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ANALYSIS OF THE MINIMAL RESIDUAL METHOD APPLIED TO
ILL POSED OPTIMALITY SYSTEMS∗

BJØRN FREDRIK NIELSEN† AND KENT-ANDRE MARDAL‡

Abstract. We analyze the performance of the minimal residual (MINRES) method applied to
linear Karush–Kuhn–Tucker systems arising in connection with inverse problems. Such optimality
systems typically have a saddle point structure and have unique solutions for all α > 0, where α is the
parameter employed in the Tikhonov regularization. Unfortunately, the associated spectral condition
number is very large for small values of α, which strongly indicates that their numerical treatment is
difficult. Our main result shows that a broad range of linear ill posed optimality systems can be solved
efficiently with the MINRES method. This result is obtained by carefully analyzing the spectrum of
the associated saddle point operator: Except for a few isolated eigenvalues, the spectrum consists of
three bounded intervals. Krylov subspace methods handle such problems very well. For severely ill
posed cases, techniques based on Chebyshev polynomials are applied to prove that the number of it-
erations needed by the MINRES method cannot grow faster than O([ln(α−1)]2) as α → 0. We illumi-
nate our analysis with numerical results for inverse problems involving partial differential equations.
In these examples we observe that the required number of iterations is almost of order O(ln(α−1))
for moderately sized α, and we discuss how this behavior is linked to our theoretical findings.
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1. Introduction. In recent years many researchers have studied the numerical
treatment of inverse problems, especially the minimization of quadratic cost function-
als with constraints expressed in terms of PDEs—so-called PDE constrained optimiza-
tion [8, 9, 15, 20, 40]. This type of problem can be solved with iterative minimization
methods, or one can use the Lagrange multiplier technique to obtain a system of
equations which must be satisfied by the optimal solution. If the latter approach
is applied, discretization leads to a large system of algebraic equations, and the op-
timization problem can be solved with an all-at-once method, that is, a method in
which the optimality condition, the state equation, and its adjoint, which constitute
the optimality system, are solved in a fully implicit manner.

The optimality system inherits the ill posed nature of the underlying inverse
problem, and regularization techniques must therefore be invoked. If Tikhonov reg-
ularization is applied, then the spectral condition number of the system typically is
of order O(α−1), where α > 0 denotes the regularization parameter. The purpose
of adding the regularization term is to obtain a well posed problem with a reason-
able condition number. In practice one would therefore not choose α too small, but
α ∈ (10−4, 10−2) is not unlikely,1 which often will lead to a relatively large condition
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number for the optimality system. Furthermore, according to the standard theory for
Krylov subspace methods, the number of iterations required by the minimal residual
(MINRES) method grows rapidly as the condition number increases. This suggests
that the MINRES scheme might not be well suited for solving regularized Karush–
Kuhn–Tucker (KKT) problems arising in engineering. In this text we will show that
this rough analysis is not accurate, and that it provides an unrealistic overestimate
for the workload needed by the MINRES algorithm.

The purpose of this paper is to analyze the MINRES method [28] applied to a
large class of ill posed linear optimality systems. Let

• H1 be the parameter/control space,
• H2 the state space, and
• H3 the observation space,

with norms ‖ · ‖H1 , ‖ · ‖H2 , and ‖ · ‖H3 . We study the numerical treatment of

(1.1) min
v∈H1, u∈H2

{
1

2
‖Tu− d‖2H3

+
1

2
α ‖v‖2H1

}
subject to

(1.2) Au = −Bv (state equation).

The quantity d is given and α ≥ 0 is a regularization parameter. These types of prob-
lems typically arise when one wants to use an observation d to recover the parameter/
control v in the state equation.

If

(1.3) Aαp = b

is the optimality system associated with (1.1)–(1.2), then the main objectives of this
text can be roughly formulated as follows:

(a) We prove that the spectrum of Aα is almost contained in bounded intervals:

sp(Aα) ⊂ [−b,−a] ∪ [cα, dα] ∪ {λ1, λ2, . . . , λN(α)} ∪ [a, b],

whereN(α) is of orderO(ln(α−1)) in the severely ill posed case and a, b, c, d >
0 are constants that do not depend on α. Krylov subspace solvers are well
known to handle problems with few isolated eigenvalues excellently; see e.g.,
[4]. This matter is discussed in detail for the MINRES method in this paper.
We have earlier studied a particular preconditioning strategy for ill posed
KKT systems that leads to (theoretical) iteration counts of order O([ln(α)]2);
see [27]. The present text may be regarded as a follow-up paper to that article.

(b) Through numerical examples we show how (a) can be employed to solve PDE
constrained optimization problems efficiently.

Our investigation is presented in terms of functional analysis and uses basic prop-
erties of inverse problems. The results are therefore applicable whenever a problem
can be written in the form (1.1)–(1.2). Nevertheless, we were motivated by practical
experience with PDE constrained optimization. For such problems, not only do issues
arise for small α > 0, but the condition number of the associated KKT system will
typically increase significantly as the mesh parameter h > 0, used in the discretization
of the involved PDE, decreases. For some model problems, we explain how this latter
matter can be handled by invoking multigrid preconditioners.
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Note that our analysis addresses only Tikhonov regularization. As far as the
authors know, it is not straightforward to generalize our findings to cover other reg-
ularization methods. Separate investigations devoted to other techniques are there-
fore needed. Nevertheless, since our methodology mainly employs basic properties
of inverse problems and self-adjoint operators, it is likely that similar results can be
established for a variety of regularization methods.

The numerical treatment of saddle point operators arising in connection with
PDEs is a contemporary research field [2, 6, 11, 13, 14, 18, 31, 34, 42]; see [24] for
a rather recent review. For well posed problems one of the main issues is to obtain
iteration counts that are acceptable as the mesh parameter h > 0 decreases. If the
parameter identification task at hand is ill posed, then one must also ensure that
the iterative schemes can handle cases with small regularization parameters, i.e., that
the number of iterations needed does not increase significantly as α → 0. The latter
type of problem has been addressed in many papers for various models [1, 7, 19, 25,
29, 30, 32, 33, 35], i.e., for special cases of elliptic and parabolic control problems. For
some particular cost functionals, remarkable algorithms that are completely robust
with respect to α have been developed [32, 33, 36, 43]. Also the spectral properties of
Aα have been analyzed thoroughly for the case in which (1.2) is the Poisson problem;
see Thorne [37, 38]. In this paper an abstract approach is used to cover a rather broad
range of saddle point problems, and we conclude that Krylov subspace solvers might
be an attractive alternative for their effective numerical solution.

If one wants to solve a practical problem involving real world data, it is almost
certainly not sufficient to solve (1.3) once with one particular choice of α. In fact,
procedures for estimating an appropriate size of the regularization parameter typically
requires that (1.3) be solved repeatedly for a sequence of different values of α; see
e.g., [17]. We may thus conclude that the efficiency needed to solve an inverse problem
is of a different magnitude from what is required for a well posed problem—the fast
numerical solution of (1.3) is crucial.

The next section contains all but one of the assumptions that we need. Notation
for the optimality system is introduced in section 3, which also contains the final as-
sumption. The eigenvalue distribution of the indefinite optimality system (1.3) is an-
alyzed in section 4, and our numerical experiments are presented in section 5. Finally,
section 6 is devoted to the theoretical convergence behavior of the MINRES method.

2. Assumptions. Throughout this text c, c̃, C, and C̃ are (generic) positive
constants that do not depend on the regularization parameter α. We limit our analysis
to linear state equations (1.2) and assume that

(A1) A : H2 → H2 is bounded and linear,2

(A2) A−1 exists and is bounded,
(A3) B : H1 → H2 is bounded and linear,
(A4) T : H2 → H3 is bounded and linear, and
(A5) the inf-sup condition holds:

(2.1) inf
w∈H2

sup
(v,u)∈H1×H2

(Bv,w) + (Au,w)√
‖v‖2H1

+ ‖u‖2H2
‖w‖H2

≥ c.

2If the state equation (1.2) is a PDE, then A will typically be a mapping from H2 to its dual

space H′
2. An operator R−1

2 : H′
2 → H2 must thus be applied to the state equation in order to get a

mapping R−1
2 A : H2 → H2. One may regard R−1

2 to be a preconditioner [24]. In the present text,

R−1
2 will be the inverse of the Riesz map or a suitable multigrid approximation of this operator. We

will return to this issue in the numerical experiment section.
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Note that A is the mapping that must be inverted in order to solve the state equation,
B maps the (unknown) parameter/control v into the state equation, and T is the
observation operator.

From A2 and A3 it follows that the solution u of (1.2) depends continuously on v:

(2.2) ‖u‖H2 ≤ C‖v‖H1 ,

i.e., the state equation is well posed.

3. Optimality system and one more assumption. The optimality system
associated with (1.1)–(1.2) can be derived by employing standard techniques. Details
about this issue can be found in, e.g., [39]. Here we merely state the result. That is, the
solution of (1.1)–(1.2) must solve the following problem: Find (v, u, w) ∈ H1×H2×H2

such that

(3.1)

⎡⎣ αI 0 B∗

0 T ∗T A∗

B A 0

⎤⎦⎡⎣ v
u
w

⎤⎦ =

⎡⎣ 0
T ∗d
0

⎤⎦ ,

where w is the Lagrange multiplier and the “*” notation denotes adjoint. It is well
known that this system typically is indefinite and hence has both positive and negative
eigenvalues.

Remark. Assume that (1.2) is a PDE. Then boundary conditions would typically
lead to a nonzero contribution to the third position of the right-hand-side vector of
(3.1). For the analysis presented in this paper, this is of no importance because we
use spectral properties to study the convergence of the MINRES method.

For the sake of convenience, we introduce the notation

Aα =

⎡⎣ αI 0 B∗

0 T ∗T A∗

B A 0

⎤⎦ for α ≥ 0,(3.2)

p =

⎡⎣ v
u
w

⎤⎦ ,

b =

⎡⎣ 0
T ∗d
0

⎤⎦ ,

and (3.1) can be written in the form

(3.3) Aαp = b.

Note that

Aα : (H1 ×H2 ×H2) → (H1 ×H2 ×H2),

and that for α = 0 we get

(3.4) A0 =

⎡⎣ 0 0 B∗

0 T ∗T A∗

B A 0

⎤⎦ ,

which contains zero regularization.
Throughout this text we consider problems of the form (1.1)–(1.2) that are ill

posed for α = 0. This undesirable property is likely to be inherited by the optimality
system (3.1):
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(A6) We assume that A0 is a compact operator, i.e., λi(A0) → 0 as i → ∞.
Furthermore, in the severely ill posed case the eigenvalues are assumed to
satisfy

(3.5) |λi(A0)| ≤ c e−Ci for i = 1, 2, . . . .

Here, c and C are positive constants not depending on α, since A0 does not
involve α.
We also assume the spectrum of Aα is discrete/countable for every α > 0.

If, unexpectedly, the ill-posedness of (1.1)–(1.2) for α = 0 is not inherited by (3.1),
then the numerical solution of the latter is of course much easier.

In a more general version ofA6 one could assume that the spectrum ofA0 contains
only a subsequence that fulfills a bound of the form (3.5). This, however, leads to
an even more involved analysis which would have to address noncompact operators.
(Moreover, for problems with continuous spectra it is not even straightforward to
define the concepts severely and mildly ill posed [21].)

4. Eigenvalues. In this section we characterize the basic structure of the spec-
trum of Aα, defined in (3.2). This information will be used in section 6 to analyze the
convergence behavior of the MINRES method applied to the saddle point problem
(3.1), or, equivalently, applied to (3.3).

4.1. Basic bounds. In Appendix A standard techniques for saddle point oper-
ators are used to obtain bounds for the operator norms of Aα and A−1

α :

‖Aα‖ ≤ C for all α ∈ [0, 1],(4.1)

‖A−1
α ‖ ≤ 1

cα
for all α ∈ (0, 1].

We will now employ this information to analyze the eigenvalues of Aα.
If

Aαq = λq,

then

|λ|‖q‖ = ‖Aαq‖,
or

|λ| = ‖Aαq‖
‖q‖ ≤ ‖Aα‖‖q‖

‖q‖ = ‖Aα‖ ≤ C.

Likewise,

Aαq = λq

implies that

1

λ
q = A−1

α q.

That is

1

|λ| ‖q‖ ≤ ‖A−1
α ‖‖q‖,
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or

|λ| ≥ 1

‖A−1
α ‖ ≥ cα.

Lemma 4.1. Let Aα be the operator defined in (3.2). There exist constants
c, C > 0, which are independent of α ∈ [0, 1], such that

cα ≤ |λi(Aα)| ≤ C for i = 1, 2, . . . .

Note that these bounds also hold for α = 0.
The numerical values of c and C depend on the problem under consideration.

For example, if the state equation is a PDE, then the variation of the involved co-
efficient functions and the geometrical properties will have significant impact on the
size of these constants. Section 5 contains information about this issue for some test
problems; see Figures 2, 4, and 6.

4.2. Negative eigenvalues. The next step is to prove that the negative eigen-
values of Aα are well behaved for all α ≥ 0. More specifically, we will show that
the negative eigenvalues cannot approach zero as α → 0. Our analysis employs the
following auxiliary result.

Lemma 4.2. Let A be the operator in the state equation (1.2). Assumptions A1
and A2 imply that AA∗ is coercive, i.e., there exists a constant c > 0 such that

(4.2) (AA∗φ, φ) ≥ c‖φ‖2H2
for all φ ∈ H2.

Proof. Assume that there does not exist a constant c > 0 such that (4.2) holds.
Then there exists a sequence {φn}∞n=1, with ‖φn‖H2 = 1, such that

(AA∗φn, φn) −→ 0 as n → ∞.

Let us consider

‖(A∗)−1y‖2H2

‖y‖2H2

with y = yn = A∗φn:

‖(A∗)−1yn‖2H2

‖yn‖2H2

=
((A∗)−1yn, (A

∗)−1yn)

(yn, yn)

=
(φn, φn)

(A∗φn, A∗φn)

=
(φn, φn)

(AA∗φn, φn)

=
1

(AA∗φn, φn)
−→ ∞ as n → ∞.

Hence, (A∗)−1 is not bounded, which contradicts assumption A2. We conclude that
AA∗ must be coercive.

(This lemma can also be established by using the bounded inverse theorem.)
The result regarding the negative eigenvalues of Aα reads as follows.
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Lemma 4.3. There exist constants a, b > 0 such that all the negative eigenvalues
of Aα are contained in the interval [−b,−a]. These constants do not depend on the
size of the regularization parameter α ∈ [0, 1]. (Note that [−b,−a] also contains all
the negative eigenvalues of A0.)

Proof. Assume that λ < 0 is a negative eigenvalue of Aα with associated eigen-
function (v, u, w)T , i.e.,⎡⎣ αI 0 B∗

0 T ∗T A∗

B A 0

⎤⎦⎡⎣ v
u
w

⎤⎦ = λ

⎡⎣ v
u
w

⎤⎦
or

αv +B∗w = λv,

T ∗Tu+A∗w = λu,

Bv +Au = λw.

Since λ < 0, λI − T ∗T is invertible and it follows that

v =
1

λ− α
B∗w,(4.3)

u = (λI − T ∗T )−1A∗w,(4.4)

Bv +Au = λw.(4.5)

Note that w = 0 implies that u = 0 and v = 0, and we may assume that w 
= 0. By
inserting expressions (4.3) and (4.4) for v and u, respectively, into (4.5) one finds that

1

λ− α
BB∗w +A(λI − T ∗T )−1A∗w = λw

or

(4.6) −λw = − 1

λ− α
BB∗w +A(T ∗T − λI)−1A∗w.

The next step is to discuss the properties of T ∗T − λI. Thereafter we return
to (4.6). Recall that λ < 0 and therefore T ∗T − λI is positive definite. Lemma 4.1
states that

(4.7) |λ| ≤ C.

We conclude that the spectrum sp(T ∗T − λI) of T ∗T − λI satisfies

sp(T ∗T − λI) ⊂ (0, ‖T ∗T ‖+ C] .

It follows that (T ∗T − λI)−1 also is positive definite and that

sp
(
(T ∗T − λI)−1

) ⊂ [
1

‖T ∗T ‖+ C
,∞

)
.
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If we combine this information with (4.6), we find that

−λ(w,w)H2 = − 1

λ− α
(BB∗w,w)H2 + (A(T ∗T − λI)−1A∗w,w)H2

= − 1

λ− α
(B∗w,B∗w)H1 + ((T ∗T − λI)−1A∗w,A∗w)H2

≥ ((T ∗T − λI)−1A∗w,A∗w)H2

≥ 1

‖T ∗T ‖+ C
(A∗w,A∗w)H2

=
1

‖T ∗T ‖+ C
(AA∗w,w)H2

≥ c

‖T ∗T ‖+ C
(w,w)H2 ,

where we have used that λ − α < 0—recall that λ < 0 and α ≥ 0—and inequality
(4.2) in Lemma 4.2. Consequently,

λ ≤ − c

‖T ∗T ‖+ C
,

which together with (4.7) finishes the proof, i.e.,

a =
c

‖T ∗T ‖+ C
,

b = C.

4.3. Positive eigenvalues. The negative eigenvalues of Aα are well behaved
regardless of the size of the regularization parameter α ∈ [0, 1]. On the other hand,
we have assumed that zero is a cluster point of the spectrum of A0; see assumption
A6. We will now investigate in what sense this property of A0 is inherited by the
positive eigenvalues of Aα.

Note that

Aα =

⎡⎣ 0 0 B∗

0 T ∗T A∗

B A 0

⎤⎦+

⎡⎣ αI 0 0
0 0 0
0 0 0

⎤⎦
= A0 + Eα,

where

Eα =

⎡⎣ αI 0 0
0 0 0
0 0 0

⎤⎦ ,

and we conclude that the difference between Aα and A0 is small, provided that α
is small. Is also the difference between the eigenvalues of these two operators small?
Yes, indeed. As we will now briefly discuss, the min-max theorem (Courant–Fischer–
Weyl min-max principle) [26, 41] provides a strategy for analyzing this issue. The
conclusion is that the difference between the eigenvalues, properly sorted, of Aα and
A0 cannot be larger than α.

Even though we have assumed that A0 is compact, Aα will in general not be com-
pact for α > 0. In the case of infinite-dimensional spaces one can thus not (directly)
apply the classical Courant–Fischer–Weyl min-max principle to Aα. For the sake of
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simplicity, we will therefore now address only the finite-dimensional setting, which
allows the use of the principle. (Because the min-max approach also is applicable to
the discrete end of the spectrum of self-adjoint operators that are bounded below,
similar results can be established in the infinite-dimensional case. More specifically,
both cI −Aα and cI −A0 are bounded below for a sufficiently large constant c > 0.)

Let

λ+
1 (Aα) ≥ λ+

2 (Aα) ≥ · · ·
and

λ+
1 (A0) ≥ λ+

2 (A0) ≥ · · ·
be the nonnegative eigenvalues of Aα and A0, respectively, sorted in decreasing order.
Note that Aα and A0 are Hermitian. According to the min-max theorem (see, e.g.,
[41, 26]),

λ+
i (Aα) = max

Si

min
p∈Si,‖p‖=1

(Aαp, p),(4.8)

λ+
i (Aα) = min

Si−1

max
p∈S⊥

i−1,‖p‖=1
(Aαp, p),(4.9)

λ+
i (A0) = max

Si

min
p∈Si,‖p‖=1

(A0p, p),(4.10)

λ+
i (A0) = min

Si−1

max
p∈S⊥

i−1,‖p‖=1
(A0p, p),(4.11)

where Si and Si−1 denote i-dimensional and (i − 1)-dimensional subspaces of H1 ×
H2 ×H2, respectively. Now,

(Aαp, p) = (A0p, p) + (Eαp, p),
which implies that

max
p∈S⊥

i−1,‖p‖=1
(Aαp, p) = max

p∈S⊥
i−1,‖p‖=1

{(A0p, p) + (Eαp, p)}

≤ max
p∈S⊥

i−1,‖p‖=1
(A0p, p) + max

p∈S⊥
i−1,‖p‖=1

(Eαp, p)

≤ max
p∈S⊥

i−1,‖p‖=1
(A0p, p) + α

⇓
min
Si−1

max
p∈S⊥

i−1,‖p‖=1
(Aαp, p) ≤ min

Si−1

max
p∈S⊥

i−1,‖p‖=1
(A0p, p) + α

⇓
λ+
i (Aα) ≤ λ+

i (A0) + α,

where we have used (4.9) and (4.11). In a similar fashion one can employ (4.8) and
(4.10) to show that

λ+
i (Aα) ≥ λ+

i (A0),

and we conclude that

(4.12) 0 ≤ λ+
i (A0) ≤ λ+

i (Aα) ≤ λ+
i (A0) + α for i = 1, 2, . . . .

(Inequalities of this kind for Hermitian matrices are discussed on page 396 in Golub
and Van Loan [16].)



A794 BJØRN FREDRIK NIELSEN AND KENT-ANDRE MARDAL

Recall that we have assumed that the eigenvalues of A0 decay exponentially:

(4.13) |λi(A0)| ≤ c̃ e−C̃i for i = 1, 2, . . . .

But {λ+
i (A0)} is a subsequence of {|λi(A0)|} and therefore

λ+
i (A0) ≤ c̃ e−C̃i for i = 1, 2, . . . .

If this bound is combined with inequalities (4.12) and Lemma 4.1, we obtain the
following lemma.

Lemma 4.4. The nonnegative eigenvalues of Aα and A0, sorted in decreasing
order, satisfy

(4.14) cα ≤ λ+
i (Aα) ≤ λ+

i (A0) + α ≤ c̃ e−C̃i + α for i = 1, 2, . . . .

Remember that the negative eigenvalues of both Aα and A0 are well behaved.
Inequalities (4.14) therefore show that the eigenvalues of A0 that cluster at zero
lead to eigenvalues of Aα that are contained in an interval of the form [cα, dα]. For
example, let N = N(α) be the smallest positive integer such that

c̃ e−C̃N(α) ≤ α;

then λ+
i (Aα) ∈ [cα, 2α] for all i ≥ N(α). Moreover, N(α) is of order O(ln(α−1)).

Remark. The Courant–Fischer–Weyl min-max principle can of course also be
used to study the negative elements of the spectra of Aα and A0. Since the analysis
is similar to the one presented above, it suffices to state the following result:

(4.15) λ−
i (A0) ≤ λ−

i (Aα) ≤ λ−
i (A0) + α for i = 1, 2, . . . .

Roughly speaking, (4.12) and (4.15) show that the difference between the eigen-
values of Aα and A0 is of order O(α).

4.4. Spectrum. We now know that
• sp(Aα) ⊂ [−C,C] (see Lemma 4.1),
• the negative eigenvalues of Aα are contained in [−b̃,−ã] (see Lemma 4.3),
• the positive eigenvalues of Aα satisfy

cα ≤ λ+
i (Aα) ≤ c̃ e−C̃i + α for i = 1, 2, . . .

(see Lemma 4.4).
If we choose

b = max{b̃, C},(4.16)

a = ã,(4.17)

we thus obtain our main result.
Theorem 4.5. The spectrum of Aα satisfies

(4.18) sp(Aα) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, . . . , λN(α)} ∪ [a, b],

where

2α < λi < a for i = 1, 2, . . . , N(α),

N(α) ≤
⌈
ln(c̃)− ln(α)

C̃

⌉
= O(ln(α−1)),

provided that α ∈ (0, 1]. The constants a, b, c, c̃, C̃ > 0 do not depend on α.
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Remark. For the sake of convenience we choose a, which is the number involved
in defining the upper bound for the negative eigenvalues, as the left end point of the
positive interval [a, b]. This choice plays no important role in the convergence analysis
that will be presented in section 6. One may define this left end point to be any fixed
positive number < b. The crucial observation is that the number of eigenvalues that
are larger than 2α and less than a is of order O(ln(α−1)).

Krylov subspace solvers are known to handle problems with spectra of the form
(4.18) very well. This will be illuminated by numerical experiments in the next section.
The rigorous convergence analysis of the MINRES method, which is based on (4.18)
and Chebyshev polynomials, is rather standard and very technical. We will return to
this issue after the presentation of the examples.

5. Numerical experiments.

Example 1. Let Ω = (0, 1) × (0, 1) denote the unit square with boundary ∂Ω
and consider the following optimization task:

(5.1) min
v∈L2(Ω), u∈H1(Ω)

{
1

2
‖Tu− d‖2L2(∂Ω) +

1

2
α ‖v‖2L2(Ω)

}
subject to

−Δu+ u =

{ −v in D = (0.25, 0.75)× (0.25, 0.75),
0 in Ω \D,

(5.2)

∇u · �n = 0 on ∂Ω.(5.3)

In this case

H1 = L2(Ω),

H2 = H1(Ω),

H3 = L2(∂Ω).

Furthermore, the observation operator T is simply the L2-trace of u ∈ H1(Ω):

T : H1(Ω) → L2(∂Ω), u → u|∂Ω.

Algorithmic details. Note that the weak form of the state equation (5.2)–(5.3)
reads

(5.4) Âu = −B̂v,

where

Â : H2 → H ′
2, u → (u, φ)H1(Ω) for all φ ∈ H1(Ω),(5.5)

B̂ : H1 → H ′
2, v → (v, φ)L2(D) for all φ ∈ H1(Ω),(5.6)

and H ′
2 denotes the dual space of H2. In the previous sections we assumed that the

operator A on the left-hand side of the state equation (1.2) is a mapping from the

state space onto the state space. Note that Â does not fulfill this criterion. This can
be fixed by invoking the Riesz map R2 of H2 = H1(Ω):

R2 : H2 → H ′
2.
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More precisely, by applying R−1
2 to both sides of (5.4) we get

R−1
2 Âu = −R−1

2 B̂v,

which is on the desired form (1.2) since

A = R−1
2 Â : H2 → H2,

B = R−1
2 B̂ : H1 → H2.

Since (R−1
2 )∗ = R2 (see Appendix B), it follows that

A∗ = (Â)∗ (R−1
2 )∗

= R−1
2 R2 (Â)

∗R2

= R−1
2 (Â)′,

where

(Â)′ = R2 (Â)
∗R2 : H2 → H ′

2

is the dual operator of Â; see Appendix C. Similarly, if

(B̂)′ = R1 (B̂)∗R2 : H2 → H ′
1

denotes the dual operator of B̂, and R1 is the Riesz map of H1, then

B∗ = (B̂)∗ (R−1
2 )∗

= R−1
1 R1 (B̂)∗R2

= R−1
1 (B̂)′.

We can therefore write Aα, defined in (3.2), in the form

Aα =

⎡⎣ αI 0 B∗

0 T ∗T A∗

B A 0

⎤⎦
=

⎡⎢⎣ αI 0 R−1
1 (B̂)′

0 T ∗T R−1
2 (Â)′

R−1
2 B̂ R−1

2 Â 0

⎤⎥⎦
=

⎡⎣ R−1
1 0 0
0 R−1

2 0
0 0 R−1

2

⎤⎦
︸ ︷︷ ︸

=R−1

⎡⎢⎣ αR1 0 (B̂)′

0 R2T
∗T (Â)′

B̂ Â 0

⎤⎥⎦
︸ ︷︷ ︸

̂Aα

.(5.7)

Please note that one may regard R−1 to be a preconditioner:
• The KKT system

Aαp = b

can be expressed as

R−1Âαp = R−1b̂,
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where

(5.8) b̂ = Rb =

⎡⎣ 0
R2T

∗d
0

⎤⎦ ;

cf. (3.2)–(3.3).

• For every α > 0, Âα is an isomorphism mapping H1 ×H2 ×H2 onto (H1 ×
H2 × H2)

′. This follows from the Babuška–Brezzi conditions, which can be
verified to hold by arguments very similar to those presented in Appendix A.

• R−1 is an isomorphism mapping the dual space (H1 ×H2 ×H2)
′ back to the

Hilbert space H1 × H2 × H2. Further details can be found in [24]. In fact,
R−1 is the inverse of the Riesz map of H1 ×H2 ×H2.

Software systems typically require that all linear operators be represented in terms
of matrices. In the present example, H1 = L2(Ω) and H2 = H1(Ω), and the Riesz
maps R1 and R2 thus yield the mass matrix M̄ and the sum L̄ of the mass matrix
and the stiffness matrix, respectively. From (5.5)–(5.6) we find that also B̂ and Â
will (cf. section 6 in [24]) lead to M̄ and L̄, respectively. The treatment of R2T

∗T is
somewhat more involved, but the “end product” is the mass matrix M̄∂Ω associated
with the boundary of the domain Ω = (0, 1)× (0, 1). The matrix product associated
with (5.7) is therefore

(5.9)

⎡⎣ M̄−1 0 0
0 L̄−1 0
0 0 L̄−1

⎤⎦
︸ ︷︷ ︸

=R̄−1

⎡⎣ αM̄ 0 M̄T

0 M̄∂Ω L̄T

M̄ L̄ 0

⎤⎦
︸ ︷︷ ︸

=Āα

.

Furthermore, b̂ in (5.8) yields the vector

(5.10) b̄ =

⎡⎣ 0
M̄∂Ωd̄

0

⎤⎦ ,

where d̄ denotes the vector with the observation data (on ∂Ω). Hence, we obtain the
algebraic system

(5.11) R̄−1Āαp̄ = R̄−1b̄.

The operator norms of R−1 and Âα, defined in (5.7), are bounded independently
of any mesh parameter h > 0. Consequently, if sound discretization techniques are
employed, this desired property will be inherited by the associated matrix product
(5.9), and one obtains schemes that are robust with respect to h; cf. [24].

In most practical situations it is inconvenient, due to computational demands, to
explicitly use the matrices M̄−1 and L̄−1 as preconditioners. Instead one may employ
approximations defined by, e.g., multigrid cycles. Please note the following:

• The iteration counts presented below were produced with approximations
of M̄−1 and L̄−1 consisting of one call of algebraic multigrid (AMG) with
symmetric successive overrelaxation (SSOR) as smoother; see [23] for a de-
scription of the software framework cbc.block, built on top of FEniCS and
PyTrilinos. If not stated otherwise, the AMG call consisted of one V-cycle
with two SSOR sweeps. One AMG call was made per MINRES iteration.
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• All figures in this section showing eigenvalue distributions of R̄−1Āα were
generated with the true inverse matrices M̄−1 and L̄−1.

The optimality system was discretized with the standard finite element method
using piecewise linear basis functions. More specifically, the domain Ω = (0, 1)×(0, 1)
was divided in N ×N squares, and each of these squares was split into two triangles.

All iteration counts presented in this paper were generated with a true solution
p̄∗ = 0 and a random initial guess p̄0. The iteration process was stopped as soon as

(5.12)
‖r̄k‖
‖r̄0‖ =

[
(Āαp̄k − b̄, R̃−1{Āαp̄k − b̄})
(Āαp̄0 − b̄, R̃−1{Āαp̄0 − b̄})

]1/2
< ε,

where ε = 10−6 or ε = 10−10. Furthermore, r̄k = Āαpk − b̄ is the residual vector,
and p̄k is the kth approximation of p̄∗ generated by the MINRES algorithm. In
the stopping criterion (5.12), R̃−1 is the multigrid approximation of the matrix R̄−1

defined in (5.9).

Results. Tables 1 and 2 show that the number of MINRES iterations needed
to solve (5.11) does not increase dramatically as α decreases or as N increases. For
example, the numbers in the last row in Table 1 are modeled well by the formula

42.5− 6.5 log10(α).

(We used the method of least squares to compute the constants in this expression.)
Similarly, the iteration counts presented in the last row in Table 2 are rather well
represented by the expression

71− 27 log10(α).

We also explored how the number of SSOR sweeps in the AMG preconditioner
influenced the convergence behavior; see Table 3. Performing two SSOR sweeps clearly
reduces the required number of iterations compared with only applying one sweep.

Table 1

Number of MINRES iterations required to solve the model problem studied in Example 1 with
ε = 10−6 in (5.12). (For α ≤ 0.001 the stopping criterion ε = 10−6 was not strict enough, i.e., the
approximate solution contained a significant amount of error.)

N\α 1.0 0.1 0.01
32 40 49 50
64 33 38 44
128 33 38 44
256 47 52 58
512 43 48 56

Table 2

Number of MINRES iterations required to solve the model problem studied in Example 1 with
ε = 10−10 in (5.12).

N\α 1.0 0.1 0.01 0.001 0.0001
32 54 65 79 115 132
64 52 65 84 116 140
128 55 69 93 112 140
256 71 89 117 135 180
512 77 92 126 147 186
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Table 3

The table shows how the number of SSOR sweeps in the AMG preconditioner influences the
convergence behavior for the model problem studied in Example 1. These numbers were produced
with α = 0.0001 and ε = 10−10 in (5.12).

N 32 64 128 256 512
1 sweep 206 185 191 263 277
2 sweeps 131 141 139 180 159

Fig. 1. A typical convergence curve associated with the experiments presented in Example 1,
that is, log10 (‖r̄k‖/‖r̄0‖) as a function of the iteration number k. Here, N = 512 and α = 0.0001.

On the other hand, the convergence criterion (5.12) depends on the number of SSOR
sweeps because the matrix R̃−1 does. A more thorough investigation of this issue
is therefore needed. Especially, one should seek to estimate the optimal number of
sweeps, but this is beyond the scope of the present text.

Figure 1 contains the convergence curve, i.e., log10 (‖r̄k‖/‖r̄0‖) as a function of
the iteration number k, for the case N = 512 and α = 0.0001. We see that the curve
goes rapidly down to ≈ 10−7, then “stalls” for quite a large number of iterations, and
finally moves nicely down to 10−10. We do not have any good explanation for the
lack of linear descent of log10 (‖r̄k‖/‖r̄0‖) in some intervals.

The left panel of Figure 2 shows the eigenvalues3 of Aα sorted in increasing order.
The three intervals used to characterize the spectrum of Aα in (4.18) in Theorem
4.5 are clearly visible. Note that the spectrum contains only a handful of isolated
eigenvalues; see the right panel of Figure 2.

In our analysis we assumed that A0 inherits the ill posed nature of the optimiza-
tion problem (1.1)–(1.2); see assumption A6. According to Figure 3 this is indeed the
case for the present model problem. Moreover, the right panel of Figure 3 indicates
that A0 satisfies assumption A6, i.e., the problem is severely ill posed.

Example 2. Example 2 is identical to Example 1, but we introduce a variable
coefficient in the state equation:

−∇ · (γ∇u) + u =

{ −v in D = (0.25, 0.75)× (0.25, 0.75),
0 in Ω \D,

γ(x, y) = 2 + sin(2π(x + y)), (x, y) ∈ (0, 1).

3Recall that Aα = R−1 ̂Aα (see (5.7)), with associated matrix representation R̄−1Āα; cf. (5.9).
One can show that Aα and R̄−1Āα are similar operators and therefore have the same eigenvalues.
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Fig. 2. The left panel shows the eigenvalues of Aα, sorted in increasing order, for the model
problem studied in Example 1. These numbers were generated with α = 0.0001 and N = 32. For
this problem the constants in Lemma 4.1 are c ≈ 0.981 and C ≈ 4.405. In the right panel we have
zoomed in on the isolated eigenvalues that are larger than 2α and less than a = 1; see Theorem 4.5.

Fig. 3. The left panel shows the logarithm of the absolute value of the eigenvalues of A0 sorted
in decreasing order. These are results obtained in Example 1 with N = 32. In the right panel we
have zoomed in on the interval (2500, 3267).

This change implies that the matrix L̄ in Āα in (5.9) must be replaced with the matrix
associated with the operator −∇ · (γ∇u) + u. We would like to emphasize that the
same preconditioner is employed in Examples 1 and 2.

Tables 4 and 5 contain the iteration counts for this model problem. Concerning
the influence of α and N , we see that the conclusions reached in Example 1 are still
valid, but more iterations are required due to the variable coefficient. Please observe
that the iteration counts in the last row in Table 4 are approximately of the form

93− 18 log10(α).

A similar property holds for the numbers in the last row in Table 5. That is, these
numbers are well represented by the formula

163− 45 log10(α).

Information about the eigenvalue distributions of Aα and A0 can be found in
Figures 4 and 5, respectively. The change in the spectrum caused by the variable
coefficient is clearly visible in Figure 4, which should be compared with Figure 2.
This observation is consistent with the numbers presented in Tables 4 and 1. Also
note that Aα has a few isolated eigenvalues, see the right panel of Figure 4.
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Table 4

Number of MINRES iterations required to solve the model problem studied in Example 2 with
ε = 10−6 in (5.12). (For α ≤ 0.001 the stopping criterion ε = 10−6 was not strict enough; i.e., the
approximate solution contained a significant amount of error.)

N\α 1.0 0.1 0.01
32 84 98 106
64 78 92 101
128 75 90 104
256 103 119 135
512 95 108 131

Table 5

Number of MINRES iterations required to solve the model problem studied in Example 2 with
ε = 10−10 in (5.12).

N\α 1.0 0.1 0.01 0.001 0.0001
32 116 140 172 249 302
64 115 141 180 254 316
128 124 151 200 278 304
256 161 193 247 283 392
512 165 198 259 305 336

Fig. 4. The left panel shows the eigenvalues of Aα, sorted in increasing order, for the model
problem studied in Example 2. These numbers were generated with α = 0.0001 and N = 32. For
this problem the constants in Lemma 4.1 are c ≈ 0.998 and C ≈ 4.436. In the right panel we have
zoomed in on the isolated eigenvalues that are larger than 2α and less than a = 1; see Theorem 4.5.

By inspecting Figures 5 and 3 we conclude that the qualitative properties of the
small eigenvalues, in the absolute sense, of A0 are not significantly influenced by the
coefficient function γ. In fact, the right panel in Figure 5 indicates that the present
problem is severely ill posed.

Example 3. Our third test case is the “standard” test problem of the PDE
constrained optimization community:

(5.13) min
v∈L2(Ω), u∈H1(Ω)

{
1

2
‖Tu− d‖2L2(Ω) +

1

2
α ‖v‖2L2(Ω)

}
subject to

−Δu+ u = −v in Ω,(5.14)

∇u · �n = 0 on ∂Ω.(5.15)
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Fig. 5. The left panel shows the logarithm of the absolute value of the eigenvalues of A0 sorted
in decreasing order. These are results obtained in Example 2 with N = 32. In the right panel we
have zoomed in on the interval (2300, 3267); some of the eigenvalues are not displayed because they
are zero (the logarithm of zero is not defined).

Table 6

Number of MINRES iterations required to solve the model problem studied in Example 3 with
ε = 10−10 in (5.12).

N\α 1.0 0.1 0.01 0.001 0.0001
32 51 66 78 121 188
64 48 64 86 127 203
128 52 68 88 137 212
256 68 89 108 163 232
512 72 92 118 173 215

We observe that

H1 = L2(Ω),

H2 = H1(Ω),

H3 = L2(Ω)

and that the observation operator T is the imbedding

T : H1(Ω) ↪→ L2(Ω), u → u.

The latter fact implies that M̄∂Ω in Āα and b̄ (see (5.9) and (5.10)) must be replaced
with the mass matrix M̄ .

Table 6 shows that the MINRES method also solves this problem efficiently. More
specifically, there is no dramatic increase in the number of iterations needed as α
decreases or N increases. We observe that the iteration counts in the last row are
quite well modeled by the formula

61− 37 log10(α).

The eigenvalues associated with our third model problem is depicted in Figure 6.
Again, we observe that the spectrum mainly consists of three bounded intervals and
a small number of isolated eigenvalues.

Figure 7 contains log-log plots of the absolute value of the eigenvalues of A0 sorted
in decreasing order. Note that the right panel almost shows a line, and that this is
log-log plot. This indicates that (5.13)–(5.15) is mildly ill posed: For a mildly ill
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Fig. 6. The left panel shows the eigenvalues of Aα, sorted in increasing order, for the model
problem studied in Example 3. These numbers were generated with α = 0.0001 and N = 32. For
this problem the constants in Lemma 4.1 are c ≈ 1.0 and C ≈ 1.802. In the right panel we have
zoomed in on the isolated eigenvalues that are larger than 2α and less than a = 1; see Theorem 4.5.

Fig. 7. The left panel shows a log-log plot of the absolute value of the eigenvalues of A0 sorted
in decreasing order. These are results obtained in Example 3 with N = 32. In the right panel we
have zoomed in on the interval (103.41, 103.51).

posed problem the eigenvalues of A0 would be expected to obey

(5.16) |λi(A0)| ≤ C i−c for i = 1, 2, . . . ,

and hence

ln(|λi(A0)|) ≤ ln(C) − c ln(i).

In the theoretical considerations presented in section 4 we assumed that the in-
verse problem (1.1)–(1.2) is severely ill posed and that this property is inherited by
A0 in the sense of assumption A6. If instead (1.1)–(1.2) is mildly ill posed, then
one would expect (5.16) to hold. The analysis presented in the previous sections can
easily be modified to also include such cases. The only significant change concerns
the number N(α) of isolated eigenvalues in Theorem 4.5:

N(α) ≤
⌈(
Cα−1

)1/c⌉
= O(α−1/c).

We conclude, at least from an asymptotic point of view, that severely ill posed prob-
lems will have fewer isolated eigenvalues than mildly ill posed problems. Consequently,
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one would expect that the required number of MINRES iterations will increase faster
for mildly ill posed problems than for severely ill posed problems as α → 0. This is
partially observed in our examples:

• In the last row of Table 6 (Example 3, mildly ill posed) the number of itera-
tions grows from 72 to 215, i.e., by a factor of 215/72 ≈ 2.99.

• The corresponding factors associated with Tables 2 (Example 1, severely ill
posed) and 5 (Example 2, severely ill posed) are 186/77 ≈ 2.42 and 336/165 ≈
2.04, respectively.

6. Convergence analysis. We know that the spectrum of Aα consists of three
bounded intervals and a few isolated eigenvalues. As will become evident below, the
convergence analysis based on this observation and Chebyshev polynomials gets very
involved. Such arguments are much simpler for systems with spectra contained in one
bounded interval and with a finite number of isolated eigenvalues outside this interval;
see Axelsson and Lindskog [5] and Axelsson [3].

In this section we proceed as follows:
• First, we present the theorem.
• Thereafter we discuss the numerical experiments, presented above, in view of
this result.

• Finally, the proof of the theorem is presented.
Our main concern is the number of MINRES iterations required to solve

(6.1) Aαp = b.

Before we formulate our last result, please recall the basic structure of the spectrum
of Aα:

(6.2) sp(Aα) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, . . . , λN(α)} ∪ [a, b];

see Theorem 4.5.
Theorem 6.1. Let p∗ denote the solution of (6.1) and let ε > 0 be a given error

tolerance. If

k ≥ b

a

[
n ln

(
4b2

(4− c2)α2

)
+N(α) ln

(
b2

4α2

)
+ ln(2)

]
+ 2n+ 2N(α) + 2,

where n =

⌈
1

c
ln

(
2

ε

)⌉
,

(6.3)

then

(6.4)
‖pk − p∗‖
‖p0 − p∗‖ =

(
(Aα(pk − p∗),Aα(pk − p∗))
(Aα(p0 − p∗),Aα(p0 − p∗))

)1/2

≤ ε,

provided that

α ∈ (0, α∗],
α∗ = min{1, a/2}.

Here, pk is the kth approximation of p∗ generated by the MINRES method applied to
(6.1), and N(α) is of order O(ln(α−1)):

N(α) ≤
⌈
ln(c̃)− ln(α)

C̃

⌉
= O(ln(α−1)).
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Remark. If the state equation is a PDE, then recall that Aα = R−1Âα (see
(5.7)), where R−1 is the inverse of the Riesz map of H1 × H2 × H2. Hence, for all
z ∈ H1 ×H2 ×H2,

(Aαz,Aαz) = (R−1Âαz,R−1Âαz)

= 〈Âαz,R−1Âαz〉.
This verifies that (6.4) corresponds to the standard stopping criterion used in connec-
tion with the preconditioned MINRES algorithm.

Since the number N(α) of isolated eigenvalues is of order O(ln(α−1)), (6.3) shows
that the required number of MINRES iterations cannot grow faster than O([ln(α−1)]2)
as α → 0. However, for the numerical experiments discussed in section 5 we observed
iteration counts that are close to order O(ln(α−1)). Hence, at first glance, there seems
to be some sort of discrepancy between Theorem 6.1 and our practical experience.

Note that the bound in (6.3) can be written in the form

q0 + q1 ln(α
−1) + 2N(α) ln(α−1).

We did not find many isolated eigenvalues in the examples studied above; see Figures 2,
4, and 6. It is therefore to be expected that 2N(α) is significantly smaller than q1,
which would explain our observations.

Remark. There is an even more subtle aspect of this issue. If one reads the
analysis in section 4 carefully, one finds that the constant 2 used to define the right
end point of the interval [cα, 2α] in (6.2) is arbitrary. In fact, 2 can be replaced
by any positive number r larger than c, leading to an interval of the form [cα, rα].
Furthermore, choosing r larger will reduce the number of isolated eigenvalues—with
the price that some of the other constants in (6.3) increase. One therefore gets an
upper bound for the required number of iterations in the form

min
r

{
q0(r) + q1(r) ln(α

−1) + 2N(α, r) ln(α−1)
}
,

where N(α, r) decreases as r grows.
Let us consider Theorem 6.1 for problems with a state equation (1.2) given in

terms of a discretized PDE. In such cases, will the quantities in (6.3) depend on the
grid parameter h? The constants a and b are defined in (4.16) and (4.17), respectively,
where [−b̃,−ã] is the interval that contains the negative eigenvalues of Aα, and C is
the upper bound (4.1) of the operator norm of Aα. Assume that the discretization
of the PDE is sound, and that the approximate inverse Riesz map is applied as
preconditioner. Then one can verify that the interval [−b̃,−ã] and C do not depend on
the mesh parameter h. In a similar fashion one can establish that the constant c, used
to define the interval [cα, 2α] containing the small eigenvalues of Aα, is independent
of h. In fact, c is merely the constant used in Lemma 4.1.

The question of whether the number N(α) of isolated eigenvalues depends on the
mesh parameter h is more subtle. Assume that the PDE constrained optimization
problem at hand is severely ill posed. Then, before discretization, inequality (3.5) in
assumption A6 will hold with constants c and C not depending on h. Upon discretiza-
tion, it is therefore to be expected that this property is inherited by the discretized
KKT system, i.e., that (3.5) is satisfied with constants that are independent of the
mesh parameter. Consequently, according to the analysis presented in section 4.3, we
can conclude that N(α) does not increase as h decreases. Please note that this is in
accordance with our numerical experiments, presented in section 5, since the number
of iterations does not change dramatically on fine meshes.
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Proof of Theorem 6.1. Theorem 4.5 states that

sp(Aα) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, . . . , λN(α)} ∪ [a, b],

2α < λi < a for i = 1, 2, . . . , N(α).

The squares of the eigenvalues must therefore satisfy

λ2 ∈ [c2α2, 4α2] ∪ {λ2
1, λ

2
2, . . . , λ

2
N(α)} ∪ [a2, b2],

4α2 < λ2
i < a2 for i = 1, 2, . . . , N(α).(6.5)

An analysis of the conjugate gradient method applied to positive definite systems
with spectra contained in two intervals is presented on pages 19–21 in Axelsson [3]. It
is possible to adapt Axelsson’s argument to the present situation. The main challenge
is to incorporate the effect of the isolated eigenvalues.

According to Elman, Silvester, and Wathen [12, page 306],

(6.6)
‖pk − p∗‖
‖p0 − p∗‖ ≤ min

Φk∈Πk

max
λ∈sp(Aα)

|Φk(λ)|,

where Πk is the set of all polynomials of degree ≤ k with Φk(0) = 1.
We now aim at constructing a suitable polynomial Ψk ∈ Πk. To this end, let Ts

denote the Chebyshev polynomial of order s. Consider

Φ∗
m(x; c2α2, 4α2) =

Tm

(
4α2+c2α2−2x

4α2−c2α2

)
Tm

(
4α2+c2α2

4α2−c2α2

) ,

PN(α)(x) =

N(α)∏
i=1

(
1− x

λ2
i

)
,

Φ∗
l−q/2(x; a

2, b2) =
Tl−q/2

(
b2+a2−2x

b2−a2

)
Tl−q/2

(
b2+a2

b2−a2

) ,

q = 2m+ 2N(α),

l = �k/2� − 1,

where k is the number of MINRES iterations and m is a positive integer that will be
specified below. We suggest employing the following polynomial in the convergence
analysis:

(6.7) Ψk(λ) = Φ∗
m(λ2; c2α2, 4α2) · PN(α)(λ

2) · Φ∗
l−q/2(λ

2; a2, b2),

which has degree

2m+ 2N(α) + 2l− q ≤ 2m+ 2N(α) + k − 2m− 2N(α) = k

and Ψk(0) = 1, i.e., Ψk ∈ Πk.
Our goal is to determine a suitable upper bound for

|Ψk(λ)| for λ ∈ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, . . . , λN(α)} ∪ [a, b];
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see (6.6). This can be accomplished as follows:
• Assume that λ ∈ {λ1, λ2, . . . , λN(α)}. Then PN(α)(λ

2) = 0, which implies
that

Ψk(λ) = 0.

• Assume that λ ∈ [cα,2α] ⇒ λ2 ∈ [c2α2,4α2]. We treat each of the three
factors in (6.7) separately:

– Because λ2 ≤ 4α2 < λ2
i (see (6.5)), we find that∣∣∣∣1− λ2

λ2
i

∣∣∣∣ < 1 ⇒ |PN(α)(λ
2)| < 1.

– Since λ2 < a2 < b2, it follows that

1 <
b2 + a2 − 2λ2

b2 − a2
<

b2 + a2

b2 − a2
,

and by well-known properties of Chebyshev polynomials∣∣∣∣Tl−q/2

(
b2 + a2 − 2λ2

b2 − a2

)∣∣∣∣ < ∣∣∣∣Tl−q/2

(
b2 + a2

b2 − a2

)∣∣∣∣
⇓

|Φ∗
l−q/2(λ

2; a2, b2)| < 1.

– It is well known (see, e.g., Axelsson and Lindskog [5] and the references
therein) that

max
λ∈[cα,2α]

|Φ∗
m(λ2; c2α2, 4α2)| ≤ 2

⎛⎝1−
√

c2α2

4α2

1 +
√

c2α2

4α2

⎞⎠m

= 2

(
1− c

2

1 + c
2

)m

.(6.8)

It therefore is evident that, for λ ∈ [cα, 2α],

|Ψk(λ)| ≤ 2

(
1− c

2

1 + c
2

)m

.

We can now specify the (thus far) unspecified positive integer m from the
criterion

|Ψk(λ)| ≤ ε,

which yields

(6.9) m =

⌈
1

c
ln

(
2

ε

)⌉
.
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• Assume that λ ∈ [−b,−a] ∪ [a, b] ⇒ λ2 ∈ [a2, b2]. The three factors of Ψk

(see (6.7)) are first analyzed individually:
– Note that ∣∣∣∣1− λ2

λ2
i

∣∣∣∣ = ∣∣∣∣λ2
i − λ2

λ2
i

∣∣∣∣ ≤ b2

4α2
,

because 4α2 < λ2
i < λ2 ≤ b2. Consequently,

(6.10) |PN(α)(λ
2)| ≤

(
b2

4α2

)N(α)

.

– Similarly to (6.8),

|Φ∗
l−q/2(λ

2; a2, b2)| ≤ 2

⎛⎝1−
√

a2

b2

1 +
√

a2

b2

⎞⎠l−q/2

= 2

(
1− a

b

1 + a
b

)l−q/2

.(6.11)

– The treatment of

Φ∗
m(λ2; c2α2, 4α2) =

Tm

(
4α2+c2α2−2λ2

4α2−c2α2

)
Tm

(
4α2+c2α2

4α2−c2α2

)
is more involved. Since λ2 > 4α2 > cα2, we find that∣∣∣∣4α2 + c2α2 − 2λ2

4α2 − c2α2

∣∣∣∣ > 1.

Chebyshev polynomials are known to satisfy

|Tm(y)| ≤ |2y|m for |y| > 1

(see, e.g., page 20 in [3]), and we therefore conclude that∣∣∣∣Tm

(
4α2 + c2α2 − 2λ2

4α2 − c2α2

)∣∣∣∣ ≤ ∣∣∣∣2 · 4α2 + c2α2 − 2λ2

4α2 − c2α2

∣∣∣∣m
≤
∣∣∣∣2 · 4α2 + c2α2 − 2b2

(4− c2)α2

∣∣∣∣m
≤
(

4b2

(4− c2)α2

)m

.

If this bound is combined with the inequality∣∣∣∣∣∣ 1

Tm

(
4α2+c2α2

4α2−c2α2

)
∣∣∣∣∣∣ ≤ 2

(
1− c

2

1 + c
2

)m

(see page 13 in [3]), then we can conclude that

(6.12) |Φ∗
m(λ2; c2α2, 4α2)| ≤ 2

(
1− c

2

1 + c
2

)m(
4b2

(4 − c2)α2

)m

.
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For λ ∈ [−b,−a]∪ [a, b] we thus conclude from (6.10), (6.11), and (6.12) that

|Ψk(λ)| ≤ 4

(
1− c

2

1 + c
2

)m(
4b2

(4− c2)α2

)m(
1− a

b

1 + a
b

)l−q/2 (
b2

4α2

)N(α)

,

where

l = �k/2� − 1,

q = 2m+ 2N(α),

m =

⌈
1

c
ln

(
2

ε

)⌉
.(6.13)

Let us summarize our findings: The polynomial Ψk, defined in (6.7), satisfies
• Ψk(λ) = 0 for λ ∈ {λ1, λ2, . . . , λN(α)},
• |Ψk(λ)| ≤ 2

( 1− c
2

1+ c
2

)m
for λ ∈ [cα, 2α],

• |Ψk(λ)| ≤ 4
( 1− c

2

1+ c
2

)m( 4b2

(4−c2)α2

)m( 1− a
b

1+ a
b

)l−q/2( b2

4α2

)N(α)
for λ ∈ [−b,−a]∪ [a, b].

If m is defined as in (6.13), then

2

(
1− c

2

1 + c
2

)m

≤ ε

and

|Ψk(λ)| ≤ 2ε

(
4b2

(4 − c2)α2

)m(
1− a

b

1 + a
b

)l−q/2 (
b2

4α2

)N(α)

for λ ∈ [−b,−a] ∪ [a, b], where

l = �k/2� − 1,

q = 2m+ 2N(α).

Consequently, for all λ ∈ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, . . . , λN(α)} ∪ [a, b],

|Ψk(λ)| ≤ ε,

provided that

k ≥ b

a

[
m ln

(
4b2

(4− c2)α2

)
+N(α) ln

(
b2

4α2

)
+ ln(2)

]
+2m+ 2N(α) + 2,

m =

⌈
1

c
ln

(
2

ε

)⌉
.

Since Ψk ∈ Πk, the theorem is now a consequence of (6.6).

7. Conclusion. We have studied KKT systems

Aαp = b

arising in connection with inverse problems. The spectral condition number κ(Aα) of
Aα increases rapidly as the regularization parameter α > 0 decreases, i.e., κ(Aα) =
O(α−1). Our main result shows that the spectrum ofAα is contained in three bounded
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intervals with only a very limited number N(α) of isolated eigenvalues:

sp(Aα) ⊂ [−b,−a] ∪ [cα, dα] ∪ {λ1, λ2, . . . , λN(α)} ∪ [a, b],

provided that Tikhonov regularization is used. For severely ill posed problems N(α) =
O(ln(α−1)). Due to this property of the spectrum, the MINRES method solves such
KKT systems efficiently also for small values of α > 0.

Techniques based on Chebyshev polynomials were applied in section 6 to prove
that the MINRES method requires at most

(7.1) O([ln(α−1)]2)

iterations as α → 0, provided that the underlying inverse problem is severely ill
posed. Our theoretical investigation concerned infinite-dimensional KKT systems
with countable spectra.

The numerical examples addressed problems with state equations given in terms
of discretized elliptic PDEs, which involve a mesh parameter h. Standard algebraic
multigrid was used to precondition the KKT system. The MINRES method solved
all the model problems studied in this paper efficiently, and the approach is robust
with respect to h. Furthermore, in the numerical experiments we observed iteration
counts that are almost of order

(7.2) O(ln(α−1)),

which is better than predicted by the theoretical result (7.1). In section 6 we also
discussed how the analysis leading to (7.1) can be used to explain why (7.2) is plausible
in practice; one may regard (7.1) to be the asymptotic behavior as α → 0.

The method for solving PDE constrained optimization problems presented in this
paper has so far only been tested on elliptic control problems, posed on simple geome-
tries, subject to Tikhonov regularization and noise-free data. It must be investigated
whether the technique also can handle optimization tasks involving time-dependent
PDEs, inequality constraints, nonlinear problems, and other regularization schemes.

In this study we used multigrid algorithms to define suitable and rather simple
preconditioners for PDE constrained optimization problems. Alternatively, one can
employ more advanced preconditioners or multigrid schemes directly to the KKT
system and explore whether similar nice convergence properties are valid. This would
require a completely new type of investigation, but it seems plausible that a local
Fourier analysis could work; see [22] and the references therein.

Appendix A. Boundedness and Babuška–Brezzi conditions. Our goal
is to derive upper bounds for ‖Aα‖ and ‖A−1

α ‖. To this end, let us introduce the
notation

X = H1 ×H2, ‖x‖ = ‖(x1, x2)‖ =
√
‖x1‖2 + ‖x2‖2,

Y = H2,

Mα =

[
αI 0
0 T ∗T

]
: X → X,

N =
[
B A

]
: X → Y,

f =

[
0

T ∗d,

]
.



ANALYSIS OF THE MINIMAL RESIDUAL METHOD A811

Then we can write (3.1) in the following form: Find x = (v, u) ∈ X and y = w ∈ Y
such that

Mαx+N∗y = f,

Nx = 0.

This is a saddle point problem, and we can use standard techniques to analyze it; see,
e.g., [10].

Note that, for any x = (x1, x2) ∈ X, z = (z1, z2) ∈ X , and α ∈ [0, 1],

|(Mαx, z)| ≤ α|(x1, z1)|+ |(T ∗Tx2, z2)|
= α|(x1, z1)|+ |(Tx2, T z2)|
≤ ‖x1‖‖z1‖+ ‖Tx2‖‖Tz2‖
≤ ‖x1‖‖z1‖+ ‖T ‖2‖x2‖‖z2‖
≤ ‖x‖‖z‖+ ‖T ‖2‖x‖‖z‖
=
(
1 + ‖T ‖2) ‖x‖‖z‖.

Also,

|(Nx, y)| ≤ |(Bx1, y)|+ |(Ax2, y)|
≤ ‖B‖‖x1‖‖y‖+ ‖A‖‖x2‖‖y‖
≤ ‖B‖‖x‖‖y‖+ ‖A‖‖x‖‖y‖
= (‖B‖+ ‖A‖) ‖x‖‖y‖

for any x = (x1, x2) ∈ X and y ∈ Y . Both Mα and N are thus bounded, and we
conclude that

‖Aα‖ ≤ C for all α ∈ [0, 1].

The coercivity of Mα on the kernel of N involves the size of the regularization
parameter α. More specifically, if z = (z1, z2) ∈ X = H1 ×H2 is such that

Nz = 0,

i.e.,

Az2 = −Bz1,

then (2.2) implies that

‖z2‖ ≤ C̃‖z1‖.
Consequently,

(Mαz, z) = α(z1, z1) + (T ∗Tz2, z2)
= α‖z1‖2 + (Tz2, T z2)

≥ α‖z1‖2

≥ 0.5α‖z1‖2 + 0.5
1

C̃2
α‖z2‖2

≥ αc̃‖z‖2.
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The inequalities presented in this appendix, assumption A5, and standard theory
for saddle point problems [10] assert that Aα is continuously invertible and that

‖A−1
α ‖ ≤ 1

cα
for all α ∈ (0, 1].

Appendix B. Adjoint of the inverse Riesz map. Recall that R2 : H2 → H ′
2

is the Riesz map of the state space H2 and that

R−1
2 : H ′

2 → H2,

(R−1
2 )∗ : H2 → H ′

2.

We want to show that (R−1
2 )∗ = R2. To this end, let x, y ∈ H2 be arbitrary. The

associated members of the dual space are

x′ = R2x and y′ = R2y.

Then (x′, y′)H′
2
= (x, y)H2 and we find that

((R−1
2 )∗x, y′)H′

2
= (x,R−1

2 y′)H2

= (x, y)H2

= (x′, y′)H′
2

= (R2x, y
′)H′

2
.

Since this holds for all x, y ∈ H2, we conclude that (R−1
2 )∗ = R2.

Appendix C. Adjoint and dual operators. Let Â : H2 → H ′
2 be the operator

defined in (5.5). From the diagram

H2
( ̂A)′−→ H ′

2⏐⏐+R2

,⏐⏐R2

H ′
2

( ̂A)∗−→ H2

we see that the relationship between the dual (Â)′ and adjoint (Â)∗ operators of Â is

(Â)′ = R2 (Â)
∗R2,

provided that R2 is the Riesz map of H2. Similarly,

(B̂)′ = R1 (B̂)∗R2,

where R1 is the Riesz map of H1 and B̂ : H1 → H ′
2 is defined in (5.6).
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