australian Software Engineering Conference

2009 (ASWEC'2009), Gold Coast, Australia.

Kjærgaard, A., Nielsen, P. A., & Kautz, K. (2010). Making sense of project

management: A case of knowledge sharing in software development.

Scandinavian Journal of Information Systems, 22(1), 3-26.

Linell, P. (1998a). Approaching dialogue: Talk, interaction and contexts in

dialogical perspectives (Vol. 3). Amsterdam: John Benjamins Publishing

Company.

Linell, P. (1998b). Discourse across boundaries: on recontextualisation and the

blending of voices in professional discourse. Text: an interdisciplinary

journal, 18(2), 143-157.

Linell, P. (2007). Meaning potentials and the interaction between lexis and grammar.

Some empirical substantiations. Pragmatics, 17.

Linell, P. (2009). Rethinking language, mind, and the world dialogically. Charlotte,

NC: Information Age Publishing Inc.

Mair, C., Martincova, M., & Shepperd, M. (2009). A literature review of expert

problem solving using analogy. Paper presented at the 13th International

Conference on Evaluation and Assessment in Software Engineering (EASE),

Durham University, UK.

Mair, C., & Shepperd, M. (2005). The consistency of empirical comparisons of

regression and analogy-based software project cost prediction. Paper

presented at the 4th International Symposium on Empirical Software

Engineering (ISESE), Los Alamitos, CA, USA.

Middleton, D. (1997). The social organization of conversational remembering:

Experience as individual and collective concerns. Mind, Culture and Activity,

4(2), 71-85.

Middleton, D., & Brown, S. D. (2005). The social psychology of experience. Studies

in remembering and forgetting. London: SAGE publications Ltd.

Middleton, D., & Edwards, D. (Eds.). (1990). Collective remembering. London: Sage

Publications.

Moløkken-Østvold, K., & Jørgensen, M. (2003). A review of surveys on software

effort estimation. Paper presented at the International Symposium on

Empirical Software Engineering (ISESE 2003), Rome, Italy.

K. Børte

36

Moløkken-Østvold, K., & Jørgensen, M. (2005). Expert estimation of web-

development projects: Are software professionals in technical roles more

optimistic than those in non-technical roles? Empirical Software Engineering,

10(1), 7-30.

Säljö, R. (2001). Læring i praksis. Et sosiokulturelt perspektiv [Learning in practice.

A sociocultural perspective]. Oslo: Cappelen akademiske forlag.

Shepperd, M., Shofield, C., & Kitchenham, B. (1996). Effort estimation using

analogy. Paper presented at the International Conference on Software

Engineering, Berlin, Germany.

Sommerville, I. (2001). Software Engineering (6 ed.): Harlow: Addison-Wesley.

Sommerville, I. (2007). Software Engineering (8 ed.): Pearson Education Limited.

Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, 'translations' and

boundary objects: amateurs and professionals in Berkeley's museum of

vertebrate zoology, 1907-39. Social Studies of Science, 19, 387-420.

Walkerden, F., & Jeffery, R. (1999). An empirical study of analogy-based software

effort estimation. Empirical Software Engineering, 4(2), 135-158.

Appendix A: Top-down instructions – adapted from Jørgensen (2004b)

Important: When estimating the project you are not allowed to break the project into

activities. Instead, you are supposed to try to estimate the project through a

comparison with previously completed (preferably similar) projects. In other words,

you are supposed to use an analogy-based (top- down) estimation process.

Discussions and all written notes shall reflect that process.

This estimation process may be unfamiliar to many of you, but do your best. The

projects you compare with do not need to be very similar to the project to be

estimated to be used. You may, for example, compare characteristics such as number

of screens, number of tables of the current project with previously completed

projects.

Description of the estimation context

Your company has already got the contract of developing the software described in,

 Challenges when utilizing historical information in present working tasks

37

the requirement specification - not included in this paper of confidentiality reasons.

The task of your estimation team is to estimate the effort for the purpose of the

planning of the project.

Most of the analysis phase is already completed and shall not be included in the

estimate. In addition to the most likely effort, you are supposed to provide the

minimum (best case) and maximum (worst case) effort, and the probability that the

actual effort will be in between the minimum and the maximum effort.

Example: You believe that the most likely use of effort for a project is X work-hours,

that the minimum effort is as little as Y work-hours, and that the maximum effort is

Z work-hours. You estimate that it is P percent likely that the actual effort is between

Y and Z:

You do not know who the project members will be. Assume that the participants are

normally skilled employees of your company.

Sequence of the estimation work

Step 1 (individual work): Read and understand the requirement specification.

Step 2 (teamwork): Discuss and agree on an estimate on the most likely effort, the

minimum effort, the maximum effort and the probability that the actual effort will be

inside the minimum – maximum interval). Describe important assumptions.

Important: Emphasize to find earlier projects (preferably similar), and to use this in

the estimation process.

Step 3 (individual work): Complete questionnaire.

Appendix B: Transcript conventions

[] Overlapping talk

(8,0) Timed pause

�

Article III

Børte, K., Ludvigsen, S., & Mørch, A. (submitted). The role of concepts in expert

work: Unpacking ‘the magic step’ in software effort estimation.

The role of concepts in professional work: Unpacking

the “magic step” in software effort estimation

Kristin Børte1&2, Sten Ludvigsen3, Anders Mørch3

1Simula Research Laboratory. P.O.Box 134, NO-1325 Lysaker; 2University of Oslo,
Department of Educational Research, P.O.Box 1092, Blindern, NO-0317 Oslo;

3University of Oslo, Intermedia, P.O.Box 1161, Blindern, NO-0318 Oslo

Abstract: This paper examines the use of concepts in professional work by
analysing the specialised work practice software effort estimation. The aim is
to achieve an understanding of how software professionals invoke different
types of knowledge when reasoning and reaching a decision on an effort
estimate of a software development project. The step from reasoning to
decision-making has been referred to as “the magic step” in software effort
estimation. We propose that by taking a socio-genetic perspective on concepts
in activities, which allow for a focus on three interrelated levels of
understanding, institutionalized practice, individual knowledge and dialogue
and activity, the ways in which software professionals reach a decision can be
unpacked. The results from our empirical analysis showed that the user story
mediates the types of resources and knowledge needed to solve the task.
Concepts from the knowledge domain are used to frame the task and the
participants develop a partially shared understanding, enough to take the next
step in the problem solving activity. The paper argues that the magic step is
found in the analysis of the social interaction in which the concepts used are
anchored in the knowledge domain of software engineering and in the
historical experiences of the participants and subsequently become activated.

Keywords: Professional work, concepts in activity, software effort estimation

Introduction

Professional work is based on long-term education and training. Competence is

thereby developed in education for engagement in specific types of problem solving,

and provides a basis for such work, which is shared by practitioners with a common

educational background. At the same time, activating knowledge and making it

relevant to solve specific problems in work is not straightforward (Konkola, Tuomi-

Gröhn, Lambert, & Ludvigsen, 2007). Each problem setting has its own set of

complex issues, which need to be attended to in locally specific ways. Moreover,

work is often performed as collaborative processes in groups and teams. Hence, to

understand how expert work is carried out, we need to focus on the work process as

K. Børte, S. Ludvigsen and A. Mørch

2

such, and on how problem solving is carried out in activity. The present paper is a

contribution towards this, and focuses on the work of software professionals, with

specific attention given to the role of concepts in collaborative problem solving.

The aspect of expert work that we address here, is how concepts are used and

handled in the specificity of software effort estimation. We take as a point of

departure, that when engaged in problem solving, professionals draw on resources

that originate from research and developmental work in a particular knowledge

domain as well as on experience-based knowledge. In both cases, however, the

resources they draw upon have a discipline- or profession-specific character (Lauder,

2009; Young, 2009). When utilized in activities these different resources are

intertwined in language. By way of education and training, professionals are

socialized into specialised discourse communities in which language and artefacts

are used to solve problems.

The empirical focus is on how a team of professionals with backgrounds in

software development, creates estimates of the work effort needed for developing

new components of a software system. This work, which is called software effort

estimation, constitutes a specific and important activity in software development

projects (Boehm, Abts, & Chulani, 2000; Kjærgaard, Nielsen, & Kautz, 2010;

Sommerville, 2007). However, it has proven to be a difficult endeavour. A review of

studies of software development projects shows that 70% to 80% of such projects

overrun their estimates and spend on average 30% to 40% more effort than estimated

(Moløkken-Østvold & Jørgensen, 2003) The consequences of providing inaccurate

or over-optimistic effort estimates can be severe and may result in lost contracts,

delays in implementation, or low quality software for the companies involved.

Software effort estimation should therefore be perceived as a societal and

organizational problem, and a better understanding of this work practice may yield

important results for society.

As a type of problem solving, effort estimation takes the character of “wicked

problems” (Rittel & Webber, 1973) or what is more commonly described as, ill-

structured problems (Simon, 1996). Being wicked or ill-structured means that there is

no best solution to the problem and that achievement goes by way of finding

solutions that are good enough within a defined set of constraints, such as time and

money. In doing this, knowledge needs to be made relevant and useful in this

activity. Moreover, software effort estimation can be conceived as a specific type of

 The role of concepts in professional work

3

planning activity that usually involves more than one person. Being able to plan and

control for future incidents is seen as an important part of participating in estimation

work. However, planning and controlling or predicting work effort is a complex

issue. Planning can also be understood as a meaning-making activity (Linell, 2009),

in which prediction must be seen as part of social and cognitive processes within

social practice. This makes the estimation practice an interesting example to

investigate when looking into the role of concepts in professional work.

Language consist of concepts that do not, in general, have any set of fixed

meanings, but rather need to be understood in relation to what people are trying to

achieve in collaborative activities. Concepts have two primary layers: The first layer

is that a concept incorporates information that could be relevant to the here and now,

while the second layer is the historical accepted use of the concepts (Linell, 2009).

Concepts in the workplace are often loaded with history as a result of being part of

the long-term historical development of inscriptions, artefacts and conceptual tools.

The actual meaning making with concepts is contingent in an activity. One of their

functions is that they provide opportunities to classify phenomena and through this,

cope with a high degree of complexity.

This article looks into one particular aspect of this issue, namely how

software professionals in teams reason and reach consensus on an effort estimate

through their use of language and concepts. The study adopts a socio-genetic

perspective, which implies that knowledge is associated with the concepts that are

invoked in talk. To understand what counts as knowledge in estimation practices, we

study the work of expert practitioners in the field. Raising the question of what

counts as knowledge makes us aware of how and what kind of knowledge is seen as

valuable, or, alternatively, what becomes invisible in the practice. This challenge

makes us sensitive to changes in how knowledge is negotiated and treated in

professional work.

The research questions raised in this paper are:

• What concepts direct participants’ talk and guide their decision-making

process?

• What kinds of knowledge are invoked in the work of achieving an effort

estimate, and where does this knowledge come from?

K. Børte, S. Ludvigsen and A. Mørch

4

The questions are examined in the context of a team of software professionals who

employ a specific estimation technique, known as planning poker, for estimating the

effort of one release of a large software system that handles public pensions and

loans.

The structure of the paper is as follows. We begin by describing software

effort estimation as a type of work as it is revealed in research literature. Next, we

present the theoretical perspective that forms the premises for the empirical analysis.

Then we present our methods and analytical strategies before we conduct an

empirical analysis. In the final section, we compare our results with the results

reported in the literature using our theoretical perspective, and summarize our

findings.

Software effort estimation as a specific type of work

A specialised work practice such as software effort estimation provides a good case

for examining professional work because both a specialised technical knowledge of

software development and the capability of dealing with a software system that is yet

to be developed are needed.

The large number of overruns in the IT-industry has been a known problem

for years and thus software effort estimation has been addressed in research literature

since at least the 1970s. The dominating focus in this research field has been on

developing and improving formal estimation models in which software cost

estimation has been investigated from a technical point of view (Jørgensen &

Shepperd, 2007). Since 1990, there has been an increase in research papers

addressing expert judgment-based estimation, which is the most common estimation

approach used in the industry (Heemstra & Kusters, 1991; Hihn & Habib-Agahi,

1991; Jørgensen, 2004). The focus of attention has turned from the technical details

towards the individual expert performing the estimation work. A large part of this

research looked into what kind of aspects influence the decisions that software

professionals make when estimating the effort of a software development project.

For instance, in a review article by Halkjelsvik and Jørgensen (submitted) on studies

of judgment-based predictions of performance time, it is pointed to that in software

development, aspects such as anchor information, wishful thinking, request format,

and irrelevant information influence the judgments software professionals make on

an effort estimate.

 The role of concepts in professional work

5

Many studies of expert judgment-based estimation use the individual as the

unit of analysis (methodological individualism), but the social aspects are rarely

taken into account. This also applies to the few studies of group estimation that have

been conducted (Halkjelsvik & Jørgensen, submitted; Moløkken-Østvold, Haugen, &

Benestad, 2008). However, in recent research, a stronger focus on the communicative

and social aspects of estimation work has been addressed (Børte, submitted; Børte &

Nerland, 2010) and new estimation techniques have been developed that facilitate

social interaction to a larger extent.

Planning poker (Grenning, 2002) is one such technique that facilitates social

interaction. As this is a rather new technique, not much research has been done to

investigate this way of achieving an estimate in teams. Haugen (2006) compared the

use of planning poker with unstructured group estimation to investigate whether

introducing planning poker improved the estimation performance. The results of the

study showed that the use of planning poker estimates on familiar tasks was more

accurate than the unstructured group discussion. However, for unfamiliar tasks the

use of planning poker increased the inaccuracy of estimates.

A second study that investigated the planning poker technique was conducted

by Moløkken-Østvold et al. (2008). The purpose of this study was to explore the

group process of using planning poker and to compare the accuracy of estimates

provided by the use of planning poker with that of the estimates achieved

individually. The results showed that the tasks that were estimated with planning

poker were less optimistic than the results from a statistical combination of the

individual estimates. In addition, the tasks estimated with planning poker were more

accurate than the same tasks estimated individually and statistically combined.

The planning poker technique provides opportunities to study the use of

concepts in professionals’ work as it facilitates social interaction during the

construction of an estimate. What makes this technique interesting, is, firstly, that it

is organised in a way that ensures the participation of all team members, regardless

of position or experience. Secondly, that it requests justification or explanations from

the team members who provide the highest and lowest estimate as part of the work

process. Thirdly, that it relies on the use of playing cards as a material artefact to

perform the estimation. It is in social interaction that the individual participant’s

knowledge gets connected to the concepts and artefacts that are part of the collective

resources needed by the participants to activate and reason with when achieving an

K. Børte, S. Ludvigsen and A. Mørch

6

estimate. In order to understand this as phenomena, we need a theoretical

perspective.

Concepts in activities: A socio-genetic perspective

In social interaction people use language, concepts and activate resources that

constitute what they achieve in interaction. The concepts that we use come from our

everyday experiences and some are appropriated through education and specialised

practices (Mäkitalo & Säljö, 2002; Vygotsky, 1978). In practical activities, concepts,

whether they come from experience or a particular knowledge domain such as

software engineering, create the direction for talk and thus how problems are solved.

Concepts and their relationship to each other do not include a fixed set of meanings,

but have meaning potential relative to the activities performed. The meaning making

processes and the realisation of meaning potentials that occur through social

interaction becomes an important part of the interactional work in problem solving.

These activities have their basis in semiotic mediation. Different concepts are

developed as part of an institutional practice, while they may also “travel” to

participants in ways that require considerable interactional work. Recontextualisation

and decontextualisation thereby becomes part of productive interactions (Linell,

2009).

In this article, we take a socio-cultural position, or what is called a socio-

genetic perspective, on social interaction. We emphasize that the socio-genetic

perspective gives us a set of powerful analytic tools for understanding social

interaction at multiple levels (De Graaf & Maier, 1994; Valsiner, 1994; Valsiner &

Van der Veer, 2000; Van der Veer, 1994). The multiple levels involve three

interrelated aspects of human activities: 1) Institutional practices, 2) individual

knowledge, and 3) dialogue and activity. Firstly, institutional practices are

understood as historically driven events in which concrete artefacts and language

represent the collective knowledge. This collective knowledge becomes a cultural

resource and can reveal potential ways of organizing activities. Secondly, the

individual who takes part in the institutional practice holds a unique and personal

history (experience) and knowledge. Thirdly, the dialogues and activities in an

institution develop in the intersection between the collective knowledge of the

participants, and the cultural resources that are enacted. Thus, what becomes part of

each participant’s own trajectory, also becomes part of the institutional trajectory.

 The role of concepts in professional work

7

The socio-genetic perspective therefore implies that learning and knowledge

construction cannot be understood only by studying individual achievements, or be

seen as determined solely by a local situation or social structure. These need to be

seen as relational and situated.

It is important to thoroughly study these socio-genetic processes in software

effort estimation if we want to understand how participants collaboratively solve

complex problems and co-construct knowledge. Whereas institutional practices can

be described and analysed at different levels, it is important to recognize that these

levels should be understood as interdependent. The socio-genetic perspective

employed in this paper makes it possible to focus both on collective aspects of

human practices and on how actors orient and position themselves to take part in

moment-by-moment interaction.

Data material and analytic strategy

The data material that is analysed in this paper consists of video recordings from real

life estimation meetings in the Norwegian software industry where planning poker

was used as an estimation technique. The software development project that is

estimated in the meetings is an on-going (re)development of a large software system

that was initiated by the government for administrating pensions and loans. The

software project has three software suppliers that are involved in the development,

one in-house team from the customer whose project is (re)developed, and two

suppliers from external consultancy companies. The project has its own premises

where all the project members from the different software suppliers are located and

conduct their daily work. A total of 88 software developers participate in the work

and they are organised into 11 different teams. The actual development of this

software system is planned to last for three years and is divided into a series of about

three releases per year.

As part of the work to realise this large project, approximately 300 high-level

requirement specification documents describing the software system to be developed

has been made (Hannay & Benestad, 2010). Each of these requirement specifications

comprise a user story, which is a description written in the customers’ language of

what a user should do from the users’ perspective in any given situation. For

example: “As a caseworker I should be able to calculate the pensions for all

members”. These requirement specifications represent development work to be done

K. Børte, S. Ludvigsen and A. Mørch

8

and are placed in queues called “backlogs”. For a specific release, more detailed

specifications, user stories, and design specifications are developed together with

specific release backlogs comprising the more specific tasks that are going to be

implemented in the particular release. All the different documents that are developed

and changes to these documents are registered in the project management tool JIRA

(http://www.atlassian.com/software/jira/).

Prior to the start-up of the work on a release the key stakeholders meet to

discuss the release backlog i.e., the tasks that are going to be implemented. During

this meeting, changes, refinements and specifications are made. Then the release

backlog is split into three different specific backlogs, one for each subcontractor.

Each of the subcontractors, here, two consultancy firms and the customer, estimate

their designated specific backlog with their preferred estimation method. In this case,

two of the subcontractors, the in-house team and one of the external suppliers, used

the planning poker estimation technique, while the third supplier, which was

external, used a bottom-up approach supported by the company’s own model,

developed on grounds of historical data from the company. The work of estimating

the effort of the release was conducted in meetings in which representatives from the

different teams that were going to develop the task were participating. The number of

participants in the estimation meetings ranged from 3 to 12 persons depending on the

estimation approach or technique that was employed. The estimation work of one

release was spread out on different meetings that were held during one week in

March 2010. One estimation meeting at each subcontractor, three in total, has been

videotaped. The videotaped meetings lasted 2.04, 3.41 and 2.43 hours respectively.

After viewing the video recordings of the three meetings, we narrowed down

the data material to the teams that used planning poker as an estimation technique.

Thereafter, we decided to analyse in depth the interactional work conducted by one

of the teams to get a close look at the collaborative problem solving in this work. The

selection of this team was based on the richness of the interaction, which provided

good opportunities for exploring the role of concepts in professional work and should

be seen as theoretical sampling since the data are selected based on a specific

problem that is considered a key issue in the estimation research. As the in-house

team was already familiar with the system to be (re)developed and thus a lot of the

communicative work and understandings were implicit and shared in the team and

 The role of concepts in professional work

9

not made explicit through the work process, we chose to follow the team from the

external supplier.

The video-recordings were the first step in the analysis, and were used as an

ethnographic frame, which means that they provided an overview of the material and

the setting for estimation. The next step was to understand the “logic” of the

participants’ reasoning. In this step, we, as analysts, looked at particular episodes

several times. After this process, we chose a few episodes that demonstrated typical

actions and sequences of talk. The selection of these episodes is based on two

premises. The first is what seems to be important to the data and the activity itself,

which in these data is the goal of reaching consensus. The second is a theoretical

problem that we will later address, based on the literature review of estimation and

how estimation practice is conceptualized in software development.

 In the analysis of data, we used principles from interaction analysis (Derry et

al., 2010; Furberg & Ludvigsen, 2008; Jordan & Henderson, 1995; Silverman, 1998)

meaning that we used the ethnographic video-data to frame and analyse the selected

episodes, considering them to be demonstrations of sense-making and participation

structures. Social interaction analysis combines aspects of conversation content with

how the talk is performed and accomplished through participant interaction.

Considered together, it provided insight into how knowledge is constructed by the

participants in estimation activities. This knowledge is seen as a set of shared

resources that participants use to reach consensus about how much work will be

involved in the estimated task.

In order to analyse the sequences of actions and utterances, we used the

categories clarification, elaboration, justification, and specification as sensitizing

means. These categories have been adopted from our previous work and fine-tuned

for this specific analysis (Børte & Nerland, 2010; Furberg & Ludvigsen, 2008).

Through these analytic categories we interpreted the participants’ interactional

accomplishments. The analysis of the data was conducted in two steps (first and

second order analysis). In the first order analysis (Linell, 2009), we analysed the data

from the participants’ point of view, i.e. what they were trying to achieve. Based on

theory and the review, we created a second order analysis, which placed the analysis

in the field in an attempt to understand estimation as a specific type of social practice

(Linell, 2009). In the second order analysis, we make analytic generalizations based

on a synthesis of the data, the review, and the analytic concepts based on the

K. Børte, S. Ludvigsen and A. Mørch

10

theoretical socio-genetic perspective. In the following we provide a description of the

estimation setting before we present the empirical analysis.

The estimation setting

The estimation work session took place in a meeting room in which eleven

participants from the different development teams participated. The majority of the

participants were programmers. In the estimation meeting, several artefacts were

used, in particular, design specifications that consisted of flow diagrams, showing the

suggested flow of logic among the components of the planned software system. This

was presented on a whiteboard with a projector. The participants were familiar with

this way of representing programs as well as the symbols used in the chart. In

addition, the team members each had a deck of planning poker cards that they used

when estimating the different tasks in the release, see Figure 1. The number on the

cards represents what is named relative story points of the work effort involved in

solving a task. For example the difference between card number 1 and 2 is that

number 2 represent twice the amount of work effort needed to solve the task.

Figure 1. Illustration of a deck of planning poker cards

The instructions for playing planning poker that are included in a deck of planning

poker cards follows these steps: 1) The estimation task is presented, 2) The task is

discussed in the team, 3) Each participant privately selects a card representing his/her

estimate, 4) Once all the participants have selected a card, the cards are flipped over

 The role of concepts in professional work

11

simultaneously, 5) If all the cards show the same number, then that is the estimate, 6)

If the cards are not the same, the group discusses focusing on the outlying values, 7)

Step 3-6 are repeated until the estimates converge (Cohn, 2006; Grenning, 2002).

These instructions are often adapted to fit the context in which it is used.

To investigate how software professionals decide upon an effort estimate, we

have chosen to analyse a sequence of work in which a specific task illustrated in a

flow diagram is followed from presentation to achieving an estimate. The selected

sequence illustrates how the team reason and use concepts to explore, justify and

clarify issues when employing the planning poker technique to achieve a consensus

on an estimate. In the work process, the team uses several artefacts. The main

material artefacts in the beginning of the work process are the design solution and its

flow diagrams. These are used so that the team can achieve a shared understanding of

the specific estimation task also referred to as a user story. When a shared

understanding is achieved, the team’s use of material artefacts shifts to the deck of

planning poker cards. These cards are used as a representation of the different team

members’ estimates on the specific task/user story and thereby guide what kind of

activity happens next. That is, whether further justification, clarification or

negotiations are needed or consensus is achieved. There is one designated group

leader who leads this estimation session and decides when it is time to move on in

the work process.

Analysing the sequence of estimation work

In the following, an in-depth analysis of a sequence of excerpts will be presented.

The sequence, called “stopping the pension”, starts when the team attempts to

achieve a shared understanding of how a particular user story can be implemented.

The different participants in the meeting are identified by the abbreviations P1-7 and

GL, which identifies the group leader. The utterances below are given numbers so

that we can refer back to them in the analysis. The excerpts start when the team

member in charge of the user story presents it to the other team members.

K. Børte, S. Ludvigsen and A. Mørch

12

Excerpt 1: Clarifying the user story

�� ����	
����
������
������������������������������������
���������
���������������������

�!
����������������������������
��
��
����#���������$���������������������*+�������������

�����=������������+�����������=+���������������������������
���+���������#�����=��
���������@���������������=�����������
�������$����������$�
���������+������
�������������������
����������
���=���
�����������+���=��������������

\� ^`��{�#��!��
�|
}� �\������~����
�� ^`���������~{�#���!��
����������������
���=���
�|
�� �����������������������
�
�� �\��*+��
���!����#��#������������������������|���������
�� ������!����������������������!������
�������
����
�� �����	
���
����
�� �}����!�����
��� ^`�������
��~�+���������
���
��� �\������������������~��!���+���������������������+
������
��
�\� ���������������!������$����������$����������
���������������������������������������!��������

}�������������������=+��
�����������
�����+�����
��~�����
��
�!
����=����������������
�}� ��~�����=+�������������������
��� ����������������������������������
�����
�����
�!
��������������$����
��� ��������������������!��������$�����	��
�!���������=�������$���
�������������
������������������

�����������������!���
������=���������
�������
�������!������������+���#��������
	��	�����
��� ���������
��� ����*+�����
��
��������#�������$���������

When introducing a particular user story, the importance of clarification as a

means to both achieve shared understanding in the team and to develop the user story

as a narrative becomes important. Immediately after the user story is introduced (line

1) questions are raised, which indicates that the issue that needs to be clarified is

what “stopped” means in this context (lines 2-6). The request for clarification in line

6 creates a set of actions that specifically address what “stop” means in this particular

case. The important interactive work here is the combination of what it means for the

programmers, and for the users of the system (lines 7-17). The resources involved

here are all connected to the technical specification of the system, but of equal

importance is the issue of which functions the stop code will have for the users of the

system (lines 7-12). Creating a stop code is closely linked to a set of actions for the

employee working on the specific case. The specification that follows in line 15

about “case flow” indicates the specific line of actions that will be conducted by the

employee working on the case. Thus, the specification also allows for a narrative to

be created. Furthermore, the distinction between the concepts “desktop” and “case

flow” becomes an important issue not only as a conceptual distinction but also as a

way of classifying different sets of working with the system. Making this conceptual

 The role of concepts in professional work

13

distinction involves both technical knowledge and knowledge of how the pension

system operates. It is the integration of different sources of knowledge that makes it

possible for the participants to clarify and specify the user story to achieve a shared

understanding. This means that the user story should be seen as part of the

institutional practice/socio-genesis of the planning aspect in software effort

estimation in which the sequential aspects become a narrative that makes it possible

to connect the more generic aspects and the specific aspect of a particular problem.

Excerpt 2: Specifying leading to sequencing actions

�� �`����������	
���
���������������������������
��
�����
���
��������
���
��������
���������
�
������������������������������
������
	����
���������
�
�����������

�����������

�� �����
���
��������
�����
������!��������������
���
���
����
������
�
	
���
	����	����
	
"� �`��#��!����������
�
������
� �����������������������
�����
$� ����%����������
����������
&� �`��#����
����
���
�����������
��
���
�������
�������������
�������������������������
�	�

���

���
��������������	
�
	�������
����	��
��������#���������
�������������������
� �����
��
��
���������
�������������������������'����

��
������������������	������
���������
��	���
�
����
�����
���������
���
���
����������
����	���������	
����
�(������
������
����������#���
�
��	����
�
���������������
��	
�������������
��������
��
�
����
������������
�������
���

���
�
����
������������

)� ������
����
����������������
����������������'���	��
����
��������������
���
�����
������������
���������
����
��������������	�������
����������������
������

*� �`���
�������������������
	��	
�	���������������
������������
+� ����%���������������
����
���������
,� �`�������
��������������
������	�������������� �������
�-� �$��%����
����
�����������'�
���'�
	 ���
��� ����%��������������������������������
������
��������������
����������.�
�����������
��������

����/
��� �`���.%����
������/������
����

��������
��������������
����
����
�"� ��&��������
������
������������
���
��
�$� ����%���������������(�����
���
����������������������
���
����������
�����������
������

��� �
���������
���������������
����
����
��

The meaning of the stop code is not a trivial issue. An attempt to specify this

concept is conducted in line 1 where the group leader suggests a solution for how the

stop code can be solved. When P2 asks for a clarification (line 2) and the group

leader, in addition to confirming that he is talking about a GUI table (line 3),

elaborates on his suggested solution (line 5), the framing of the task becomes

clarified. The elaboration of a solution is taking form as an imaginary scenario where

different ways of solving the “stopping” issue is tested by way of language use. To

create such imaginary scenarios, the resources used are technical knowledge and

experience, which together with the information about the specific user story create a

K. Børte, S. Ludvigsen and A. Mørch

14

frame for the participants and also a sequencing of the tasks. In addition, the

imaginary scenario also functions as a way of developing the narrative of the user

story further.

What happens next, is that the solution that has been elaborated on is

challenged because it needs to fit a particular sequence of actions. The sequencing is

an important aspect, which is confirmed by the actions taking place in lines 6-12.

When the group leader says that under ideal conditions they should have estimated

this set of tasks before, we interpret this as a pragmatic statement. Our interpretation

is that this statement is important because it underlines the fact that it is through

specification and the process of understanding what is involved in creating and

accounting for the work needed that the new order is constructed. The solution to the

problem of sequencing is to make an assumption regarding the “table” that is missing

(line 14). Making this assumption by drawing on technical knowledge makes it

possible for the team to move on in their interactional work. This technical

knowledge works on two levels, it’s the connection between the more generic and

the situated specifics that makes the assumptions clear.

Excerpt 3: Summing up and playing poker

01 ^2�������������
����
�!����=�������������������
���
������+���
������
�������=���
�� ���������
�����+����
�=�=����+��+��
�� ^	���+������+����������������$���������������=����������������+
���+��+���
���
�����

��
�+����������
��+������
�!#����
������
�����
����������������������
�+�����������
�����
=���+���������
���������������������
�+������������������������
�����
�������+����������
����������+����+�����$����^�
����������������
�����������������+�������������$���
���������
���$������!�������$�
�!#����
������
������=���
����
������
��+��=������=���=����������������
��
������������
������=��������
�������
�=��+�������
��+�����
�=����������������������������+���
��$����+��������
�����������
����������������
����=�����������

�� ����
����������+��+�����������������
���������
#�
��+���������������������������!����������������

�������+��+�����#��������������������������
���#���������
�������
���

�� ��	��	�	��
�
�	���	�	�	�����		�	���	�	��	�
���
�� ^	��������������������������

� �����
��	�	����
�� ����������������������
���~�����
�����������������������������
�����+��������+����
�� ���~^����
����������
��� ��	�������	
��� ����	��$��������
���
�������#����
��� ^	������
��
��� ��������
����������
��� ��������
��������#��������
��� ����
!#���������������
����
��� ����	��
���
������������
����������
�������
���������
�
����

 The role of concepts in professional work

15

The group leader uses his authority as a leader and puts forward a request

about gathering the troops. When P2 ask for a summary, the group leader picks up

the task and describes the whole process, solutions and assumptions agreed upon

from Excerpts 1 to 3. The user story has, through the team’s talk, been clarified as

being different from other previous tasks. The GUI element, which they have

assumed exist, creates a framing of the operations involved in solving this task. After

the summary, it appears that the team has reached a satisficing shared understanding

that is enough to continue the work process and to start quantifying the number of

work hours involved to complete the task (line 5).

Each participant has chosen a card with a number that represents their

estimate, and when asked to by the group leader (line 6), all the participants show

their cards to each other at the same time. The next line of actions (lines 7-16) show

that the participants did not reach a consensus about a number, as cards with numbers

1 and number 2 on them are both chosen. This disagreement shows that even though

the participants appear to have a shared understanding of the task as indicated in line

5, this is not the case. Furthermore, it is clear that the previous specification has

made some of the participants change their opinion, which is indicated in the

utterances in line 11-13. In order for the team to reach consensus, the rules of

planning poker say that the participants with the highest and lowest numbers should

justify their choice of card. This justification is shown in the next excerpt.

K. Børte, S. Ludvigsen and A. Mørch

16

Excerpt 4: Justifying and reaching consensus

�� 3���������			�
�����
�������������������������������	�����
����
�������������������������
��
�	 �������
�	 ���������������������� ������������������������������!��������!����!���������������������!����

������������������
��!�����""���
� ����������!���������	�#�����������	�		
�	����
��	����	
���

$	 �$��%��			������
������������������&��
�'			��			������������!��������������������������
"�������������	

(����#��	
)	 �$��*��!������������������������
�����������������������������"
����� ������������������&�'	
+	 ����#���������	
,	 �$��*������������
����������������������	���������������-.����

��� ��/���0
1	 ��/#��0�����
�����������

��	
��� ����������
22	 ������� ������	
2�	 �+��������������/���0
2�	 �$�����������������������/��������0���

�!���

���"���������	
2$	 �+���������������"���	������������������������������

�����������
� ��������������������/&�'0
2(�$���/3��0��������������������������������������
��������������

��������	
2)	 ����#��������!���������������			��������			��			������������

�����������"��!
������������������

�

���������������"��!�!
�����������
������������������������"
�������	������			�����������	���	�		
���!	����
�
�����	��
�
��	������

2+	 ����*� ���)������	
2,	 �)��#�������������������

������

���������������� �4�����������������"������������!������

������	��������������� ����������
��!�����������������������������������
�������������� ������
!�����	

21	 ����#��	
�5	 �2����������������!�			�����������
��!������� �������������������������
�������	
�2	 ����-.��
��	
��� ����	�	�����
�$	
�(����6����������������7
��� ���	#
��	�����	$	���������
�+	 ����8�����������
 ��!��������"�������			
�,	 �(��9���������!�����������������������4�������������
���
����������

	������			
�1	 �2���"��������������������			
�5	 �)��-.	
�2	 �(��*��	

The group leader starts to provide a justification for why he chose the card

number 2 (line 1), but instead of following through his argument, he responds to a

raised hand amongst the participants. A disagreement about the card number 2 is

then revealed between the group leader and the participant. The disagreement is

followed by a justification referring to the rules that seem to have been agreed upon

earlier in the team’s work process (lines 3-8). This justification functions as an

argument against the card number 2 that the group leader has chosen. What happens

next is that this justification is then questioned in a funny tone (lines 9-11), before

one of the participants provides a social justification (line 14). This justification

 The role of concepts in professional work

17

makes use of a social statement in order to problematize that this is a simple task.

The argument put forward has a rhetorical character since the team at an earlier stage

appeared to have a shared understanding. Even though this social justification is not

clearly picked up in the interactional work, the utterance from the group leader can

be interpreted as an agreement to this position. In the following line of action (lines

17-21), one of the participants reformulates what the task is about (line 18). In this

reformulation, the participants single out three important issues that are highly

relevant for the team’s understanding. It is the task of checking that the pension is

done, that is a new task that needs to be added and that the functionality of this task

already exists. Through this clarification, together with the specification provided in

line 20, the participants seem again to have reached a satisficing shared

understanding of the task and are ready to play a second round of poker.

After the second round of playing, the participants have not yet reached a

complete consensus and make utterances about the card number 1 being too low. At

this stage, the participant that was in charge of presenting the user story makes a

decision that it should be the card number 2. As a justification for this decision, other

considerations come into play, such as the limited amount of time they have

available for conducting the estimation work.

The resources the participants draw on to reach a consensus are intertwined in

the interactional accomplishment. Firstly, the social aspects of working in a team,

where several participants have to come to a shared understanding of the task

through elaborating, clarifying and specifying certain issues. This is a time-

consuming activity, which also becomes apparent in the end of the excerpt where

time is used as part of the justification. The second aspect is the technical knowledge

in which the team is able to specify this particular task as new, and here the generic

and specific knowledge are connected to reach a consensus that is based on a

temporal shared understanding.

General discussion

In this section, we discuss the empirical questions raised in the beginning of the

article. Through the analysis of the estimation sequence it became clear that the

specification of the user story had been decided in order to achieve the final estimate.

The user story mediates between the historical practices on the one hand and

between the use of generic and specific knowledge on the other, in order to make the

K. Børte, S. Ludvigsen and A. Mørch

18

assumptions clear and specify what the problem is about. The sequential and

narrative form of the user story represents a specific aspect in the institutional

genesis of the software development field in which the creation of future scenarios is

framing the task. The user story as a mediated resource makes it possible for the

participants to invoke the different types of knowledge involved.

The concept of a “GUI element” becomes the framing element for how the

task should be approached and accomplished. It’s through the participants’

conversation that the knowledge becomes partially shared and the requirements

become specified (Børte & Nerland, 2010). The contribution of the team is both

problematization and consensus-seeking talk in order to complete the specifications.

Our interpretation of the conversation is that the participants reached a level of

intersubjective understanding, so that it became reasonable to continue. We assume

that this type of intersubjectivity does not mean that the participants share mental

models of the estimation task, but that they, through interactional work, share enough

information that serves as common ground to take the next step in the problem

solving activity (Fugelli, 2010; Matusov, 1998; Rommetveit, 1992). This is an

interesting finding since it seems that the participants do not use concepts in a

systematic way. Another key observation is that in the conversation, the participants

make use of concepts such as GUI (Graphical User Interface) in order to frame the

task. This is one of the few explicit references to systematic knowledge and concepts

from the domain of information systems (user interface design). Most of the other

talk makes use of historical experience, without being explicit with regards to

domain knowledge. We would like to argue that concepts such as GUI in this dataset

makes an important difference when it comes to direction, but that personal

experiences seem to be the more dominating orientation when it comes to specifying

the work needed for solving the tasks. The participants seem to invoke concepts of

systematic character from the knowledge domain only when there is a problem that

needs to be framed or reframed.

 The socio-genetic perspective we have outlined in this paper allows us to

interpret the phenomena at hand at the different levels: 1) institutional practice, 2)

personal experiences, and 3) dialogue and activity (Ludvigsen, Rasmussen, Krange,

Moen, & Middleton, 2010; Valsiner & Van der Veer, 2000). The analysis shows that

the participants bring different experiences and knowledge from all three levels when

negotiating about and framing how the task should be solved. The institutional

 The role of concepts in professional work

19

practice of reaching a consensus is achieved through the justification by connecting

the social aspects and the use of different types of technical knowledge. At the level

of the social interaction, these differences become visible through the different

functions in the talk, such as clarification, justification and elaboration, which lead to

a higher degree of specification (Børte & Nerland, 2010). The participants’

individual contributions should be understood partly as a situated response to

previous utterances, but also to the overall practice of reaching a consensus.

This consensus is mediated by different types of concepts and experiences,

but also by the procedures provided with the planning poker game. This combined

approach makes it possible for socio-cognitive processes to occur, such as

problematization, disagreement, confirmation and elaboration. This allows for

incremental formalization, supported by a gradual transition from informal to formal

processes. The numbers on the cards together with the roles of the participants create

a procedural practice in which language is used to construct a justification for the

estimation value (final number) decided.

Our interpretation of the communication pattern, characterized by few

domain specific concepts, is that the estimation task is embedded in a project

organized by a socio-technical structure in which the set of tasks are taken for

granted. The communicative work that is needed is connected to achieving a

satisficing understanding of the particular estimation task, or what we call

microelements of the overall problem solving. The communication becomes more

effective when what is taken for granted is not brought up for discussion except

when disagreements occur. In this case, the design of a software system stands at the

core of the estimation practice. The systematic knowledge thereby becomes partly

invisible and not articulated in the data presented.

 Figure 2 illustrates how the communicative and interactional work oscillates

between the three layers: institutional practice, individual knowledge and dialogical

activity. Furthermore, it shows how the communication goes deeper and deeper into

the task during their work process through higher degrees of specification. The

analytical categories elaboration, clarification and specification illustrate this by

processes of narrowing down and achieving a shared, satisficing understanding of the

task and a decision on an estimate, whereas the domain specific concepts serve to

frame the task.

K. Børte, S. Ludvigsen and A. Mørch

20

���������	�
���

������

��
�	����
���
�������

��������	�	
���

�
��
��
�	
�

	�
��
��
��
	�
��
�	

��������
����	������

��	�
��	���

�

��	��
��	��

��

����
���	�

���

�����
��	��

��

���
	��	

����
���	

����
����

���	��	�������	��������

Figure 2. Visualisation of the communicative pattern in the team’s work process and how the

analytical categories make it possible to obtain higher degrees of specification and reach a

decision.

The analytical categories clarification, elaboration, and specification can be

compared to design rationale vocabulary, in particular to the concepts issue, position

and argument, originally proposed by Rittel and Webber (1973) as part of a method

for early stage design and to tackle wicked problems. The design rationale concepts

have inspired the development of analytic categories for studying how groups of

software professionals work in design meetings (Olson et al., 1996). Their analytic

schema was based on content analysis in which discussion categories were identified

together with a quantification of the number of transitions between these discussion

categories. The different design rationale inspired categories were useful for

understanding what types of discussion categories were raised and mainly attended to

in the design meeting. However, our aim was to investigate the role of concepts in

professional work and thus we needed to go beyond counting and tracing interactions

among instances of various discussion categories. Hence, the analytic categories used

in our empirical analysis of estimation practice provide insight into how the

interactional work is conducted by way of elaboration, clarification and specification,

which means that software estimation, is seen as an interactional accomplishment.

 The role of concepts in professional work

21

Conclusion – what can we say about the ‘magic step’?

The question we ask here is do theoretical assumptions of the researchers matter?

When seeking to understand the concepts and procedures in reasoning and

quantification in software effort estimation in order to account for how decisions are

made during program construction. The judgment-based approach to estimation

relies on a set of assumptions that from the socio-genetic perspective, provide the

analysis with a reductionist account.

In previous studies, it has been argued that quantitative studies need to be

supplemented by qualitative studies for understanding the mechanisms behind the

factors influencing software design processes (Curtis, Krasner, & Iscoe, 1988).

Recent developments in software engineering methodology (e.g., open source, agile

development) have increasingly emphasized communication and collaboration as key

to assuring good results, favouring qualitative methods. This calls for rich data to

provide a sound basis for understanding these practices (Dittrich, Randall, & Singer,

2009). The analysis in this paper contributes to this.

 From a socio-genetic perspective knowledge is constructed with a basis in

social interaction, drawing on concepts from the knowledge domain of software

systems in their efforts to frame and guide the talk among participants. The more

generalized knowledge resides in larger knowledge structures and becomes activated

by the participants in social interaction (Bowker & Star, 1999; Ludvigsen et al.,

2010). Planning and estimation should be understood as a social practice and be

conceptualized as dialectical processes among social interaction, individual

contributions and the institutional practice.

To understand how participants can combine their personal history with the

systematic and more generalized knowledge from the knowledge domains involved,

the idea of boundary concepts (Børte, submitted), inspired by (Star & Griesemer,

1989) boundary object serves a purpose of facilitating the use of knowledge across

contexts. In our data we found that the concept of “GUI” serves this function of

being a boundary concept, since it mediates between different aspects of the

specification through concepts, and it stabilizes the estimation talk.

 We claim that the “magic steps” to which Jørgensen (2005) refers are to be

found in the analysis of social interaction, in which the concepts used are both

anchored in the knowledge domain and in the historical experiences of the

participants and subsequently become activated. There is a “cognitive leap” between

K. Børte, S. Ludvigsen and A. Mørch

22

describing and analysing work to creating an estimate for the number of work hours.

While the talk about the estimation is grounded in knowledge on how the

development can be done, the number for the actual estimate is an abstraction that

leaves out the foundation for the estimation. The two reasoning processes are of

different character. To clarify, the work implies a number of steps that involves

concretization with the frames of user stories, while the estimate involves a meta-step

that is categorically different from trying to understand what kind of work that is

involved. Thus, this step is not magical but a step that is categorically different and

thus differentiates two conceptual schemata. We claim that the specification work

and the work to create an estimate should be seen together in order to understand the

phenomenon called estimation practice.

 The theoretical and methodological implication of this claim is that in order

to advance the understanding of software effort estimation, one must study how

teams under different conditions reach consensus. Furthermore, the unit of analysis

needs to move outside individual heads. It is the social interaction mediated by

artefacts that creates the adequate unit of analysis. With such a research strategy,

detailed studies of how individuals’ talk together combined with how different types

of knowledge are activated and made into conceptual building blocks are necessary.

It is through detailed multi-level analysis of how estimation practice is framed within

larger social and knowledge structures that we can improve practical procedures for

estimation work.

 Techniques like planning poker create conditions for a richer and more

knowledge driven type of conversation to make possible a realistic account of the

work involved. Procedures for conversation in terms of rules for the planning poker

game, the activation of resources given by the specifications of the project at

different levels, and the concepts in use should be given priority in further empirical

analysis of software effort estimation.

 The role of concepts in professional work

23

Acknowledgements

We would like to thank Professor Monika Nerland for her very helpful comments

and suggestions on earlier versions of this paper. We would also like to thank the

members of the PLASMA project at Simula Research Laboratory and the project

management of the PERFORM project at SPK for giving us access to the data

material.

References

Boehm, B., Abts, C., & Chulani, S. (2000). Software development cost estimation

approaches - A survey. Annals of Software Engineering, 10, 177-205.

Børte, K. (submitted). Challenges when utilizing historical information in present

working tasks: An analysis of the use of analogies in team-based software

effort estimation.

Børte, K., & Nerland, M. (2010). Software effort estimation as collective

accomplishment: An analysis of estimation practice in a multi-specialist

team. Scandinavian Journal of Information Systems, 22(2), 65-98.

Bowker, G. C., & Star, S. L. (1999). Sorting things out. Cambridge: MIT Press.

Cohn, M. (2006). Agile estimating and planning. Massachusetts: Pearson Education

Inc.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design

process for large systems. Communications of the ACM, 31(11), 1268-1287.

De Graaf, W., & Maier, R. (1994). Sociogenesis reexamined: An introduction. In W.

De Graaf & R. Maier (Eds.), Sociogenesis reexamined (pp. 1-16). New York:

Springer-Verlag.

Derry, S. J., Pea, R. D., Barron, B., Engle, R. A., Erickson, F., Goldman, R., Hall, R.,

Koschmann, T., Lemke, J. L., Sherin, M. G., & Sherin, B. L. (2010).

Conducting video research in the learning sciences: Guidance on selection,

analysis, technology and ethics. Journal of the Learning Sciences, 19(1), 3-

53.

Dittrich, Y., Randall, D. W., & Singer, J. (2009). Software engineering as

cooperative work. Editorial. Computer Supported Cooperative Work, 18(5-6),

393-399.

K. Børte, S. Ludvigsen and A. Mørch

24

Fugelli, P. (2010). Intersubjectivity and objects of knowledge: Making sense across

sites in software development. PhD, University of Oslo, Oslo.

Furberg, A., & Ludvigsen, S. (2008). Students' meaning-making of socio-scientific

issues in computer mediated settings: Exploring learning through interaction

trajectories. International Journal of Science Education, 30(13), 1775-1799.

Grenning, J. (2002). Planning poker or how to avoid analysis paralysis while release

planning. Retrieved 28.05, 2010, from

http://www.renaissancesoftware.net/files/articles/PlanningPoker-v1.1.pdf

Halkjelsvik, T., & Jørgensen, M. (submitted). From origami to software

development: A review of studies on judgment-based predictions of

performance time.

Hannay, J. E., & Benestad, H. C. (2010). Perceived productivity threats in large

agile development projects. Paper presented at the International Symposium

on Empirical Software Engineering and Measurement (ESEM 2010),

Bolzano-Bozen, Italy.

Haugen, N. C. (2006). An empirical study of using planning poker for user story

estimation. Paper presented at the AGILE 2006, Minnesota.

Heemstra, F. J., & Kusters, R. J. (1991). Function point analysis: Evaluation of a

software cost estimation model. European Journal of Information Systems,

1(4), 223-237.

Hihn, J., & Habib-Agahi, H. (1991). Cost estimation of software intensive projects: A

survey of current practices. Paper presented at the International Conference

on Software Engineering, Austin, TX, USA.

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice.

The Journal of the Learning Sciences, 4(1), 39-103.

Jørgensen, M. (2004). A review of studies on expert estimation of software

development effort. Journal of Systems and Software, 70(1-2), 37-60.

Jørgensen, M. (2005). The "magic step" of judgement-based software effort

estimation. Paper presented at the International Conference on Cognitive

Economics. New Bulgarian University, Sofia, Bulgaria.

Jørgensen, M., & Shepperd, M. (2007). A systematic review of software

development cost estimation studies. IEEE Transactions of software

engineering, 33(1), 33-53.

 The role of concepts in professional work

25

Kjærgaard, A., Nielsen, P. A., & Kautz, K. (2010). Making sense of project

management: A case of knowledge sharing in software development.

Scandinavian Journal of Information Systems, 22(1), 3-26.

Konkola, R., Tuomi-Gröhn, T., Lambert, P., & Ludvigsen, S. R. (2007). Promoting

learning and transfer between school and workplace. Journal of Education

and Work, 20(3), 211-228.

Lauder, H. (2009). On knowledge and work. Journal of Education and Work, 22(3),

157-162.

Linell, P. (2009). Rethinking language, mind, and the world dialogically. Charlotte,

NC: Information Age Publishing Inc.

Ludvigsen, S., Rasmussen, I., Krange, I., Moen, A., & Middleton, D. (2010).

Multiplicity and intersecting trajectories of participation: temporality and

learning. In S. Ludvigsen, A. Lund, I. Rasmussen & R. Säljö (Eds.), Learning

across sites: new tools, infrastructures and practices (pp. 105-121). London:

Routledge.

Mäkitalo, Å., & Säljö, R. (2002). Talk in institutional context and institutional

context in talk: Categories as situated practices. Text, 22(1), 57-82.

Matusov, E. (1998). When solo activity is not privileged: The participation and

internalization models of development. Human Development, 41(5-6), 326-

349.

Moløkken-Østvold, K., & Jørgensen, M. (2003). A review of surveys on software

effort estimation. Paper presented at the International Symposium on

Empirical Software Engineering (ISESE 2003), Rome, Italy.

Moløkken-Østvold, K. J., Haugen, N. C., & Benestad, H. C. (2008). Using planning

poker for combining expert estimates in software projects. The journal of

systems and software, 81, 2106-2117.

Olson, G. M., Olson, J. S., Storrøsten, M., Carter, M., Herbsleb, J., & Rueter, H.

(1996). The structure of activity during design meetings. In T. P. Moran & J.

M. Carroll (Eds.), Design Rationale (pp. 217-239). Hillsdale, NJ, USA:

Laurence Erlbaum.

Rittel, H., & Webber, M. (1973). Dilemmas in a General Theory of Planning. Policy

Sciences 4. Amsterdam: Elsevier Scientific Publishing.

K. Børte, S. Ludvigsen and A. Mørch

26

Rommetveit, R. (1992). Outlines of a dialogically based social-cognitive approach to

human cognition and communication. In A. Wold (Ed.), The dialogical

alternative: Towards a theory of language and mind (pp. 19-45).

Silverman, D. (1998). Harvey Sacks - Social science & conversation analysis.

Cambridge: Polity Press.

Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge: MIT Press.

Sommerville, I. (2007). Software Engineering (8 ed.): Pearson Education Limited.

Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, 'translations' and

boundary objects: amateurs and professionals in Berkeley's museum of

vertebrate zoology, 1907-39. Social Studies of Science, 19, 387-420.

Valsiner, J. (1994). Bidirectional cultural transmission and constructive sociogenesis.

In W. De Graaf & R. Maier (Eds.), Sociogenesis reexamined (pp. 47-70).

New York: Springer-Verlag.

Valsiner, J., & Van der Veer, R. (2000). The social mind: Construction of the idea.

New York: Cambridge University Press.

Van der Veer, R. (1994). The Concept of Sociogenesis in cultural-Historical Theory.

In W. De Graaf & R. Maier (Eds.), Sociogenesis Reexamined (pp. 117-131).

New York, NJ: Springer-Verlag.

Vygotsky, L. (1978). Mind in society. The development of higher psychological

processes. Cambridge MA: Harvard University Press.

Young, M. (2009). Education, globalisation and the 'voice of knowledge'. Journal of

Education and Work, 22(3), 193-204.

Attachment

�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

