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Executive Summary

Product configuration in families of embedded software systems, such as Integrated Control Systems (ICSs),
involves resolving thousands of configurable parameters and is, therefore, time-consuming and error-prone.
Typically, these systems consist of highly similar components that need to be configured similarly. For large-
scale systems, a considerable portion of the configuration data can be reused, based on such similarities,
during the configuration of each individual product. In this paper, we propose a model-based approach to
automate the reuse of configuration data based on the similarities within an ICS product. Our approach
provides configuration engineers with appropriate means for manipulating the reuse of configuration data,
and provides the required formalism for ensuring the consistency of the reused data. Our investigation of a
number of product configurations with an industry partner shows that more than 60% of configuration data
can be automatically reused using our similarity-based approach, thereby reducing configuration effort.
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1. Introduction

Modern society is increasingly dependent on embedded software systems such as Integrated Control Sys-
tems (ICSs). Examples of ICSs include industrial robots, process plants, and oil and gas production plat-
forms. Many ICS producers follow a product-line engineering approach to develop the software embedded
in their systems [8]. In such cases, there is typically a generic software that needs to be configured for each
product according to the product’s hardware architecture. In the oil and gas domain, this would include vari-
ous field layouts (e.g., from single satellite wells to large multiple sites), data communication protocols (e.g.,
standard protocols like Modbus [2] or some proprietary protocol), and individual devices’ properties (e.g.,
specific sensor resolution and scale levels). As a result, embedded software in ICS families has typically
large configuration spaces that make product configuration time-consuming, error-prone, and challenging.

In the literature, the area of product configuration is still rather immature [21] and largely concentrates only
on resolving high-level variabilities in feature models [18] and their extensions [10, 11]. Feature models,
however, are not easily amenable to capturing complex architectural variabilities and dependencies in em-
bedded systems. Consequently, existing configuration approaches do not focus on configuration challenges
in highly-configurable embedded systems, where large numbers of configurable components need to be
configured and cloned.

In a previous study [8], we identified characteristics of ICS families, and their configuration challenges. Our
studies show that ICSs, like many other embedded systems, bear a high degree of structural similarity within
their hardware architectures to fulfill several product requirements, related for example to the environment,
safety, and cost efficiency. Structural similarities in hardware affect software design and configuration, i.e.,
similar patterns of configuration are repeated throughout the software configuration.

In this paper, we devise a model-based approach to automatically infer configuration decisions based on
the internal structural similarities of a product and previously made decisions. Our solution (1) includes a
similarity modeling approach for capturing structural similarities in terms of architectural elements in an
ICS family model, (2) applies feature models in practice to provide user-level representations of structural
similarities so as to enable controlling the required amount of configuration reuse through feature selection,
and (3) enables reducing configuration effort in large-scale, highly-configurable embedded systems based
on structural similarities. We build on our previous work, where we proposed a modeling methodology
[7, 8], called SimPL, for modeling families of ICSs, and a model-based configuration approach [6, 5] that
uses finite domains constraint solving to automate and interactively guide consistent configuration of such
systems.

We motivate the work and formulate the problem in Section 2, by explaining the current practice in configu-
ration reuse. We analyze the related work in Section 3. An overview of our model-based solution is given in
Section 4. An example ICS family illustrating the main aspects of the SimPL methodology is presented in
Section 5. We explain our similarity modeling approach in Section 6. The use of feature selection to control
configuration reuse, and constraint propagation to automate configuration reuse are presented in Sections 7
and 8. We evaluate the effectiveness of our approach in Section 9. Finally, we conclude the paper in Section
10.

2. Configuration reuse: practice and problem definition

Figure 1 shows a simplified model of a fragment of a subsea production system produced by our industry
partner. As shown in the figure, products are composed of mechanical, electrical, and software components.
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Our industry partner, similar to most companies producing ICSs, has a generic product that is configured to
meet the needs of different customers. For example, different customers may require products with different
numbers of subsea Xmas trees. A Xmas tree in a subsea production system provides mechanical, electrical,
and software components for controlling and monitoring a subsea well.

Configuration in the ICSs domain is typically performed in a top-down manner where the configuration
engineer starts from the higher-level components and determines the type and the number of their constituent
(sub)components. Some components are invariant across different products, and some have parameters (i.e.,
configurable parameters) whose values differ from one product to another. The latter group, known as
configurable components, may need to be further decomposed and configured. In the rest of this paper,
whenever clear from the context, we use configuration to refer either to the configuration process or to the
description of a configured artifact.

Subsea production systems, and in general ICSs, are typically large-scale systems with thousands of com-
ponents and tens of thousands of configurable parameters. Usually, in these systems, a high degree of
similarity is required among different configurable components to fulfill certain product requirements such

«HwComponent»
xt1: XmasTree

«artifact»
semAppA: SemApplication

s1: Sensor s2: Sensor v1: Valve

«ICSystem»
toySps: SubseaProdSystem

«communication path»
controls/monitors

«HwComputingResource»
semA: SubseaElectronicModule

Figure 1: A fragment of a simplified subsea pro-
duction system.

as environmental, safety, or cost efficiency. For example, to reduce
the costs of design and production, it may be required that all the
Xmas trees in a product contain the same number and types of de-
vices, thus requiring all the controller software units (SemApplica-
tions) to be configured similarly.

Similarity, in this context, is defined as a relationship between two
or more configurable components. Two configurable components are
similar if a subset of their configurable parameters have equal or iden-
tical values. Such configurable components are not themselves identi-
cal, as some of their configurable parameters may have different val-
ues. The similarity that exists in such systems enables the reuse of
configuration data: instead of configuring every configurable param-
eter separately, configurable parameters with identical values can be
configured all at once. The large number of configurable parameters
and the high degree of similarity lead to the potential for a high de-
gree of configuration reuse, which can considerably reduce the effort
required for creating such configurations.

Configuration is currently done in our industry partner using an in-house tool with primitive support for con-
figuration reuse through a "copy-and-paste" mechanism. The existing support for the reuse of configuration
data at our industry partner has the following limitations: (1) It does not provide the user with sufficient
control over the configuration reuse. The user can only select one subcomponent and duplicate its whole
configuration. As a result, it is sometimes necessary to modify the values of some configurable parameters
in the duplicated subcomponents. (2) It does not automatically enforce the reuse of configuration data. The
configuration engineer has to derive, based on her own knowledge and experience, a configuration reuse
plan that specifies what data should be reused and how. The configuration tool cannot help following the
configuration reuse plan. (3) Changes in the configuration data are not automatically propagated to the
copies, therefore resulting in inconsistencies.

In our previous work [7, 6] we proposed a model-based configuration approach that ensures the consistency
of a, possibly partial, product during the configuration process. In this paper, we build on our previous work
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to propose an approach for modeling structural similarities in ICSs to automatically reuse configuration data
while preventing all the above-mentioned limitations.

3. Related work

Feature models [18, 10] have been most commonly studied in the literature (e.g., [19, 15, 9]) for model-
ing commonalities and variabilities in product families. In practice, very few successful applications (i.e.,
[13, 14, 22, 24]) of feature models have been reported according to the findings of a preliminary review
presented in [17]. Another group of approaches, which address architecture-level variability modeling (e.g.,
[23, 25, 16, 20]), are studied and evaluated in our previous work [7, 8]. Structural similarities within indi-
vidual products, and modeling solutions to capture them are, however, missing from these approaches and
applications.

Practical challenges in the configuration of highly-configurable systems have been studied, and large num-
bers of configurable parameters and their implicit interdependencies have been categorized as one major
source of configuration errors [12]. Moreover, results from a systematic literature review [21] confirms that
automation is one of the most important requirements for configuration and product derivation support. Re-
lated work on automated verification and guidance during configuration is presented in our previous work
[6, 5]. To the best of our knowledge, however, there is no work in the literature focusing on the automated
reuse of configuration data, or on the similarity-based approaches to improve or automate configuration. In
this paper, we address this gap by proposing a model-based approach to the automated reuse of configuration
data based on structural similarities in large-scale, highly-configurable embedded systems.

4. Overview of our approach

Figure 2 shows an overview of our reuse-oriented configuration approach, which is a model-based approach
to the automated reuse of configuration data based
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Generic model 
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context SubseaProdSystem inv XtTypeSimilarity
self.xTs->forAll(x |
     x.type = WellType::PRODUCTION) or 
self.xTs->forAll(x |
     x.type = WellType::INJECTION)

SubseaField

XtSimilarity

R2SimR1Sim

AllInjAllProd

R3Similarity

Figure 2: An overview of our reuse-oriented configuration approach.
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on the similarities that exist within a particular product. This approach is an extension to our previous work
(the upper part in Figure 2) on automated, model-based configuration, which has two major steps. In the
first step, we build a configurable and generic model for an ICS family (the Product-family modeling step).
In the second step, the Guided configuration step, we interactively guide users to generate specifications of
particular products complying with the generic model built in the first step.

As shown in the lower part of Figure 2, in our reuse-oriented configuration approach, we have extended both
the modeling step and the configuration step of the original configuration approach. Therefore, the reuse-
oriented configuration approach has four major steps. In the first step, the Product-family modeling step, a
configurable and generic model of an ICS family is created by following the SimPL methodology [7, 8]. In
the second step, the Similarity modeling step, possible structural similarities that may exist in some particular
products are modeled and organized in a similarity model. In the third step, the Similarity configuration step,
the similarity model is used to generate similarity specifications of particular products. Finally, in the Guided
configuration step, we use our existing automated configuration approach [6, 5] to interactively guide users
to generate specifications of particular products that comply both with the generic SimPL model of the
product family and with the similarity specifications of the products generated in the previous step.

Step 1: Product-family modeling
During the product-family modeling step, we provide domain experts with a modeling methodology, called
SimPL [7, 8], to manually create a product-family model describing an ICS family. The SimPL methodology
enables the domain experts to create, from textual specifications and tacit domain knowledge, architecture
models of ICS families that encompass, among other things, information about variabilities and consistency
rules. We briefly describe and illustrate the SimPL methodology in Section 5. Note that our reuse-oriented
extension has no impact on the product-family modeling step. This step is performed exactly as it is done in
our original configuration approach.

Step 2: Similarity modeling
During the similarity modeling step, domain experts follow the similarity modeling approach presented in
this paper to manually create similarity models from textual specifications and their own domain knowledge.
A similarity model expresses the structural similarities in two levels of abstraction. In the lower level of
abstraction, OCL is used to express the similarity in terms of the model elements in the SimPL model of
the product family. Each OCL constraint in this level specifies one similarity rule. In the higher level of
abstraction, a feature model [18] is used to provide a user-level representation of the similarity rules. This
feature model captures the variability that exists among individual products with respect to the applicability
of the similarity rules. We describe and illustrate our approach to similarity modeling in Section 6.

Step 3: Similarity configuration
During the similarity configuration step, configuration engineers use the feature models created in the pre-
vious step to select, for each product, the applicable similarity rules according to the needs of that particular
product. The result of this step is a similarity specification, which is a collection of OCL constraints each
representing one applicable similarity rule. Using feature models as the user-level representation of simi-
larity rules, configuration engineers can generate similarity specifications without requiring to know OCL
or the SimPL methodology. In addition, by organizing the similarity rules (that can result in the reuse of
configuration data) and their variabilities in a feature model, we provide configuration engineers with a suit-
able mechanism to gain sufficient control over the reuse of configuration data. This way, we address the
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first limitation of the existing solution regarding configuration reuse as discussed in Section 2. Similarity
configuration is illustrated in Section 7.

Step 4: Guided configuration

During the guided configuration step, configuration engineers create full or partial product specifications
by resolving variabilities in a product-family model. Inputs to the guided configuration step are the generic
model of the product family and the similarity specification of the product. We use these two inputs to ensure
the consistency of the product specification during the entire configuration process. For this purpose, we use
a finite domains constraint solver to validate each user decision, and to identify the impacts of each decision.
As an impact of a user decision, the constraint solver may infer the values of one or more configurable
parameters. We refer to this as the reuse of configuration data.

The main idea in this work is to use the similarity rules in the similarity specifications to trigger the infer-
ence capability of the constraint solver to automatically enforce the reuse of configuration data. Moreover,
to keep the product specification consistent with respect to the similarity rules, whenever the value of a
configurable parameter is changed the new value is automatically propagated to the corresponding inferred
values. Therefore, using our extended configuration approach, we address the second and third limitations
discussed in Section 2. Note that, in this work, we have extended our original guided configuration step only
by adding to it one extra input, which is the similarity specification. However, this simple extension auto-
matically results in the automated similarity-based reuse of configuration data. This is described in details
together with a brief description of our original guided configuration step in Section 8. Our original guided
configuration step is described in details in [6, 5].

5. A subsea product-family model

The SimPL methodology organizes a product-family model into two views: a system design view, and a
variability view. The system design view presents both hardware and software entities of the system and
their relationships using UML classes [1]. The variability view, on the other hand, captures the set of system
variabilities using a collection of configuration units. Each configuration unit is related to exactly one class
in the system design view and has a number of configurable parameters. Each configurable parameter
describes a variability in the value, type, or cardinality of a property in the corresponding class. In addition
to the two views described above, each SimPL model has a repository of OCL expressions [3]. These OCL
expressions specify constraints among the values, types, or cardinalities of different properties of different
classes. We call these OCL constraints universal consistency rules, as they are part of the product-family
commonalities and must hold for all the products in the family.

Figure 3 shows a fragment of the SimPL model for a simplified subsea production system1, SubseaProdSys-
tem. In a subsea production system, the main computation resources are the Subsea Electronic Modules
(SEMs), which provide electronics, execution platforms, and the software required for controlling subsea
devices. SEMs and Devices are contained by XmasTrees. Devices controlled by each SEM are connected
to the electronic boards of that SEM. Software deployed on a SEM, referred to as SemAPP, is responsible
for controlling and monitoring the devices connected to that SEM. SemAPP is composed of a number of

1This example is a sanitized fragment of a subsea production case study [8].
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DeviceControllers, which is a software class responsible for communicating with, and controlling or mon-
itoring a particular device. The system design view in Figure 3 represents the elements and the relationships
discussed above.

System 
Design View

Variability View

Figure 3: A fragment of the SimPL model for the subsea production system.

The variability view in the SimPL methodology is a collection of template packages, each representing
one configuration unit. The upper part in Figure 3 shows a fragment of the variability view for the subsea
production system. Due to the lack of space we have shown only two template packages in the figure. As
shown in the figure, the package SystemConfigurationUnit represents the configuration unit related to the
class SubseaProdSystem in the system design view. Template parameters of this package specify the
configurable parameters of the subsea production system, which are: the number of XmasTrees, and SEM
applications (semApps).

A number of universal consistency rules are defined for the subsea production system in Figure 3. Below
are OCL expressions for two of these consistency rules.

context Connection inv PinRange
self.pinIndex >= 0 and self.sem.eBoards->asSequence()->

at(self.ebIndex+1).numOfPins > self.pinIndex

context Connection inv BoardIndRange
self.ebIndex >= 0 and self.ebIndex < self.sem.eBoards->size()

The first constraint states that the value of the pinIndex of each device-to-SEM connection must be valid,
i.e., the pinIndex of a connection between a device and a SEM cannot exceed the number of pins of the
electronic board through which the device is connected to its SEM. The second constraint specifies the
valid range for the ebIndex of each device-to-SEM connection, i.e., the ebIndex of a connection between a
device and a SEM cannot exceed the number of the electronic boards on its SEM.

Product specifications are created from family models by instantiating the classes associated to configuration
units, and assigning values to the configurable parameters of those instances. In the reminder of this paper,
we refer to the configurable parameters of such instances as configurable parameter instances.
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6. Similarity modeling

As mentioned in Section 4, in the similarity modeling step, we create similarity models that specify the
similarity rules in two levels of abstraction. In this section, we first define and exemplify2 the similarity
rules. Then we explain how OCL can be used to model similarity rules in terms of the model elements in the
SimPL model of the product family. Then we explain how feature models are used to provide a user-level
representation of similarity rules and their variabilities. Finally, we explain how similarity models can be
refactored to reflect the evolution of the product family.

6.1. Similarity rules

A similarity rule specifies a relationship between two or more configuration unit instances within a particular
product. Two configuration unit instances are similar if a subset of their configurable parameters have equal
or identical values. For example, a similarity rule named XtTypeSimilarity specifies that all the Xmas trees
(Figure 3) in a subsea product must be of the same type. Here, Xmas trees are the configuration units that
are required to be similar. Types of the Xmas trees, which can either be production or injection, are the
configurable parameter instances that are required to be identical for the similarity rule to hold.

Every similarity rule has two parts: a scope, and a similarity relation. The scope of a similarity rule deter-
mines the configuration unit instances that must be similar. For example, the scope of the similarity rule
XtTypeSimilarity is the set of all Xmas trees in the product. The similarity relation in a similarity rule spec-
ifies how the similarity is achieved. It is normally composed of one or more equality relationships. Each of
these relationships relates the values of different instances of a particular configurable parameter, each be-
longing to a configuration unit instance in the scope of the similarity rule. For example, in XtTypeSimilarity
the similarity relation is composed of a single equality relationship that relates the values of the configurable
parameter type of all the Xmas trees in the product.

It is possible to have several similarity rules with the same scope, but expressing different aspects of similar-
ity. For example, in addition to XtTypeSimilarity, we can have another similarity rule among all the Xmas
trees in the product, named XtSemNumSimilarity, expressing that all of the Xmas trees must have the same
number of SEMs.

6.2. Architecture level modeling of similarity rules using OCL

Configuration in our automated, model-based approach is performed by resolving variabilities through as-
signing values to configurable parameter instances [6, 5]. To enable the reuse of such configuration decisions
based on the similarities within a product, we express the similarity rules in terms of the configurable pa-
rameters and other model elements in the SimPL model of a product family. For this purpose, we use OCL,
as it is the standard language for expressing constraints on the elements in UML class diagrams.

Each OCL expression is written in the context of an instance of a specific type [3]. In an OCL expres-
sion representing a similarity rule, the context must be the instance that contains all the configuration unit
instances that form the scope of the similarity rule. For example, to model the similarity rule XtTypeS-
imilarity, we use an OCL invariant written in the context of the class SubseaProdSystem. This class

2Examples in this section focus on describing hardware similarities, as the SimPL model in Figure 3 mostly contains hardware
classes. However, in practice, similarity rules are mainly defined in terms of software classes, as they are intended to be used for
reusing software configuration decisions. Note that, software similarities in a product family are, in general, very similar to its
hardware similarities.
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is the topmost class in the SimPL model (Figure 3), and contains all the instances of XmasTree3. Each
equality relationship in the similarity relation of a similarity rule becomes a boolean subexpression in the
corresponding OCL invariant. The following is the OCL invariant expressing XtTypeSimilarity.

context SubseaProdSystem inv XtTypeSimilarityInv
self.xTs->forAll(x | x.type = WellType::PRODUCTION) or
self.xTs->forAll(x | x.type = WellType::INJECTION )

We use OCL and-statements to specify similarity relations that are composed of two or more equality rela-
tionships. SemDesignSimilarityInv is an example.

context SubseaProdSystem inv SemDesignSimilarityInv
SEM.allInstances()->forAll(s, t | s.eBoards->size() = t.eBoards->size())
and
SEM.allInstances()->forAll(s, t |

s.eBoards->forAll(e1 | t.eBoards->exists(e2 | e2 = e1)))

The scope of a similarity rule does not always contain all the instances of a configuration unit. In general, for
modeling the scope of a similarity rule more expressive OCL constructs such as implication- or selection-
statements are required. The following is an example. This similarity rule specifies that all the production
Xmas trees must have two SEM instances. Here, the scope of the similarity rule is the set of all Xmas
trees that are of type production (specified using the selection-statement), and the number of SEMs is the
configurable parameter that must have the same value for all such Xmas trees.

context SubseaProdSystem inv ProductionXtTwoSemSimilarityInv
self.xTs->select(x | x.type = WellType::PRODUCTION)

->forAll(x | x.sEMs->size() = 2)

As mentioned in Section 4, universal consistency rules in the SimPL model are also expressed using OCL.
Modeling similarity rules using OCL, therefore, simplifies integrating them to our original guided configu-
ration step (Figure 2). Note that, although universal consistency rules and similarity rules are both modeled
using OCL on the elements of the SimPL model, but they are different, mainly, in the sense that universal
consistency rules must hold for every possible product in the product family, while a similarity rule must
hold for a product only if it is selected during the similarity configuration step.

6.3. User-level modeling of similarity rules using feature models

As mentioned in Section 4, we use feature models [18] to provide a user-level representation of the similarity
rules. We call these feature models similarity feature models. A similarity feature model captures the
variabilities that exist among individual products with respect to the applicability of the similarity rules. A
similarity feature model is part of a product-family specification, and is created only once for that product
family.

3In the SimPL methodology, each product contains only one instance of the topmost class [7, 8]. In a product specification
created from the SimPL model in Figure 3, the only instance of the class SubseaProdSystem contains all the XmasTree instances.
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Figure 4 shows a fragment of the similarity feature model for the product family shown in Figure 3. To create
a similarity feature model, we follow existing feature modeling methodologies [4] and organize features into

SubseaFieldSimilarity

XtSimilarity

XtTypeSimilarityXtSemNumSimilarity

SemDesignSimilarty

Figure 4: Fragment of the similarity feature model for the
subsea production family.

a tree. Each leaf feature in the tree represents a similar-
ity rule and is associated with an OCL expression. For ex-
ample, XtTypeSimilarity is a leaf feature associated with
the OCL invariant XtTypeSimilarityInv. Non-leaf features
(e.g., XtSimilarity) are used to group related similarity
rules, or other non-leaf features. In Figure 4, XtSimilar-
ity is a non-leaf or-feature that groups two leaf features Xt-
TypeSimilarity and XtSemNumSimilarity. An or-feature
specifies that one or more of its subfeatures can be selected. Both XtTypeSimilarity and XtSemNumSim-
ilarity are optional features and therefore introduce variabilities that should be resolved during similarity
configuration.

Different types of dependencies, such as imply and exclude, may exist among similarity rules. Using feature
models to organize similarity rules allows modeling these dependencies among the features

SubseaFieldSimilarity

XtSimilarity

RefactoredXtTypeSimilarityXtSemNumSimilarity

SemDesignSimilarty

AllInjectionAllProduction

ProductionXtTwoSemSimilarity

Figure 5: Dependencies between similarity rules are modeled as dependencies
between features.

representing the similarity rules. This makes
OCL constraints simpler and independent
from each other, thus easier to maintain. In
general, all similarity rules must be consis-
tent with the universal consistency rules in
the SimPL model. In fact, similarity rules are
complementary to the universal consistency
rules, but must not be contradictory to them.
However, similarity rules can be contradic-
tory to each other. If two similarity rules are contradictory, an exclude or alternative relationship is nec-
essary between the features representing them to avoid any inconsistency in the products. Figure 5 shows
an example. The similarity feature model in this figure is achieved by refactoring (Section 6.4) the sim-
ilarity feature model in Figure 4. AllInjection (AllProduction) is a similarity rule that specifies that all
Xmas trees must be of type injection (production). The OCL constraints associated with AllInjection and
AllProduction are contradictory and cannot be true simultaneously. To ensure that these two similarity
rules are never selected simultaneously, the features representing them are grouped in an alternative-feature
(RefactoredXtTypeSimilarity). In addition, the similarity feature model in Figure 5 shows an exclude rela-
tionship between the features AllInjection and ProductionXtTwoSemSimilarity, as selecting AllInjection
makes ProductionXtTwoSemSimilarity void.

6.4. Refactoring similarity models

Typically, families of embedded software systems gradually evolve to meet customer requirements. Evolu-
tion of a product family may involve introducing new similarity rules (e.g., ProductionXtTwoSemSimilar-
ity in Figure 5), or require refactoring coarse-grained similarity rules into more fine-grained ones. To handle
the latter, we propose an incremental process for modeling and refactoring similarity rules in the architecture
(i.e., OCL expressions) and feature levels.

Consider the OCL invariant XtSimilarity in Figure 6-(a). XtSimilarity represents a similarity rule that re-
quires all the Xmas trees in the susbea field to be of the same type (i.e., all production or all injection), and
that all the Xmas trees have the same number of SEMs. This rule is associated with a single feature in the
similarity feature model.
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Figure 6-(b) shows the similarity feature model and OCL constraints resulting from refactoring XtSimilarity.
This refactoring is done to fulfill the needs of a new product that requires all the Xmas trees in the field to
have the same number of SEMs, but does not require all the Xmas trees to be of the same type. The
refactoring shown in Figure 6 has decomposed XtSimilarity into two finer-grained similarity rules that can
be selected independently during similarity configuration. To fulfill the needs of the new product, one must
select the features XtSimilarity and XtSemNumSimilarity and leave XtTypeSimilarity unselected.

In general, if the OCL constraint expressing a similarity rule is a conjunction of subexpressions each express-
ing an equality relation on a different type of configurable parameter, then it is a good modeling practice
to refactor the similarity model by decomposing that similarity rule so that each subexpression becomes an
independent similarity rule. To reflect this refactoring step in the similarity feature model, we make the fea-
ture corresponding to the original similarity rule a non-leaf or-feature and add to that a number of optional
subfeatures each associated with one of the OCL subexpressions. In Figure 6-(b), the two OCL expressions
associated with features XtTypeSimilarity and XtSemNumSimilarity are in fact the two subexpressions of
the OCL constraint in Figure 6-(a).

XtSimilarity

XtSemNumSimilarity XtTypeSimilarity

context SubseaProdSystem inv XtSimilarityInv
(❨self.xTs->forAll(❨x |
     x.type = WellType::PRODUCTION)❩ or 
self.xTs->forAll(❨x |
     x.type = WellType::INJECTION)❩)❩ and
self.xTs->forAll(❨x1, x2 | 
     x1.sEMs->size(❨)❩ = x2.sEMs->size(❨)❩)❩

XtSimilarity

context SubseaProdSystem inv XtTypeSimilarityInv
self.xTs->forAll(❨x |
     x.type = WellType::PRODUCTION)❩ or 
self.xTs->forAll(❨x |
     x.type = WellType::INJECTION)❩

context SubseaProdSystem inv XtSemSimilarityInv
self.xTs->forAll(❨x1, x2 | 
     x1.sEMs->size(❨)❩ = x2.sEMs->size(❨)❩)❩

(a) Coarse-grained similarity rule.

(b) Refactored finer-grained similarity rules.

Figure 6: Refactoring of a similarity rule.

As shown in Figure 5, XtTypeSimilarity can be refactored by decomposing its associated OCL constraint
into two finer-grained OCL constraints, one (i.e., AllProduction) expressing that all the Xmas trees must be
of type production, the other (i.e., AllInjection) expressing that all Xmas trees must be of type injection.
This refactoring allows configuration engineers to identify the type of the Xmas trees during the similarity
configuration; while, without this refactoring, configuration engineers must make this choice during the
guided configuration step. Note that in both cases the total number of configuration decisions to be made
are equal. Whether refactoring XtTypeSimilarity or not depends on the requirements of the product family
(e.g., presence of ProductionXtTwoSemSimilarity).
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7. Similarity configuration
Optional features in the similarity feature model represent variability points that should be resolved during

SubseaFieldSimilarity

XtSimilarity

RefactoredXtTypeSimilarityXtSemNumSimilarity

SemDesignSimilarty

AllInjectionAllProduction

ProductionXtTwoSemSimilarity✗ ✓ ✗

✗✓

✗ ✗

Figure 7: Similarity feature model configured for a particular product.

the similarity configuration step to generate
similarity specifications. Configuration en-
gineers resolve these variabilities by select-
ing features in the similarity feature model
according to the needs of a particular prod-
uct. For example, Figure 7 shows the similar-
ity feature model in Figure 5 configured for
a product that requires all the Xmas trees to
have the same number of SEMs.

Features that are selected during similarity configuration represent the similarity rules that must hold within
the product under configuration. OCL constraints associated to the selected features are used to automati-
cally generate the similarity specification of the product. For example, the similarity specification for the
product mentioned above, will contain one OCL constraint, which is XtSemNumSimilarityInv that is the
OCL constraint associated with XtSemNumSimilarity as shown in Figure 6.

8. Configuration reuse through constraint propagation
Our configuration mechanism, presented in details in [6, 5], gets as input a SimPL model, which is composed
of a set of UML class diagrams and a set of OCL constraints. From these inputs, it creates a constraints
system and uses a finite domains constraint solver to validate user decisions, to ensure the consistency of the
configured product, and to automatically infer values.

Originally, OCL constraints that are fed to the configuration engine specify universal consistency rules. As
mentioned in Section 4, we extend our original approach by adding to it one more input: the similarity
specification of a product. OCL constraints in the similarity specification are, as well, specified in terms of
the concepts in the SimPL model. In our reuse-oriented configuration approach, these OCL constraints are
merged with the OCL constraints of the universal consistency rules to form the set of OCL constraints that
are used by the configuration engine to create the constraints system.

Bringing the similarity rules – which express equality relationships among configurable parameters – in
the constraints system forces the configuration engine to infer new values whenever a value is assigned to
an instance of a configurable parameter involved in a similarity rule. For example, as a result of selecting
XtTypeSimilarity, when the configuration engineer sets the type of one Xmas tree to production, the type
of all other Xmas trees will be automatically set to production.

Table 1: A comparison between universal consistency rules and similarity rules.
Applies to Modeled in Specifies Impact on reuse

Universal consistency
rule All products OCL All types of relation-

ships May result in reuse

Similarity rule A subset of products OCL Equality relationships Results in reuse if se-
lected

In general, OCL constraints representing similarity rules are expected to result in high numbers of inferences
and a high ratio of reuse of configuration data. Using the similarity feature model and by configuring it
(through selecting features), configuration engineers can control the degree of configuration reuse for each
product. Note that some of the universal consistency rules may, as well, result in the reuse of configuration
data. Table 1 compares universal consistency rules and similarity rules.
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In addition to inferring values and reusing configuration decisions, using similarity rules, value changes will
be automatically propagated into similar parts of the configuration. This allows keeping the configuration
consistent after changing the value of a configurable parameter instance and without requiring extra effort.
For example, as a result of selecting XtSemNumSimilarity, whenever the configuration engineer adds a new
SEM to one of the Xmas trees (i.e., changes the number of SEMs in the Xmas tree) the inference engine
automatically adds a new SEM to all other Xmas trees in the field.

9. Evaluation

To empirically evaluate our approach to the similarity-based reuse of configuration data, we investigated two
complete and representative subsea products of our industry partner. An overview of these products is given
in Table 2.

Table 2: An overview of the two investigated products.
# XmasTrees # SEMs # Devices # Config. parameter instances *

Product_1 9 18 (9 twin SEMs) 2360 29796
Product_2 14 28 (14 twin SEMs) 5072 56124
* Total number of configurable parameter instances that need to be configured to create the software speci-
fication for the product.

9.1. Similarity modeling

The software in the two products in Table 2 is created by configuring a generic software model that contains
36 configuration units, which in total have 264 configurable parameters. To create a similarity feature
model, we throughly studied both products and identified the similarities within each product. The resulting
similarity feature model is a tree of depth four, with a total of 200 features, including 81 leaf features
representing the similarity rules. These similarity rules have in total 423 equality relations that are defined
in terms of the classes and the configurable parameters in the generic software model.

9.2. Similarity-based reuse

To create software products, we started by selecting the required similarity rules using the similarity feature
model. The total number of selected similarity rules, and equality relations are reported, for each product, in
Table 3. Among these similarity rules 12 are common between the two products, resulting in 110 equality
relations in common. The relatively low number of common similarity rules implies that the two products
are considerably different regarding their internal similarities. This supports our decision about considering
the internal similarities as variable features of ICS families.

Table 3: Summary of similarity rules, and automated reuse in the two products.
# Similarity rules # Eq. Relation # Auto. decisions Reuse rate

Product_1 52 263 19289 0.647
Product_2 41 270 46801 0.834

To identify the effectiveness of our approach, we introduce a measure called reuse rate, which provides an
insight into the percentage of the decisions that can be automatically inferred based on the applied similarity
rules and the previously provided configuration decisions. The fourth column in Table 3 gives, for each
product, the number of such decisions. Reuse rate, for each product, is calculated by dividing the number of
automated decisions by the number of configurable parameter instances (last column in Table 2). As shown
in the fifth column in Table 3, reuse rates for product_1 and product_2 are 0.647 and 0.834, respectively.
It means that, for example in product_2, 83.4% of configuration decisions can be automatically made by
the configuration tool using the similarity rules, and the user has to manually configure only 16.6% of the
parameters. Given the very large number of configurable parameter instances, this result is of practical
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significance. In particular, assuming automated configuration decisions have similar complexity to manual
ones, our results show that such an automation can save more than 60% of the configuration effort in large-
scale systems.

9.3. Discussion

Creating similarity models is manual and time consuming. However, the similarity model is created only
once for each product family and is used during the configuration of all products. Moreover, our evaluation
shows that capturing similarities makes it possible to automatically derive a great portion of the configuration
data, which can considerably reduce configuration effort. When the number of configurable parameter
instances is very large–often in the thousands, as in many ICSs, the benefit of such similarity models can,
therefore, be substantial. This has shown to be clearly the case in our industrial case studies.

Hardware similarities that are the basis for automated reuse in our approach are present in many embedded
software systems as well as distributed networked systems. Therefore, we expect our results to generalize
to those domains, as well as other ICSs with highly-symmetric hardware architectures.

10. Conclusion

This paper focuses on the automated similarity-based reuse of configuration data in families of integrated
control systems (ICS). The software in such product families is usually highly configurable and can be in-
stantiated into a product for each unique installation or hardware configuration. Individual ICS products,
like many other embedded software systems, usually bear a high degree of similarity within their hardware
structures, which results in internal similarities within their software configurations. In this paper, we pro-
pose an approach to model such internal similarities. As opposed to the commonalities in a product family
that capture similarities among different products, internal similarities capture similarities among different
parts of an individual product. In our similarity modeling approach, to enable automated reuse, we precisely
model internal similarities in terms of the elements in the generic model of the product family as a set of
similarity rules using OCL. Each similarity rule can be seen as an optional feature of the product family,
therefore, introducing a point of variability. We use feature models to provide a user-level representation
of similarity rules and the variability points they introduce. Such feature models provide configuration en-
gineers with sufficient support to control the required amount of configuration reuse. We evaluated the
effectiveness of our approach using two product configurations from our industry partner. Our results show
that an automated similarity-based approach to configuration reuse can save more than 60% of configuration
decisions, and consequently, reduce configuration effort.

A precise evaluation of the applicability of OCL and feature models in this context requires more investiga-
tion and conducting experiments that involve human subjects, which is left for future work.
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