
Do code smells reflect important maintainability aspects?

Aiko Yamashita
Simula Research Laboratory &

Dept. of Informatics, University of Oslo, Norway
Email: aiko@simula.no

Leon Moonen
Simula Research Laboratory

Lysaker, Norway
Email: leon.moonen@computer.org

Abstract—Code smells are manifestations of design flaws
that can degrade code maintainability. As such, the existence
of code smells seems an ideal indicator for maintainability
assessments. However, to achieve comprehensive and accurate
evaluations based on code smells, we need to know how well they
reflect factors affecting maintainability. After identifying which
maintainability factors are reflected by code smells and which
not, we can use complementary means to assess the factors that
are not addressed by smells. This paper reports on an empirical
study that investigates the extent to which code smells reflect
factors affecting maintainability that have been identified as
important by programmers. We consider two sources for our
analysis: (1) expert-based maintainability assessments of four
Java systems before they entered a maintenance project, and
(2) observations and interviews with professional developers
who maintained these systems during 14 working days and
implemented a number of change requests.

Keywords-maintainability evaluation; code smells;

I. INTRODUCTION

Developing strategies for assessing the maintainability of
a system is of vital importance, given that significant effort
and cost in software projects is due to maintenance [1, 2].
Recently, existence of code smells has been suggested as
an approach to evaluate maintainability [3]. Code smells
indicate that there are issues with code quality, such as
understandability and changeability, which can lead to the
introduction of faults [4]. Beck and Fowler informally de-
scribe twenty-two smells and associate them with refactoring
strategies to improve the design. Consequently, code smell
analysis opens up the possibility for integrating both assess-
ment and improvement in the software maintenance process.

Nevertheless, to achieve accurate maintainability evalua-
tions based on code smells, we need to better understand
the “scope” of these indicators, i.e. know their capacity and
limitations to reflect software aspects considered important
for maintainability. In that way, complementary means can
be used to address the factors that are not reflected by code
smells. Overall, this will help to achieve more comprehensive
and accurate evaluations of maintainability.

Previous studies have investigated the relation between
individual code smells and different maintenance character-
istics such as effort, change size and defects; but no study
has addressed the question of how well code smells can
be used for general assessments of maintainability. Anda
reports on a number of important maintainability aspects that

were extracted from expert-judgement-based maintainability
evaluations of four medium-sized Java web applications [5].
She concludes that software measures and expert judgment
constitute not opposing, but complementary approaches be-
cause they both address different aspects of maintainability.

This paper investigates the extent to which aspects of
maintainability that were identified as important by program-
mers are reflected by code smell definitions. Our analysis
is based on an industrial case study where six professional
software engineers were hired to maintain the same set of
systems that were analyzed in [5]. They were asked to
implement a number of change requests over the course
of 14 working days. During this time, we conducted daily
interviews and one larger wrap-up interview with each of the
developers. We analyze the transcripts of these interviews
using a technique called cross-case synthesis to compare
each developer’s perception on the maintainability of the
systems and relate it back to code smells. The results from
this analysis were compared to the data reported in [5].

The contributions of this paper are: (1) we complement
the findings by Anda [5] by extracting maintainability factors
that are important from the software maintainer’s perspective;
(2) based on manifestations of these factors in an industrial
maintenance project, we identify which code smells (or alter-
native analysis methods) can assess them; and (3) we provide
an overview of the capability of current smell definitions to
evaluate the overall maintainability of a system.

The remainder of this paper is structured as follows: First
we present the theoretical background and related work.
Section 3 describes the case study and discusses the earlier
results reported by Anda [5]. Section 4 presents and discusses
the results from our analysis. Finally, Section 5 summarizes
the study findings and presents plans for future work.

II. THEORETICAL BACKGROUND AND RELATED WORK

Maintainability assessments: There is a wealth of pub-
lished research on product- and process based approaches for
estimating maintenance effort and the related assessments of
maintainability in software engineering literature. Examples
of product-based approaches that use software metrics to
assess maintainability include [6, 7]. Examples of process-
centered approaches for maintenance effort estimation can
be found in [8, 9]. Many of the process-centered approaches
utilize process-related metrics or historical data to gener-
ate estimation models. Hybrid approaches combine process

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

and product related factors: Mayrand and Coallier combine
capability assessment (ISO/IEC-12207) with static analy-
sis [10], and Rosqvist combines static analysis with expert
judgment [11].
Factors affecting maintainability: Different code charac-
teristics have been suggested to affect maintainability. Early
examples include size (lines of code, LOC) and complexity
measures by McCabe [12] and Halstead [13]. Some have
attempted to combine them into a single value, called main-
tainability index [14]. Measures for inheritance, coupling
and cohesion were suggested in order to cope with object-
oriented program analysis [15].

Pizka & Deissenboeck [16] assert that, even though such
metrics may correlate with effort or defects, they have limi-
tations for assessing the overall maintainability of a system.
One major limitation is that they only consider properties
that can be automatically measured in code, whereas many
essential quality issues, such as the usage of appropriate
data structures and meaningful documentation, are semantic
in nature and cannot be analyzed automatically. Anda [5]
reported that software metrics and expert judgment are com-
plementary approaches that address different maintainability
factors. Important factors that are not addressed by metrics
are: Choice of classes and names, Usage of components,
Adequate architecture, Design suited to the problem domain.
Code smells: A code smell is a suboptimal design choice
that can degrade different aspects of code quality such as
understandability and changeability, and could lead to the
introduction of faults [4]. Beck and Fowler [4] informally
describe 22 code smells and associated them with refactoring
strategies to improve the design. In the last decade, code
smells have become an established concept for patterns or
aspects of software design that may cause problems for
further development and maintenance of the system [3]. Code
smell analysis allows for integrating both assessment and
improvement in the software evolution process. Moreover,
code smells constitute software factors that are potentially
easier to interpret than traditional OO software measures,
since many of the descriptions of code smells in [4] are
based on situations that developers face in a daily basis.

Van Emden and Moonen [17] provided the first formal-
ization of code smells and developed an automated code
smell detection tool for Java. Mäntylä investigated how
developers identify and interpret code smells, and how this
compares to results from automatic detection tools [18].
Examples of recent approaches for code smell detection can
be found in [19–21]. Automated detection is implemented in
commercial tools such as Borland Together1 and InCode2.

Previous empirical studies have investigated the effects
of individual code smells on different maintainability re-
lated aspects, such as defects [22, 23], effort [24–26] and
changes [27, 28]. One of the main goals of incorporating
1 http://www.borland.com/us/products/together
2 http://www.intooitus.com/products/incode

code smells to maintainability evaluations is to address a
limitation that expert judgment and traditional code metrics
have in common: for both approaches, there is no clear path
from evaluation to concrete action plans for improvement.
As Anda [5] points out, if one asks an expert to identify
the areas to modify to improve maintainability, it would
be time-consuming and expensive. Likewise, Marinescu [19]
and Heitlager [7] point out that a major limitation of metrics
is their lack of guidelines to improve their value (and thereby
maintainability). Code smells do not suffer from these draw-
backs due to their associated refactorings. Moreover, since an
increasing number of code smells can be detected automat-
ically, it is appealing to evaluate their capacity to uncover
different factors that affect maintainability. The extent to
which we understand how well code smells cover these
factors determines our ability to address their limitations by
alternative means. This will support more comprehensive and
cost-effective evaluations of software maintainability.

III. CASE STUDY

Systems under analysis: In 2003, Simula Research Labo-
ratory’s Software Engineering department sent out a tender
for the development of a web-based information system to
keep track of their empirical studies. Based on the bids,
four Norwegian consultancy companies were hired to in-
dependently develop a version of the system, all of them
used the same requirements specification. More details on
the original development projects can be found in [29]. The
four development projects led to four systems with the same
functionality. We will refer to the four systems as System
A, System B, System C, and System D in this study. The
systems were primarily developed in Java and they all have
similar three-layered architectures. Although the systems
are comprised of nearly identical functionality, there were
substantial differences in how the systems were designed and
coded. The systems were deployed over Simula’s Content
Management System (CMS), which at that time was based
on PHP and a relational database system. The systems had
to connect to the database in the CMS, in order to access
data related to researchers at Simula as well as information
on the publications.
Software factors important to maintainability: After
the systems were developed, two (external) professional
software engineers were hired to individually evaluate the
maintainability of these systems. The first software engineer
had more than 20 years of experience at that time, and the
second expert had 10 years of experience. The following is an
excerpt of their maintainability assessment based on expert
judgment, sorted from highest- to lowest maintainability.

• System A is likely to be the most maintainable, as long
as the extensions to the system are not too large.

• System D shows slightly more potential maintainability
problems than System A. However, System D may be a
good choice if the system is to be extended significantly.

Table I
IMPORTANT FACTORS AFFECTING MAINTAINABILITY, AS REPORTED IN [5]

Factor Description
Appropriate technical
platform

Related to undocumented, implicit requirements surfacing when a system is moved to a different environment. The use of non-
standard third party components poses a challenge to understanding, using and replacing the components in further development.

Coherent naming Developers should use a consistent naming schema that allows the reader to understand relations between methods and classes.
Classes should be easy to identify to facilitate the mapping from domain and requirements to code.

Comments Comments should be meaningful and size-effective, so they do not influence negatively the readability of the code.
Design suited to
problem domain

The complexity of the problem domain must justify the choice for the design. For example, the use of design patterns must be
adapted to the project context.

Encapsulation Since Java methods return only one object, developers often create small ”output” container classes as a work-around. This
introduces dependencies, such as creating object structures before a method is called, which can lead to maintenance problems.

Inheritance The use of inheritance increases the total number of classes, so therefore should be used with care. If an interface implements
several classes, it has the same effect as multiple inheritances, which may lead to confusion and lower maintainability.

Libraries The use of proprietary libraries may mean lower maintainability, because new developers will need to familiarize themselves
with them.

Simplicity Size and complexity of a system is critical. It takes longer to identify a specific class when there are many classes. The presence
of several classes that are almost empty is a sign of code that may possess low maintainability.

Standard naming
conventions

The use of standard naming conventions for packages, classes, methods and variables eases understanding.

Three-layer
architecture

A clear separation of concerns between presentation, business and persistence layer is considered good practice. Each layer
should remain de-coupled from the layers above it and depend only on more general components in the lower layers.

Use of components Classes should be organized according to functionality or according to the layer of the code on which they operate.

• System C was considered difficult to maintain. Small
maintenance tasks may be easy, but it is not realistic to
think that it could be extended significantly.

• System B is too complex and comprehensive and is
likely to be very difficult to maintain. The design would
have been more appropriate for a large-scale system.

From the full evaluations, Anda extracted factors that affect
maintainability, and concluded that most of them are only
addressable by expert judgment, and not by metrics [5]. An
overview of these factors is shown in Table I.
Maintenance project: In 2008, Simula’s CMS was replaced
by a new platform called Plone,3 and it was no longer
possible to run the systems under this new platform. This
gave the opportunity to set up a maintenance study, where the
functional similarity of the systems enabled investigating the
relation between design aspects and maintainability on cases
with very similar contexts (e.g., identical tasks and program-
ming language), but different designs and implementations.
Maintenance Tasks: Three maintenance tasks were defined,
as described in Table II. Two tasks concerned adapting the
system to the new platform and a third task concerned the
addition of new functionality that users had requested.
Developers: Six developers were recruited from a pool
of 65 participants in a study on programming skill [30]
that included maintenance tasks. They were selected based
on their availability, English proficiency, and motivation for
participating in a research project.
Activities and Tools: The developers were given an
overview of the project and a specification of each main-
tenance task. When needed, they would discuss the mainte-
nance tasks with the researcher (first author) who was present
at the site during the entire project duration. Daily interviews
were held where the progress and the issues encountered

were tracked. Acceptance tests were conducted once all
tasks were completed, and individual open interviews were
conducted where the developer was asked upon his/her
opinion of the system. The daily interviews and wrap-up
interviews were recorded for further analysis. MyEclipse4

was used as the development tool, together with MySQL5

and Apache Tomcat6. Defects were registered in Trac7 (a
system similar to Bugzilla), and Subversion or SVN8 was
used as the versioning system.
Research methodology: The process to extract the main-
tainability aspects from the developer interviews followed a
chain of evidence strategy as shown in Figure 1.

Observed cases – Each of the six developers individually
conducted all three tasks (ordered as in Table II) on one
system, and once they were done, they repeated the same
tasks in a second system. This was done to collect more
observations for different types of analysis, and gave us a
total of 12 cases, 3 observations per system. The assignment
of developers to systems was random, with control for
equal representation, and maximizing contrast between the
two cases handled by each developer (based on the expert-
judgments). Learning effects among applications are not con-
sidered a threat to validity on perceived maintainability. The
fact that developers repeat the same tasks on systems actually
facilitates contrasting maintainability across systems.

Data collection and summarization – After the devel-
opers had finished the maintenance tasks for one system,
individual open-ended interviews (approx. 60 minutes) were
held, where the developer was asked to give his/her opinion
of the system and underlying reasons for the opinion. The
3 http://www.plone.org 4 http://www.genuitec.com
5 http://www.oracle.com 6 http://tomcat.apache.org
7 http://trac.edgewall.org 8 http://subversion.apache.org

Table II
MAINTENANCE TASKS

No. Task Description
1 Adapting the

system to the
new Simula
CMS

The systems in the past had to retrieve information through a direct connection to a relational database within Simula’s domain
(information on employees at Simula and publications). Now Simula uses a CMS based on Plone platform, which uses an OO
database. In addition, the Simula CMS database previously had unique identifiers based on Integer type, for employees and
publications, as now a String type is used instead. Task 1 consisted of modifying the data retrieval procedure by consuming a
set of web services provided by the new Simula CMS in order to access data associated with employees and publications.

2 Authentication
through web
services

Under the previous CMS, authentication was done through a connection to a remote database and using authentication
mechanisms available on that time for Simula Web site. This maintenance task consisted of replacing the existing authentication
by calling a web service provided for this purpose.

3 Add new
reporting
functionality

This functionality provides options for configuring personalized reports, where the user can choose the type of information related
to a study to be included in the report, define inclusion criteria based on people responsible for the study, sort the resulting
studies according to the date that they were finalized, and group the results according to the type of study. The configuration
must be stored in the systems’ database and should only be editable by the owner of the report configuration.

choice for open-ended interviews is based on the ratio-
nale that important maintainability aspects should emerge
naturally from the interview, and not be influenced by the
interviewer. To enable data-triangulation, the daily interviews
were transcribed and analyzed to collect data to cross-
examine findings from the open-ended interviews. The daily
interviews (20-30 minutes) resulted from individual meetings
(mostly in the morning) with each developer, to keep track
of the progress, and to record any difficulties encountered
during the project (ex. Dev: “It took me 3 hours to understand
this method...”). All recorded interviews were transcribed and
summarized using a tool called Transana.9

Data analysis – The data was analysed using cross-
case synthesis [31] and coding techniques [32]. Cross-case
synthesis is a technique to summarize and identify tendencies
in a multiple case study. Transcripts from the interviews were
coded using both open and axial coding, as described in
[32]. Open coding is a form of content analysis. Statements
from the developers were annotated using labels (codes)
that were initially constructed from a logbook that the
on-site researcher kept during the project, and iteratively
revised during the annotation process. Example codes are:

DCBA

Developer

Audio �le

Transcript

Coded

Statement

System

Maintainability

Factor

Cross-case

Matrix

Figure 1. Chain of evidence for data summarization and analysis

DB Queries, Size, Bad naming, Lack of rules, Data Access
Objects. For axial coding, the annotated statements were
grouped according to the most similar concepts, based on the
researchers’ observations throughout the project. For more
details we refer to our technical report [33], and Appendix
A. During this process, we found that many of the categories
were similar or identical to the factors reported in [5].
From thereon, factors from [5] were used when applicable.
The result was a set of stable and common categories that
constitute candidate maintainability aspects. Each aspect was
examined for coherence and strength across the cases based
on Eisenhardt’s recommendations for analyzing within-group
similarities coupled with intergroup differences [34]. Some
candidate aspects were not replicated across cases, and are
therefore not included in the final results.

To analyze the impact of the identified factors, a cross-case
matrix was used to compare the factors across cases based
on the previous maintainability evaluation and the perception
of the maintainers. Finally, each factor was analyzed individ-
ually, alongside the statements from the developers that were
grouped together, in order to determine the degree to which
this factor can be reflected based on the definitions of the
twenty-two code smells described by Beck & Fowler [4] and
the design principles described by Martin [35].

IV. RESULTS

Comparing expert assessment and developer impression:
From the cross-case synthesis and axial coding, thirtheen
maintainability factors emerged. Nine of these confirm earlier
findings by Anda [5], and four new factors were identified.
Table III shows the factors that emerged, the number of
statements or quotes associated to each factor, and the
number of developers who made statements on these factors
(this last value enclosed in a parenthesis). Note that the
factors “Comments” and “Standard naming conventions”
from Anda are not included in our list because only one
developer mentioned the first and none mentioned anything
related to the second factor.

9 http://www.transana.org

Table III
CROSS-CASE MATRIX OF MAINTAINABILITY FACTORS AND SYSTEM EVALUATIONS

Factor defined in [5] #statements (#dev) A B C D
Appropriate technical platform Yes 19 (6) 2/2 Neg0 3/3 Neg2 2/2 Neg2 1/2 Neg, 1/2 Pos1

Coherent naming Yes 3 (2) 1/1 Neg0 Nm 1/1 Neg0 Nm
Design suited to the problem domain Yes 6 (3) Nm 3/3 Neg1 Nm Nm
Encapsulation Yes 3 (3) 2/2 Pos0 Nm 1/1 Pos0 Nm
Inheritance Yes 1 (1) Nm 1/1 Neg2 Nm Nm
(Proprietary) Libraries Yes 4 (2) Nm 2/2 Neg2 Nm Nm
Simplicity Yes 21 (6) 3/3 Pos1 3/3 Neg2 3/3 Pos1 1/1 Neg1

Three-layer architecture Yes 6 (4) 1/1 Neg1 Nm 2/2 Neg2 2/3Pos, 1/3 Neg2

Use of components Yes 4 (3) Nm 1/1 Neg1 2/2 Neg2 1/1 Pos2

Design consistency No 27 (6) 3/3 Neg 2/3 Pos,1/2 Neg 3/3 Neg 3/3 Pos
Duplicated code No 2 (2) 2/2 Neg Nm Nm Nm
Initial defects No 5 (3) Nm 1/1 Pos 2/2 Neg 2/2 Pos
Logic Spread No 3 (2) 1/1 Neg 2/2 Neg Nm Nm

The last four columns of Table III show the developers’
perception of each factor for every system. The coding is as
follows: “M/N Neg” means that N developers talked about
that factor in the system and M of them had a negative
impression; “M/N Pos” is similar for a positive impression.
Moreover, since the perceptions are based on what was
mentioned in the interviews, some aspects are not covered
for every system, in which case they are marked with “Nm”
(not-mentioned). As an example, consider the factor Three-
layer architecture: three developers mentioned this for system
D, two of them had a positive impression, and one was
negative; no developers mentioned this topic for system B
(hence “Nm”). Finally, for the factors defined in the work by
Anda, the superscript values indicate the degree of matching
between the expert evaluation and the developers’ impression
where 0=no match, 1=medium match, and 2=full match.

If we observe the number of references to maintainability
factors, we can distinguish Technical platform, Simplicity
and Design consistency as the factors most mentioned by
all six developers. The factors with most matches are on
the negative impressions on system B, in particular to
Technical platform, Design suited to the problem domain,
and Simplicity. Systems A and C display a high degree
of agreement on positive impression over the Simplicity
of the systems. System A displayed the highest rate of
disagreements between expert judgment and the maintainers,
and System D displayed the highest degree of agreement,
both parties considering this system as fairly good.

In Table III, a potential limitation is that comments
are reported as positive and negative, and their magnitude
(i.e., severity of each factor) is not described. However,
when doing cross-case comparison, evidence strength is
determined by how many cases support a statement. As
such, we consider as indicator of severity whether a factor
was mentioned by many/all developers who worked with
that system, as opposed to factors only mentioned by one
developer.
Relating maintainability factors to code smells: Next,
for each maintainability factor identified in our analysis,

we discuss how it was perceived to affect maintenance,
and analyze which code smells relate to it. For factors that
cannot be related to code smells, we discuss which alternative
methods can be used to evaluate them.

Appropriate technical platform – This factor manifested in
several forms across the projects. In System B, it appeared in
the form of a complex, proprietary Java persistence frame-
work, a particular type of authentication based on Apache
Tomcat Realm, and a memory caching mechanism (which
became obsolete with the new Simula CMS). Developers
claimed that they spent many hours trying to understand
each of these mechanisms. One of the experts in [5] stated:
“Many problems with systems maintenance are related to
undocumented, implicit requirements that surface when a
system is moved to a different environment”. Here, this was
evidenced via two widely used, restrictive interfaces. Both
were made under the assumption that identifiers for objects
would always be Integers. However, in the new environment,
String type object identifiers were needed. Interface replace-
ment was not possible since the implementation was based
on primitive types instead of of domain entities.

For systems A and C, this factor manifested in the lack
of appropriate persistence mechanisms, resulting in very
complex SQL queries embedded in the Java code. Developers
saw the integration of Simula’s CMS and the SQL queries as
one of the biggest challenges. Another example in System
C was the log mechanism, which did not stream out the
standard error messages generated by Tomcat. As a result,
developers were forced to introduce try and catch statements
in many segments of the Java and JSP code. The variation in
these cases shows that it is difficult for code smells to reflect
such situations, instead requiring expert evaluations.

Coherent naming – This factor reflects to how well the
code vocabulary represents the domain, and how it facilitates
the mapping between domain and requirements and code.
Examples include System A where a developer did not
understand why a class was called “StudySortBean” when
its responsibility was to associate a Study to an Employee.

Table IV
MAINTAINABILITY FACTORS AND THEIR RELATION TO CURRENT DEFINITIONS OF CODE SMELLS

Factor Covered by
code smell Code smells associated Autom. smell

detection Alternative evaluation

Appropriate technical platform no NA no Expert judgment

Coherent naming no NA no Semantic analysis,
Manual inspection

Design suited to problem domain partially Speculative Generality no Expert judgment
Encapsulation partially Data Clump partially Manual inspection
Inheritance partially Refused Bequest, Simulation of multiple inheritance partially Manual inspection

(Proprietary) Libraries partially Wide Subsystem Interface partially Expert judgment,
Dependency Analysis

Simplicity partially God Class, God Method, Lazy Class, Message
Chains, Long Parameter List yes Expert judgment

Three-layer architecture no NA no Expert judgment

Use of components partially God Class, Misplaced Class yes Semantic analysis,
Manual inspection

Design consistency partially Alternative Classes with Different Interfaces, ISP
Violation, Divergent Change, Temporary Field partially Semantic analysis,

Manual inspection
Duplicated code yes Duplicated code, Switch statements yes Manual inspection

Initial defects no NA no Acceptance tests,
Regression testing

Logic Spread partially Feature Envy, Shotgun Surgery,
ISP Violation yes Manual inspection,

Dependency analysis

In System C, similar situations occurred at the method level
(“One of the most problematic factors was strangely named
methods”). The meaningfulness of a code entity’s name
cannot be evaluated by code smells, and may require manual
inspection and/or semantic analysis.

Design suited to the problem domain – Relates to selecting
a design that is adequate for the context of the system.
Experts stated: “...the complexity of the system must justify
the chosen solution, and the maintenance staff must be com-
petent to implement a solution in accordance with the design
principles”. System B shows a counter-example, where a
complex proprietary persistence library was used instead of a
generic one, better suited to small/medium sized information
systems. This relates to the Speculative Generality smell.
However this factor (and smell) is very difficult to evaluate
via automated code analysis and requires expert judgment.

Encapsulation – Experts in Anda’s study concluded that
small container classes were used to deliver more than one
object as output from methods. They indicated that this
introduces dependencies that can lead maintenance problems.
In general encapsulation aims to hide the internals of a
class to prevent unauthorized access. Developers perceived
that Systems A and C had acceptable encapsulation, which
resulted in a localized ripple-effect. Code smells such as Data
Clumps are indictors of inadequate encapsulation, and they
can be complemented with manual inspection.

Inheritance – In System B, multiple interfaces were used
to simulate multiple inheritance. However, this practice led to
such complex (and dynamic) dependencies between classes
that it prompted one of the developers to remove code that he
erroneously considered “dead code”. After finding out that
it wasn’t, considerable effort was needed to roll back this

change. Currently, there are no code smell definitions related
to “Simulation of multiple inheritance” but we propose it
as a new smell, considering the serious consequences this
factor could entail. Given the small/medium size of the
other systems, inheritance was not used extensively, and
this characteristic did not manifested in the interviews. In
addition to “Simulation of multiple inheritance”, Refused
Bequest (“Subclasses don’t want or need everything they
inherit”) can also be useful to evaluate this factor.

(Proprietary) Libraries – As mentioned before, System
B contained a complex proprietary library that transforms
logical statements to queries for accessing the database.
References to this persistence logic were scattered over the
system, forcing the developers to inspect a considerable
amount of files in order to understand and use the library,
especially for Task 3. The experts in Anda’s work indicate
that “the use of libraries may imply a greater amount of code,
which in itself is less maintainable. The use of proprietary
libraries may imply lower maintainability, because new de-
velopers will need to familiarize themselves with them.” This
was exactly the case in System B. Although such libraries
can be analyzed with static analysis, their maintainability
implications depend on how they were used previously and
the proportion of the system that relies on them. A design
principle violation that relates to this factor is the Wide
Subsystem Interface: “A Subsystem Interface consists of
classes that are accessible from outside the package they
belong to. The flaw refers to the situation where this interface
is very wide, which causes a very tight coupling between
the package and the rest of the system” [35]. Evaluation
approaches are dependency analysis and expert judgment.

Simplicity – Simplicity was considered a very important

factor by both experts and maintainers, and clearly distin-
guishes our four systems. Systems A and C were perceived
as simple and fast to get started with, in contrast to System
B, which was perceived as extremely complex, in particular
due to the number of code elements and the interconnections
between them. The large number of classes required time
to understand the code at higher level, and to find relevant
information. Experts and developers agreed that there was
a large proportion of “empty classes” in System B, making
it difficult to identify the pertinent ones. A very descriptive
remark by one developer was “I spent more time for under-
standing than for coding.” Another dimension of this factor
is the size of the classes and methods. For all four systems,
developers complained about at least two classes “hoarding”
the functionality of the system. These were extremely large
in comparison to the other classes and displayed high degrees
of afferent and efferent coupling dispersion.10 Referring to
this factor, a developer stated: “Size of methods and classes
is important, because I need to remember after reading a
method what was it about!”

There are a number of code smells that relate to this
factor: God Class and God Method, and Long Parameter
List can identify cases as the one previously described. Lazy
Class can find the “empty” redirection classes mentioned by
the experts. Traditional metrics such as LOC, NOC can be
useful to assess this factor as well. Finally, Message Chains
can indicate complex, long, data/control flows that typically
result from such redirections.

Three-layer architecture – This factor manifested in Sys-
tem C, which had excessive business logic embedded in JSP
files. This forced the developers to work with the logic in
the JSP files, performing modifications in a “manual” way,
as they were deprived from much of the functionality in
Eclipse that was only available for Java files. In System D,
developers were slightly taken aback due this system having
an additional layer inside the business logic layer (enabling
the web presentation layer to be replaced by a standalone
library in the future), although this was not considered very
problematic. Code smells do not reflect this level of abstrac-
tion, thus alternative approaches are needed to evaluating this
factor. Several approaches have been proposed, some of them
relying on human input [36], and some with a certain degree
of automation [37].

Use of components – The organization of classes should
be according to functionality, or according to the layer of
the code on which they operate. This factor played a role in
System C which lacked a clear distinction between business
and data layers. The “hoarders” mentioned earlier are orthog-
onal manifestations of this factor, since classes begin to grow
because they cover more functionality than they should. Al-

10 Afferent coupling spread or dispersion denoted many elements having
dependencies on one element, which is typical of widely used interfaces.
Efferent coupling spread or dispersion denotes one element depending on
many interfaces.

though semantic aspects of this factor (such as the nature of
functionality consistently allocated to corresponding classes)
should be evaluated separately, the quantitative perspectives
(there should not be classes that do too little or too much)
on this factor can be evaluated by code smells such as God
Class. In addition, Misplaced Class could be used to identify
outliers that are in the wrong layer or package. Given that this
factor requires considerable semantic knowledge, it cannot be
addressed solely by code smells.

Design consistency – This factor was the one mentioned
most by developers during the interviews and was not cov-
ered by experts. It refers to the impossibility for developers
to oversee the behavior of the system, or the consequences of
their changes, because they were constantly facing contradic-
tory or inconsistent evidence. The inconsistencies in System
C manifested both at the variable level (“I had troubles with
bugs in DB class, from mistakes in using different variables”)
and at the design level (“Design in C was not consistent,
similar functionality was implemented in different ways”).

Confusing elements also occurred in system A, where the
data/functionality allocation was not semantically coherent,
nor consistent (“Data access objects were not only data
access objects, they were doing a lot of other things”). This
resulted in false assumptions about the system’s behavior,
and developers would get confused when they found ev-
idence that contradicted earlier assumptions. Alternatively,
when the false assumptions were not confuted, they led to the
introduction of faults (“The biggest challenge was to make
sure changes wouldn’t break the system; because things were
not always what they seemed to be”). A contrasting example
was system D, which was perceived as very consistent by
all three developers who worked with it. Quotes from the
developers illustrate this:

• “It was about applying the same pattern of changes for
similar classes”

• “There were no surprises, if I change the class X, I
could follow the same strategy to change class Y”

• “If something breaks, in system D was easier to trace
the fault”

Developers working with system D indicated that having
a consistent schema for variables, functionality and classes
was a clear advantage for code understanding, information
searching, impact analysis and debugging.

Most of the observed cases were of semantic nature,
which were combined with structural-related factors, thus
evaluating this factor constitutes a rather challenging task.
We suggest a couple of code smells that can potentially help
to identify design inconsistencies, as described in Table V.

In addition, ISP Violation can be an indirect indicator of
inconsistency. Martin [35] states that: “Many client specific
interfaces are better than one general purpose interface”.
When “fat interfaces” start acquiring more and more respon-
sibilities and start getting a wider spectrum of dissimilar
clients, this could affect analyzability and changeability.

Table V
CODE SMELLS RELATED TO THE IDENTIFICATION OF DESIGN INCONSISTENCIES

Code Smell Description
Alternative Classes with Different Interfaces Classes that mostly do the same things, but have methods with different signatures
Divergent Change One class is commonly changed in different ways for different reasons
Temporary Field used for several purposes Sometimes temporary variables are used across different contexts of usage within a method or a class.

The presence of ISP Violation by itself does not imply the
presence of design inconsistencies, but one can reasonably
assume that chances of finding inconsistencies in an wide
interface is higher than interfaces that are used only by a
small set of clients. Alternative options to evaluate this factor
can be semantic analysis, and manual inspection.

Duplicated code – The maintainability of a system can
be negatively affected by including blocks of code that are
very similar to each other (code clones). In Anda’s work,
the experts include this as an aspect of Simplicity [5]. In our
study, we identified cases where Simplicity and Duplicated
code manifested as separate factors, which is why we add
this factor as an independent one. The developers stated
that System A contained many copy-paste related ripple-
effects and they considered duplication as one of the biggest
difficulties. Duplicated code has attracted considerable atten-
tion from the research community and various approaches
exist for detection, removal and evolution in the presence
of clones. An additional related smell is Switch Statements
where conditionals depending of type lead to duplication.

Initial defects – A factor affecting maintainability that was
not mentioned by the experts in Anda’s work is the amount
of defects in the system. In the case of System C, developers
unanimously complained about how many defects the system
contained at the beginning of the maintenance phase. They
claimed that they spent a lot of time correcting defects before
they could actually complete the tasks. Systems D and B
were perceived as not having many initial defects. Although
some work has been done for predicting the defect density at
class level using code smells [22], in general this factor needs
to be evaluated by other means, such as a set of regression
tests, acceptance tests, etc.

Logic Spread – Maintainers of system B mentioned that
it contained a set of classes whose methods made many
calls to methods or variables in other classes, and that they
were forced to examine all the files called by these methods,
resulting in considerable delays. A developer mentioned: “It
was difficult in B to find the places to perform the changes
because of the logic spread”. Although the factor Simplicity
is related to this factor, Simplicity only covers the amount
of elements in a system, and not the number of interactions
between them. Logic spread has been addressed early by
metrics like afferent and efferent coupling. Smells such as
Feature Envy indicate efferent coupling dispersion. Other
smells such as Shotgun Surgery and Interface Segregation
Principle Violation focus on afferent coupling dispersion,
consequently they can be useful to evaluate this factor as

well. Moreover, it is related to the scattering and tangling
that is typically associated with implementing crosscutting
concerns in non-aspect-oriented languages [38].

V. DISCUSSION

Comparison of factors across sources: Thirteen factors
were identified during the maintenance project, nine of them
coinciding between experts and maintainers. This supports
the findings in [5]. Yet, some factors were mentioned more
often than others by the developers. For instance, factors
such as Standard naming conventions and Comments did not
play such an important role for developers. Discrepancies can
be due to the fact that experts may lack enough contextual
information at the time of the evaluation to weigh the impact
or importance of a given factor accordingly. Developers
in the other hand are conditioned by their maintenance
experience, so factors such as the nature of the task may
play an important role over what is perceived as the most
relevant of the software factors.

Conversely, all developers who participated in the project
unanimously mentioned factors such as Appropriate tech-
nical platform and Simplicity. This may indicate that such
factors should be given more attention, since they may play
an important role regardless of the maintenance context.
This result also suggests that to achieve more accurate
maintainability evaluations based on expert judgment, the
usage of enough contextual detail may be required to enable
experts the priorization of certain factors over others. One
example of such approach is the usage of “maintenance
scenarios” proposed by Bengtsson and Bosch [39].

Some factors identified during the project were not re-
ported previously, and they can complement the findings
from [5]. Factors such as Design consistency and Logic
Spread were perceived as very influential by the maintainers,
but were not mentioned by the experts. This can be due to the
fact that system maintainability evaluations based on expert-
judgment focus on factors at higher abstraction levels, as
opposed more fine-grained factors observed by developers.
Developers will necessarily capture different factors than
experts do, because they are the ones having to dive into the
code and suffer the consequences of different design flaws. In
addition, most expert evaluations are time-constrained, which
would not allow the experts to go into many details. The
multiplicity of perspectives observed in this study reflects
on previous ideas about the need of diversity in evaluation
approaches in order to attain more complete pictures of
maintainability.

Scope/capability of code smells: Situations described by
the developers during the interview provided a clear-cut
outlook on the difficulty of using code smell definitions
for analyzing certain maintainability factors. Such was the
case for factors as Appropriate technical platform, Coherent
naming, Design suited to the problem domain, Initial defects
and Architecture. These factors would need additional tech-
niques to be assessed. Yet, it is worth noting that factors
related to code smells include both factors addressed by
traditional code metrics as well as factors mainly addressed
by expert judgment. For instance, some code smells can
support the analysis of factors such as Encapsulation and
Use of components (which according to [5] are not cap-
tured by software metrics). Factors as Simplicity, which are
traditionally addressed by static analysis means, are closely
related to the code smells suggested in Table IV. Moreover,
several detection techniques for these smells are based on
size-related software metrics. Logic spread factor also is
largely related to the notion of coupling and cohesion initially
described in [40]. These results hint at the potential of code
smells to cover a more heterogeneous spectrum of factors
than software metrics and expert judgment individually.

An interesting factor identified throughout the study was
Design consistency, which according to developers played
a major role during different maintenance activities (e.g.,
understanding code, identifying the areas to modify, coding,
debugging). This factor was interpreted in a broad sense,
crosscutting abstraction levels (e.g., consistency at variable,
method, class level) and was not limited to the “naming” of
elements. Despite this rather broad and inclusive definition,
we see great potential for a number of code smells that each
can help to identify a certain subset of inconsistencies.

For the identified maintainability factors, we find that eight
of them are addressable by current code smell definitions.
However, in most cases these code smells would need to be
complemented with alternative approaches such as semantic
analysis and manual inspection. The suggestions on code
smells presented in this work were derived theoretically,
based on definitions of code smells available in the litera-
ture, and as such, they should be treated as suggestions or
starting points for further empirical studies to validate their
usefulness. We make no claims concerning the degree or
descriptive richness of a smell in relation to a maintainability
factor, since that would fall out of the scope of this work.
Moreover, some code smells are not detectable via automated
means, so even though they reflect certain maintenance
factors, other means are needed to assess these factors.

Finally, these results are contingent on the nature of
the tasks and characteristics of the maintenance project,
for which are suggested as a preliminary set of factors.
Replications of this study in different industrial contexts are
needed in order to extend and support our findings.
Threats to validity: We addressed the construct validity
threat with data-triangulation and investigator triangulation.

With respect to internal validity, we argue that most of our
results are descriptive, although it relies on the interpretation
of the researcher who carried out the interviews. Transcripts
from the daily interviews compensate for any potentially
concealed issues that developers did not want to discuss
during the open-ended interviews. Also, the perceived main-
tainability of a system is contingent to the proportion of the
system inspected/modified by the developer during main-
tenance. In our study, the tasks were far from trivial, as
developers examined substantial parts of the systems (7̃0%
for system B and higher percentages for smaller systems).
For instance, Task 1 required them to find and modify
data access procedures for the major domain entities in the
system. With respect to external validity, the results are
contingent to several contextual factors, such as the systems
(i.e., medium-size Java web information systems), the nature
and size of the tasks, and the project modality (i.e., solo-
projects). Finally, one can argue on the representativeness of
the maintenance tasks carried out, although all of them were
based on real needs and their duration and complexity are
representative of real-life projects.

VI. CONCLUSION AND FUTURE WORK

By understanding the capability and limitations of dif-
ferent evaluation approaches to address different factors
influencing software maintainability, we can achieve better
overall evaluations of maintainability. Code smells can pro-
vide insight on different maintainability factors which can
be improved via refactoring. However, some factors are not
reflected by code smells and require alternative approaches
to evaluate them.

This paper describes a set of factors that were identified as
important for maintainability by experts who evaluated the
four Java systems in our study [5], and by six developers who
maintained those systems for 14 days while implementing
a number of change requests. Through our analysis, we
identified some new factors not reported in previous work
[5], which were perceived as important by the developers.

Based on the explanations from the developers, we found
that some of the factors can potentially be evaluated (at least
partially) by using some of the current code smell definitions.
The contributions of this paper are three-fold: (1) We confirm
and complement the findings by Anda [5], by extracting
maintainability factors that are important from the software
maintainer’s perspective, and (2) Based on the manifestations
of these factors during an industrial maintenance project, we
identify which code smells (or alternative analysis methods)
can evaluate them, and (3) We provide an overview of the
capability of code smell definitions to evaluate the overall
maintainability of a system.

Given the fact that there are many important factors not
addressable by static analysis, and that not all code smells
are actually automatically detectable, we agree with the
statements from Anda [5] and Pizka & Deissenboeck [16]

that there is a need for combining different approaches in
order to achieve more complete, and accurate evaluations
of overall maintainability of a system. Future work includes
detailed analysis of whether results from code smell detection
tools can be used as predictors for maintenance problems.
This study would be limited to a set of identifiable code
smells. This can to provide a quantitative perspective in
relation to the coverage-level or capability of code smells
to uncover problematic code.

REFERENCES
[1] T. M. Pigoski, Practical Software Maintenance: Best Practices

for Managing Your Software Investment. Wiley, 1996.
[2] T. C. Jones, Estimating software costs. McGraw-Hill, 1998.
[3] M. Lanza and R. Marinescu, Object-Oriented Metrics in

Practice. Springer, 2005.
[4] M. Fowler, Refactoring: Improving the Design of Existing

Code. Addison-Wesley, 1999.
[5] B. Anda, “Assessing Software System Maintainability using

Structural Measures and Expert Assessments,” in Int’l Conf.
Softw. Maint., 2007, pp. 204–213.

[6] H. Benestad, B. Anda, and E. Arisholm, “Assessing Software
Product Maintainability Based on Class-Level Structural Mea-
sures,” in Product-Focused Softw. Process Improvement, 2006,
pp. 94–111.

[7] I. Heitlager, T. Kuipers, and J. Visser, “A Practical Model for
Measuring Maintainability,” in Int’l Conf. Quality of Inf. and
Comm. Techn., 2007, pp. 30–39.

[8] J. C. Granja-Alvarez and M. J. Barranco-Garcı́a, “A Method
for Estimating Maintenance Cost in a Software Project,” J.
Softw. Maint., vol. 9, no. 3, pp. 161–175, 1997.

[9] H. Leung, “Estimating maintenance effort by analogy,” Empir-
ical Software Engineering, vol. 7, no. 2, pp. 157–175, 2002.

[10] J. Mayrand and F. Coallier, “System acquisition based on
software product assessment,” in Intl Conf. Softw. Eng., 1996,
pp. 210–219.

[11] T. Rosqvist, M. Koskela, and H. Harju, “Software Quality
Evaluation Based on Expert Judgement,” Softw. Quality Con-
trol, vol. 11, no. 1, pp. 39–55, 2003.

[12] T. McCabe, “A Complexity Measure,” IEEE Trans. Softw.
Eng., vol. SE-2, no. 4, pp. 308–320, 1976.

[13] M. H. Halstead, Elements of Software Science (Operating and
programming systems series). Elsevier, 1977.

[14] K. D. Welker, “Software Maintainability Index Revisited,”
CrossTalk - J. of Defense Softw. Eng, 2001.

[15] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object
oriented design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp.
476–493, 1994.

[16] M. Pizka and F. Deissenboeck, “How to effectively define and
measure maintainability,” in Softw. Measurement European
Forum, 2007.

[17] E. Van Emden and L. Moonen, “Java quality assurance by
detecting code smells,” in Working Conf. Reverse Eng., 2001,
pp. 97–106.

[18] M. Mäntylä, “Software Evolvability - Empirically Discovered
Evolvability Issues and Human Evaluations,” PhD Thesis,
Helsinki University of Technology, 2009.

[19] R. Marinescu, “Measurement and quality in object-oriented
design,” in Int’l Conf. Softw. Maint., 2005, pp. 701–704.

[20] E. H. Alikacem and H. A. Sahraoui, “A Metric Extraction
Framework Based on a High-Level Description Language,” in
Working Conf. Source Code Analysis and Manipulation, 2009,
pp. 159–167.

[21] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur,
“DECOR: A Method for the Specification and Detection of
Code and Design Smells,” IEEE Trans. Softw. Eng., vol. 36,
no. 1, pp. 20–36, 2010.

[22] W. Li and R. Shatnawi, “An empirical study of the bad smells
and class error probability in the post-release object-oriented
system evolution,” J. Syst. Softw., vol. 80, no. 7, pp. 1120–
1128, 2007.

[23] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the Impact
of Design Flaws on Software Defects,” in Int’l Conf. Quality
Softw., 2010, pp. 23–31.

[24] I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis, and
M. Shepperd, “A controlled experiment investigation of an
object-oriented design heuristic for maintainability,” J. Syst.
Softw., vol. 72, no. 2, pp. 129–143, 2004.

[25] A. Lozano and M. Wermelinger, “Assessing the effect of
clones on changeability,” in Int’l Conf. Softw. Maint., 2008,
pp. 227–236.

[26] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An
Empirical Study of the Impact of Two Antipatterns, Blob and
Spaghetti Code, on Program Comprehension,” in European
Conf. Softw. Maint. and Reeng., 2011, pp. 181–190.

[27] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An Ex-
ploratory Study of the Impact of Code Smells on Software
Change-proneness,” in Working Conf. Reverse Eng., 2009, pp.
75–84.

[28] S. M. Olbrich, D. S. Cruzes, and D. I. Sjøberg, “Are all code
smells harmful? A study of God Classes and Brain Classes
in the evolution of three open source systems,” in Int’l Conf.
Softw. Maint., 2010, pp. 1–10.

[29] B. C. D. Anda, D. I. K. Sjøberg, and A. Mockus, “Variability
and Reproducibility in Software Engineering : A Study of
Four Companies that Developed the Same System,” IEEE
Trans. Softw. Eng., vol. 35, no. 3, pp. 407–429, 2009.

[30] G. R. Bergersen and J.-E. Gustafsson, “Programming Skill,
Knowledge, and Working Memory Among Professional Soft-
ware Developers from an Investment Theory Perspective,” J.
of Individual Differences, vol. 32, no. 4, pp. 201–209, 2011.

[31] R. Yin, Case Study Research : Design and Methods (Applied
Social Research Methods). SAGE, 2002.

[32] A. Strauss and J. Corbin, Basics of Qualitative Research :
Techniques and Procedures for Developing Grounded Theory.
SAGE Publications, 1998.

[33] A. Yamashita and L. Moonen, “Do code smells reflect im-
portant maintainability aspects?” Simula Research Laboratory,
Technical Report (2012-10), 2012.

[34] K. M. Eisenhardt, “Building Theories from Case Study Re-
search,” Academy of Management Review, vol. 14, no. 4, 1989.

[35] R. C. Martin, Agile Software Development, Principles, Pat-
terns and Practice. Prentice Hall, 2002.

[36] P. Clements, R. Kazman, and M. Klein, Evaluating Software
Architectures. Addison-Wesley, 2001.

[37] C. Marinescu, “Identification of Design Roles for the Assess-
ment of Design Quality in Enterprise Applications,” in Int’l
Conf. on Program Comprehension, ser. ICPC ’06, 2006, pp.
169–180.

[38] M. Marin, A. V. Deursen, and L. Moonen, “Identifying
Crosscutting Concerns Using Fan-In Analysis,” ACM Trans.
Softw. Eng. Meth., vol. 17, no. 1, 2007.

[39] P. Bengtsson and J. Bosch, “Architecture level prediction of
software maintenance,” European Conf. Softw. Maint. and
Reeng., pp. 139–147, 1999.

[40] N. Fenton, “Software measurement: A necessary scientific
basis,” IEEE Trans. Softw. Eng., vol. 20, no. 3, 1994.

