
Empirical Investigation of Search Algorithms for
Environment Model-Based Testing of Real-Time

Embedded Software
Muhammad Zohaib Iqbal
Certus Software V & V Center,

 Simula Research Laboratory and
University of Oslo, Norway

zohaib@simula.no

Andrea Arcuri
Certus Software V & V Center,

Simula Research Laboratory, Norway

arcuri@simula.no

Lionel Briand
SnT Centre, University of

Luxembourg, Luxembourg &
 Certus Software V & V Center,

Simula Research Laboratory, Norway

lionel.briand@uni.lu

ABSTRACT
System testing of real-time embedded systems (RTES) is a
challenging task and only a fully automated testing approach can
scale up to the testing requirements of industrial RTES. One such
approach, which offers the advantage for testing teams to be
black-box, is to use environment models to automatically generate
test cases and oracles and an environment simulator to enable
earlier and more practical testing. In this paper, we propose novel
heuristics for search-based, RTES system testing which are based
on these environment models. We evaluate the fault detection
effectiveness of two search-based algorithms, i.e., Genetic
Algorithms and (1+1) Evolutionary Algorithm, when using these
novel heuristics and their combinations. Preliminary experiments
on 13 carefully selected, non-trivial artificial problems, show that,
under certain conditions, these novel heuristics are effective at
bringing the environment into a state exhibiting a system fault.
The heuristic combination that showed the best overall
performance on the artificial problems was applied on an
industrial case study where it showed consistent results.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Experimentation, Verification.

Keywords
Automated model-based testing, real-time embedded systems,
search-based software engineering, branch distance.

1. INTRODUCTION
Real-time embedded systems (RTES) are part of a vast majority
of computing devices available today. They are widely used in
critical domains where high system dependability is required.
These systems typically work in environments comprising of large
numbers of interacting components. The interactions with the
environment can be bound by time constraints. For example, if a
gate controller RTES on a railroad intersection is informed by a
sensor that a train is approaching, then the RTES should

command the gate to close before the train reaches it. Missing
such time deadlines, or missing them too often for soft real-time
systems, can lead to serious failures leading to threats to human
life or the environment. There is usually a great number and
variety of stimuli from the RTES environment with differing
patterns of arrival times. Therefore, the number of possible test
cases is usually very large if not infinite. Testing all possible
sequences of stimuli is not feasible. Hence, systematic automated
testing strategies that have high fault revealing power are essential
for effective testing of industry scale RTES. The system testing of
a RTES requires interactions with the actual environment. Since,
the cost of testing in actual environments tends to be high,
environment simulators are typically used for this purpose.

In our earlier work, we proposed an automated system testing
approach for RTES software based on environment models [1, 2].
The models are developed according to a specific strategy using
the Unified Modeling Language (UML) [3], the Modeling and
Analysis of Real-Time Embedded Systems (MARTE) profile [4]
and our proposed profile for environment modeling [5]. These
models of the environment were used to generate an environment
simulator [6], test cases, and obtain test oracle [1, 2]. We applied
various testing strategies to generate test cases, including search-
based strategies, which turned out not to work very well as even
Random Testing (RT) [7] fared better.

In our context, a test case is a sequence of stimuli generated by the
environment that is sent to the RTES. If a user interacts with the
RTES, then she would be considered part of the environment as
well. A test case can also include changes of state in the
environment that can affect the RTES behavior. For example,
with a certain probability, some hardware components might
break, and that affects the expected and actual behavior of the
RTES. A test case can contain information regarding when and in
which order to trigger such changes. So, at a higher level, a test
case in our context can be considered as a setting specifying the
occurrence of all these environment events in the simulator.
Explicit “error” states in the models represent states that should
never be reached if the RTES is correct. If any of these error states
is reached, then it implies a faulty RTES. Error states act as the
oracle of the test cases, i.e., a test case is successful in triggering a
fault in the RTES if an error state of the environment is reached
during testing.

In this paper, we further extend the fitness function proposed in
[1] to improve the disappointing results we had obtained with
search-based testing. For this purpose, we present four new
heuristics that are aimed to exploit potentially useful
characteristics of the environment models. We evaluate the fault

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSTA’12, July 15–20, 2012, Minneapolis, MN, USA.
Copyright 2012 ACM 978-1-4503-1454-1/12/07…$10.00.

detection effectiveness of the new heuristics and their
combinations by first performing a series of experiments on 13
artificial RTES that we developed based on the specifications of
two industrial case studies. For all heuristics, we used two search
algorithms: Genetic Algorithms (GA) and (1+1) Evolutionary
Algorithms (EA). We also ran RT on the problems as a
comparison baseline. We then ran the heuristic combination that
on average showed best results for the artificial problems on an
industrial case study of a marine seismic acquisition system,
which was developed by a company leading in this industry
sector. We only ran the best combination because executing test
cases on the industrial case study is very time consuming and we
could not, for technical reasons, run it on a cluster. We compared
the performance of RT and this heuristic combination when used
with GA and (1+1)EA on the industrial case study.

The rest of the paper is organized as follows: Section 2 provides a
background of the work. Section 3 discusses related work. Section
4 provides an introduction to the earlier proposed environment
modeling methodology and testing approach. Section 5 discusses
the new search heuristics, whereas Section 6 discusses the
empirical study carried out to evaluate the new search heuristics.
Finally, Section 7 concludes the paper.

2. BACKGROUND
Several software engineering problems can be reformulated as a
search problem, such as test data generation [8]. An exhaustive
evaluation of the entire search space (i.e., the domain of all
possible combinations of problem variables) is usually not
feasible. There is a need for techniques that are able to produce
“good’’ solutions in reasonable time by evaluating only a tiny
fraction of the search space. Search algorithms can be used to
address this type of problem. Several successful results by using
search algorithms are reported in the literature for many types of
software engineering problems [9].

To use a search algorithm, typically a fitness function needs to be
defined that is used to guide the search algorithms toward fitter
solutions. The fitness function should be able to evaluate the
quality of a candidate solution (i.e., an element in the search
space). The fitness function is problem dependent, and proper care
needs to be taken for developing adequate fitness functions.
Eventually, given enough time, a search algorithm will find a
satisfactory solution.

There are several types of search algorithms. Genetic Algorithms
(GA) are the most well-known [9], and they are inspired by the
Darwinian evolution theory. A population of individuals (i.e.,
candidate solutions) is evolved through a series of generations,
where reproducing individuals evolve through crossover and
mutation operators. (1+1) Evolutionary Algorithm (EA) is simpler
than GAs, in which only a single individual is evolved with
mutation.

To cope with several problems related to combining together
different heuristics/objectives with different priorities, we rather
use an order function h. An order function takes two solutions as
parameters and returns whether the first is better, equivalent, or
worse than the second solution (e.g., by returning 1, 0, and -1
respectively). For a search algorithm, an order function h can
always replace a fitness function f as long as the raw fitness values
are not used besides comparing solutions’ fitness. For example, h
can be used in a GA using tournament or rank selection, but not
for fitness proportional selection. For more details, examples and
discussions regarding order functions for search algorithms in
software testing can be found in [10].

3. RELATED WORK
Depending on the goals, testing of RTES can be performed at
different levels: model-in-the-loop, hardware-in-the-loop,
processor-in-the-loop, and software-in-the-loop [11]. Our
approach falls in the software-in-the-loop testing category, in
which the embedded software is tested on the development
platform with a simulated environment. The only variation is that,
rather than simulating the hardware platform, we use an adapter
that forwards the signals from the system under test (SUT) to the
simulated environment. This helps focus on testing the embedded
software. This approach is especially helpful when the software is
to be deployed on multiple hardware platforms or the target
hardware platform is stable (such as the case with our industry
partners, working in the area of marine seismic acquisition and
automated bottle recycling machines).

A large body of research has been carried out for RTES testing.
Most of these approaches are based on testing the violation of
timing constraints [12] or checking their conformance to a
specification [13]. The specification is generally a formal model
of the system and this model is then used to generate the test
cases. As specification of the system, a number of approaches use
Timed Automata or one of its extensions (e.g., [14]). For the same
purpose, UML statechart [15], Extended Finite State Machines
[16] and Attributed Event Grammar [17] have also been used.
There are also several works using search-based testing
techniques for testing different aspects of RTES, as for example
identify deadline misses [18]. Most of the work on search-based
software testing has been focused on unit testing [19], and not
system level testing as we do in this paper.

There are also a few works discussing RTES testing based on
environment models rather than system models. Auguston et al.
[17] discusses the development of environment behavioral models
using an event grammar for testing of RTES. The behavioral
models contain details about the interactions with the SUT and
possible hazardous situations in the environment. Heisel et al.
[20] propose the use of a requirement model and an environment
model along with the model of the SUT for testing. Adjir et al.
[21] discuss a technique for testing RTES based on the system
model and assumptions in the environment using Labeled
Prioritized Timed Petri Nets. Larsen et al. [22] propose an
approach for online RTES testing based on time automata to
model the SUT and environmental constraints. Peleska et al. [23]
present a benchmark model for testing RTES in the automotive
domain. Their testing methodology uses information from
environment models and system models to obtain test cases.

The work presented here is significantly different from most the
above approaches as we adopt, for practical reasons, a black-box
approach to system testing that relies exclusively on modeling the
RTES environment rather than its internal design properties. This
is of practical importance as independent system test teams
usually do not have easy access to precise design information.
Most existing works do not focus on system testing, hence their
emphasis is on modeling the RTES internal behavior and
structure. Another difference of practical importance, though this
is not in the focus of this paper, is that we use UML and its
standard extensions for modeling the environment [5].

4. ENVIRONMENT MODELING AND
MODEL-BASED TESTING

This section introduces our previous work on which we build in
this paper.

4.1 Environment Modeling & Simulation
For RTES system testing, as we observed among our industry
partners, software engineers familiar with the application domain
would typically be responsible for developing the environment
models. Therefore, we selected UML and its extensions as the
environment modeling language. As a standard modeling
language, it is widely taught and accepted by software engineers
and supported by a broad range of tools and training material, all
of which being important considerations for successful industry
adoption.

The environment models consist of a domain model and several
behavioral models. The domain model captures the structural
details of the RTES environment, such as the environment
components, their relationships, and their characteristics. The
behavior of the environment components is captured by state
machines. These models are developed, based on our earlier
proposed methodology by using UML, MARTE, and our
proposed profile for environment modeling [5]. These models not
only include the nominal functional behavior of the environment
components (e.g., booting of a component) but also include their
robustness (failure) behavior (e.g., break down of a sensor). The
latter are modeled as failure states in the environment models.
The behavioral models also capture what we call error states.
These are the states of the environment that should never be
reached if the SUT is implemented correctly (e.g., no incorrect or
untimely message from the SUT to the environment components).
Therefore, error states act as oracles for the test cases.

An important feature of these environment models is that they
capture the non-determinism in the environment, which is a
common characteristic for most RTES environments Non-
determinism may include, for example, different occurrence rates
and patterns of signals, failures of components, or user
commands. The environment modeling profile provides special
constructs to model non-deterministic behavior of the
environment. Each environment component can have a number of
non-deterministic choices whose exact values are selected at the
time of testing. Java is used as an action language and OCL
(Object Constraint Language) is used to specify constraints and
guards. In general, for the type of system testing we do, a
communication layer is needed to make the simulated
environment communicate with the actual RTES (e.g., to receive
stimuli and to send responses). Such a communication layer is
written by the software engineer separately from the models. This
allows for the simulators and models to be independent of the
language in which SUT is written.

Using model to text transformations, the environment models are
automatically transformed into environment simulators
implemented in Java. The transformations follow specific rules
that we discussed in detail in [6]. During simulation a number of
instances can be created for each environment component, which
interact with each other and the SUT (for example multiple
instances of a sensor component). The generated simulators are
linked with the test framework that provides the appropriate
values for each simulation execution. For all our case studies, the
generated simulators communicate with the SUT using TCP
sockets. The choice of Java and TCP is based on actual
requirements of one of our industrial partners, where the RTES
under study involves soft real-time constraints.

Environment simulation is an important feature for the type of
testing that we do. Our target systems are typically reactive
systems and depending on their internal states, they may behave

differently to the same environment stimuli. Therefore, in some
cases, the exact response from the SUT to a particular
environment event cannot be determined before execution.
Environment models are developed in a way that they accept
different responses of the SUT that may be triggered as a result of
the environment events, including invalid responses that lead to
error states. The simulation allows the environment to handle such
non-determinism in the SUT, since depending on the response of
SUT, the environment can simulate any of the modeled behavior.

4.2 Environment Model-Based Testing
In our context, a test case execution is akin to executing the
environment simulator. The domain model represents various
components in the RTES environment. As mentioned earlier,
during a simulation there can be multiple instances for each of the
environment components and multiple components run in parallel
to form the RTES environment. During the simulation, values are
required for the non-deterministic choices in the environment
models. A test case in our context provides information for both
the number of instances for each component (which we refer to as
the environment configuration) and the values for various non-
deterministic choices (referred to as the simulation configuration).
For the scope of this paper, we only consider one fixed
environment configuration; therefore in the rest of the paper, a test
case is alternatively used for referring to a simulation
configuration.

A test case can be seen as a test data matrix, where each row
provides a series of values for a non-deterministic choice of the
environment component (the number of rows is equal to the
number of non-deterministic choices). Each time a non-
deterministic choice needs to be made, a value from the
corresponding matrix row is selected. During simulation, a query
for a non-deterministic choice can be made several times and the
number of queries cannot be determined before simulation. To
resolve this problem, each matrix row (a data vector) can be
represented in two possible forms: a fixed length ring or a variable
length vector. On one hand, in the fixed-length ring vector, the
vector is considered as a ring and upon reaching the end/tail of the
vector. Then, the values are again selected from the start/head of
the vector. On the other hand, in the variable size vector,
whenever the end of a vector is reached, its size is increased at run
time and new values are added. In our earlier work [2], we
evaluated the effect of the representations and starting lengths of
the test data vectors on the fault detection effectiveness.

In our earlier work, we applied various testing strategies to
generate test cases from the environment models [1]. For search-
based testing, we developed a new fitness function f that can be
seen as an extension of the fitness function developed for model-
based testing based on system specifications [24]. The original
fitness function uses the so-called “approach level” and
normalized “branch distance” to evaluate the fitness of a test case.
For environment model-based testing, we introduced the novel
concept of normalized “time distance”. In our context, the goal is
to minimize the fitness function f, which heuristically evaluates

Figure 1. A dummy state machine to explain search heuristics

how far a test case is from reaching an error state. If a test case
with test data m is executed and an error state of the environment
model is reached, then f(m) = 0.

The approach level (A) refers to the minimum number of
transitions in the state machine that are required to reach the error
state from the closest executed state. Figure 1 shows a dummy
example state machine to elaborate the concept. The state named
Error is the error state. Events e1, e2, and e3 are signal events,
whereas events after “t, s”, after “t1, ms”, and after “t2, ms” are
time events with t, t1, and t2 as the time values and ms and s as
time units. Events e3 and after “t, s” are guarded by constraints
using OCL. If the desired state is Error and the closest executed
state was State5, then the approach level is 1.

The approach level rewards test case executions that get closer to
an error state, but it does not provide any gradient (guidance) to
solve the possible guards on the state transitions. The branch
distance (B) is used to heuristically score the evaluation of the
guards (if any) on the outgoing transitions from the closest
executed state. In [25] we have defined a specific branch distance
function for OCL expressions that is reused here for calculating
the branch distance. In the dummy state machine in Figure 1, we
need to solve the guard “y > 0” so that whenever e4 is triggered,
then the simulation can transition to the Error state. Note that
branch distance is less important than approach level, since it is
required only when the transition towards an error state is guarded
and the approach level cannot be reduced any further. Therefore,
we normalized the branch distance in the range of 0 to 1 [10].	

The third important part of the fitness function is the time distance
(T), which comes into play when there are timeout transitions in
the environment models. For example, in Figure 1, the transition
from State2 to Error is a timeout transition. If a transition should
be taken after z time units, but it is not, we calculate the maximum
consecutive time c the component stayed in the source state of this
transition (e.g., State2 in Figure 1). To guide the search, we use
the following heuristic: T = z – c, where c ≤ z. Again, the
importance of time distance is less than that of approach level,
therefore it is normalized in the range 0 to 1. The fitness function f
using these three heuristics for a test data matrix m is defined as:

f(m)= mine ((Ae(m) + nor(Te(m)) + nor(Be(m))) (1)

where for an error state e, Ae represents the approach level, Te
represents the time distance, and Be represents the branch
distance. nor() is the normalizing function. For guarded time
transitions, Be was only calculated after the corresponding time
event was triggered. Since, there can be multiple error states in the
environment models, the function f(m) only takes the minimum
value over all error states (represented by mine in (1)).

The results when using this fitness function, as reported in [1],
were disappointing. The branch distance was calculated for the
guards only after an event was triggered and this worked fine for
signal events. But for time events, this meant that to get the
branch distance, we first needed to trigger the time event. For this
we focused first on reducing the time distance and then calculated
the branch distance. It turned out that this assumption of favoring
reduction of time distance whenever there is a time transition was
naive. In situations where the time transition had a guard, a test
case with less time distance but with a greater branch distance was
considered to be better than a test case with greater time distance
but lower branch distance. However, there is no purpose in
reducing the time distance (i.e., the error state will not be reached)
if at the end the transition is not fired because the guard is false.

5. IMPROVED FITNESS FUNCTION
In this section, we present novel improvements in the fitness
function f for environment model-based testing of RTES. As
mentioned earlier, for problems related to combining various
heuristics/objectives with different priorities, we can replace the
use of a fitness function f with an order function h. For two test
data matrices m1 and m2, the function h will return 1, 0, or -1 if m1
is better, equal, or worse than m2, respectively.

Following, based on f(m) we define a basic order function h for
two test data matrices (m1, m2) that will be reused for definition of
order functions for the three new heuristics: Time In Risky State
(TIR), Risky State Count (RSC), and Coverage (COV).

	
where for a set of error states es, Amin(m) is defined as the
minimum approach level for the matrix m over es, Bmin(m) as the
minimum branch distance for m over es, and Tmin(m) as minimum
time distance for m over es. Amin takes precedence on Bmin and
Tmin, and Bmin takes precedence on Tmin. This is simply reflecting
the relative importance of these three heuristics.

5.1 Improved Time Distance (ITD)
We improved the way the basic time distance was calculated in
the earlier fitness function. The motivation behind the improved
time distance is that to avoid fitness plateaus, a test case with a
lower branch distance for a time transition should be preferred
over the one having greater branch distance, irrespective of the
time distance. This is due to the fact that during environment
simulation, changing the values of a test case often has a direct
impact on the time distance and it should therefore be easier to
reduce it than the branch distance. For example in Figure 1, the
time transition after “t, s” is guarded by [x > 0]. A test case with a
positive value greater than 0 for x will be considered better than a
test case with a negative or 0 value for x, irrespective of the value
of t. The value of t is considered only after the branch distance of
the guard equals 0. For this, we introduced the concept of a look-
ahead branch distance (LB) for time transitions, which represents
the branch distance of OCL guard on a time transition when it is
not fired (i.e., the timeout did not occur). Because OCL
evaluations are free from side-effects [25], this does not lead to
any particular problem. The order function for two test data
matrices m1 and m2 using this heuristic is:

where for the set of error states es and a given error state e 	es,
Amin(m) represents the minimum approach level for matrix m over
es, Bmin(m) is the minimum branch distance for m over es, LBe(m)
represents the look-ahead branch distance for m for the error state
e, and Te(m) represents the time distance for m over e.

h(m1,m2)=

1 if Amin(m1)<Amin(m2) or (Amin(m1)=Amin(m2) and
Bmin(m1) < Bmin(m2)) or (Amin(m1)=Amin(m2) and
Bmin(m1)= Bmin(m2) and Tmin(m1) < Tmin(m2))

0 if Amin(m1)=Amin (m2) and	Bmin(m1)= Bmin(m2) and
Tmin(m1)=Tmin(m2))	

-1 otherwise (2)	

h(m1,m2)=

1 if Amin(m1)<Amin(m2) or (Amin(m1)=Amin(m2) and
Bmin(m1) < Bmin(m2)) or (Amin(m1)=Amin(m2) and
Bmin(m1)= Bmin(m2) and ITDmin(m1,m 2) = 1)

0 if Amin(m1)=Amin (m2) and	Bmin(m1)= Bmin(m2) and
ITDmin(m1, m2)=0)	

-1 otherwise (3)

ITDe(m1,m2)=

1 if LBe (m1) < LBe (m2) or (LBe (m1) = LBe

(m2) and Te(m1) < Te(m2))
0 if (LBe (m1) = LBe (m2) and Te(m1) = Te(m2))
-1 otherwise

Table 1. Summary of environment models*

Problem GoP ToP LtR GET TtE Approach
AP1 Yes Yes No Yes Yes Non-trivial
AP2 Yes Yes No Yes Yes Non-trivial
AP3 No Yes No No Yes Non-trivial
AP4 No Yes No No Yes Non-trivial
AP5 No Yes No No Yes Non-trivial
AP6 Yes Yes Yes Yes Yes Non-trivial
AP7 Yes Yes Yes Yes Yes Non-trivial
AP8 Yes Yes Yes Yes Yes Non-trivial
AP9 No No Yes No No Trivial
AP10 Yes Yes Yes Yes Yes Trivial
AP11 Yes Yes No Yes Yes Trivial
AP12 Yes Yes No Yes Yes Trivial
AP13 Yes Yes No Yes Yes Trivial
IC Yes Yes Yes Yes Yes Trivial

* GoP = Guard on Path, ToP = Time transition on Path, LtR = Loop to Risky state,
GET = Guard on Error Transition, TtE = Time transition to Error state

5.2 Time in Risky State (TIR)
A “risky state” is defined as a state adjacent to the error state (i.e.,
approach level = 1). For the order function, when two test cases
have the same Amin, Bmin, and Tmin, then a test case that spends
more time in risky states should have higher fitness. The
motivation behind this heuristic is that, the more time spent in a
risky state, the higher the chances of events happening in the
environment or SUT leading to the error state (e.g., receive a
signal from the SUT). For example, for the state machine shown
in Figure 1, this heuristic will favor the test cases that spend more
time in the risky states State2 or State5. For instance in State2, it
is possible to increase the value of t1 in the time event after “t1,
ms”, which will increase the time spent in this state. The overall
order function based on h defined in (2), is given as:

	
where TIRsum(m) is the sum of time spent in risky states for all
error states and the test data matrix m.

5.3 Risky State Count (RSC)
This heuristic is also based on utilizing the concept of risky states:
When two test cases have the same Amin, Bmin, and Tmin, then a test
case that enters a risky state more often should be preferred over a
test case that does so less often. For example, for the state
machine shown in Figure 1, this heuristic will assign higher
fitness to the test cases that make the component enter State2
more often, i.e., transitions to State4 and come back. This would
for instance result in minimizing the values of t1 and t2 for the
timeout transitions after “t1,s” and after “t2,s” to increase the
risky state count. Note that the heuristic will only be useful for the
cases that allow a loop back to a risky state. The overall order
function based on the basic order function h defined in (2) is:

where RSCsum(m) is total count of transitions made to all risky
states for the test data matrix m.

5.4 Increase in Coverage (COV)
This heuristic is based on the concept of coverage of environment
models. This heuristic, when two test cases have the same Amin,

Bmin, and Tmin, calculates the environment coverage and assign
higher fitness to the test cases that cover more environment states.

The idea behind this heuristic is to increase the coverage of the
environment models when the approach level, branch distance and
time distance can no longer be improved. The assumption is that
having higher environment coverage will result in more diversity
in the test cases, which might lead to situations that help reach the
error state. For example in Figure 1, this heuristic will favor a test
case that visited State4 over a test case that did not. The idea is to
explore more states and transitions in the environment models.
The overall order function for COV based on h (2) is:

	
where COVsum(m) is the total coverage for all error states.

5.5 Combination of heuristics
Apart from the individual heuristics, we also investigate their
combinations. In total, for the latter three heuristics (TIR, RSC,
and COV) there are eight possible combinations. They can be
combined with the basic order function h and an order function
containing the improved time distance ITD instead of T in h,
which results in a total of 16 possible combinations

	
where comb(m) is a given combination of the heuristics.

When combining these heuristics, we follow the Pareto
dominance principle - a key concept for multi-objective
optimization in evolutionary algorithms [26]. In our context this
means that, given a combination of heuristics, a test data matrix
m1 will dominate another matrix m2, if it is better than m2 for at
least one heuristic and is not worse than m2 in any of the other
heuristics. The reasons for using a Pareto dominance is that, in
contrast to approach level and branch distance, we do not know
which is the most important heuristic among the three that were
proposed: this is a research question that we address in this paper.

6. EMPIRICAL STUDY
The objective of this empirical study is to evaluate the
effectiveness, in terms of fault detection, of the proposed
heuristics and their combinations. We selected two search
algorithms for this empirical study: Genetic Algorithms (GA) and
(1+1)Evolutionary Algorithm (EA). Though (1+1) EA is simpler
than GA, it has shown better results in our previous testing works
(e.g., [25]). We use the convention Algorithm-Heuristic to denote
an algorithm using a heuristic or its combination. For example, to
denote that GA is used with the basic fitness function defined in
(1), we use the terms GA-Basic.

6.1 Case Study
For the sake of experimenting with diverse environment models
and RTES, we developed 13 different artificial RTES that were
inspired by two industrial cases we have been involved with [5]
and one case study discussed in the literature [16]. Since, there are
no benchmark RTES available to researchers, we specifically
designed these artificial problems to conduct our experiments
(called AP1 – AP13). The goal while developing the models of

h'(m1,m2)=

h(m1, m2) if h(m1, m2) != 0
1 if h(m1, m2) = 0 and TIRsum(m1) > TIRsum(m2)
0 if h(m1, m2) = 0 and TIRsum(m1) = TIRsum(m2)
-1 otherwise

h'(m1,m2)=

h(m1, m2) if h(m1, m2) != 0
1 if h(m1, m2) = 0 and RSCsum(m1) > RSCsum(m2)
0 if h(m1, m2) = 0 and RSCsum(m1) = RSCsum(m2)
-1 otherwise

h'(m1,m2)=

h(m1, m2) if h(m1, m2) != 0
1 if h(m1, m2) = 0 and COVmin(m1) > COVmin(m2)
0 if h(m1, m2) = 0 and COVmin(m1) = COVmin(m2)
-1 otherwise

h'(m1,m2)=

h(m1, m2) if h(m1, m2) != 0
1 if h(m1, m2) = 0 and comb (m1) > comb(m2)
0 if h(m1, m2) = 0 and comb (m1) = comb(m2)
-1 otherwise

these RTES was to vary various characteristics of the environment
models (e.g., guarded time transitions, loops) in order to evaluate
the impact of these characteristics on the test heuristics. We could
not have covered such variations in environment models with one
or even a few industrial case studies, hence the motivation to
develop artificial cases. Nine of these artificial problems were
inspired by a marine seismic acquisition system developed by one
of our industrial partners. These problems covered various subsets
of the environment of the industrial RTES. Three of the 13
problems were inspired by the behavior of another industrial
RTES (part of an automated recycling machine) developed by
another industrial partner. The thirteenth artificial problem was
inspired by the train control gate system described in [16].

The industrial case study we also report on is a very large and
complex seismic acquisition system that interacts with several
sensors and actuators. The timing deadlines on the environment
are in the order of hundreds of milliseconds. The company that
provided the system is a market leader in its field. For
confidentiality reasons we cannot provide full details of the
system. The SUT consists of two processes running in parallel,
requiring a high performance, dedicated machine to run.

To facilitate the discussion of our results, a summary of relevant
characteristics for the environment models of the RTES under
study is provided in Table 1. The columns ‘Guard on Path’ (GoP)
and ‘Time transition on Path’ (ToP) represent whether these
features were present on a path to the error state. The column
‘Loop to Risky state’ (LtR) reports whether there was a loop back
to a risky state (i.e., an outgoing transition to a state and then
returning back to the risky state). The columns ‘Guard to Error
Transition’ (GET) and ‘Time transition to Error’ (TtE) show
whether these features were present on the transition from the
risky state to the error state. The column ‘Approach’ shows if the
approach to the risky state (i.e., obtaining a test case in which the
closest executed state is the risky state) is trivial or not. It is
considered to be trivial if a risky state is reached on average by
the first ten randomly executed test cases. The row in Table 1 with
problem IC summarizes the characteristics of the environment
models for the industrial case study.

These RTES are written in Java to facilitate their use on different
machines and operating systems. The communication between the
RTES and their environments is carried out through TCP. All
these RTES are multithreaded. Each of the artificial problems had
one error state in their environment models and non-trivial faults
were introduced by hand in each of them. We could have rather
seeded those faults in a systematic way, as for example by using a
mutation testing tool [27]. We did not follow such procedure
because the SUTs are highly multi-threaded and use a high
number of network features (e.g., opening and reading/writing
from TCP sockets), which could be a problem for current
mutation testing tools. Furthermore, our testing is taking place at
the system level, and though small modifications made by a
mutation testing tool might be representative of faults at the unit
level, it is unlikely to be the case at the system level for RTES. On
the other hand, the faults that we manually seeded came from our
experience with the industrial RTES and from the feedback of our
industry partners. For the industrial case study, we did not seed
any fault and the goal was to find the real fault that we initially
uncovered in [1].

6.2 Experiments
In this paper, we want to answer the following research questions:

RQ1: What is the effect on fault detection of new order functions
having each one of the proposed heuristics: Improved Time
Distance (ITD), Time In Risky State (TIR), Risky State Count
(RSC), and Coverage (COV) compared to the previously defined
basic fitness function for GA and (1+1) EA? RQ2: Which
combinations of the proposed heuristics are best in terms of fault
detection? RQ3: Between the two search-based algorithms, GA
and (1+1) EA, which one works better in terms of fault detection
with the new heuristics? RQ4: How do the search-based
algorithms compare to random testing (RT)? RQ5: How does the
best combination of the proposed heuristics compare to RT, GA-
Basic, and (1+1) EA-Basic on the industrial case study?

To answer the research questions RQ1 – RQ4, we carried out a
series of experiments on the above-mentioned thirteen artificial
problems. For RQ5, we conducted the experiments on the
industrial case study. We ran two search algorithms, (1+1) EA and
GA, to answer these research questions. We also used RT as a
comparison baseline for RQ2, RQ4, and RQ5, as it is the simplest
solution to implement. For GA, we employ rank selection with
bias 1.5 to choose the parents, the initial population size is 10 and
a single point crossover is used with probability Pxover = 0.75.
Different settings of these parameters could lead to different
performance, but we selected reasonable parameter values
following recommendations in the GA literature [28].

For the experiments, we ran RT, GA, (1+1) EA on each of the 13
problems. We have three order functions for the individual
heuristics and can combine them in 12 different ways (as
described in Section 5.5). We ran these combinations with both
the basic order function (defined in (2)) and the order function
using ITD (defined in (3)). In total we therefore executed 2 * (8 *
2) *13 + 13 = 429 experiment configurations (two search
algorithms, 16 order functions, 13 artificial problems, on which
RT is also run). The execution time of each test case was fixed to
10 seconds and we stopped each algorithm after 1000 sampled test
cases or as soon as we reached any of the error states. The choice
of running each test case for 10 seconds was based on the
properties of the RTES and the environment models. The
objective was to allow enough time for the test cases to reach an
error state. For each of these 429 experiment configurations, we
ran each algorithm 20 times with different random seeds. The
total number of sampled test cases was 7,676,635, which required
around 888 days of CPU resources. Therefore, we performed the
experiments on a cluster of computers.

	
Table 2. Success rates of various heuristic for GA & EA

Problem

Basic ITD TIR RSC COV

GA EA GA EA GA EA GA EA GA EA
AP1 0.3 0 0.05 0.15 0.9 1 0.2 0.05 0.4 0

AP2 0.65 0.3 0.5 0.5 11 1 0.65 0.55 0.6 0.25

AP3 0.4 1 0.5 0.9 0.5 0.9 0.45 0.9 0.5 1

AP4 0.9 1 0.95 1 1 1 0.95 1 0.95 0.95

AP5 0 0.55 0.05 0.6 0.05 0.95 0.05 0.5 0.05 0.6

AP6 0.65 0.5 0.85 0.9 0.65 0.75 0.4 0.35 0.5 0.15

AP7 1 0.9 1 0.9 1 1 0.95 0.9 0.95 0.3

AP8 0.15 0.1 0.15 0.55 0 0.3 0 0.05 0 0.05

AP9 0.75 0.65 0.8 0.45 0.6 0.4 0.9 1 0.45 0.45

AP10 1 0.9 1 0.85 1 0.9 1 0.95 0.85 0.15

AP11 0.55 0.75 0.75 0.8 0.6 0.7 0.65 0.45 0.65 0.45

AP12 0.25 0.25 0.3 0.1 0.25 0.05 0.25 0 0.15 0.1

AP13 0.95 1 1 1 0.85 0.9 0.95 0.85 1 0.75

Average 0.58 0.61 0.61 0.67 0.65 0.76 0.57 0.58 0.54 0.4

Table 3. Results of ITD compared with basic fitness function

Problem GA-ITD vs. GA EA-ITD vs. EA
AP6 - p=0.0138, ψ =7.4
AP8 - p=0.0057, ψ =8.96

Table 4. Results of TIR compared with basic fitness function

Problem GA-TIR vs. GA EA-TIR vs. EA
AP1 p= 0.00024, ψ = 16.51 p=1.45e-11, ψ =1681
AP2 p= 0.00832, ψ = 22.78 p=3.34e-06, ψ = 91.46
AP3 - it-p = 0.00167, A12 = 0.8
AP5 - p=0.00836, ψ = 10.74
AP6 it-p= 0.03125, A12 = 0.24 -

AP10 - it-p= 0.02677, A12 = 0.7

To answer the research question RQ5, we carried out experiments
on the industrial case study. We run each test case for 60 seconds,
where 1000 test case executions (fitness evaluations) can take
more than 16 hours. This choice has been made based on the
properties of the RTES and discussions with the actual testers.
Due to the large amount of resources required, we only ran the
combination of heuristics that on average gave best results for the
thirteen artificial problems. We compared its fault detection rate
with that of GA-Basic, (1+1) EA-Basic, and RT. We carried out
20 runs for each of these four experiment configurations. The total
number of sampled test cases was 42,073, which required over 29
days of computation on a single, high-performance, dedicated
machine.

To analyze the results, we used the guidelines described in [29]
which recommends a number of statistical procedures to assess
randomized test strategies. First we calculated the success rates of
each algorithm: the number of times it was successful in reaching
the error state out of the total number of runs. These success rates
are then compared using the Fisher Exact test, quantifying the
effect size using an odds ratio (ψ) with a 0.5 correction (p-values
of this test are denoted as p in the tables showing the results).
When the differences between the success rates of two algorithms
were not significant, we then looked at the average number of test
cases that each of the algorithms executed to reach the error state.
We used the Mann-Whitney U-test and quantified the effect size
with the Vargha-Delaney A12 statistics (p-values of this test are
denoted as it-p in the tables showing the results). The significance
level for these statistical tests was set to 0.05. In all the tables
showing the odds ratio and A12 statistics, when comparing two
algorithms, say q and r, a bold-faced font shows that q is
significantly better than r and an italicized font shows that q is
significantly worse than r. Table cells with a ‘-’ denote no
significant results for the comparison.

6.3 Results and Discussion
We decompose RQ1 into four sub questions (RQ1a - RQ1d), one
for each heuristic. Table 2 shows the success rates for the 13
artificial problems and the four heuristics with GA and (1+1) EA.

Results when applying ITD (RQ1a) to the artificial problems with
GA and EA are shown in Table 3 and are compared with results
obtained when using the basic fitness function. The table shows
the p-values and odds ratio when success rates were significantly
different and otherwise, the p-value and the A12 statistics on the
difference in the number of test case executions to reach the error
state. Using ITD with (1+1) EA yields significantly better results
for two of the artificial problems. In other cases the performance

of the algorithm with this order function was the same as that for
the basic algorithm. ITD relies on information regarding guarded
time transitions in the models. Among the thirteen artificial
problems, AP3 – AP5 and AP9 did not have any guard or time
transition leading to the error state. Even in these cases, ITD
shows similar performance to basic fitness with no significant
drawbacks. To answer RQ1a, using the fitness function with ITD
can bring improvements in fault detection effectiveness for (1+1)
EA and has no significant difference when used with GA.

Turning now to Table 4, when TIR was used with GA (RQ1b), it
gave significantly better results in two of the artificial problems
and was worse in one problem (AP6). For other artificial
problems, the results of the two algorithms were comparable.
When TIR was used with (1+1) EA, it gave significantly better
results for five of the 13 artificial problems. In other cases there
were no significant differences. To answer RQ1b, TIR performs
better or similar to the basic fitness for all but one of the artificial
problems, whereas the performance of TIR with EA is better or
equal to the (1+1) EA-Basic in all the cases. Hence the use of TIR
in the order function seems to be an effective option in most
cases.

Table 5 addresses RQ1c and evaluates the RSC heuristic. When
RSC was used with GA, it gave significantly better results in one
of the artificial problems (AP10) and showed no significant
difference for the other artificial problems. When RSC was used
with (1+1) EA, it gave significantly better results for one artificial
problem (AP9), worse results for another one (AP12), and no
statistical differences otherwise. RSC depends on the presence of
a loop back to a risky state. According to the information in Table
1, AP6 – AP10 had a loop back to the risky state. Hence, we can
answer RQ1c by stating that for all the problems that have a loop
to risky states, an order function using the RSC heuristic performs
significantly better or similar to the basic fitness function. But for
the problems without such a loop, it can negatively affect
performance. Table 6 addresses RQ1d and evaluates the Coverage
(COV) heuristic. When COV was used with GA, there were no
statistical differences between the results. When it was used with
(1+1) EA, it gave significantly worse results for four of the
artificial problems and yielded no significant differences in other
cases. To answer RQ1d, using the order function with coverage
only can result in significant deterioration in the performance of
(1+1) EA.

To summarize the comparison of proposed heuristics with basic
fitness (RQ1), we can state that ITD and TIR heuristics shows
significant improvements for (1+1) EA and in most cases for GA.
RSC shows improvements in cases where there is a loop to risky
states, otherwise it can negatively affect the performance. Finally
the COV heuristic shows worse performance for (1+1) EA and no
difference for GA.

Next, we answer RQ2, for which we evaluate the various
combinations of the four proposed heuristics. As discussed we had
a total of 16 possible order functions for each search algorithm.
Table 7 provides the relative ranking based on the statistical
difference of the compared configurations. Configurations which
are statistically equivalent (i.e., p-values above 0.05) are expected
to show a similar ranking. This is done by assigning scores based
on pairwise comparisons of configurations. Whenever a
configuration is better than the other and the difference is
statistically significant, its score is increased. Then, based on the
final scores, each configuration is assigned ranks ranging from 1
(best configuration) to 33 (worst configuration). In case of ties,

ranks are averaged. The configurations in the table are sorted by
their average ranking (last column) in an ascending order.

Overall, based on the average ranks for the 13 artificial problems,
(1+1) EA with TIR proved to be the best algorithm for both Basic
and ITD versions of the heuristic. Analyzing the results of Table 7
according to the characteristics of artificial problem, we can
conclude that in general search-based algorithms perform
significantly worse than RT for the artificial problems where the
approach to risky states is trivial (see discussion for RQ4 and a
plausible detailed explanation at the end of this section). If we
exclude the results of such artificial problems (i.e., AP9 – AP13),
then in all the other problems, (1+1) EA with ITD and TIR
performed significantly better than other combinations. According
to the ranks shown, the only exception seems to be AP7, but even
in that case, though the number of test case executions is
significantly less for other order functions, the success rate of
(1+1) EA with both the order functions (Basic-TIR and ITD-TIR)
was 100%. If we only consider GA, then the best two algorithms
were GA-ITD-TIR and GA-ITD-TIR-RSC. The good overall
performance of TIR is likely to be due to the fact that it focuses on
making the environment spend more time in the risky states, thus
increasing the occurrence of situations that lead to the error state.
When we compared the performance of (1+1) EA-Basic-TIR with
(1+1) EA-ITD-TIR, there were no significant differences in the
results. But looking at the results in Table 7, where for various
combinations used with (1+1) EA-ITD and (1+1) EA-Basic, the
combinations used with (1+1) EA-ITD showed better or
statistically equal results. This also further confirms the findings
of RQ1a, which suggested to use (1+1) EA-ITD over (1+1) EA-
Basic.

Regarding RQ3 (about the comparison of GA and (1+1) EA),
based on Table 7, (1+1) EA seems overall to provide significantly
better results with various combinations when compared to GA
using the same combinations of heuristics. An exception to this is
when EA is used with the coverage heuristic, in which case it
performs significantly worse than GA. Even for the problems with
non-trivial approach level, the performance of most of the
heuristic combinations for EA is significantly better than their
performance with GA. Hence, we can conclude that the fault
detection effectiveness of (1+1) EA is higher than that of GA for
the kind RTES system testing we focus on.

To answer RQ4 (comparison of RT with EA and GA), we
compare RT with the heuristic combinations giving the best
results for GA and EA. According to RQ3, for (1+1) EA, EA-
ITD-TIR and EA-Basic-TIR and for GA, GA-ITD-TIR and GA-
ITD-TIR-RSC were the best combinations.

Table 8 shows a comparison of RT with these four algorithms.
The statistics for the situations where RT is significantly worse
than these algorithms are bold faced and the situations where it is
significantly better are italicized. It can be observed that for all the
artificial problems that have a trivial approach level (Table 1:
AP9–AP13), RT performs significantly better than both search
algorithms. But in other cases, where the approach level is hard,
EA and GA perform significantly better. This is especially true for
EA who performs better in all the other problems, except AP7.
For AP7, over 90% of the heuristics combinations had a 100%
success rate and the remaining had a success rate of over 85%.
Therefore, AP7 can also be considered to be a simple problem.
Hence, we can answer RQ4 by stating that for simple problems
(i.e., where the average success rate of all the algorithms is high
or the approach level is trivial) RT performs significantly better
than both search-algorithms, but for more difficult problems (i.e.,

lower success rates or non-trivial approach level), search
algorithms perform significantly better. The best technique (1+1)
EA-ITD-TIR has an average success rate of 73% for the 13
problems with an average number of 222 test case executions to
find a fault. If we only consider the problems where approach
level was non-trivial (i.e., excluding AP9 – AP13), then the
average success rate is 84%. The worst success rate is 35% (AP8),
which suggests that with r runs of the technique, we would
achieve a success rate of 1 - (1-0.35)r. For example with only five
runs (r = 5), we would obtain a success rate above 99%.

RQ5 is about comparing the best combination of heuristics with
GA-basic, (1+1) EA-Basic and RT on the industrial case study.
According to RQ2, the combination showing on average the best
results for artificial problems was (1+1) EA-ITD-TIR. Table 9
shows the comparative results of running (1+1) EA-ITD-TIR,
(1+1) EA-Basic, GA-Basic, and RT on the industrial case study.
Table 10 shows the details of the results of this experiment
including the average success rate (SR) and the average number of
test case executions to find a fault (ATE). We can see that (1+1)
EA-ITD-TIR shows significantly better performance over both
GA-Basic and (1+1) EA-Basic. When compared to RT, there is no
significant statistical difference. The best combination has
relatively lower success rate (0.8 compared to 1 for RT), but it
finds the fault with a lower, average number of test case
executions (250 compared to 295 for RT). The better performance
of RT can be explained by the fact that in the industrial case
study, the approach level to risky state was again trivial as shown
in Table 1 (i.e., on average it could be reached in less than 10
random test cases).

Following, we provide a plausible explanation as to why RT
shows better performance when the approach level to risky state is
trivial. The transition from a risky state to the error state
represents the erroneous behavior of the SUT and will only be
triggered if the interaction of the SUT with the environment was
at some point incorrect. Therefore, triggering this transition is
dependent on the behavior of the SUT. Once the environment
reaches a risky state and is not able to proceed to the error state, a
possible option is to try to maximize the diversity in the
environment behavior (e.g., by using entirely different values for
the test data matrix, irrespective of their effect on the fitness).
Maximizing diversity could result in execution of a behavior of
the environment that causes the SUT to interact in an erroneous
way which will in turn result in the transition to the error state.
When the approach to risky state is trivial then we can simply use
RT (or a similar technique) to try to maximize diversity, instead of
using a technique like (1+1) EA that generates similar individuals
(which makes it hard for search algorithms to be successful in
such cases).

Table 5. Results of RSC compared with basic fitness function

Problem GA-RSC vs. GA EA-RSC vs. EA
AP9 - p=0.00831, ψ =22.78
AP10 it-p= 0.0073, A12 = 0.74 -

AP12 - p=0.047, , ψ =22.78

Table 6. Results of COV compared with Basic fitness function

Problem GA-COV vs. GA EA-COV vs. EA
AP6 - p = 0.0407, ψ = 5

AP7 - p = 0.0002, ψ =16.5

AP10 - p = 3.36e-06, ψ =37

AP13 - p = 0.0471, ψ =14.5

Table 7. Rank of each heuristic combination on 13 artificial problems (sorted by average rank)

Algorithm AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10 AP11 AP12 AP13 Avg.

(1+1)EA-Basic-TIR 2.5 2.5 4 4 1 3 26.5 8.5 31 12.5 17.5 24.5 23 12.35

(1+1)EA-ITD-TIR 2.5 2.5 2 3 2.5 2 22 5.5 23.5 18.5 23.5 30 27 12.65

GA-ITD-TIR 7 5 24.5 21 26 7.5 1 25 25 2.5 10.5 3.5 12 13.12

(1+1)EA-ITD-TIR-RSC 2.5 2.5 1 1 9.5 7.5 19 3.5 26 20.5 22 30 31 13.54

GA-ITD-TIR-RSC 10 9 24.5 21 26 7.5 8 16 3 4 26 17.5 4 13.58

GA-ITD-RSC-COV 17 18.5 24.5 12.5 26 13 4 21 4 9 17.5 2 14.5 14.12

RT 14.5 9 33 33 26 32 8 31 1 2.5 1 1 1 14.85

(1+1)EA-ITD-TIR-RSC-COV 5 9 9 2 9.5 7.5 4 1.5 22 30 32 30 32.5 14.92

(1+1)EA-ITD-RSC-COV 28 29 14 14.5 9.5 4 20 3.5 21 22 5 8.5 18.5 15.19

GA-ITD-RSC 19.5 22 24.5 17 26 22.5 12 16 19.5 9 2 5 3 15.23

GA-ITD-TIR-COV 23 13.5 24.5 26 26 10 12 16 16.5 9 7.5 8.5 6 15.27

(1+1)EA-ITD 23 27 15.5 6 14.5 1 21 1.5 32 20.5 6 17.5 20.5 15.85

GA-Basic-TIR-RSC 11 9 24.5 21 26 17 8 25 8 12.5 20 17.5 10.5 16.15

(1+1)EA-ITD-RSC 19.5 18.5 12 6 14.5 11 24 5.5 12 18.5 20 24.5 24.5 16.19

GA-Basic-RSC-COV 26.5 24.5 24.5 28.5 17.5 22.5 2 16 7 9 14.5 3.5 14.5 16.19

(1+1)EA-Basic-TIR-RSC 2.5 2.5 9 9 5 20.5 24 10.5 29.5 16 23.5 30 29 16.23

GA-Basic-RSC 23 22 24.5 21 26 26 18 31 6 1 3.5 8.5 5 16.58

(1+1)EA-ITD-TIR-COV 7 13.5 9 10.5 5 5 24 10.5 23.5 29 33 30 22 17.08

GA-Basic 18 22 24.5 24 26 14.5 8 16 14.5 16 14.5 8.5 17 17.19

GA-ITD-COV 26.5 18.5 24.5 27 17.5 14.5 15.5 16 10 14 14.5 17.5 8 17.23

GA-Basic-TIR-COV 13 18.5 24.5 30 26 17 14 25 5 5 14.5 17.5 14.5 17.27

GA-Basic-TIR 7 9 24.5 31 26 28.5 17 31 16.5 9 10.5 8.5 8 17.42

GA-ITD 30 27 24.5 28.5 26 12 8 16 12 16 10.5 8.5 10.5 17.65

GA-ITD-TIR-RSC-COV 23 15.5 24.5 25 26 20.5 12 16 14.5 24 7.5 17.5 8 18.00

GA-Basic-TIR-RSC-COV 14.5 15.5 24.5 32 26 24.5 15.5 25 12 6 10.5 17.5 14.5 18.31

(1+1)EA-Basic-TIR-COV 12 9 4 17 5 28.5 29.5 25 9 31 26 24.5 27 19.04

GA-Basic-COV 16 24.5 24.5 21 26 27 4 31 28 23 3.5 17.5 2 19.08

(1+1)EA-Basic-RSC-COV 23 30 13 14.5 16 17 31.5 8.5 18 26 26 17.5 20.5 20.12

(1+1)EA-Basic-TIR-RSC-COV 9 9 6 12.5 2.5 30.5 31.5 31 19.5 28 31 30 32.5 21.00

(1+1)EA-Basic-RSC 30 27 9 10.5 9.5 30.5 26.5 25 2 25 29 30 24.5 21.42

(1+1)EA-Basic 32.5 31 15.5 8 9.5 24.5 29.5 16 27 27 30 12 18.5 21.62

(1+1)EA-ITD-COV 30 32.5 4 17 9.5 19 28 7 33 32.5 20 24.5 27 21.85

(1+1)EA-Basic-COV 32.5 32.5 9 6 13 33 33 25 29.5 32.5 28 17.5 30 24.73

	
Table 8. Comparison of RT with best combinations of GA and (1+1)EA on artificial problems*

Problem RT vs. GA1 RT vs. GA2 RT vs. EA1 RT vs. EA2

AP1 p=0.0012, ψ =15.74 - p = 0.0001, ψ = 49.63 p = 0.0001, ψ = 49.63

AP2 - - it-p = 0.002, A12 = 0.2137 it-p = 0.0038, A12= 0.2312

AP3 0.0202, ψ = 18.38 p = 0.0005, ψ = 41 p = 3.3e-09, ψ = 303.40 p = 1.5e-11, ψ = 1681.00

AP4 - - p = 0.0083, ψ = 22.78 p = 0.0083, ψ = 22.78

AP5 - - p = 3.0e-10, ψ = 533.00 p = 3.3e-06, ψ = 91.46

AP6 p = 1.7e-05, ψ = 27.13 p = 8.7e-05, ψ = 18.33 p = 0.0012, ψ = 10.33 p = 8.7e-05, ψ = 18.33
AP7 - - it-p = 0.0053, A12 = 0.759 it-p = 0.0425, A12 = 0.689

AP8 - - p = 0.0201, ψ = 18.38 p = 0.0083, ψ = 22.78

AP9 p=0.0004, ψ = 41 p=0.0202, ψ = 18.38 p = 4.5e-05, ψ = 60.29 p = 0.0004, ψ = 41.00

AP10 - - - it-p = 0.0114, A12 = 0.738
AP11 p = 0.0471, ψ = 14.55 p = 4.5e-05, ψ = 60.29 p = 0.0201, ψ = 18.38 p = 0.0001, ψ = 49.63
AP12 p = 1.3e-05, ψ = 73.80 p = 2.6e-08 , ψ = 205.00 p = 3.0e-10, ψ = 533.00 p = 1.4e-11, ψ = 1681.00
AP13 - - it-p = 0.0081, A12 = 0.7528 p = 0.0202, ψ = 18.38

* GA1 = GA-ITD-TIR, GA2 = GA-ITD-TIR-RSC, EA1 = EA-Basic-TIR, EA2 = EA-ITD-TIR

Table 9. Comparison of four algorithms on industrial case

Algorithm
(1+1)EA-
Basic

(1+1)EA-
ITD-TIR

RT GA-Basic

(1+1)EA-
Basic

×
ψ= 0.40 ,
A12= 0.74

ψ= 0.036 ,
A12= 0.75

ψ= 1.78 ,
A12= 0.82

(1+1)EA-ITD-
TIR

ψ= 3.40 ,
A12= 0.26

×
ψ= 0.089 ,
A12= 0.44

ψ= 4.44 ,
A12= 0.42

RT
ψ= 27.88 ,
A12= 0.25

ψ= 11.18,
A12= 0.56

×
ψ= 49.63 ,
A12= 0.47

GA-Basic
ψ= 0.56,
A12= 0.18

ψ= 0.23,
A12= 0.71

ψ= 0.02 ,
A12= 0.53

×

Table 10. Details of each algorithm on the industrial case*

Algorithm SR ATE StD Med Skewness Kurtosis

(1+1)EA-Basic 0.6 559 270.18 615.5 -0.8 3.03

(1+1)EA-ITD-TIR 0.8 250.12 235.44 166 1.35 3.25

RT 1 295.2 279.1 225 1.24 3.42

GA-Basic 0.45 273.22 186.97 246 0.18 1.88
* SR = Success rate, ATE = average test case executions for each run, StD = standard
deviation, Med = Median

If this is not the case and approach to risky state is not trivial, then
a likely reason for not reaching the risky state is a guard on the
transition and/or a time transition. The heuristics for search-based
algorithms that we discussed in this paper are specifically
designed to deal with these cases and are more suitable for such
cases than RT. Our previous results on solving constraints written
in OCL, lead us to the conclusion that search-based algorithms are
an order of magnitude better than randomized algorithms for this
purpose [25]. Hence, if the guard on the transition can be solved
by directly changing the values of attributes of the environment
components or the transition is a time transition, then our best
chance is to use the search algorithms (and more specifically in
our context, (1+1) EA-ITD-TIR).

From a practical standpoint, a possible solution to deal with the
above mentioned situations that arise due to the nature of
environment models is to apply RT at the start of testing and
evaluate whether risky states are easy to reach. If this is the case,
and if the OCL guard on the transition does not provide gradient
(i.e., the so called flag problem [30]), then RT is most likely to
trigger the transition to the error states compared to search
algorithms (because of the reasons discussed above). In case the
approach is not trivial, then one should use (1+1) EA-ITD-TIR,
which is the best combination to use in the cases when there are
guards on time transitions located on the path to the error state and
is at the same time no worse than its corresponding Basic version
(i.e., (1+1) EA-Basic-TIR). One limitation to this can be situations
in which the approach level is not trivial and at the same time the
transition leading to the risky state is only triggered in response to
a particular SUT behavior (e.g., a guard that is set based on
interactions with the SUT). This case will be similar to scenarios
with a trivial approach to risky state in a way that the best chances
of getting the SU===T to behave in the required way are by
invoking diverse environment behaviors. This, as we discussed
earlier, is better done by RT than by the search algorithms with
the proposed order functions. A possible solution to situations like
these is to combine random testing with search-based algorithms
and apply adaptive mechanisms based on the feedback from the
executed test cases, which we will address in our future work.

In light of all the results and discussions, we can conclude that
when applying our environment model-based testing approach in
practice, one can achieve good results by combining RT and (1+1)

EA-ITD-TIR. This can be done by running RT first and then, if no
error state is reached within a short time, by running (1+1) EA-
ITD-TIR for a few runs. Based on the results reported in this
paper, this strategy would be expected to achieve a success rate
close to 100%.

6.4 Threats to validity
Although the artificial problems that we developed were based on
industrial RTES and are not trivial (they are multithreaded and
hundreds of lines long), these artificial problems are not
necessarily representative of complex RTES. To reduce this
threat, we used artificial problems inspired by three actual RTES
and intentionally varied the properties of their environments in
ways which could affect the search algorithms.

A typical problem when testing RTES is accurate simulation of
time. Our approach focuses on RTES with soft time deadlines in
the order of hundreds of milliseconds with an acceptable jitter of a
few milliseconds. Therefore, we used the CPU clock to represent
time. This might be unreliable if time constraints in the RTES
were very tight (e.g., nanoseconds) since they could be violated
because of unpredictable changes of load balance in the CPU in
the presence of unrelated process executions. To be on the safe
side, to evaluate whether our results are reliable, we selected a set
of experiments and ran them again with exactly the same random
seeds. We obtained equivalent results with a small variance of a
few milliseconds, which in our context did not affect the testing
results.

7. CONCLUSION
In this paper, we proposed four new heuristics for search-based,
black-box automated testing of Real-Time Embedded Systems
(RTES) based on a model of their environment. The heuristics
were developed to exploit various properties of these environment
models in an attempt to reach environments states indicating a
fault in the RTES (Error states). We provide an extensive
empirical evaluation on an industrial case study and thirteen
artificial RTES that we developed based on two industrial case
studies belonging to different domains. The models of these
artificial problems present varying properties that may affect the
performance of these heuristics and are meant to help us
understand the conditions under which they are beneficial. We
evaluated the individual heuristics and their 16 combinations with
two search algorithms, Genetic Algorithms (GA) and (1+1)
Evolutionary Algorithm (EA). We also used Random Testing
(RT) as a comparison baseline.

Results show that when reaching a state adjacent to the error state
(risky state) is not trivial (i.e., reached by random test cases), RT
is significantly worse than any of the proposed search algorithms.
In this case, the best results are obtained when using (1) a
heuristic favoring test cases maximizing the time spent in risky
states and (2) (1+1) EA as a search algorithm, which showed to be
overall superior to GA. However, the heuristic that favored higher
coverage of states in the environment model (coverage) showed
significantly poorer performance with (1+1) EA in four of the
thirteen problems. Based on the results, we proposed a way to
combine RT with (1+1) EA in order to achieve high fault
detection rates in practice.

8. ACKNOWLEDGMENTS
The work presented in this paper was supported by the Norwegian
Research Council and was produced as part of the ITEA 2
VERDE project. We are thankful to our industrial partners at
Tomra and WesternGeco for their support throughout the project.

9. REFERENCES
[1] Arcuri, A., Iqbal, M., and Briand, L. 2010. Black-Box

System Testing of Real-Time Embedded Systems Using
Random and Search-Based Testing. in Testing Software and
Systems. vol. 6435. A. Petrenko, et al., Eds., ed: Springer
Berlin / Heidelberg, 95-110.

[2] Iqbal, M. Z., Arcuri, A., and Briand, L.2011. Automated
System Testing of Real-Time Embedded Systems Based on
Environment Models. Simula Research Laboratory,
Technical Report (2011-19)

[3] OMG. 2010, Unified Modeling Language Superstructure,
Version 2.3, http://www.omg.org/spec/UML/2.3/.

[4] OMG. 2009, Modeling and Analysis of Real-time and
Embedded systems (MARTE), Version 1.0,
http://www.omg.org/spec/MARTE/1.0/.

[5] Iqbal, M. Z., Arcuri, A., and Briand, L. 2010. Environment
Modeling with UML/MARTE to Support Black-Box System
Testing for Real-Time Embedded Systems: Methodology and
Industrial Case Studies. in Model Driven Engineering
Languages and Systems. vol. 6394. D. Petriu, et al., Eds., ed:
Springer Berlin / Heidelberg, 286-300.

[6] Iqbal, M. Z., Arcuri, A., and Briand, L.2011. Code
Generation from UML/MARTE/OCL Environment Models to
Support Automated System Testing of Real-Time Embedded
Software. Simula Research Laboratory, Technical Report
(2011-04)

[7] Arcuri, A., Iqbal, M. Z., and Briand, L. 2012. Random
Testing: Theoretical Results and Practical Implications IEEE
Transactions on Software Engineering. vol. 38, 2, 258-277.

[8] Harman, M., Mansouri, S., and Zhang, Y.2009. Search based
software engineering: A comprehensive analysis and review
of trends techniques and applications. Department of
Computer Science, King's College London, TR-09-03

[9] Ali, S., Briand, L. C., Hemmati, H., and Panesar-Walawege,
R. K. 2010. A Systematic Review of the Application and
Empirical Investigation of Search-Based Test Case
Generation IEEE Transactions on Software Engineering. vol.
36, 6, 742-762.

[10] Arcuri, A. 2011. It really does matter how you normalize the
branch distance in search-based software testing Software
Testing, Verification and Reliability, doi: 10.1002/stvr.457.

[11] Broekman, B. M. and Notenboom, E. 2003. Testing
Embedded Software: Addison-Wesley Co., Inc.

[12] Clarke, D. and Lee, I. 1995. Testing real-time constraints in a
process algebraic setting. in Proceedings of the 17th
International Conference on Software Engineering, 51-60.

[13] Krichen, M. and Tripakis, S. 2009. Conformance testing for
real-time systems Formal Methods in System Design. vol. 34,
3, 238-304.

[14] Nielsen, B. and Skou, A. 2003. Automated test generation
from timed automata International Journal on Software
Tools for Technology Transfer. vol. 5, 1, 59-77.

[15] Mucke, T. and Huhn, M. 2004. Generation of optimized
testsuites for UML statecharts with time. in Testing of
Communicating Systems. vol. 2978, ed: Springer Berlin /
Heidelberg, 128.

[16] Zheng, M., Alagar, V., and Ormandjieva, O. 2008.
Automated generation of test suites from formal
specifications of real-time reactive systems The Journal of
Systems & Software. vol. 81, 2, 286-304.

[17] Auguston, M., B, M. J., and Shing, M. 2006. Environment
behavior models for automation of testing and assessment of
system safety Information and Software Technology. vol. 48,
971-980.

[18] Briand, L., Labiche, Y., and Shousha, M. 2006. Using
genetic algorithms for early schedulability analysis and stress
testing in real-time systems Genetic Programming and
Evolvable Machines. vol. 7, 2, 145-170.

[19] Mcminn, P. 2004. Search based software test data
generation: a survey Software Testing, Verification and
Reliability. vol. 14, 2, 105-156.

[20] Heisel, M., Hatebur, D., Santen, T., and Seifert, D. 2008.
Testing Against Requirements Using UML Environment
Models. in Fachgruppentreffen Requirements Engineering
und Test, Analyse & Verifikation, 28-31.

[21] Adjir, N., Saqui-Sannes, P., and Rahmouni, K. M. 2009.
Testing Real-Time Systems Using TINA. in Testing of
Software and Communication Systems. vol. 5826, ed: Lecture
Notes in Computer Science, Springer Berlin / Heidelberg.

[22] Larsen, K. G., Mikucionis, M., and Nielsen, B. 2005. Online
Testing of Real-time Systems Using Uppaal. in Formal
Approaches to Software Testing. vol. 3395, ed: Lecture Notes
in Computer Science, Springer Berlin / Heidelberg.

[23] Peleska, J., Lapschies, F., Vorobev, E., Loeding, H., Smuda,
P., Schmid, H., and C., Z. 2011. A real-world benchmark
model for testing concurrent real-time systems in the
automotive domain. in Testing Software and Systems. vol.
7019, ed: Springer Berlin Heidelberg, 146-161.

[24] Lefticaru, R. and Ipate, F. 2008. Functional search-based
testing from state machines. in Proceedings of the
International Conference on Software Testing, Verification,
and Validation, 525-528.

[25] Ali, S., Iqbal, M. Z., Arcuri, A., and Briand, L. 2011. A
Search-based OCL Constraint Solver for Model-based Test
Data Generation. 11th International Conference on Quality
Software.

[26] Deb, K. 2001. Multi-Objective Optimization Using
Evolutionary Algorithms: John Wiley and Sons.

[27] Andrews, J., Briand, L., Labiche, Y., and Namin, A. 2006.
Using mutation analysis for assessing and comparing testing
coverage criteria IEEE Transactions on Software
Engineering. vol. 32, 8, 608-624.

[28] Arcuri, A. and Fraser, G. 2011. On Parameter Tuning in
Search Based Software Engineering in International
Symposium on Search Based Software Engineering (SSBSE).

[29] Arcuri, A. and Briand, L. 2011. A Practical Guide for Using
Statistical Tests to Assess Randomized Algorithms in
Software Engineering. in 33rd International Conference on
Software Engineering (ICSE), 1 - 10

[30] Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, H.,
Baresel, A., and Roper, M. 2004. Testability transformation
IEEE Transactions on Software Engineering. vol. 30, 1, 3-
16.

