
Simula Research Laboratory, Technical Report 2012-06 March 2012

1

Experiences with Model-based Product Line Engineering for Developing a Family of
Integrated Control Systems: an Industrial Case Study

Tao Yue1, Lionel Briand1,2, Bran Selic1,3
1Certus Software V&V Center

Simula Research Laboratory, Oslo, Norway
2University of Luxembourg, Luxembourg
3Malina Software Corp., Ottawa, Canada

{tao, bselic}@simula.no, lionel.briand@uni.lu

Qitao Gan4
4FMC Technologies
Kongsberg, Norway

Qitao.Gan@fmcti.com

Abstract—Integrated Control Systems (ICSs) are often large-scale and highly configurable software-intensive
systems-of-systems, with software and hardware components integrated to control and monitor physical devices
and processes (e.g., oil and gas production platforms). Employing Product Line Engineering (PLE) is believed to
bring potential benefits with respect to reduced cost, higher productivity, higher quality, and faster time-to-
market. However, relatively few industrial field studies are reported regarding the application of PLE to
develop large-scale systems, and more specifically ICSs. In this paper, we report about our experiences and
insights gained from investigating the application of model-based PLE at FMC Technologies, a company
developing subsea production systems (typical ICSs) to manage the exploitation of oil and gas production fields.
We first discuss the benefits and challenges of applying systematic domain analysis-the first major step of PLE,
report on the key domain analysis results and then assess the benefits and challenges of employing model-based
PLE at FMC, as a means to improve the quality of their products and the productivity of their product
development process.

Keywords-Product Line Engineering; Integrated Control System (ICS); Domain Analysis; Model-based Product
Line Engineering.

1 INTRODUCTION
Integrated Control Systems (ICSs) are heterogeneous systems-of-systems, where software and hardware

components are integrated to control and monitor physical devices and processes, such as process plants or
oil and gas production platforms. FMC’s Subsea Production Systems (SPSs) 1 are large-scale, highly-
hierarchical, and highly-configurable ICSs for managing the exploitation of oil and gas production fields.
FMC Technologies, Inc2 is a leading global provider of technology solutions for the energy industry. One of
its key technologies is subsea production systems, used to develop new energy reserves and for managing
and improving producing fields. They are composed of hundreds of mechanical, hydraulic, and electrical
components and configured software to support various field layouts ranging from single satellite wells to
large multiple-well sites (more than 50 wells). The main components of the system are subsea control
modules, which contain software, electronics, instrumentation, and hydraulics for safe and efficient
operation of subsea tree valves, chokes, and downhole valves.

Our industrial collaboration with FMC started with a discussion about their integration issues, which
were described as issues arising when integrating configured software and hardware components, especially
hardware components provided by third-party suppliers. This discussion initiated the analysis we conducted
and which is reported in this paper. The initial results of this analysis revealed that the majority of the issues
is due to improper configuration of deployed software that is used to monitor and control physical devices. It
also became clear that the FMC product development lifecycle is an instance of Product Line Engineering
(PLE) [16, 17]. PLE aims at supporting the reuse of product assets while differentiating individual products
in a product line family. It has been suggested that PLE can provide important benefits such as reduced cost,
higher productivity, higher quality, and faster time-to-market [16]. To achieve these benefits, one of the most
important features of PLE is to provide an architecture that accurately captures the commonalities and
variabilities of all the products in the product line family. Therefore, we narrowed down our analysis scope
specifically to collect information required to build such an architecture and understand the current
configuration process used at FMC. Our ultimate goal was to propose a suitable PLE solution for FMC to
support product configuration. In addition, based on the domain analysis results, our goal was to assess

1 FMC SPSs: www.fmctechnologies.com/subsea
2 FMC Technologies Inc. http://www.fmctechnologies.com/

Simula Research Laboratory, Technical Report 2012-06 March 2012

2

whether Model-Based PLE (MBPLE) is suitable for developing ICSs and identify the benefits and
challenges of adopting existing model-driven engineering technologies for that purpose.

Domain analysis in PLE is considered to be a key process to identify commonalities and variabilities of a
family of systems [12]. However, considering that PLE requires a thorough understanding of the product
development process, including product configuration, understanding this process should be also addressed
by domain analysis. In this paper, we first report, in Section 2, how we conducted the domain analysis,
including the process we followed and the timeline of each activity. We also report lessons learned based on
our experience at FMC.

In Section 3, we discuss the key results of the domain analysis, including identified characteristics of
FMC SPSs, which are largely similar to other ICSs in many industry sectors, and their current product
development practices. Configuration requirements are derived from the analysis results. These requirements
are subsequently used to derive objectives that a PLE solution should address.

In Section 4, we discuss the benefits as well as the practical and research challenges of applying a
MBPLE approach to address the objectives identified through domain analysis. We conclude that model-
based technologies [9] is appropriate in our context. We conclude the paper in Section 5.

2 DOMAIN ANALYSIS PROCESS
Domain analysis is defined as “the process by which information used in developing software systems

within the domain is identified, captured, and organized with the purpose of making it reusable (to create
assets) when building new products” [4]. More specifically, in our particular context, we consider domain
analysis to be a set of activities which are conducted to understand FMC SPSs with the following four
objectives in mind: 1) confirm whether FMC SPSs can be considered to be members of a product-line
family, 2) identifying key characteristics of FMC SPSs, 3) identifying, gathering, organizing, and specifying
the commonalities and variabilities of a family of FMC SPSs, and 4) understanding the current product
development processes of FMC, including the identification of the main activities of the process,
stakeholders involved in each activities, and requirements for configuring a FMC SPS.

An overview of key domain analysis activities as we performed them in our study is provided in Figure
1, where we divide them into two groups: activities conducted by the Certus V&V center at Simula Research
Laboratory3, and activities performed by FMC in interaction with Simula. In the following section, we will
discuss each activity in detail and describe the timeline of these activities.

3 http://simula.no/department/certus

Simula Research Laboratory, Technical Report 2012-06 March 2012

3

Figure 1 Key domain analysis activities

2.1 ACTIVITIES S1 AND F1

The first domain analysis activity was to identify and classify existing issues by studying the defect
tracking systems of FMC and discussing with their software and configuration engineers. This activity was
required to indicate the root causes of the problems and pinpoint the places where the FMC project
development process can be improved. Results revealed that the key issues that FMC faces during product
development are configuration-related issues such as incorrect and inconsistent configuration data, unclear
configuration inputs to configuration engineers. The results of this root cause analysis was used to define our
research objectives and will be used later to assess the extent to which our proposed solution matches the
needs. This very initial step is considered as one of the most important steps in the domain analysis. In
particular, analyzing defect tracking systems (if an organization has such systems) provides us with an
opportunity to identify critical challenges or open issues in a more objective and systematic way, which
might not be easy to obtain just through discussions or interviews with engineers. In this step, we collected
an initial set of issues after analyzing FMC’s defect tracking systems, which turned out to provide us with
valuable insights. We then clarified and confirmed each of these issues with FMC engineers.

Lesson learned: Analyzing defect tracking systems or similar kinds of systems is a very effective way to
more objectively and systematically identify and classify existing issues. Our experience showed it provided
very different and complementary insights from informal discussions with engineers.

After this, it was also clear that the FMC product development lifecycle is an example of PLE, even
though this was not explicitly perceived as such.

2.2 ACTVITIES S2 AND F2

Simula asked FMC engineers to recommend products to study (S2), based on the following criteria. First,
the selected products should be representative in the sense that they should cover as many commonalities
and variabilities of the product line family as possible. Second, the selected products should belong to the
same product line family, as FMC has multiple product lines. Third, to ensure accuracy of the analysis, they
should be recently completed projects such that relevant knowledge was still fresh in the minds of FMC
engineers, in order to hold effective and efficient discussions and interview with them.

Simula Research Laboratory, Technical Report 2012-06 March 2012

4

After three meetings, three representative products to study were selected by highly-experienced system
engineers (F2). During the meetings, we spent much effort to first understand the subsea production domain,
and then to convey the above selection criteria to the FMC engineers and to assist them in making their
selection. Note that the selection process was iterative.

To have a concrete understanding of FMC subsea control systems, a guided workshop tour was arranged
at the beginning of the domain analysis process for Simula researchers to see how a product instance was
developed and what phases were involved in the process.

Lesson learned: It is crucial to gain a thorough understanding through direct interaction and experience
(i.e., discuss concrete artifact examples with engineers and guided workshop tours) rather than just go
through indirect descriptions (e.g., reading documents).

2.3 ACTIVITIES S3 AND F3

The information collection was kicked off by requesting relevant artifacts such as requirements,
configuration guidelines and manuals, standards, regulations, the in-house configuration tool, and hardware
schematics. Collecting these was an iterative process and about half dozen meetings were organized to this
end.

Recall that the objective of this domain analysis was to gather information relevant to PLE. We targeted
two types of documents: ones relevant to the product line, which should be applicable to all its products
when they are developed, and those relevant to specific products. These documents included system and
software requirements, architecture design, process documents, and a product family glossary.

Lesson learned: In our experience, it is not a good idea to blindly trust the provided requirements and
documents. In particular, variabilities across different products are often not explicitly documented so that it
is critical to gather them during meetings, interviews, and workshops.

We also carefully studied the configuration manual guidelines, while also experimenting with the in-
house configuration tool developed by FMC. Two of the meetings were with a configuration engineer who is
highly experienced and is responsible for providing configuration guidelines and creating initial
configuration files for the software development team. The meetings were to understand how configuration
is actually performed at FMC and what are the inputs and outputs of each configuration step. The meetings
involved tool demonstrations, simulations of the real configuration process, and discussions. Subsequently,
we studied some of the configuration files of the identified products in activities S2 and F2. These
configuration files provided distinct sets of values to configure the three identified products. This exercise
helped us identify variabilities across the three products.

One of the inputs of the configuration process is hydraulic and mechanical hardware design schematics.
A configuration engineer was required to review these schematics to glean information necessary to
configure the corresponding software to be deployed to the computer hardware. We received two hours of
training on how to interpret such schematics and how they are related to the configuration process. After
that, we tested our understanding by checking some of the schematics and identifying configuration
requirements from them. This process also helped us understand how the software controls instruments and
monitors sensors. This information is very important for ICSs, as ICSs typically include hundreds and even
thousands of variability points, most of which are related to the configuration of software controlled
instruments and monitored sensors.

Lesson learned: Simulating the configuration process with the assistance of experienced configuration
engineers helped us to quickly and easily understand the configuration process. Using the existing
configuration tool helped us to pinpoint the source of configuration problems and what support was missing.
This is very important as they identify the limitations of the current practice and therefore eventually lead to
future research questions.

We also studied several standards and regulations to understand the oil and gas production domain. Some
of these are intended to assist in making early-stage design decisions about products, and are often sources of
variabilities across different products.

We also carefully inspected the source code of the software of the subsea control modules. As for other
typical ICSs, this software is shared by all the members of the SPS product line family. In other words, the
same source code (e.g., a set of highly-parameterized C++ classes) is shared for all the product line members
and the software is configured differently for each product, mainly based on the hardware topology and
configuration. Based on the source code, we manually derived an architecture-level structural model to
understand the software architecture and to identify the configurable parameters of the software. Later on,
the structural model was refined as part of the product line architecture model we derived for FMC. We

Simula Research Laboratory, Technical Report 2012-06 March 2012

5

ensured the right level of abstraction in the architecture model by making sure that the model only contained
information that is 1) necessary to understand how the software is connected to its relevant hardware
components, 2) relevant to configuration, and 3) is used in the specification of constraints restricting a
configurable component. Other details not related to the above three points were omitted from the model.

2.4 ACTIVITIES S4 AND F4

After having gathered relevant PLE information, we studied the collected documents, which led,
whenever more information was required, to requesting more artifacts to study.

Activity S4 involved eight interviews and five workshops with various numbers of FMC participants
(between one and ten). To make optimal use of time and resources, interviews were requested only after
when a sufficient number of questions was collected, or, for workshops, at a point when significant domain
analysis results were achieved. The objective of the interviews was to resolve questions brought up during
the analysis. They involved a small number of participants (less than four). The workshops, however, had
more participants (between five and ten), and aimed to get early feedback on our analysis results. They were
run as brainstorming sessions. The four workshops were on average three hours long and the interviews were
on average one and a half hour long. The interview and workshop participants included system, software,
configuration, and quality engineers and their managers.

Lesson learned: According to our experience, it is very difficult to ask an industrial partner to commit
time for meetings and workshops. We spent much effort on this during the analysis process. For organizing a
workshop or an interview, it is important to get the audience interested first. To that end, we did the
following: First, during a workshop, to explain product line concepts and notations, we used examples that
were familiar to FMC engineers. Second, we carefully prepared for each interview and asked very specific
and concrete questions. In addition, before each interview, we also prioritized the questions to ensure that
there was sufficient time for the most important ones.

On our part, we further decomposed activity S4 into four sub-activities (S4.1-S4.4). The first activity
includes deriving, decomposing, and specifying configuration requirements (S4.1), which are the
requirements that should be met by a configuration process and used to define evaluation criteria to assess it.
We used a conceptual model, as recommended in [12], to identify, define, and organize the concepts relevant
to configuration, and to assist in formulating a precise and concise description of the concepts and their
relationships (S4.2). A conceptual model [1] (also known as a domain model) captures domain concepts and
the relationships among them. It attempts to clarify the meaning of these concepts to minimize possible
misunderstanding among stakeholders. A conceptual model can be described using different notations,
Unified Modeling Language (UML) [15] being a frequently used one. The resulting conceptual model is also
an important artifact for the configuration tool design since it is an initial step towards the information model
to be manipulated by the tool. In Section 3.3, we discuss a subset of the conceptual model.

Lesson learned: For large-scale ICSs, during the domain analysis, a large amount of information related
to various aspects such as software, hardware, and configuration needs to be analyzed. Capturing the
analysis results into a conceptual model helps cope with such complexity.

In addition to incrementally developing the conceptual model, we also built an initial product line
architecture model of the FMC SPSs, for the purpose of collecting the commonality and variabilities
identified during the domain analysis process. UML constructs, including package, template, and class
diagrams, was found sufficient to build this product line architecture model. At a later stage, the model was
refined and a modeling methodology [5] was proposed.

One of the important tasks of the domain analysis in PLE is to identify variabilities (S4.3) across all the
different products of a product line family. We identified and classified all the variabilities of the three
selected products of the family of a FMC SPSs. This step was important as its outcome was required later to
assess whether a particular variability modeling solution can be used to specify all the different types of
variabilities in a concise but precise way.

Domain analysis was also needed to understand the current configuration process at FMC (S4.4), which
was the basis for recommending improvements and a new way to handle configuration.

2.5 TIMELINE

The domain analysis spanned roughly six months. During this time, we finished all the activities shown
in Figure 1. The effort (hours) spent on each activity is given in Figure 2, amounting to a total of hours. The
diagram also indicates roughly the sequence and overlap of these activities. Most of the time (80%) is spent

Simula Research Laboratory, Technical Report 2012-06 March 2012

6

on the sub-activities of activity S4. Two researchers from Simula were involved and more than seven FMC
engineers participated in discussions, meetings, and workshops.

Figure 2 Domain Analysis Activities Timeline

3 DOMAIN ANALYSIS RESULTS
In this section, we discuss the key domain analysis results, which formed the foundation for overall

quality and productivity improvement recommendations to the FMC product development practice. We first
discuss (in Section 3.1) why we believe that developing FMC subsea production systems can be best
described as a PLE process. Second, we summarize relevant characteristics of FMC SPSs in Section 3.2.
Third, in Section 3.3, we formulate the key required configuration concepts as a conceptual model. In
Section 3.4, we discuss in detail the current FMC product development lifecycle.

3.1 SOFTWARE-INTENSIVE SYSTEM PLE

The current FMC practice involves a series of refinements of their products to adapt them to the specific
needs of a particular customer. The adaption process is actually a product configuration process, which
includes: 1) configuring the hardware topology (e.g., making decisions such as how many wells to construct
and how they are connected), and 2) configuring the software that is deployed to the hardware computing
resources. The software controls and monitors the oil and gas production process, given a specific set of
values for the configurable parameters of the software. These values are different from product to product
and are jointly referred to as configuration data. The configurable parameters have to be properly configured
before the software is loaded and executed to operate hardware devices. These parameters represent
variabilities of individual products, and therefore, we can conclude that FMC SPSs and the current FMC
practice of developing their products fit well with PLE and that, based on this, a more systematic, reliable,
and scalable way to facilitate the configuration process can be introduced.

3.2 CHARACTERISTICS OF FMC SUBSEA PRODUCTION SYSTEMS

FMC SPSs are large-scale, highly-configurable, and highly-hierarchical, and software-intensive systems-
of-systems, in which software controls and monitors the operation of electrical and mechanical instruments.
They are large-scale and highly-configurable in the sense that a FMC subsea control system is composed of
up to hundreds of control modules and thousands of instruments. This type of system is large-scale also in
terms of its complicated configuration process; completely configuring a product may require resolution of
hundreds or even thousands of variability points. Furthermore, since a hardware component often contains
other hardware components, FMC SPSs have a hierarchical topology.

In a family of FMC SPSs, the hardware topology can vary from one product to another, with each
topology being a specific configuration of the generic family design. Hardware is configured based on
customer requirements, environmental conditions, and different regulations and standards.

As previously mentioned, members of a family of FMC SPSs share the same software code base (e.g., a
set of highly-parameterized C++ classes). This software is configured differently for each product, mainly
based on the hardware topology and configuration. For example, the number of electrical and mechanical
instruments, as well as their properties (e.g., resolution of a sensor) affects the number and values of run-
time objects in the software configured for a specific product instance. Each configuration of the software
forms a unique installation (i.e., a set of deployable and executable software modules) provided for a specific
product. Notice that this characteristic is unique to software-intensive system configuration and
dependencies between the hardware and software should be captured and accounted for during the
configuration process.

Software and hardware variability points occur at different levels of detail and are typically resolved by
different specialists in different phases of the product development lifecycle. For example, high-level
hardware decisions (e.g., number of wells) are made by domain experts after tendering and front-end

Simula Research Laboratory, Technical Report 2012-06 March 2012

7

engineering design phases. Low-level variability points (e.g., the operating range of a device) are typically
configured by configuration engineers or software engineers during the configuration, testing, or operation
phases.

We believe that the above characteristics are not specific to FMC SPSs and our experience suggests they
can be generalized to many other ICSs.

3.3 PROBLEM FORMULATION

The product line development process and product development process contain various development
phases, involving different stakeholders, with various configuration rights and covering various disciplines.
In this section, we formalize the key concepts of these two processes and their relationships as a conceptual
model, as shown in the UML class diagram in Figure 3.

Figure 3 The conceptual model

As shown in Figure 3, both the ProductLineDevelopmentProcess and the ProductDevelopmentProcess
have a set of distinguishable phases. Both processes have multiple development phases
(ProductLineDevelopmentPhases and ProductDevelopmentPhases), involve different Stakeholders, relate
to various Disciplines, and contain many activities (instances of Activity). FMC does not have explicit
product line development phases and, therefore we do not discuss them further in the conceptual model.
However FMC has a very explicit product development lifecycle, which is composed of seven phases:
Tender, FEED, Design, Implementation, Configuration, Testing and Operation. These seven phases are
discussed in detail in Section 3.4. The processes consist of a set of activities (instances of Activity) that
should be performed by Stakeholders. There are typically six types of stakeholders in the FMC project
development lifecycle: Customers, DomainExperts, HardwareEngineers, SoftwareEngineers,
TestEngineers, ConfigurationEngineers, and offshore Operators.

Different stakeholders might have different ConfigurationRights. By configuration rights, we mean that
not everyone has the knowledge required for all configurations and, therefore, we need to restrict certain
configuration decisions to stakeholders who have the appropriate expertise. For example, hardware engineers
might not have configuration rights to configure the software. The ConfigurationProcess is integrated with
the product development process. The configuration process has multiple ConfigurationPhases
corresponding to different configuration purposes such as testing and operation. Detailed discussion of these
concepts is provided in Section 3.4.

It is worth noting that this conceptual model was used in our domain analysis to
collect/organize/formulate information, as discussed in Section 2.4. However one can see that the conceptual
model is general and therefore can be reused and extended for other kinds of domain analyses in PLE, except
that different types of stakeholders or phases might be different from case to case.

Simula Research Laboratory, Technical Report 2012-06 March 2012

8

3.4 PRODUCT DEVELOPMENT LIFECYCLE

In FMC, there is no explicit product line development process. However the lifecycle of the product
development process is quite explicit and it is defined according to four dimensions: Phases, Stakeholders,
Activities, and Disciplines, which are captured as four concepts in the conceptual model, as shown in Figure
3. In this section, we describe each product development phase, its related stakeholders, activities, and
covered disciplines, and identify requirements for improving the configuration process.

3.4.1 TENDER AND FEED PHASES

The tender phase is a procedure for obtaining a contract. Domain experts are mainly involved in this
phase to prepare the tender document. The Front-End Engineering Design (FEED) is a process focused on
the conceptual development of a product and decisions made in this stage have a very high impact on cost
and time estimates. Both the Tender and FEED phases are actually front-end phases, including activities
mainly conducted by domain experts and focusing on product definition and analysis. These activities span
over multiple disciplines such as requirements engineering, design, and configuration. For example, domain
experts need to identify and define product requirements (by interacting with customers), analyze them,
propose a product architecture, and configure the product by making top-level configuration decisions,
concerning mainly the top-level hardware topology. Req1: A solution should support different levels of
configurations: top-level hardware topology configuration, lower-level hardware component configurations,
and parameterized software configuration.

During these two phases, domain experts also need to estimate the cost and resources required, and
assess the reliability and availability characteristics of the hardware topology configuration. For an ICS, the
top-level hardware topology should have acceptable reliability, which can be achieved by, for instance,
redundancy and by using highly-reliable hardware components. Req2: A solution should support the
assessment of reliability and availability of the top-level hardware topology configuration.

3.4.2 DESIGN AND IMPLEMENTATION PHASES

Hardware engineers, including mechanical, hydraulic, and electrical engineers, along with software
engineers, are the primary actors in these two product development phases.

Hardware engineers take the product documents and partially configured product architecture (mostly
textual documents), both of which are outputs of the FEED phase, as input to design the hardware. One of
the most important artifacts produced in this activity is the schematics of the hardware design.

Software engineers first need to define software requirements based on the product documents provided
during the Tender and FEED phases. Second, they need to design, analyze and verify the software design
against the requirements, followed by creating and modifying the software when necessary. Notice that, as
we discussed in Section 3.2, members of a family of FMC SPSs share the same software code base and the
software is configured differently for each product, mainly based on the hardware topology and
configuration. Therefore, creating and modifying the software is very rare, except when the product under
development needs new types of hardware devices, which might require changes in software drivers for
instance.

From the point of view of configuration, there is no direct, explicit, and easily manageable transition
from the Tender and FEED phases to the Design and Implementation phases. Decisions made during the
tender and FEED phases are scattered across product documents, with no consideration given to facilitate
subsequent, low-level configuration decisions. Req3: A unified platform is required for explicitly and
systematically sharing and managing configuration information, including commonalities, variabilities, and
configuration data, across all the product development phases, which is particularly important for systems
like ICSs, since configuration activities are performed by different stakeholders, in different phases, and for
different purposes.

3.4.3 CONFIGURATION, TESTING, AND OPERATION PHASES

As previously discussed, software has to be configured to form a unique installation provided for a
specific product. Configuration and test engineers are the main actors in this activity. Configuration
engineers need to configure software based on the system and software requirements of the product and the
selected hardware design. The information required to perform such configuration is again scattered in
requirement documents, which are not always relevant to configuration, and decisions made earlier during
the tender and FEED phases about the hardware topology are not explicitly captured. For example, hardware
engineers need to select a specific type of pressure sensors and this information is captured in the hardware

Simula Research Laboratory, Technical Report 2012-06 March 2012

9

schematics of a product. However this information is very important to correctly configure some parameters
(e.g., pressure range) of a software class representing this type of sensors. In order to collect this kind of
information, a configuration engineer has to go through the hardware schematics, identify such information,
and then perform the configuration. Such a process is inefficient and error-prone, which explains the large
proportion of configuration errors in defect reports. Such configuration-relevant information should be
captured explicitly in a way such that it can be easily used for subsequent configuration steps (Req3).

Outputs of the configuration mainly include configuration data and a configuration manual (a guide in
selecting correct classes to configure and entering values for configurable parameters for each class), which
is provided to software engineers, test engineers, and offshore operators for configuring their system. In the
FMC product development lifecycle, there are different testing phases including software testing, hardware
testing, Environmental Stress Screening (ESS), and Factory Acceptance Testing (FAT). Different testing
phases require different configuration data. For example, ESS only tests each individual subsea control
module and therefore the configuration is limited to the subsea control module under test only, not the whole
subsea production system. The test environment for hardware testing provides stimuli and responses during
test execution, including a sensor simulator with a correct hardware interface. As for software, a so-called
generic sensor makes it possible to test the hardware on a broader basis than a real sensor. This is required
especially in ESS to test a hardware component under extreme conditions. Therefore the software should be
configured according to the generic sensor instead of the real sensor. During the FAT testing of an
XmasTree (a mechanical component that physically contains instruments connected to control modules), real
sensors are connected to the control modules and are tested together with the control modules. Therefore, in
this case, the software should be configured for the real sensors this time. Configuration data should be
systematically captured such that they can be reused as much as possible. In addition, certain subsystem or
component instances of an ICS may have identical or similar configurations, for example, in case of
redundancy for fault tolerance. Req4: A solution should be able to systematically and automatically support
configuration information reuse.

Another issue regarding the configuration process is that assumptions and the rationale for design choices
should be captured explicitly rather than merely residing in the minds of engineers. For example, during the
hardware testing phase of a subsea control module, devices under control by the control module are
simulated since the devices are often unavailable during the hardware testing phase. In such case,
configuring software according to the simulated devices should be considered to be an assumption regarding
the actual device properties. Such information is necessary when performing subsequent configuration steps
(e.g., the FAT testing) or fixing defects. For example, configuration problems reported by system operators
would be easier to analyze and fix if such information is properly captured in the first place. Req5: A
mechanism is required to capture assumptions and decision rationales along with configuration data.

In complex ICSs (e.g., FMC SPSs), we have observed that configuration errors are very difficult and
costly to locate and fix, due to the large number of variabilities, their interdependencies, the many
stakeholders involved, and inadequate automation of the configuration process. In particular, lack of
automation creates many opportunities for human errors, such as the need to enter identical configuration
information multiple times, which can result in inconsistencies. Req6: A solution should help automatically
guarantee the correctness and consistency of configuration decisions.

Recall from Section 3.2 that FMC SPSs are large-scale ICSs, which are composed of hundreds and
thousands of hardware components and devices and configurable software containing thousands of
configurable parameters. Req7: A solution should be able to handle hundreds or even thousands of
interrelated configuration decisions.

3.4.4 PRODUCT LINE DEVELOPMENT LIFECYCLE

As we mentioned previously, though FMC has a product line development lifecycle, it is not explicitly
structured as such. Product-line activities are scattered across the various activities of the product
development lifecycle. For example, during the design and implementation phases, software might be
updated for one product due to a new instrument type. This update might be propagated to other products of
the same product line family under consideration, stating that this new type of instrument will be used in the
future for all other products. In that case, the updated software should then be a product line asset, instead of
a product-instance artifact. Though some of the product-line artifacts (e.g., product line software) are
distinguished from product-dependent artifacts (e.g., product software), there is currently no support for the
co-evolution of these two types of artifacts. In other words, there is no clear separation between domain and
application engineering teams at FMC. This makes it hard to distinguish product line artifacts from product-

Simula Research Laboratory, Technical Report 2012-06 March 2012

10

specific artifacts and to support their concurrent evolution. However, since we focus on the configuration
process in this paper, we do not discuss this further.

4 FEASIBILITY ANALYSIS OF EMPLOYING MBPLE
Based on the domain analysis results discussed in Section 3, we opted for Model-Based Engineering

(MBE) technologies to cope with the configuration issues that FMC is facing and developed a product-line
architecture model. The model was created using UML and its extensions by applying a product line
architecture modeling methodology we proposed for ICSs [5].

In this section, we assess how our proposed MBPLE approach matches the needs for configuration
support in FMC. We first decompose our overall objective into sub-objectives. Second we discuss relevant
the relevant properties of a MBPLE approach based on existing MBE technologies. Last, based on our
experience at FMC, we discuss how a MBPLE approach addresses each sub-objective by relating the
MBPLE properties to the sub-objectives. The mapping among the configuration requirements (Req1-Req7),
the sub-objectives, and the MBPLE properties are summarized in Table 1.

Table 1 Mapping between the configuration requirements, configuration objectives, and key MBPLE properties

Configuration
Requirements

Configuration Objectives MBPLE Properties
Obj1 Obj2 Obj3 Obj4 Precision Automation Separation

of Concerns
Abstraction Change

Analysis
Req1 √ √ √
Req2 √ √ √ √ √
Req3 √ √ √ √
Req4 √ √ √ √ √
Req5 √ √ √ √
Req6 √ √ √ √ √
Req7 √ √ √ √

4.1 OBJECTIVES

We decompose our overall objective into the following sub-objectives:
 Obj1: Provide a reliable, scalable, systematic, automated, hierarchical and end-to-end

configuration process to configure a product from determining its top-level hardware topology
to assigning values to the configurable parameters of the software.

 Obj2: Provide a way to systematically manage the configuration process, focusing on enabling
effective reuse of configuration data—the main artifacts of the configuration process.

 Obj3: Provide a scalable and unified knowledge-sharing platform to capture the architecture of
a product line, including commonalities and variabilities of its products, and specify decision
rationales and assumptions,

 Obj4: Enable automated analysis, including the reliability and availability analysis during the
tender and FEED phases, consistency checking of configuration data, and change impact
analysis.

These four objectives were derived from the seven configuration requirements (Req1-Req7) that we
obtained through domain analysis (Section 3). The mapping between the objectives and requirements is
provided in Table 1. In the following subsections, we discuss each of these objectives and their targeted
configuration requirement(s).

4.1.1 OBJ1: SYSTEMATIC AND AUTOMATED CONFIGURATION PROCESS

As explained in Section 3.3, the configuration process involves multiple stakeholders, i.e., domain
experts, software engineers, test engineers and configuration engineers. Different stakeholders have different
configuration rights and configure the system at different phases for different purposes. Therefore, the
configuration process is highly complex and a systematic solution is needed to handle such a complex
function.

To specifically address Req1 identified during the domain analysis process (Section 3.4.1), we
recommend the hierarchical structure presented in Figure 4 as a basis for the configuration process, which
can be characterized as a layered and end-to-end process: the configuration process is organized into layers
and spans all configuration decisions. Assuming one top layer, N middle layers, and one bottom layer for
hardware configuration, the number of intermediate layers (N) depends on the complexity of a system and
the depth of the hardware topology hierarchy is. The configuration process starts naturally with configuring

Simula Research Laboratory, Technical Report 2012-06 March 2012

11

the top level hardware topology (Top layer), gradually decomposing top-level hardware components into
sub-components and configuring them according to their hierarchical structure until the complete hardware
topology is configured (Middle and Bottom layers). When all the hardware topology configurations are
completed, the parameterized software classes are then configured (Software Parameter Layer).

Figure 4 Layered and end-to-end configuration process

During the top layer, hardware configuration phase, high-level decisions regarding the field topology
should be made (e.g., number of subsea control modules to deploy according to the number of wells to
explore in a field). These decisions usually have a high business impact. Factors related to policies, history,
regulations, legacy applications, and previous product experiences can all influence this level of decisions.
These decisions are typically made by domain experts and the output of this step is a partially configured
product. The middle and bottom layer of hardware configuration phases make subsystem-level decisions and
unit or instrument-level decisions (e.g., type of sensors and valves). Domain experts and hardware engineers
are typically involved in these two configuration phases. During the software configuration phase, the main
tasks include assigning correct values to thousands of parameters of parameterized software classes, and
ensuring the consistency of these values with the hardware configuration and among themselves.
Configuration engineers and software engineers are the main stakeholders of these two tasks.

One can see that a lower layer configuration phase (e.g., software parameter layer) depends on the
configuration performed in its previous phases (e.g., top, middle, and bottom hardware configuration layers).
Such dependencies should be explicitly captured to ensure higher quality of the configuration and to improve
productivity. However, the current configuration practices of our industry partner separate the hardware
configuration from the software configuration and the dependency between the software and the hardware
still remains as tacit knowledge in the heads of configuration experts. Such a practice results in many
configuration errors that are often detected very late in the project development lifecycle. Therefore, a more
systematic configuration process is required to tackle the complexity caused by the involvement of multiple
stakeholders, various phases, different layers of configuration, various activities, and multiple disciplines,
with preferably automated tool support.

4.1.2 OBJ2: CONFIGURATION PROCESS MANAGEMENT

The main artifacts of the configuration process are configuration data resulting from the different
configuration phases, generated by different stakeholders with different configuration rights, for different
purposes, as shown in Figure 3. In addition, the same configuration data may need to be reused across
different configuration phases. Therefore, two key issues in configuration process management are how to
ease the reuse of configuration data and make sure correct configuration data is used at the right place for the
right purpose, are two key issues in configuration process management.

There is no explicit specification of relevant configuration knowledge and therefore the reuse of
configuration data across different configuration phases of the same product, or across different products of
the same product line family, becomes very difficult and entirely reliant on the expertise of engineers. In
addition, configuration data for different testing purposes (e.g., unit test, hardware test, ESS test, FAT test)
bear similarities since these tests are all for the same product. Therefore, it is clearly necessary to
systematically manage such configuration data such that we know when and how to reuse data to minimize
duplication and simplify evolution (Req4).

Simula Research Laboratory, Technical Report 2012-06 March 2012

12

4.1.3 OBJ3: UNIFIED KNOWLEDGE-SHARING PLATFORM

A product line architecture captures the commonalities and variabilities of all products of the product line
family (Req3). It should also form the basis for automated and systematic product configuration and
derivation. It should help engineers make design decisions and track their rationale. It should allow tracing
back to design rationales, requirements, regulations, and standards, which are all input of the architecture
design and configuration phases of the product development lifecycle. It should also provide a common
understanding and unified knowledge-sharing platform for different stakeholders, and support evolution by
easing the identification of configuration problems and their solutions.

Considering Req5, a proposed approach should also provide a mechanism to represent assumptions and
decision rationales and connect them to other configuration artifacts such as specific decisions made during a
specific configuration step. A unified platform is expected to specify and help manage all these artifacts such
that, for example, querying across different configuration artifacts can be facilitated.

To address the scalability issue (Req7), the general principle of separation of concerns should be applied
to handle complexity. For example, organizing the product line architecture of a system in a hierarchy of
views, sub-views, and models, where each package has a clear focus (e.g., representing a well-defined view,
or grouping models and model elements related to a particular subsystem or subcomponent), is one way to
handle through MBPLE.

4.1.4 OBJ4: AUTOMATED ANALYSIS

As indicated by Req2, during the tender and FEED phases of the FMC product development lifecycle,
domain experts need to assess the reliability and availability of the top-level hardware topology
configuration of a product. For example, they need to estimate whether the proposed top-level hardware
topology has acceptable reliability, which can be achieved by different complementary means, e.g.,
redundancy, locating critical sensor systems on subsea trees, and/or using high-reliability hardware
components. Redundancy is particularly important if component replacement is difficult, or if significant
production availability or operating capability is lost through single-component failures. Therefore, it is
important to provide an automated approach that helps domain experts assess the reliability and availability
of a top-level hardware topology configuration at the early stage of the product development lifecycle. This
kind of analysis should be based on the product line architecture model and the configuration data
(representing the top-level hardware topology configuration under assessment) with additional information
such as the mean time to repair of a unit or component.

As indicated by Req6, inconsistencies among configuration data are mainly caused by human mistakes
due to inadequate automation during the configuration process. Tool support is expected to automatically
guarantee the correctness and consistency of configuration data by performing run-time consistency
checking each time when a configuration input is provided.

Impact analysis [7] is in general useful to support the planning of changes, making changes, and tracing
the effect of changes, as a measure of the cost of a change, and to drive regression testing. Impact analysis is
particularly important in PLE since it can assist domain engineers during the tender and FEED phases in
making high-level design choices. During the configuration process it provides insights regarding the cost
and resources entailed by decisions. Second, it helps determine which features/variabilities lead to large
change impacts on the other assets in the product line.

4.2 MBE PROPERTIES RELEVANT TO PLE

We discuss, in the section, the key MBE properties that are a priori relevant to PLE. We call them
MBPLE properties, as summarized in Table 1.

Precision: Modeling languages (e.g., UML) typically have rich and full-bodied notations and provide a
systematic way to extend themselves (e.g., UML profiling mechanism). This can be used to precisely model
both structural and behavioral aspects of a system in a way that is suited to both context and objectives.

Automation: Mature MBE technologies such as metamodeling [6], constraint checking, and model
transformation [13], provide systematic mechanisms to facilitate the automation of many tasks based on
models, including automated model analysis and verification, and code and test data generation.

Separation of concerns: Standard modeling languages such as the UML and its extensions, provide
mechanisms for modularity and encapsulation, which help implement the principle of separation of
concerns. This can be used to model a system in a well-organized architecture where each part fulfills a
meaningful role. Consequently, better scalability can be achieved.

Simula Research Laboratory, Technical Report 2012-06 March 2012

13

Abstraction: For a given objective and context, to avoid distracting and irrelevant details about the
system under study, abstraction is a key mechanism. With separation of concerns, this is a key mechanism to
achieve scalability. Abstraction is a key feature of standard modeling languages, which enables the definition
of modeling methodologies that are suited to a given context and objective, by specifying what must be
modeled and at what level of detail.

Change analysis: MBE technologies (e.g., consistency checking and change impact analysis) provide
mechanisms to reliably and predictably handle changes (e.g., introducing new features, fixing a defect). For
example, the Object Constraint Language (OCL) [14], initially used as a precise modeling language
complementing UML specifications, can be also used to evaluate queries or check constraints on model
instances. This usage of OCL is important for rule-based and model-based consistency checking and impact
analysis. There exist OCL evaluators [2] to enable this type of analysis and they are applied in our context.

4.3 MAPPING FROM MBPLE PROPERTIES TO OBJECTIVES

4.3.1 PRECISION

We need a configuration process to systematically configure a product (Obj1). To make the configuration
process systematic, we need to precisely capture the commonalities and variabilities of a family of products
as a common asset (usually as an architecture model) (Obj3). We have devised a product-line modeling
methodology (SimPL) for families of ICSs [5] that we applied at FMC for the above purpose. SimPL
provides notation and guidelines for creating product line models at a sufficient level of precision. Most
notably, our experience at FMC has shown it can be used to thoroughly specify all types of variabilities
identified in ICSs.

To facilitate configuration data reuse (Obj2), one possible solution is to 1) group variabilities related to a
subsystem or component into distinct packages and 2) organize and maintain resolution/configuration of the
grouped variabilities into reusable groups of variability resolutions (i.e., configuration data). To do so, we
need a systematic approach to provide, represent, and manage configuration data and connect them to the
product line architecture model. In our SimPL methodology [5], we rely on UML Packages and Templates,
characterized with a specific stereotype called <<ConfigurationUnit>>, to group and organize variabilities
for each configurable component. We have also proposed another stereotype (<<Inherit>>) to facilitate reuse
of configuration information by applying it to UML Dependencies connecting two groups of variabilities
corresponding to two configurable components, respectively. This implies that configuring one configurable
component requires resolving variabilities in dependent configurable components. These two stereotypes
were used extensively in the FMC case study without particular difficulty. Note that the SimPL
methodology is part of an ongoing project to realize MBPLE in the organization of our industry partner and
is not the focus of this paper.

4.3.2 AUTOMATION

In families of ICSs, at FMC and elsewhere, we face large numbers of interdependent variability points,
multiple stakeholders’ involvement, and complex analysis needs (e.g., reliability and availability assessment
of top-level hardware topology configuration, configuration data validation, and consistency checking of
configuration decisions) (Obj4), configuration reuse needs (Obj2), and this entails automated support.
Modeling environments enable high degrees of automation through capabilities for model analysis and
transformations (Section 4.2). The SimPL profile proposed as part of the SimPL methodology [5], including
a set of stereotypes and constraints, has been implemented in the IBM Rational Software Architect (RSA)
[11] modeling environment. This profile was fully applied to the FMC SPSs. RSA is embedded with model
transformation technologies (e.g., Eclipse Modeling Framework (EMF) [10]) and provides model analysis
support (e.g., consistency checking and impact analysis), thus supporting the configuration of products and
their verification. We are currently in the process of developing a model-based, automated, user-interactive
configuration tool to automate the proposed configuration process. The configuration tool builds on product
line models created with SimPL, and uses constraint solvers to interactively guide engineers to construct and
verify configuration data. In the future, industrial strength tool support for employing MBPLE in our context
will be available to automate the proposed configuration process to the maximum extent.

4.3.3 SEPARATION OF CONCERNS

A scalable configuration process (Obj1) is expected to resolve thousands of variabilities; a scalable
solution is needed to specify, represent and manage large amount of configuration data (Obj2); a unified
knowledge sharing platform requires a solution capable of handling such complexity (Obj3); an automated

Simula Research Laboratory, Technical Report 2012-06 March 2012

14

analysis approach should be scalable to enable, for example, the querying of large-scale models and
processing of large amounts of computation (Obj4). In our SimPL methodology [5], we have implemented
the principle of separation of concerns by using UML packages to organize the architecture of the FMC
SPSs in a hierarchy of views, sub-views, and models, where each package has a clear focus (e.g.,
representing a well-defined view, or grouping models and model elements related to a particular subsystem
or subcomponent). The SimPL methodology also organizes the generic product line architecture description
into two models: base and variability models, which are loosely connected through inherent UML features.
The above mechanisms were widely applied in modeling the FMC SPSs and helped different stakeholders
identify parts of the product line architecture that were relevant to them.

4.3.4 ABSTRACTION

Suitable mechanisms for abstraction are needed for all objectives. In the FMC case study, the level of
abstraction specified by our modeling methodology, based on extensions of UML, enabled us to model a
very large product family with reasonably-sized models. For the industrial case study we conducted [5], the
product line architecture model in total contains five views and subviews and is visualized in 17 class
diagrams. The model elements contain a total of 71 classes. In total, 109 variabilities are specified for 22
configurable components. A total of 16 OCL constraints are captured. The evaluation of the case study
shows that the product line architecture model was created at the right level of abstraction, such that it could
facilitate product-line configuration and product derivation.

4.3.5 CHANGE ANALYSIS

Based on existing MBE technologies (Section 4.2), model-based analysis can provide an automated
approach to perform model-based reliability and availability analysis of top-level hardware topology
configurations and consistency checking of configuration data, and change impact analysis (Obj4). In the
FMC context, we are still investigating model-based change analysis and have at this stage little experience
to report. However according to our previous experience on change impact analysis in different contexts [8,
18], we can foresee that existing MBE technologies [2] are likely to address the change analysis
requirements at FMC.

5 CONCLUSION
In this paper, we reported on experiences and insights gained from investigating the application of

model-based product line engineering to large-scale, highly-configurable Integrated Control Systems (ICSs).
Our case studies took place in the context of subsea production systems developed by FMC technologies.
We first presented the steps of the systematic domain analysis we conducted at FMC, the lessons learned
from the process, and the effort spent on each domain analysis activity. It is worth noting that the activities
involved in domain analysis and the lessons learned are quite general and, therefore, can be applied to the
study of similar kinds of families of ICSs, including estimating the effort required.

Second, we discussed the key results of the domain analysis and specified seven configuration
requirements, based on which we derived four objectives that should be met by a Product Line Engineering
(PLE) solution. These domain analysis results, including the derived conceptual model, the configuration
requirements, and the identified objectives expected from a systematic configuration process, are not specific
to our FMC context. They are generally applicable to any large-scale ICS where hardware and software are
integrated to control and monitor physical devices and processes. In other words, our domain analysis results
are relevant and valuable beyond the context of our industry partner.

Last, we report our experience in using such a PLE solution based on model-driven engineering for a
family of ICSs. Our assessment results suggest that model-based PLE, such as the one we applied, is indeed
suitable to achieve all four objectives. As part of the ongoing project, based on the domain analysis results,
we have proposed a UML based, product-line modeling methodology for families of ICSs [5], which we
named SimPL. We are currently developing a SimPL-based, user-interactive, automated configuration tool
to facilitate the automated configuration of families of ICSs. In the future, we plan to integrate SimPL and
the configuration tool to the model-based product-line engineering practice of FMC for the purpose of
improving the overall quality and productivity of their system development.

6 ACKNOWLEDGEMENT

We are grateful to engineers at FMC Technologies for their support and help on performing the domain
analysis.

Simula Research Laboratory, Technical Report 2012-06 March 2012

15

7 REFERENCES
[1] Conceptual Model (computer science): http://en.wikipedia.org/wiki/Conceptual_model_(computer_science)
[2] Eclipse OCL: http://www.eclipse.org/modeling/mdt/?project=ocl
[3] Papyrus UML Modeler, http://www.eclipse.org/modeling/mdt/papyrus/
[4] America P., Thiel S., Ferber S. and Mergel M., “Introduction to Domain Analysis, http://www.esi.es/esaps/public-

pdf/CWD121-20-06-01.pdf,” 2001.
[5] Behjati R., Yue T. and Briand L., “SimPL: A Product Line Modeling Methodology for Families of Integrated

Control Systems,” Simula Research Laboratory, 2011.
[6] Bezivin J., “On the unification power of models,” Software and Systems Modeling, vol. 4 (2), pp. 171-188, 2005.
[7] Bohner S. A., “Software change impact analysis,” IEEE Computer Socienty Press, 1996.
[8] Briand L. C., Labiche Y., O'Sullivan L. and Sowka M., “Automated Impact Analysis of UML Models,” Journal of

Systems and Software, vol. 79 (3), pp. 339-352, 2006.
[9] Dhungana D., Neumayer T., Grunbacher P. and Rabiser R., “Supporting evolution in model-based product line

engineering,” pp. 319-328, 2008.
[10] Eclipse Foundation, Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/ (Last accessed April

2010)
[11] IBM, Rational Software Architect
[12] Khurum M. and Gorschek T., “A systematic review of domain analysis solutions for product lines,” Journal of

Systems and Software, vol. 82 (12), pp. 1982-2003, 2009.
[13] Kleppe A., Warmer J. and Bast W., MDA Explained - The Model Driven Architecture: Practice and Promise,

Addison-Wesley, 2003.
[14] OMG, “OCL 2.0 Specification,” Final Adopted Specification ptc/03-10-14.
[15] OMG, “UML 2.2 Superstructure Specification (formal/2009-02-04).”
[16] Pohl K., Bockle G. and Van Der Linden F., Software product line engineering: foundations, principles, and

techniques, Springer-Verlag New York Inc, 2005.
[17] Van Der Linden F., Schmid K. and Rommes E., Software product lines in action: the best industrial practice in

product line engineering, Springer-Verlag New York Inc, 2007.
[18] Yue T., Towards Vertical Impact Analysis of UML Models, Thesis, Carleton University, Systems and Computer

Engineering, 2006

