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ABSTRACT 
System testing of real-time embedded systems (RTES) is a 
challenging task and only a fully automated testing approach can 
scale up to the testing requirements of industrial RTES. One such 
approach, which offers the advantage for testing teams to be 
black-box, is to use environment models to automatically generate 
test cases and oracles and an environment simulator to enable 
earlier and more practical testing. In this paper, we propose novel 
heuristics for search-based, RTES system testing which are based 
on these environment models. We evaluate the fault detection 
effectiveness of two search-based algorithms, i.e., Genetic 
Algorithms and (1+1) Evolutionary Algorithm, when using these 
novel heuristics and their combinations. Preliminary experiments 
on 13 carefully selected, non-trivial artificial problems, show that, 
under certain conditions, these novel heuristics are effective at 
bringing the environment into a state exhibiting a system fault. 
The heuristic combination that showed the best overall 
performance on the artificial problems was applied on an 
industrial case study where it showed consistent results. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging 

General Terms 

Experimentation, Verification. 

Keywords 
Automated model-based testing, real-time embedded systems, 
search-based software engineering, branch distance. 

1. INTRODUCTION 
Real-time embedded systems (RTES) are part of a vast majority 
of computing devices available today. They are widely used in 
critical domains where high system dependability is required. 
These systems typically work in environments comprising of large 
numbers of interacting components. The interactions with the 
environment can be bound by time constraints. For example, if a 
gate controller RTES on a railroad intersection is informed by a 
sensor that a train is approaching, then the RTES should 

command the gate to close before the train reaches it. Missing 
such time deadlines, or missing them too often for soft real-time 
systems, can lead to serious failures leading to threats to human 
life or the environment. There is usually a great number and 
variety of stimuli from the RTES environment with differing 
patterns of arrival times. Therefore, the number of possible test 
cases is usually very large if not infinite. Testing all possible 
sequences of stimuli is not feasible. Hence, systematic automated 
testing strategies that have high fault revealing power are essential 
for effective testing of industry scale RTES. The system testing of 
a RTES requires interactions with the actual environment. Since, 
the cost of testing in actual environments tends to be high, 
environment simulators are typically used for this purpose. 

In our earlier work, we proposed an automated system testing 
approach for RTES software based on environment models [1, 2]. 
The models are developed according to a specific strategy using 
the Unified Modeling Language (UML) [3], the Modeling and 
Analysis of Real-Time Embedded Systems (MARTE) profile [4] 
and our proposed profile for environment modeling [5]. These 
models of the environment were used to generate an environment 
simulator [6], test cases, and obtain test oracle [1, 2]. We applied 
various testing strategies to generate test cases, including search-
based strategies, which turned out not to work very well as even 
Random Testing (RT) [7] fared better.  

In our context, a test case is a sequence of stimuli generated by the 
environment that is sent to the RTES. If a user interacts with the 
RTES, then she would be considered part of the environment as 
well. A test case can also include changes of state in the 
environment that can affect the RTES behavior. For example, 
with a certain probability, some hardware components might 
break, and that affects the expected and actual behavior of the 
RTES. A test case can contain information regarding when and in 
which order to trigger such changes. So, at a higher level, a test 
case in our context can be considered as a setting specifying the 
occurrence of all these environment events in the simulator. 
Explicit “error” states in the models represent states that should 
never be reached if the RTES is correct. If any of these error states 
is reached, then it implies a faulty RTES. Error states act as the 
oracle of the test cases, i.e., a test case is successful in triggering a 
fault in the RTES if an error state of the environment is reached 
during testing. 

In this paper, we further extend the fitness function proposed in 
[1] to improve the disappointing results we had obtained with 
search-based testing. For this purpose, we present four new 
heuristics that are aimed to exploit potentially useful 
characteristics of the environment models. We evaluate the fault 
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detection effectiveness of the new heuristics and their 
combinations by first performing a series of experiments on 13 
artificial RTES that we developed based on the specifications of 
two industrial case studies. For all heuristics, we used two search 
algorithms: Genetic Algorithms (GA) and (1+1) Evolutionary 
Algorithms (EA). We also ran RT on the problems as a 
comparison baseline. We then ran the heuristic combination that 
on average showed best results for the artificial problems on an 
industrial case study of a marine seismic acquisition system, 
which was developed by a company leading in this industry 
sector. We only ran the best combination because executing test 
cases on the industrial case study is very time consuming and we 
could not, for technical reasons, run it on a cluster. We compared 
the performance of RT and this heuristic combination when used 
with GA and (1+1)EA on the industrial case study. 

The rest of the paper is organized as follows: Section 2 provides a 
background of the work. Section 3 discusses related work. Section 
4 provides an introduction to the earlier proposed environment 
modeling methodology and testing approach. Section 5 discusses 
the new search heuristics, whereas Section 6 discusses the 
empirical study carried out to evaluate the new search heuristics. 
Finally, Section 7 concludes the paper. 

2. BACKGROUND 
Several software engineering problems can be reformulated as a 
search problem, such as test data generation [8]. An exhaustive 
evaluation of the entire search space (i.e., the domain of all 
possible combinations of problem variables) is usually not 
feasible. There is a need for techniques that are able to produce 
“good’’ solutions in reasonable time by evaluating only a tiny 
fraction of the search space. Search algorithms can be used to 
address this type of problem. Several successful results by using 
search algorithms are reported in the literature for many types of 
software engineering problems [9].  

To use a search algorithm, typically a fitness function needs to be 
defined that is used to guide the search algorithms toward fitter 
solutions. The fitness function should be able to evaluate the 
quality of a candidate solution (i.e., an element in the search 
space). The fitness function is problem dependent, and proper care 
needs to be taken for developing adequate fitness functions. 
Eventually, given enough time, a search algorithm will find a 
satisfactory solution. 

There are several types of search algorithms. Genetic Algorithms 
(GA) are the most well-known [9], and they are inspired by the 
Darwinian evolution theory. A population of individuals (i.e., 
candidate solutions) is evolved through a series of generations, 
where reproducing individuals evolve through crossover and 
mutation operators. (1+1) Evolutionary Algorithm (EA) is simpler 
than GAs, in which only a single individual is evolved with 
mutation.  

To cope with several problems related to combining together 
different heuristics/objectives with different priorities, we rather 
use an order function h. An order function takes two solutions as 
parameters and returns whether the first is better, equivalent, or 
worse than the second solution (e.g., by returning 1, 0, and -1 
respectively). For a search algorithm, an order function h can 
always replace a fitness function f as long as the raw fitness values 
are not used besides comparing solutions’ fitness. For example, h 
can be used in a GA using tournament or rank selection, but not 
for fitness proportional selection. For more details, examples and 
discussions regarding order functions for search algorithms in 
software testing can be found in [10]. 

3. RELATED WORK 
Depending on the goals, testing of RTES can be performed at 
different levels: model-in-the-loop, hardware-in-the-loop, 
processor-in-the-loop, and software-in-the-loop [11]. Our 
approach falls in the software-in-the-loop testing category, in 
which the embedded software is tested on the development 
platform with a simulated environment. The only variation is that, 
rather than simulating the hardware platform, we use an adapter 
that forwards the signals from the system under test (SUT) to the 
simulated environment. This helps focus on testing the embedded 
software. This approach is especially helpful when the software is 
to be deployed on multiple hardware platforms or the target 
hardware platform is stable (such as the case with our industry 
partners, working in the area of marine seismic acquisition and 
automated bottle recycling machines).   

A large body of research has been carried out for RTES testing. 
Most of these approaches are based on testing the violation of 
timing constraints [12] or checking their conformance to a 
specification [13]. The specification is generally a formal model 
of the system and this model is then used to generate the test 
cases. As specification of the system, a number of approaches use 
Timed Automata or one of its extensions (e.g., [14]). For the same 
purpose, UML statechart [15], Extended Finite State Machines 
[16] and Attributed Event Grammar [17] have also been used. 
There are also several works using search-based testing 
techniques for testing different aspects of RTES, as for example 
identify deadline misses [18]. Most of the work on search-based 
software testing has been focused on unit testing [19], and not 
system level testing as we do in this paper. 

There are also a few works discussing RTES testing based on 
environment models rather than system models. Auguston et al. 
[17] discusses the development of environment behavioral models 
using an event grammar for testing of RTES. The behavioral 
models contain details about the interactions with the SUT and 
possible hazardous situations in the environment. Heisel et al. 
[20] propose the use of a requirement model and an environment 
model along with the model of the SUT for testing. Adjir et al. 
[21] discuss a technique for testing RTES based on the system 
model and assumptions in the environment using Labeled 
Prioritized Timed Petri Nets. Larsen et al. [22] propose an 
approach for online RTES testing based on time automata to 
model the SUT and environmental constraints. Peleska et al. [23] 
present a benchmark model for testing RTES in the automotive 
domain. Their testing methodology uses information from 
environment models and system models to obtain test cases. 

The work presented here is significantly different from most the 
above approaches as we adopt, for practical reasons, a black-box 
approach to system testing that relies exclusively on modeling the 
RTES environment rather than its internal design properties. This 
is of practical importance as independent system test teams 
usually do not have easy access to precise design information. 
Most existing works do not focus on system testing, hence their 
emphasis is on modeling the RTES internal behavior and 
structure. Another difference of practical importance, though this 
is not in the focus of this paper, is that we use UML  and its 
standard extensions for modeling the environment [5].   

4. ENVIRONMENT MODELING AND 
MODEL-BASED TESTING 

This section introduces our previous work on which we build in 
this paper.  



4.1 Environment Modeling & Simulation 
For RTES system testing, as we observed among our industry 
partners, software engineers familiar with the application domain 
would typically be responsible for developing the environment 
models. Therefore, we selected UML and its extensions as the 
environment modeling language. As a standard modeling 
language, it is widely taught and accepted by software engineers 
and supported by a broad range of tools and training material, all 
of which being important considerations for successful industry 
adoption. 

The environment models consist of a domain model and several 
behavioral models. The domain model captures the structural 
details of the RTES environment, such as the environment 
components, their relationships, and their characteristics. The 
behavior of the environment components is captured by state 
machines. These models are developed, based on our earlier 
proposed methodology by using UML, MARTE, and our 
proposed profile for environment modeling [5]. These models not 
only include the nominal functional behavior of the environment 
components (e.g., booting of a component) but also include their 
robustness (failure) behavior (e.g., break down of a sensor). The 
latter are modeled as failure states in the environment models. 
The behavioral models also capture what we call error states. 
These are the states of the environment that should never be 
reached if the SUT is implemented correctly (e.g., no incorrect or 
untimely message from the SUT to the environment components). 
Therefore, error states act as oracles for the test cases.  

An important feature of these environment models is that they 
capture the non-determinism in the environment, which is a 
common characteristic for most RTES environments Non-
determinism may include, for example, different occurrence rates 
and patterns of signals, failures of components, or user 
commands. The environment modeling profile provides special 
constructs to model non-deterministic behavior of the 
environment. Each environment component can have a number of 
non-deterministic choices whose exact values are selected at the 
time of testing. Java is used as an action language and OCL 
(Object Constraint Language) is used to specify constraints and 
guards. In general, for the type of system testing we do, a 
communication layer is needed to make the simulated 
environment communicate with the actual RTES (e.g., to receive 
stimuli and to send responses). Such a communication layer is 
written by the software engineer separately from the models. This 
allows for the simulators and models to be independent of the 
language in which SUT is written.  

Using model to text transformations, the environment models are 
automatically transformed into environment simulators 
implemented in Java. The transformations follow specific rules 
that we discussed in detail in [6]. During simulation a number of 
instances can be created for each environment component, which 
interact with each other and the SUT (for example multiple 
instances of a sensor component). The generated simulators are 
linked with the test framework that provides the appropriate 
values for each simulation execution. For all our case studies, the 
generated simulators communicate with the SUT using TCP 
sockets. The choice of Java and TCP is based on actual 
requirements of one of our industrial partners, where the RTES 
under study involves soft real-time constraints.  

Environment simulation is an important feature for the type of 
testing that we do. Our target systems are typically reactive 
systems and depending on their internal states, they may behave 

differently to the same environment stimuli. Therefore, in some 
cases, the exact response from the SUT to a particular 
environment event cannot be determined before execution. 
Environment models are developed in a way that they accept 
different responses of the SUT that may be triggered as a result of 
the environment events, including invalid responses that lead to 
error states. The simulation allows the environment to handle such 
non-determinism in the SUT, since depending on the response of 
SUT, the environment can simulate any of the modeled behavior.  

4.2 Environment Model-Based Testing 
In our context, a test case execution is akin to executing the 
environment simulator. The domain model represents various 
components in the RTES environment. As mentioned earlier, 
during a simulation there can be multiple instances for each of the 
environment components and multiple components run in parallel 
to form the RTES environment. During the simulation, values are 
required for the non-deterministic choices in the environment 
models. A test case in our context provides information for both 
the number of instances for each component (which we refer to as 
the environment configuration) and the values for various non-
deterministic choices (referred to as the simulation configuration). 
For the scope of this paper, we only consider one fixed 
environment configuration; therefore in the rest of the paper, a test 
case is alternatively used for referring to a simulation 
configuration.  

A test case can be seen as a test data matrix, where each row 
provides a series of values for a non-deterministic choice of the 
environment component (the number of rows is equal to the 
number of non-deterministic choices). Each time a non-
deterministic choice needs to be made, a value from the 
corresponding matrix row is selected. During simulation, a query 
for a non-deterministic choice can be made several times and the 
number of queries cannot be determined before simulation. To 
resolve this problem, each matrix row (a data vector) can be 
represented in two possible forms: a fixed length ring or a variable 
length vector. On one hand, in the fixed-length ring vector, the 
vector is considered as a ring and upon reaching the end/tail of the 
vector. Then, the values are again selected from the start/head of 
the vector. On the other hand, in the variable size vector, 
whenever the end of a vector is reached, its size is increased at run 
time and new values are added. In our earlier work [2], we 
evaluated the effect of the representations and starting lengths of 
the test data vectors on the fault detection effectiveness.  

In our earlier work, we applied various testing strategies to 
generate test cases from the environment models [1]. For search-
based testing, we developed a new fitness function f that can be 
seen as an extension of the fitness function developed for model-
based testing based on system specifications [24]. The original 
fitness function uses the so-called “approach level” and 
normalized “branch distance” to evaluate the fitness of a test case. 
For environment model-based testing, we introduced the novel 
concept of normalized “time distance”. In our context, the goal is 
to minimize the fitness function f, which heuristically evaluates 

Figure 1. A dummy state machine to explain search heuristics



how far a test case is from reaching an error state. If a test case 
with test data m is executed and an error state of the environment 
model is reached, then f(m) = 0.  

The approach level (A) refers to the minimum number of 
transitions in the state machine that are required to reach the error 
state from the closest executed state. Figure 1 shows a dummy 
example state machine to elaborate the concept. The state named 
Error is the error state. Events e1, e2, and e3 are signal events, 
whereas events after “t, s”, after “t1, ms”, and after “t2, ms” are 
time events with t, t1, and t2 as the time values and ms and s as 
time units. Events e3 and after “t, s” are guarded by constraints 
using OCL. If the desired state is Error and the closest executed 
state was State5, then the approach level is 1.  

The approach level rewards test case executions that get closer to 
an error state, but it does not provide any gradient (guidance) to 
solve the possible guards on the state transitions. The branch 
distance (B) is used to heuristically score the evaluation of the 
guards (if any) on the outgoing transitions from the closest 
executed state. In [25] we have defined a specific branch distance 
function for OCL expressions that is reused here for calculating 
the branch distance. In the dummy state machine in Figure 1, we 
need to solve the guard “y > 0” so that whenever e4 is triggered, 
then the simulation can transition to the Error state. Note that 
branch distance is less important than approach level, since it is 
required only when the transition towards an error state is guarded 
and the approach level cannot be reduced any further. Therefore, 
we normalized the branch distance in the range of 0 to 1 [10].	 

The third important part of the fitness function is the time distance 
(T), which comes into play when there are timeout transitions in 
the environment models. For example, in Figure 1, the transition 
from State2 to Error is a timeout transition. If a transition should 
be taken after z time units, but it is not, we calculate the maximum 
consecutive time c the component stayed in the source state of this 
transition (e.g., State2 in Figure 1). To guide the search, we use 
the following heuristic: T = z – c, where c ≤  z. Again, the 
importance of time distance is less than that of approach level, 
therefore it is normalized in the range 0 to 1. The fitness function f 
using these three heuristics for a test data matrix m is defined as: 

f(m)= mine ((Ae(m) + nor(Te(m)) + nor(Be(m)))  (1) 

where for an error state e, Ae represents the approach level, Te 
represents the time distance, and Be represents the branch 
distance. nor() is the normalizing function. For guarded time 
transitions, Be was only calculated after the corresponding time 
event was triggered. Since, there can be multiple error states in the 
environment models, the function f(m) only takes the minimum 
value over all error states (represented by mine in (1)). 

The results when using this fitness function, as reported in [1], 
were disappointing. The branch distance was calculated for the 
guards only after an event was triggered and this worked fine for 
signal events. But for time events, this meant that to get the 
branch distance, we first needed to trigger the time event. For this 
we focused first on reducing the time distance and then calculated 
the branch distance. It turned out that this assumption of favoring 
reduction of time distance whenever there is a time transition was 
naive. In situations where the time transition had a guard, a test 
case with less time distance but with a greater branch distance was 
considered to be better than a test case with greater time distance 
but lower branch distance. However, there is no purpose in 
reducing the time distance (i.e., the error state will not be reached) 
if at the end the transition is not fired because the guard is false. 

5. IMPROVED FITNESS FUNCTION 
In this section, we present novel improvements in the fitness 
function f for environment model-based testing of RTES. As 
mentioned earlier, for problems related to combining various 
heuristics/objectives with different priorities, we can replace the 
use of a fitness function f with an order function h. For two test 
data matrices m1 and m2, the function h will return 1, 0, or -1 if m1 
is better, equal, or worse than m2, respectively.  

Following, based on f(m) we define a basic order function h for 
two test data matrices (m1, m2) that will be reused for definition of 
order functions for the three new heuristics: Time In Risky State 
(TIR), Risky State Count (RSC), and Coverage (COV). 

	
where for a set of error states es, Amin(m) is defined as the 
minimum approach level for the matrix m over es, Bmin(m) as the 
minimum branch distance for m over es, and Tmin(m) as minimum 
time distance for m over es. Amin takes precedence on Bmin and 
Tmin, and Bmin takes precedence on Tmin. This is simply reflecting 
the relative importance of these three heuristics.  

5.1 Improved Time Distance (ITD) 
We improved the way the basic time distance was calculated in 
the earlier fitness function. The motivation behind the improved 
time distance is that to avoid fitness plateaus, a test case with a 
lower branch distance for a time transition should be preferred 
over the one having greater branch distance, irrespective of the 
time distance. This is due to the fact that during environment 
simulation, changing the values of a test case often has a direct 
impact on the time distance and it should therefore be easier to 
reduce it than the branch distance. For example in Figure 1, the 
time transition after “t, s” is guarded by [x > 0]. A test case with a 
positive value greater than 0 for x will be considered better than a 
test case with a negative or 0 value for x, irrespective of the value 
of t. The value of t is considered only after the branch distance of 
the guard equals 0. For this, we introduced the concept of a look-
ahead branch distance (LB) for time transitions, which represents 
the branch distance of OCL guard on a time transition when it is 
not fired (i.e., the timeout did not occur). Because OCL 
evaluations are free from side-effects [25], this does not lead to 
any particular problem. The order function for two test data 
matrices m1 and m2 using this heuristic is:  

 

 
where for the set of error states es and a given error state e 	es, 
Amin(m) represents the minimum approach level for matrix m over 
es, Bmin(m) is the minimum branch distance for m over es, LBe(m) 
represents the look-ahead branch distance for m for the error state 
e, and Te(m) represents the time distance for m over e. 

 

h(m1,m2)= 

1 if Amin(m1)<Amin(m2) or (Amin(m1)=Amin(m2) and 
Bmin(m1) < Bmin(m2)) or (Amin(m1)=Amin(m2) and 
Bmin(m1)= Bmin(m2) and Tmin(m1) < Tmin(m2)) 

0 if Amin(m1)=Amin (m2) and	Bmin(m1)= Bmin(m2) and 
Tmin(m1)=Tmin(m2))	

-1  otherwise (2)	

h(m1,m2)= 

1 if Amin(m1)<Amin(m2) or (Amin(m1)=Amin(m2) and 
Bmin(m1) < Bmin(m2)) or (Amin(m1)=Amin(m2) and 
Bmin(m1)= Bmin(m2) and ITDmin(m1,m 2) = 1) 

0 if Amin(m1)=Amin (m2) and	Bmin(m1)= Bmin(m2) and 
ITDmin(m1, m2)=0)	

-1  otherwise  (3) 

ITDe(m1,m2)= 

1 if LBe (m1) < LBe (m2) or (LBe (m1) = LBe 

(m2) and Te(m1) < Te(m2)) 
0 if (LBe (m1) = LBe (m2) and Te(m1) = Te(m2))  
-1 otherwise 



Table 1. Summary of environment models* 

Problem GoP ToP LtR GET TtE Approach 
AP1 Yes Yes No Yes Yes Non-trivial 
AP2 Yes Yes No Yes Yes Non-trivial 
AP3 No Yes No No Yes Non-trivial 
AP4 No Yes No No Yes Non-trivial 
AP5 No Yes No No Yes Non-trivial 
AP6 Yes Yes Yes Yes Yes Non-trivial 
AP7 Yes Yes Yes Yes Yes Non-trivial 
AP8 Yes Yes Yes Yes Yes Non-trivial 
AP9 No No Yes No No Trivial 
AP10 Yes Yes Yes Yes Yes Trivial 
AP11 Yes Yes No Yes Yes Trivial 
AP12 Yes Yes No Yes Yes Trivial 
AP13 Yes Yes No Yes Yes Trivial 
IC Yes Yes Yes Yes  Yes Trivial 

* GoP = Guard on Path, ToP = Time transition on Path, LtR = Loop to Risky state, 
GET = Guard on Error Transition, TtE = Time transition to Error state 

5.2 Time in Risky State (TIR) 
A “risky state” is defined as a state adjacent to the error state (i.e., 
approach level = 1). For the order function, when two test cases 
have the same Amin, Bmin, and Tmin, then a test case that spends 
more time in risky states should have higher fitness. The 
motivation behind this heuristic is that, the more time spent in a 
risky state, the higher the chances of events happening in the 
environment or SUT leading to the error state (e.g., receive a 
signal from the SUT). For example, for the state machine shown 
in Figure 1, this heuristic will favor the test cases that spend more 
time in the risky states State2 or State5. For instance in State2, it 
is possible to increase the value of t1 in the time event after “t1, 
ms”, which will increase the time spent in this state. The overall 
order function based on h defined in (2), is given as:  

	
where TIRsum(m) is the sum of time spent in risky states for all 
error states and the test data matrix m. 

5.3 Risky State Count (RSC) 
This heuristic is also based on utilizing the concept of risky states: 
When two test cases have the same Amin, Bmin, and Tmin, then a test 
case that enters a risky state more often should be preferred over a 
test case that does so less often. For example, for the state 
machine shown in Figure 1, this heuristic will assign higher 
fitness to the test cases that make the component enter State2 
more often, i.e., transitions to State4 and come back. This would 
for instance result in minimizing the values of t1 and t2 for the 
timeout transitions after “t1,s” and after “t2,s” to increase the 
risky state count. Note that the heuristic will only be useful for the 
cases that allow a loop back to a risky state. The overall order 
function based on the basic order function h defined in (2) is: 

 
where RSCsum(m) is total count of transitions made to all risky 
states for the test data matrix m. 

5.4 Increase in Coverage (COV) 
This heuristic is based on the concept of coverage of environment 
models. This heuristic, when two test cases have the same Amin, 

Bmin, and Tmin, calculates the environment coverage and assign 
higher fitness to the test cases that cover more environment states.  

The idea behind this heuristic is to increase the coverage of the 
environment models when the approach level, branch distance and 
time distance can no longer be improved. The assumption is that 
having higher environment coverage will result in more diversity 
in the test cases, which might lead to situations that help reach the 
error state. For example in Figure 1, this heuristic will favor a test 
case that visited State4 over a test case that did not. The idea is to 
explore more states and transitions in the environment models. 
The overall order function for COV based on h (2) is:  

	
where COVsum(m) is the total coverage for all error states. 

5.5 Combination of heuristics  
Apart from the individual heuristics, we also investigate their 
combinations. In total, for the latter three heuristics (TIR, RSC, 
and COV) there are eight possible combinations. They can be 
combined with the basic order function h and an order function 
containing the improved time distance ITD instead of T in h, 
which results in a total of 16 possible combinations 

	
where comb(m) is a given combination of the heuristics.  

When combining these heuristics, we follow the Pareto 
dominance principle - a key concept for multi-objective 
optimization in evolutionary algorithms [26]. In our context this 
means that, given a combination of heuristics, a test data matrix 
m1 will dominate another matrix m2, if it is better than m2 for at 
least one heuristic and is not worse than m2 in any of the other 
heuristics. The reasons for using a Pareto dominance is that, in 
contrast to approach level and branch distance, we do not know 
which is the most important heuristic among the three that were 
proposed: this is a research question that we address in this paper.  

6. EMPIRICAL STUDY 
The objective of this empirical study is to evaluate the 
effectiveness, in terms of fault detection, of the proposed 
heuristics and their combinations. We selected two search 
algorithms for this empirical study: Genetic Algorithms (GA) and 
(1+1)Evolutionary Algorithm (EA). Though (1+1) EA is simpler 
than GA, it has shown better results in our previous testing works 
(e.g., [25]). We use the convention Algorithm-Heuristic to denote 
an algorithm using a heuristic or its combination. For example, to 
denote that GA is used with the basic fitness function defined in 
(1), we use the terms GA-Basic.  

6.1 Case Study 
For the sake of experimenting with diverse environment models 
and RTES, we developed 13 different artificial RTES that were 
inspired by two industrial cases we have been involved with [5] 
and one case study discussed in the literature [16]. Since, there are 
no benchmark RTES available to researchers, we specifically 
designed these artificial problems to conduct our experiments 
(called AP1 – AP13). The goal while developing the models of 

h'(m1,m2)= 

h(m1, m2)  if h(m1, m2) != 0 
1   if h(m1, m2) = 0 and TIRsum(m1) > TIRsum(m2) 
0  if h(m1, m2) = 0 and TIRsum(m1) = TIRsum(m2) 
-1   otherwise 

h'(m1,m2)= 

h(m1, m2)  if h(m1, m2) != 0 
1   if h(m1, m2) = 0 and RSCsum(m1) > RSCsum(m2) 
0  if h(m1, m2) = 0 and RSCsum(m1) = RSCsum(m2)  
-1 otherwise 

h'(m1,m2)= 

h(m1, m2) if h(m1, m2) != 0 
1   if h(m1, m2) = 0 and COVmin(m1) > COVmin(m2)
0  if h(m1, m2) = 0 and COVmin(m1) = COVmin(m2)
-1   otherwise 

h'(m1,m2)= 

h(m1, m2) if h(m1, m2) != 0 
1   if h(m1, m2) = 0 and comb (m1) > comb(m2) 
0  if h(m1, m2) = 0 and comb (m1) = comb(m2) 
-1   otherwise 



these RTES was to vary various characteristics of the environment 
models (e.g., guarded time transitions, loops) in order to evaluate 
the impact of these characteristics on the test heuristics. We could 
not have covered such variations in environment models with one 
or even a few industrial case studies, hence the motivation to 
develop artificial cases. Nine of these artificial problems were 
inspired by a marine seismic acquisition system developed by one 
of our industrial partners. These problems covered various subsets 
of the environment of the industrial RTES. Three of the 13 
problems were inspired by the behavior of another industrial 
RTES (part of an automated recycling machine) developed by 
another industrial partner. The thirteenth artificial problem was 
inspired by the train control gate system described in [16].  

The industrial case study we also report on is a very large and 
complex seismic acquisition system that interacts with several 
sensors and actuators. The timing deadlines on the environment 
are in the order of hundreds of milliseconds. The company that 
provided the system is a market leader in its field. For 
confidentiality reasons we cannot provide full details of the 
system. The SUT consists of two processes running in parallel, 
requiring a high performance, dedicated machine to run.  

To facilitate the discussion of our results, a summary of relevant 
characteristics for the environment models of the RTES under 
study is provided in Table 1. The columns ‘Guard on Path’ (GoP) 
and ‘Time transition on Path’ (ToP) represent whether these 
features were present on a path to the error state. The column 
‘Loop to Risky state’ (LtR) reports whether there was a loop back 
to a risky state (i.e., an outgoing transition to a state and then 
returning back to the risky state). The columns ‘Guard to Error 
Transition’ (GET) and ‘Time transition to Error’ (TtE) show 
whether these features were present on the transition from the 
risky state to the error state. The column ‘Approach’ shows if the 
approach to the risky state (i.e., obtaining a test case in which the 
closest executed state is the risky state) is trivial or not. It is 
considered to be trivial if a risky state is reached on average by 
the first ten randomly executed test cases. The row in Table 1 with 
problem IC summarizes the characteristics of the environment 
models for the industrial case study. 

These RTES are written in Java to facilitate their use on different 
machines and operating systems. The communication between the 
RTES and their environments is carried out through TCP. All 
these RTES are multithreaded. Each of the artificial problems had 
one error state in their environment models and non-trivial faults 
were introduced by hand in each of them. We could have rather 
seeded those faults in a systematic way, as for example by using a 
mutation testing tool [27]. We did not follow such procedure 
because the SUTs are highly multi-threaded and use a high 
number of network features (e.g., opening and reading/writing 
from TCP sockets), which could be a problem for current 
mutation testing tools. Furthermore, our testing is taking place at 
the system level, and though small modifications made by a 
mutation testing tool might be representative of faults at the unit 
level, it is unlikely to be the case at the system level for RTES. On 
the other hand, the faults that we manually seeded came from our 
experience with the industrial RTES and from the feedback of our 
industry partners. For the industrial case study, we did not seed 
any fault and the goal was to find the real fault that we initially 
uncovered in [1]. 

6.2 Experiments 
In this paper, we want to answer the following research questions:  

RQ1: What is the effect on fault detection of new order functions 
having each one of the proposed heuristics: Improved Time 
Distance (ITD), Time In Risky State (TIR), Risky State Count 
(RSC), and Coverage (COV) compared to the previously defined 
basic fitness function for GA and (1+1) EA? RQ2: Which 
combinations of the proposed heuristics are best in terms of fault 
detection? RQ3: Between the two search-based algorithms, GA 
and (1+1) EA, which one works better in terms of fault detection 
with the new heuristics? RQ4: How do the search-based 
algorithms compare to random testing (RT)? RQ5:  How does the 
best combination of the proposed heuristics compare to RT, GA-
Basic, and (1+1) EA-Basic on the industrial case study? 

To answer the research questions RQ1 – RQ4, we carried out a 
series of experiments on the above-mentioned thirteen artificial 
problems. For RQ5, we conducted the experiments on the 
industrial case study. We ran two search algorithms, (1+1) EA and 
GA, to answer these research questions. We also used RT as a 
comparison baseline for RQ2, RQ4, and RQ5, as it is the simplest 
solution to implement. For GA, we employ rank selection with 
bias 1.5 to choose the parents, the initial population size is 10 and 
a single point crossover is used with probability Pxover = 0.75. 
Different settings of these parameters could lead to different 
performance, but we selected reasonable parameter values 
following recommendations in the GA literature [28].  

For the experiments, we ran RT, GA, (1+1) EA on each of the 13 
problems. We have three order functions for the individual 
heuristics and can combine them in 12 different ways (as 
described in Section 5.5). We ran these combinations with both 
the basic order function (defined in (2)) and the order function 
using ITD (defined in (3)). In total we therefore executed 2 * (8 * 
2) *13 + 13 = 429 experiment configurations (two search 
algorithms, 16 order functions, 13 artificial problems, on which 
RT is also run). The execution time of each test case was fixed to 
10 seconds and we stopped each algorithm after 1000 sampled test 
cases or as soon as we reached any of the error states. The choice 
of running each test case for 10 seconds was based on the 
properties of the RTES and the environment models. The 
objective was to allow enough time for the test cases to reach an 
error state. For each of these 429 experiment configurations, we 
ran each algorithm 20 times with different random seeds. The 
total number of sampled test cases was 7,676,635, which required 
around 888 days of CPU resources. Therefore, we performed the 
experiments on a cluster of computers.  

	
Table 2. Success rates of various heuristic for GA & EA 

 
Problem

Basic ITD TIR RSC COV 

GA EA GA EA GA EA GA EA GA EA
AP1 0.3 0 0.05 0.15 0.9 1 0.2 0.05 0.4 0

AP2 0.65 0.3 0.5 0.5 11 1 0.65 0.55 0.6 0.25

AP3 0.4 1 0.5 0.9 0.5 0.9 0.45 0.9 0.5 1

AP4 0.9 1 0.95 1 1 1 0.95 1 0.95 0.95

AP5 0 0.55 0.05 0.6 0.05 0.95 0.05 0.5 0.05 0.6

AP6 0.65 0.5 0.85 0.9 0.65 0.75 0.4 0.35 0.5 0.15

AP7 1 0.9 1 0.9 1 1 0.95 0.9 0.95 0.3

AP8 0.15 0.1 0.15 0.55 0 0.3 0 0.05 0 0.05

AP9 0.75 0.65 0.8 0.45 0.6 0.4 0.9 1 0.45 0.45

AP10 1 0.9 1 0.85 1 0.9 1 0.95 0.85 0.15

AP11 0.55 0.75 0.75 0.8 0.6 0.7 0.65 0.45 0.65 0.45

AP12 0.25 0.25 0.3 0.1 0.25 0.05 0.25 0 0.15 0.1

AP13 0.95 1 1 1 0.85 0.9 0.95 0.85 1 0.75

Average 0.58 0.61 0.61 0.67 0.65 0.76 0.57 0.58 0.54 0.4



Table 3. Results of ITD compared with basic fitness function 

Problem GA-ITD vs. GA EA-ITD vs. EA 
AP6 - p=0.0138, ψ =7.4
AP8 - p=0.0057, ψ =8.96 

 

Table 4. Results of TIR compared with basic fitness function 

Problem GA-TIR vs. GA EA-TIR vs. EA 
AP1 p= 0.00024, ψ = 16.51   p=1.45e-11, ψ =1681
AP2 p= 0.00832, ψ = 22.78 p=3.34e-06, ψ = 91.46 
AP3 - it-p = 0.00167, A12 = 0.8 
AP5 - p=0.00836, ψ = 10.74 
AP6 it-p= 0.03125,  A12 = 0.24 - 

AP10 - it-p= 0.02677, A12 = 0.7 

 

To answer the research question RQ5, we carried out experiments 
on the industrial case study. We run each test case for 60 seconds, 
where 1000 test case executions (fitness evaluations) can take 
more than 16 hours. This choice has been made based on the 
properties of the RTES and discussions with the actual testers. 
Due to the large amount of resources required, we only ran the 
combination of heuristics that on average gave best results for the 
thirteen artificial problems. We compared its fault detection rate 
with that of GA-Basic, (1+1) EA-Basic, and RT. We carried out 
20 runs for each of these four experiment configurations. The total 
number of sampled test cases was 42,073, which required over 29 
days of computation on a single, high-performance, dedicated 
machine. 

To analyze the results, we used the guidelines described in [29] 
which recommends a number of statistical procedures to assess 
randomized test strategies. First we calculated the success rates of 
each algorithm: the number of times it was successful in reaching 
the error state out of the total number of runs. These success rates 
are then compared using the Fisher Exact test, quantifying the 
effect size using an odds ratio (ψ) with a 0.5 correction (p-values 
of this test are denoted as p in the tables showing the results). 
When the differences between the success rates of two algorithms 
were not significant, we then looked at the average number of test 
cases that each of the algorithms executed to reach the error state. 
We used the Mann-Whitney U-test and quantified the effect size 
with the Vargha-Delaney A12 statistics (p-values of this test are 
denoted as it-p in the tables showing the results). The significance 
level for these statistical tests was set to 0.05. In all the tables 
showing the odds ratio and A12 statistics, when comparing two 
algorithms, say q and r, a bold-faced font shows that q is 
significantly better than r and an italicized font shows that q is 
significantly worse than r. Table cells with a ‘-’ denote no 
significant results for the comparison. 

6.3 Results and Discussion 
We decompose RQ1 into four sub questions (RQ1a - RQ1d), one 
for each heuristic. Table 2 shows the success rates for the 13 
artificial problems and the four heuristics with GA and (1+1) EA. 

Results when applying ITD (RQ1a) to the artificial problems with 
GA and EA are shown in Table 3 and are compared with results 
obtained when using the basic fitness function. The table shows 
the p-values and odds ratio when success rates were significantly 
different and otherwise, the p-value and the A12 statistics on the 
difference in the number of test case executions to reach the error 
state. Using ITD with (1+1) EA yields significantly better results 
for two of the artificial problems. In other cases the performance 

of the algorithm with this order function was the same as that for 
the basic algorithm. ITD relies on information regarding guarded 
time transitions in the models. Among the thirteen artificial 
problems, AP3 – AP5 and AP9 did not have any guard or time 
transition leading to the error state. Even in these cases, ITD 
shows similar performance to basic fitness with no significant 
drawbacks. To answer RQ1a, using the fitness function with ITD 
can bring improvements in fault detection effectiveness for (1+1) 
EA and has no significant difference when used with GA. 

Turning now to Table 4, when TIR was used with GA (RQ1b), it 
gave significantly better results in two of the artificial problems 
and was worse in one problem (AP6). For other artificial 
problems, the results of the two algorithms were comparable. 
When TIR was used with (1+1) EA, it gave significantly better 
results for five of the 13 artificial problems. In other cases there 
were no significant differences. To answer RQ1b, TIR performs 
better or similar to the basic fitness for all but one of the artificial 
problems, whereas the performance of TIR with EA is better or 
equal to the (1+1) EA-Basic in all the cases. Hence the use of TIR 
in the order function seems to be an effective option in most 
cases. 

Table 5 addresses RQ1c and evaluates the RSC heuristic. When 
RSC was used with GA, it gave significantly better results in one 
of the artificial problems (AP10) and showed no significant 
difference for the other artificial problems. When RSC was used 
with (1+1) EA, it gave significantly better results for one artificial 
problem (AP9), worse results for another one (AP12), and no 
statistical differences otherwise. RSC depends on the presence of 
a loop back to a risky state. According to the information in Table 
1, AP6 – AP10 had a loop back to the risky state. Hence, we can 
answer RQ1c by stating that for all the problems that have a loop 
to risky states, an order function using the RSC heuristic performs 
significantly better or similar to the basic fitness function. But for 
the problems without such a loop, it can negatively affect 
performance. Table 6 addresses RQ1d and evaluates the Coverage 
(COV) heuristic. When COV was used with GA, there were no 
statistical differences between the results. When it was used with 
(1+1) EA, it gave significantly worse results for four of the 
artificial problems and yielded no significant differences in other 
cases. To answer RQ1d, using the order function with coverage 
only can result in significant deterioration in the performance of 
(1+1) EA. 

To summarize the comparison of proposed heuristics with basic 
fitness (RQ1), we can state that ITD and TIR heuristics shows 
significant improvements for (1+1) EA and in most cases for GA. 
RSC shows improvements in cases where there is a loop to risky 
states, otherwise it can negatively affect the performance. Finally 
the COV heuristic shows worse performance for (1+1) EA and no 
difference for GA.  

Next, we answer RQ2, for which we evaluate the various 
combinations of the four proposed heuristics. As discussed we had 
a total of 16 possible order functions for each search algorithm. 
Table 7 provides the relative ranking based on the statistical 
difference of the compared configurations. Configurations which 
are statistically equivalent (i.e., p-values above 0.05) are expected 
to show a similar ranking. This is done by assigning scores based 
on pairwise comparisons of configurations. Whenever a 
configuration is better than the other and the difference is 
statistically significant, its score is increased. Then, based on the 
final scores, each configuration is assigned ranks ranging from 1 
(best configuration) to 33 (worst configuration). In case of ties, 



ranks are averaged. The configurations in the table are sorted by 
their average ranking (last column) in an ascending order. 

Overall, based on the average ranks for the 13 artificial problems, 
(1+1) EA with TIR proved to be the best algorithm for both Basic 
and ITD versions of the heuristic. Analyzing the results of Table 7 
according to the characteristics of artificial problem, we can 
conclude that in general search-based algorithms perform 
significantly worse than RT for the artificial problems where the 
approach to risky states is trivial (see discussion for RQ4 and a 
plausible detailed explanation at the end of this section). If we 
exclude the results of such artificial problems (i.e., AP9 – AP13), 
then in all the other problems, (1+1) EA with ITD and TIR 
performed significantly better than other combinations. According 
to the ranks shown, the only exception seems to be AP7, but even 
in that case, though the number of test case executions is 
significantly less for other order functions, the success rate of 
(1+1) EA with both the order functions (Basic-TIR and ITD-TIR) 
was 100%. If we only consider GA, then the best two algorithms 
were GA-ITD-TIR and GA-ITD-TIR-RSC. The good overall 
performance of TIR is likely to be due to the fact that it focuses on 
making the environment spend more time in the risky states, thus 
increasing the occurrence of situations that lead to the error state. 
When we compared the performance of (1+1) EA-Basic-TIR with 
(1+1) EA-ITD-TIR, there were no significant differences in the 
results. But looking at the results in Table 7, where for various 
combinations used with (1+1) EA-ITD and (1+1) EA-Basic, the 
combinations used with (1+1) EA-ITD showed better or 
statistically equal results. This also further confirms the findings 
of RQ1a, which suggested to use (1+1) EA-ITD over (1+1) EA-
Basic. 

Regarding RQ3 (about the comparison of GA and (1+1) EA), 
based on Table 7, (1+1) EA seems overall to provide significantly 
better results with various combinations when compared to GA 
using the same combinations of heuristics. An exception to this is 
when EA is used with the coverage heuristic, in which case it 
performs significantly worse than GA. Even for the problems with 
non-trivial approach level, the performance of most of the 
heuristic combinations for EA is significantly better than their 
performance with GA. Hence, we can conclude that the fault 
detection effectiveness of (1+1) EA is higher than that of GA for 
the kind RTES system testing we focus on.  

To answer RQ4 (comparison of RT with EA and GA), we 
compare RT with the heuristic combinations giving the best 
results for GA and EA. According to RQ3, for (1+1) EA, EA-
ITD-TIR and EA-Basic-TIR and for GA, GA-ITD-TIR and GA-
ITD-TIR-RSC were the best combinations.  

Table 8 shows a comparison of RT with these four algorithms. 
The statistics for the situations where RT is significantly worse 
than these algorithms are bold faced and the situations where it is 
significantly better are italicized. It can be observed that for all the 
artificial problems that have a trivial approach level (Table 1:  
AP9–AP13), RT performs significantly better than both search 
algorithms. But in other cases, where the approach level is hard, 
EA and GA perform significantly better. This is especially true for 
EA who performs better in all the other problems, except AP7. 
For AP7, over 90% of the heuristics combinations had a 100% 
success rate and the remaining had a success rate of over 85%. 
Therefore, AP7 can also be considered to be a simple problem. 
Hence, we can answer RQ4 by stating that for simple problems 
(i.e., where the average success rate of all the algorithms is high 
or the approach level is trivial) RT performs significantly better 
than both search-algorithms, but for more difficult problems (i.e., 

lower success rates or non-trivial approach level), search 
algorithms perform significantly better. The best technique (1+1) 
EA-ITD-TIR has an average success rate of 73% for the 13 
problems with an average number of 222 test case executions to 
find a fault. If we only consider the problems where approach 
level was non-trivial (i.e., excluding AP9 – AP13), then the 
average success rate is 84%. The worst success rate is 35% (AP8), 
which suggests that with r runs of the technique, we would 
achieve a success rate of 1 - (1-0.35)r. For example with only five 
runs (r = 5), we would obtain a success rate above 99%. 

RQ5 is about comparing the best combination of heuristics with 
GA-basic, (1+1) EA-Basic and RT on the industrial case study. 
According to RQ2, the combination showing on average the best 
results for artificial problems was (1+1) EA-ITD-TIR. Table 9 
shows the comparative results of running (1+1) EA-ITD-TIR, 
(1+1) EA-Basic, GA-Basic, and RT on the industrial case study. 
Table 10 shows the details of the results of this experiment 
including the average success rate (SR) and the average number of 
test case executions to find a fault (ATE). We can see that (1+1) 
EA-ITD-TIR shows significantly better performance over both 
GA-Basic and (1+1) EA-Basic. When compared to RT, there is no 
significant statistical difference. The best combination has 
relatively lower success rate (0.8 compared to 1 for RT), but it 
finds the fault with a lower, average number of test case 
executions (250 compared to 295 for RT). The better performance 
of RT can be explained by the fact that in the industrial case 
study, the approach level to risky state was again trivial as shown 
in Table 1 (i.e., on average it could be reached in less than 10 
random test cases).  

Following, we provide a plausible explanation as to why RT 
shows better performance when the approach level to risky state is 
trivial. The transition from a risky state to the error state 
represents the erroneous behavior of the SUT and will only be 
triggered if the interaction of the SUT with the environment was 
at some point incorrect. Therefore, triggering this transition is 
dependent on the behavior of the SUT. Once the environment 
reaches a risky state and is not able to proceed to the error state, a 
possible option is to try to maximize the diversity in the 
environment behavior (e.g., by using entirely different values for 
the test data matrix, irrespective of their effect on the fitness). 
Maximizing diversity could result in execution of a behavior of 
the environment that causes the SUT to interact in an erroneous 
way which will in turn result in the transition to the error state. 
When the approach to risky state is trivial then we can simply use 
RT (or a similar technique) to try to maximize diversity, instead of 
using a technique like (1+1) EA that generates similar individuals 
(which makes it hard for search algorithms to be successful in 
such cases).  
 

Table 5. Results of RSC compared with basic fitness function 

Problem GA-RSC vs. GA EA-RSC vs. EA 
AP9 - p=0.00831, ψ =22.78
AP10 it-p= 0.0073, A12 = 0.74 - 

AP12 - p=0.047, , ψ =22.78 

 

Table 6. Results of COV compared with Basic fitness function 

Problem GA-COV vs. GA EA-COV vs. EA 
AP6 - p = 0.0407, ψ = 5 

AP7 - p = 0.0002, ψ =16.5 

AP10 - p = 3.36e-06, ψ =37

AP13 - p = 0.0471, ψ =14.5 



Table 7. Rank of each heuristic combination on 13 artificial problems (sorted by average rank) 

Algorithm AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10 AP11 AP12 AP13 Avg.  

(1+1)EA-Basic-TIR 2.5 2.5 4 4 1 3 26.5 8.5 31 12.5 17.5 24.5 23 12.35

(1+1)EA-ITD-TIR 2.5 2.5 2 3 2.5 2 22 5.5 23.5 18.5 23.5 30 27 12.65

GA-ITD-TIR 7 5 24.5 21 26 7.5 1 25 25 2.5 10.5 3.5 12 13.12

(1+1)EA-ITD-TIR-RSC 2.5 2.5 1 1 9.5 7.5 19 3.5 26 20.5 22 30 31 13.54

GA-ITD-TIR-RSC 10 9 24.5 21 26 7.5 8 16 3 4 26 17.5 4 13.58

GA-ITD-RSC-COV 17 18.5 24.5 12.5 26 13 4 21 4 9 17.5 2 14.5 14.12

RT 14.5 9 33 33 26 32 8 31 1 2.5 1 1 1 14.85

(1+1)EA-ITD-TIR-RSC-COV 5 9 9 2 9.5 7.5 4 1.5 22 30 32 30 32.5 14.92

(1+1)EA-ITD-RSC-COV 28 29 14 14.5 9.5 4 20 3.5 21 22 5 8.5 18.5 15.19

GA-ITD-RSC 19.5 22 24.5 17 26 22.5 12 16 19.5 9 2 5 3 15.23

GA-ITD-TIR-COV 23 13.5 24.5 26 26 10 12 16 16.5 9 7.5 8.5 6 15.27

(1+1)EA-ITD 23 27 15.5 6 14.5 1 21 1.5 32 20.5 6 17.5 20.5 15.85

GA-Basic-TIR-RSC 11 9 24.5 21 26 17 8 25 8 12.5 20 17.5 10.5 16.15

(1+1)EA-ITD-RSC 19.5 18.5 12 6 14.5 11 24 5.5 12 18.5 20 24.5 24.5 16.19

GA-Basic-RSC-COV 26.5 24.5 24.5 28.5 17.5 22.5 2 16 7 9 14.5 3.5 14.5 16.19

(1+1)EA-Basic-TIR-RSC 2.5 2.5 9 9 5 20.5 24 10.5 29.5 16 23.5 30 29 16.23

GA-Basic-RSC 23 22 24.5 21 26 26 18 31 6 1 3.5 8.5 5 16.58

(1+1)EA-ITD-TIR-COV 7 13.5 9 10.5 5 5 24 10.5 23.5 29 33 30 22 17.08

GA-Basic 18 22 24.5 24 26 14.5 8 16 14.5 16 14.5 8.5 17 17.19

GA-ITD-COV 26.5 18.5 24.5 27 17.5 14.5 15.5 16 10 14 14.5 17.5 8 17.23

GA-Basic-TIR-COV 13 18.5 24.5 30 26 17 14 25 5 5 14.5 17.5 14.5 17.27

GA-Basic-TIR 7 9 24.5 31 26 28.5 17 31 16.5 9 10.5 8.5 8 17.42

GA-ITD 30 27 24.5 28.5 26 12 8 16 12 16 10.5 8.5 10.5 17.65

GA-ITD-TIR-RSC-COV 23 15.5 24.5 25 26 20.5 12 16 14.5 24 7.5 17.5 8 18.00

GA-Basic-TIR-RSC-COV 14.5 15.5 24.5 32 26 24.5 15.5 25 12 6 10.5 17.5 14.5 18.31

(1+1)EA-Basic-TIR-COV 12 9 4 17 5 28.5 29.5 25 9 31 26 24.5 27 19.04

GA-Basic-COV 16 24.5 24.5 21 26 27 4 31 28 23 3.5 17.5 2 19.08

(1+1)EA-Basic-RSC-COV 23 30 13 14.5 16 17 31.5 8.5 18 26 26 17.5 20.5 20.12

(1+1)EA-Basic-TIR-RSC-COV 9 9 6 12.5 2.5 30.5 31.5 31 19.5 28 31 30 32.5 21.00

(1+1)EA-Basic-RSC 30 27 9 10.5 9.5 30.5 26.5 25 2 25 29 30 24.5 21.42

(1+1)EA-Basic 32.5 31 15.5 8 9.5 24.5 29.5 16 27 27 30 12 18.5 21.62

(1+1)EA-ITD-COV 30 32.5 4 17 9.5 19 28 7 33 32.5 20 24.5 27 21.85

(1+1)EA-Basic-COV 32.5 32.5 9 6 13 33 33 25 29.5 32.5 28 17.5 30 24.73

	
Table 8. Comparison of RT with best combinations of GA and (1+1)EA on artificial problems*  

Problem RT vs. GA1 RT vs. GA2 RT vs. EA1 RT vs. EA2  

AP1 p=0.0012, ψ =15.74 - p = 0.0001, ψ = 49.63 p = 0.0001, ψ = 49.63 

AP2 - - it-p =  0.002, A12 = 0.2137 it-p =  0.0038, A12= 0.2312 

AP3 0.0202, ψ = 18.38 p = 0.0005, ψ = 41 p = 3.3e-09, ψ = 303.40 p = 1.5e-11, ψ = 1681.00 

AP4 - - p = 0.0083, ψ = 22.78 p = 0.0083, ψ = 22.78 

AP5 - - p = 3.0e-10, ψ = 533.00 p = 3.3e-06, ψ = 91.46 

AP6 p = 1.7e-05, ψ = 27.13 p = 8.7e-05, ψ = 18.33 p = 0.0012, ψ = 10.33 p = 8.7e-05, ψ = 18.33 
AP7 - - it-p =  0.0053, A12 = 0.759 it-p =  0.0425, A12 = 0.689 

AP8 - - p = 0.0201, ψ = 18.38 p = 0.0083, ψ = 22.78 

AP9 p=0.0004, ψ = 41 p=0.0202, ψ = 18.38 p = 4.5e-05, ψ = 60.29 p = 0.0004, ψ = 41.00 

AP10 - - - it-p =  0.0114, A12 = 0.738 
AP11 p = 0.0471, ψ = 14.55 p = 4.5e-05, ψ = 60.29 p = 0.0201, ψ = 18.38 p = 0.0001, ψ = 49.63 
AP12 p = 1.3e-05, ψ = 73.80 p = 2.6e-08 , ψ = 205.00 p = 3.0e-10, ψ = 533.00  p = 1.4e-11, ψ = 1681.00 
AP13 - - it-p =  0.0081, A12 = 0.7528 p = 0.0202, ψ = 18.38 

* GA1 = GA-ITD-TIR, GA2 = GA-ITD-TIR-RSC, EA1 = EA-Basic-TIR, EA2 = EA-ITD-TIR 



Table 9. Comparison of four algorithms on industrial case 

Algorithm 
(1+1)EA-
Basic 

(1+1)EA-
ITD-TIR 

RT GA-Basic 

(1+1)EA-
Basic 

× 
ψ= 0.40 ,  
A12= 0.74 

ψ= 0.036 , 
A12= 0.75 

ψ= 1.78 , 
A12= 0.82 

(1+1)EA-ITD-
TIR 

ψ= 3.40 ,  
A12= 0.26 

× 
ψ= 0.089 ,  
A12= 0.44 

ψ= 4.44 , 
A12= 0.42 

RT 
ψ= 27.88 , 
A12= 0.25 

ψ= 11.18, 
A12= 0.56 

× 
ψ= 49.63 , 
A12= 0.47 

GA-Basic 
ψ= 0.56,  
A12= 0.18 

ψ= 0.23, 
A12= 0.71 

ψ= 0.02 , 
A12= 0.53 

× 

 

Table 10. Details of each algorithm on the industrial case* 

Algorithm  SR ATE StD  Med Skewness Kurtosis 

(1+1)EA-Basic 0.6 559 270.18 615.5 -0.8 3.03

(1+1)EA-ITD-TIR  0.8 250.12 235.44 166 1.35 3.25

RT  1 295.2 279.1 225 1.24 3.42

GA-Basic  0.45 273.22 186.97 246 0.18 1.88
* SR = Success rate, ATE = average test case executions for each run, StD = standard 
deviation, Med = Median 

If this is not the case and approach to risky state is not trivial, then 
a likely reason for not reaching the risky state is a guard on the 
transition and/or a time transition. The heuristics for search-based 
algorithms that we discussed in this paper are specifically 
designed to deal with these cases and are more suitable for such 
cases than RT. Our previous results on solving constraints written 
in OCL, lead us to the conclusion that search-based algorithms are 
an order of magnitude better than randomized algorithms for this 
purpose [25]. Hence, if the guard on the transition can be solved 
by directly changing the values of attributes of the environment 
components or the transition is a time transition, then our best 
chance is to use the search algorithms (and more specifically in 
our context, (1+1) EA-ITD-TIR).  

From a practical standpoint, a possible solution to deal with the 
above mentioned situations that arise due to the nature of 
environment models is to apply RT at the start of testing and 
evaluate whether risky states are easy to reach. If this is the case, 
and if the OCL guard on the transition does not provide gradient 
(i.e., the so called flag problem [30]), then RT is most likely to 
trigger the transition to the error states compared to search 
algorithms (because of the reasons discussed above). In case the 
approach is not trivial, then one should use (1+1) EA-ITD-TIR, 
which is the best combination to use in the cases when there are 
guards on time transitions located on the path to the error state and 
is at the same time no worse than its corresponding Basic version 
(i.e., (1+1) EA-Basic-TIR). One limitation to this can be situations 
in which the approach level is not trivial and at the same time the 
transition leading to the risky state is only triggered in response to 
a particular SUT behavior (e.g., a guard that is set based on 
interactions with the SUT). This case will be similar to scenarios 
with a trivial approach to risky state in a way that the best chances 
of getting the SU===T to behave in the required way are by 
invoking diverse environment behaviors. This, as we discussed 
earlier, is better done by RT than by the search algorithms with 
the proposed order functions. A possible solution to situations like 
these is to combine random testing with search-based algorithms 
and apply adaptive mechanisms based on the feedback from the 
executed test cases, which we will address in our future work. 

In light of all the results and discussions, we can conclude that 
when applying our environment model-based testing approach in 
practice, one can achieve good results by combining RT and (1+1) 

EA-ITD-TIR. This can be done by running RT first and then, if no 
error state is reached within a short time, by running (1+1) EA-
ITD-TIR for a few runs. Based on the results reported in this 
paper, this strategy would be expected to achieve a success rate 
close to 100%. 

6.4 Threats to validity 
Although the artificial problems that we developed were based on 
industrial RTES and are not trivial (they are multithreaded and 
hundreds of lines long), these artificial problems are not 
necessarily representative of complex RTES. To reduce this 
threat, we used artificial problems inspired by three actual RTES 
and intentionally varied the properties of their environments in 
ways which could affect the search algorithms.  

A typical problem when testing RTES is accurate simulation of 
time. Our approach focuses on RTES with soft time deadlines in 
the order of hundreds of milliseconds with an acceptable jitter of a 
few milliseconds. Therefore, we used the CPU clock to represent 
time. This might be unreliable if time constraints in the RTES 
were very tight (e.g., nanoseconds) since they could be violated 
because of unpredictable changes of load balance in the CPU in 
the presence of unrelated process executions. To be on the safe 
side, to evaluate whether our results are reliable, we selected a set 
of experiments and ran them again with exactly the same random 
seeds. We obtained equivalent results with a small variance of a 
few milliseconds, which in our context did not affect the testing 
results. 

7. CONCLUSION 
In this paper, we proposed four new heuristics for search-based, 
black-box automated testing of Real-Time Embedded Systems 
(RTES) based on a model of their environment. The heuristics 
were developed to exploit various properties of these environment 
models in an attempt to reach environments states indicating a 
fault in the RTES (Error states). We provide an extensive 
empirical evaluation on an industrial case study and thirteen 
artificial RTES that we developed based on two industrial case 
studies belonging to different domains. The models of these 
artificial problems present varying properties that may affect the 
performance of these heuristics and are meant to help us 
understand the conditions under which they are beneficial. We 
evaluated the individual heuristics and their 16 combinations with 
two search algorithms, Genetic Algorithms (GA) and (1+1) 
Evolutionary Algorithm (EA). We also used Random Testing 
(RT) as a comparison baseline.  

Results show that when reaching a state adjacent to the error state 
(risky state) is not trivial (i.e., reached by random test cases), RT 
is significantly worse than any of the proposed search algorithms. 
In this case, the best results are obtained when using (1) a 
heuristic favoring test cases maximizing the time spent in risky 
states and (2) (1+1) EA as a search algorithm, which showed to be 
overall superior to GA. However, the heuristic that favored higher 
coverage of states in the environment model (coverage) showed 
significantly poorer performance with (1+1) EA in four of the 
thirteen problems. Based on the results, we proposed a way to 
combine RT with (1+1) EA in order to achieve high fault 
detection rates in practice. 
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