
Fine-Grained Change Impact Analysis for Component-Based Product Families

Amir Reza Yazdanshenas
Simula Research Laboratory

Lysaker, Norway
Email: amir.yazdanshenas@simula.no

Leon Moonen
Simula Research Laboratory

Lysaker, Norway
Email: leon.moonen@computer.org

Abstract—Developing software product-lines based on a set of
shared components is a proven tactic to enhance reuse, quality,
and time to market in producing a portfolio of products. Large-
scale product families face rapidly increasing maintenance
challenges as their evolution can happen both as a result
of collective domain engineering activities, and as a result
of product-specific developments. To make informed decisions
about prospective modifications, developers need to estimate
what other sections of the system will be affected and need
attention, which is known as change impact analysis.

This paper contributes a method to carry out change impact
analysis in a component-based product family, based on system-
wide information flow analysis. We use static program slicing
as the underlying analysis technique, and use model-driven
engineering (MDE) techniques to propagate the ripple effects
from a source code modification into all members of the
product family. In addition, our approach ranks results based
on an approximation of the scale of their impact. We have
implemented our approach in a prototype tool, called Richter,
which was evaluated on a real-world product family.

Keywords-component-based software development, software
product-lines, change impact analysis, information flow

I. INTRODUCTION

Integrated Control and Safety Systems (ICSSs) are complex,
large-scale, software-intensive systems where hardware and
software components are integrated to control and monitor
safety-critical devices and processes. ICSSs are increas-
ingly pervasive in domains like process plants, oil and gas
production platforms, and in maritime equipment. These
systems interact with their environment via physical sensors
and mechanical actuators. Consequently, for deployment in
concrete situations, ICSSs need to be adapted and configured
to different safety logic and installation characteristics, such
as sensor properties and field layout. On the other hand,
there can still be a considerable similarity between different
installations of an ICSS, ranging from high-level require-
ments to low-level implementation details (e.g. two off-shore
platforms that are quite similar but not exactly identical). To
leverage these commonalities and to accommodate variations
as efficiently as possible, many ICSSs are developed using
product-line engineering (PLE) techniques.

Component-based development is one of the main ap-
proaches to realize such software product-lines [1], and a set
of shared components commonly constitutes the backbone of
ICSSs. Software evolution in families of software products

is arguably more complex as a result of the increased de-
pendencies between software assets [2]. Shared components
might be updated as a result of both family-wide domain
engineering activities, and product-specific development and
maintenance tasks. For large-scale systems and highly popu-
lated product families, the task of updating all products with
a new version of a component comes at considerable cost.

Change Impact Analysis (CIA) plays a significant role in
the software maintenance process by estimating the ripple
effect of a change [3]. It takes a set of modified pro-
gram elements (the change set), and computes the set of
elements that need to be modified accordingly (the im-
pact set) [4]. We found that the CIA methods published
in scientific literature (and reviewed in the next section)
were not sufficient for component-based product families. In
these families, components can be implemented in various
programming languages. Moreover, component composition,
initialization and interconnection is typically specified in
separate configuration files, ranging from simple key-value
pairs to domain-specific languages. The heterogeneity of
these artifacts complicates many types of system- and family-
wide analysis, including change impact analysis [5, 6].

In our earlier work [7], we present a technique to reverse
engineer a fine-grained system-wide dependence model from
the source and configuration artifacts of a component-based
system, i.e. it can be applied to a single ICSS in the product
family. This paper builds on that technology and makes
the following contributions: (1) we define a method for
constructing a fine-grained family-wide dependence graph
(FDG) from the source and configuration artifacts of a
component-based product family; (2) we extend the approach
of [8] to find the initial impact set in terms of modifications
to a component’s interface based on a set of source code
changes; (3) we define a method that uses the initial im-
pact set in combination with model-driven engineering and
program slicing techniques to efficiently compute the final
impact set across a component-based product family (i.e., to
perform change impact analysis); (4) we define a measure to
approximate the scale of the impact of a change, and use it to
rank the analysis results; (5) we implemented and evaluated
our approach by building a prototype tool, called Richter.

The remainder of this paper is structured as follows:
Sections II and III summarize related work and describe
the context of our research. We present the overall approach

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

in Section IV, and our implementation in Section V. We
evaluate our work in Section VI and conclude in Section VII.

II. RELATED WORK

Lehnert provides an in-depth review of software change
impact analysis [9]. In the context of our work, we define
Change Impact Analysis (CIA) as the process of estimating
what parts will be affected by a proposed change to a
software system. The input is the change set and the output is
the impact set. Our focus is on source based CIA. In this case,
impact estimation is generally done by analyzing reachability
between program elements via some form of dependencies.
These dependencies can be expressed as a graph, and the
ripple effects of a change can be found by traversing this de-
pendence graph. CIA approaches in literature typically vary
in: (a) the type of program information that is represented
by the nodes and edges in the dependence graph, and (b) the
type of graph traversal that is performed.

Chaumun et al. [10] propose a change impact model to
investigate the influence of high-level design on the change-
ability of Object-Oriented programs. They use abstractions
of OO entities and relations as the starting point for building
their dependence graph. Sun et al. [8] propose a static CIA
technique based on a predefined list of change types and
impact rules. They argue that, apart from well-chosen change
types and accurate dependency analyses, the precision of a
CIA technique can be improved by distinguishing two stages:
(1) derivation of an Initial Impact Set (IIS) from the change
set (based on change types), and (2) propagation of that IIS
through the dependence graph to find the Final Impact Set
(FIS). They show that a more accurate IIS results in a more
precise FIS. Our approach also separates the IIS and FIS to
increase precision and scalability and conducts CIA based
on abstractions of the system-under-analysis. However, we
need different abstractions and dependency links to represent
a complete component-based product family.

Moreover, there is an implicit assumption in [8, 10] that
all dependencies yield equal impacts. Consequently, they
manipulate impact as coarse-grained Boolean expressions,
i.e. for a given change they can only compute whether or not
a class is impacted by that change. In contrast, our approach
aims at ranking CIA results based on approximating impact
scale (i.e., approximating the size of the affected area).

Component-based CIA: A number of studies have taken
a formal approach to specify component interfaces and
component composition mechanisms either to conduct CIA,
or to assess the modifiability of component-based systems
using CIA-inspired techniques [11–13]. In a nutshell [11, 12]
specify a component, based on its set of provided/required
interface functions. Each of them define their own variants
of dependency relationships among components, e.g. compo-
nent adjacency, (transitive) connectivity, change dependency,
etc. Having defined dependency relationships in matrices,

these studies take advantage of straight-forward matrix ma-
nipulation operators (e.g. production and subtraction) to
conduct CIA. They focus more on propagation of change
throughout the system, than on deriving the change set from
modified artifacts. Unfortunately, they do not discuss the
application of their approaches to real-world systems.

Feng and Maletic [14], conduct CIA on the architectural
level, to estimate the ripple effects of component replacement
in component-based systems. They generate component in-
teraction traces based on the static structure of the compo-
nents’ interface and UML sequence diagrams. They define
a short taxonomy of the atomic changes in the externally
visible part of a component interface, and impact rules for
each type of change. Finally, they derive the list of impacted
elements (i.e. components, and provider/required interfaces)
by slicing the generated interaction traces according to the
impact rules. This work is aimed at the inter-component-
level, whereas our goal is to analyze the impact of fine-
grained code changes at the intra-component-level and prop-
agate these to the inter-component-level and family-level.

Recently, there has been an increased interest in tailoring
CIA to software product-lines [15, 16]. Diaz et al. [16]
propose a meta-model that supports knowledge specific to
product-lines (e.g. variability models), and apply traceability
analysis on these models to conduct CIA on the architectural
level. In general, these studies are aimed at exploiting state-
of-the-art features of MDE and PLE such as domain-specific
modeling and variability modeling. However, there are many
manufacturers of software product families that have not
adopted these state-of-the-art methods. We aim at devising
techniques that can also support this class of practitioners.

We refer to our previous work [7] for a detailed discus-
sion of work related to our method to build system-wide
dependence models from heterogeneous source artifacts.

III. BACKGROUND AND MOTIVATION

The research described in this paper is part of an ongoing
industrial collaboration with Kongsberg Maritime (KM), one
of the largest suppliers of programmable marine electronics
worldwide. The division that we work with specializes in
“high-integrity computerized solutions to automate corrective
actions in unacceptable hazardous situations.” It produces
a large portfolio of highly-configurable products, such as
emergency shutdown, process shutdown, and fire and gas
detection systems, that will be tailored to specific deploy-
ment environments, such as vessels, off-shore platforms,
and on-shore oil and gas terminals. These products are
prime examples of large-scale, software-intensive, safety-
critical embedded systems that interconnect software control
components with physical sensors and mechanical actuators.

Terminology: We use the following terminology: a com-
ponent is a unit of composition with well-defined interfaces
and explicit context dependencies [17]; a system is a network
of interacting components; and a port is an atomic part of an

interface, a point of interaction with other components or the
environment. A component instance represents a component
in a system, i.e. initialized and interconnected following the
product configuration data, and a component implementation
refers to its source code. There is one implementation and
possibly more instances for every component in a system.

Production: Concrete software products are assembled in
a component-based fashion and the system’s overall logic is
achieved by composing a network of interconnected com-
ponent instances. These “processing pipelines” receive their
input from sensors and decide what actuators to trigger. Com-
ponents can be cascaded to handle a larger number of input
signals than foreseen in their implementation. Similarly, the
output of a given pipeline can be used as input for another
pipeline to reuse the safety conclusions for connected areas.
The dependencies from sensors and actuators are described in
a decision table that is known as the cause & effect (C&E)
matrix. This matrix serves an important role in discussing
the desired safety requirements between the supplier and
the customers and safety experts. By filling certain cells
of a C&E matrix, the expert can, for example, prescribe
which combination of sensors needs to be monitored to
ensure safety in a given area. As installations become larger,
the number of sensors and actuators grow, the safety logic
becomes increasingly complex and the products end up
interconnecting thousands of component instances. To give
an impression, a typical real-life installation has in the order
of 5000 component instances in its safety system.

Product Family: Based on workshops and interviews with
safety domain experts and software engineers at KM [18], we
have identified the following causes for variability in this do-
main: (1) functional requirements of each product category;
(2) customer specific requirements; (3) size and structure of
each installation, (4) different deployment configurations. To
deal with this variability, our industrial collaborator adopted
a component-based product development process that can
be regarded product-line engineering (PLE): They maximize
predictive reuse by exploiting product commonality using a
set of generic and highly configurable shared components
that acts as the backbone of the product family [19]. They
did not adopt more formal PLE activities like variability
modeling. The components are implemented in MISRA C
(a safe subset of C [20]), relatively small in size (in the
order of 1-2 KLOC), and contain relatively straightforward
computations. Their control logic, however, can be rather
complex and is highly configurable via parameters (e.g.
initialization, thresholds, comparison values etc).

Evolution: There are two sources of evolution in such a
product family: (1) once a new product is derived from the
core components, changes are required to adapt the reused
components to product-specific requirements (cf. [21]); and
(2) it is not uncommon for product-specific components to
”mature” into shared components, for instance due to an
improved implementation, bug-fix, or an emerging require-

ment for the whole product family. In such cases, other
(deployed) products of the family often need to be updated
with the improved components as well. This can cause a
considerable ripple effect throughout the product family.
There is currently a designated retrofit team whose task is to
take an exiting (deployed) product in the product family and
update it to the latest revision of the shared components.
Correctly updating the product family (and the existing
deployed systems) requires a thorough understanding of the
potential impact of such a change. Although a considerable
amount of documentation exists for each (version of a)
component to facilitate understanding, our interviews with
safety domain experts and software engineers also indicated
that the evolution process still depends on considerable tacit
knowledge. It is inherently difficult to communicate this
information to all developer groups; and it is vulnerable to
be forgotten or lost once team members are substituted.

Research Question: The question that drives the research
presented in this paper is “Can we devise techniques to
carry out fine-grained family-wide change impact analysis on
the source and configuration artifacts of a component-based
product family.” The goal is to provide our industrial partner
with (prototype) tools to support the component evolution
and retrofitting activities on their product portfolio.

IV. APPROACH

In the remainder, we use system-level input and sensor
interchangeably, and likewise for system-level output and
actuator. We discuss our approach in terms of the studied
product family but emphasize that it is also applicable with
other inputs and outputs than sensors and actuators.

As discussed in Section II, CIA techniques are character-
ized by the type of program information that is represented
by the nodes and edges in the dependence graph, and the
type of graph traversal that is performed. Considering the
significance of connections between sensors and actuators in
the domain of our case study, we select the information flow
from sensors to actuators as backbone of our CIA technique.

Tracking Information Flow: In a previous study [7],
we proposed a method for tracking the information flow
between sensors and actuators using program slicing [22]. In
that work, we also addressed the challenge of constructing
a system-wide dependence graph of a single component-
based system which was successfully used for system-wide
program slices. It could be argued that having the neces-
sary tooling to compute system-wide slices in component-
based systems makes product-line-specific CIA obsolete. By
replicating the method in [7], one could (1) build a separate
SDG for each product in the product family, (2) compute a
straightforward system-wide slice with each actuator as the
slice criterion (to find all the program points with a potential
affect on that actuator), (3) and take the intersection of each
slice with the change set and report those with a non-null
intersection as being impacted. However, this straightforward

ProdA.CompB

o2

o1

port

port instance

i2

i1
ProdA.CompA

o2

o1
i1

i2

port-type data dependency
intercomponent data dependency
port-instance data dependency

ProdA.CompC

o1

i1

i2 c2.o1

c1.o1

b1.i1

b1.i2

b2.i1

b2.i2

a1.o2

a1.o1
a1.i1

a1.i2

b1.o1

b2.o1

b1.o2

b2.o2

c1.i1

c2.i1

c1.i2

c2.i2

a1.i3
i3

C

D

first use
program point
last may-kill
program point

ProdB.CompB
o2

o1

i2

i1

ProdB.CompD
o2

o1
i1

i2

ProdB.CompC

o1

i1

i2
c2.o1

c1.o1

b1.i1

b1.i2

b2.i1

b2.i2

d1.o2

d1.o1d1.i1

d1.i2

b1.o1

b2.o1

b1.o2

b2.o2

c1.i1

c2.i1

c1.i2

c2.i2

d1.i3
i3

Component B
o2

o1

i2

i1

ComponentN

i1

i2

i3
CDGB

Component C

CDGC

o1

i1

i2

Product A

Product B

x=f(i1);

o2=g(y);

Component N
o2

o1
i1

i2

i3

component data dependency

ProdB.CompE

o1

i1

i2

e1.i1

e1.i2

e1.o1

A

B

F

component summary edgeComponent
Dependence Graph

Component
Summary Node

E

CSNA

CSNC

CSNB

CSNC

CSND

CSNB

CSNE

Figure 1. Family Dependence Graph (tags A–F are explained in the text)

approach would certainly not scale up to the hundreds of
product installations in our product family and hundreds of
actuators in each product. Not capturing the commonality
and variability would lead to a combinatorial explosion of
alternatives to analyze, especially since components can be
included multiple times in a product (e.g. voter components).

Family Dependence Graphs – We build on our previous
technique to construct a homogeneous family-wide depen-
dence model that can represent all members of a large-scale
component-based product family. Apart from scalability, the
target dependence model should be amenable to CIA, with
comparable precision to fine-grained program slicing. The
overall approach to construct this dependence model, which
we call the Family Dependence Graph (FDG), is as follows:

1) For each component in the system, we build a com-
ponent dependence graph (CDG) by following the
method for constructing inter-procedural dependence
graphs [23] and taking the component source code as
“system source”. This CDG contains the fine-grained
program points and data- and control-dependencies

from the component’s implementation (Figure 1, tag A).
2) To efficiently represent components in members of the

product family, we define the notion of a Compo-
nent Summary Node (CSN). A CSN is a projection
of a component’s CDG from the perspective of its
externally visible interface, i.e. without the fine-grained
dependence graph. There’s a separate CSN for a given
component, and for each product containing an instance
of that component (Figure 1, tag B).

3) To link a CDG and its counterpart CSN in a product,
dependencies are added from each input port of a CSN
to the corresponding input port of the CDG (Figure 1,
tag C), and from each output port of that CDG to the
corresponding output port of the CSN. This makes the
CDG appear “in-line” with its product-specific CSN.

4) For each product, the configuration artifacts are ana-
lyzed to build a product-specific inter-component de-
pendence graph (ICDG). This graph captures the net-
work of interconnected component instances via their
externally visible interfaces. Construction of the ICDG
is done in the same way as the component composition
framework uses to set up the correct network.

5) The product system-wide dependence graph (PSDG) is
constructed by integrating the product’s ICDG with the
CSNs of the components (Figure 1, tag D). Conceptu-
ally, the construction can be seen as taking the ICDG
and substituting each “component instance node” with
the CSN for the given component. As in [7], we use
structured IDs for port-instances (Figure 1, tag E) to
preserve context during slicing.

The union of PSDGs for all members of the product family
forms the FDG, where products are interconnected via their
shared components. This homogeneous model of the product
family can be sliced using standard graph reachability algo-
rithms with one minor adaptation to preserve the calling con-
text of components: whenever a component CDG is entered
via a port-instance, we save the instance ID, and when exiting
that component, we only continue slicing on connections
that match the saved instance ID. This is analogous to how
procedure calls are handled in [23].

To avoid repeating expensive slicing in later stages of
our impact analysis, we enrich our CDGs with Component
Summary Edges (CSEs) that capture component-wide depen-
dencies between component input and output ports. CSEs
show which input ports can affect which output ports, but
abstract away all the details on how the information flow
is realized. For each component C, we enrich the respective
CDGC by slicing all output ports and including the summary
edge On → Im if input port Im is included in the slice for
On (Figure 1, tag F). The size of the slice, i.e. the number
of the program points included in that slice, is added as a
property to this summary edge. Note that, CSEs can be (and
in our case are) one-to-many relations, i.e. more than one

1

Line Change
Change Set Node

I1

I2

O1

O2

2

I1

I2

O1

O2

3

I1

I2

O1

O2

Program Point
Change in IIS

Source Code
Dependency

Figure 2. Detecting the CS and IIS

component input port can affect a single output port. In such
cases we use an aggregate summary edge, which connects a
given output port to all of the affecting input ports, and the
slice size becomes an attribute of this aggregate edge.

We develop our CIA approach based on the above-
mentioned FDG in such a way that it leverages the fine-
grained information inside the CDGs and balances them
with the coarse-grained CSNs and product-specific ICDGs
to trade-off between precision and scalability. The steps are
as the following: (1) Detect the Change Set: what has been
modified? (2) Find the Initial Impact Set: what has changed
from the external interface of a modified component? (3)
Find the Final Impact Set: what products, and which sections
of those products, will be impacted?

Detect the Change Set (CS): We focus on syntactic
changes as no static analysis method can guarantee to
infer the semantic differences between two versions of a
program. The process retrieves the syntactic differences of
two consecutive revisions of a given component using a
source-differencing tool available in most of the mainstream
software revision control systems (Figure 2, case 1). Using a
pure text-based tool, such as SVN “diff”, has the benefit that
no syntactic change will go undetected. However as a down-
side, ineffective trivial modifications to the source code are
also retrieved (e.g. adding comments). Such modifications
are obviously irrelevant with respect to CIA, and we remove
them by comparing the retrieved modifications against the
CDG to filter out the pseudo changes, i.e. changes in the
source code that do not have a counterpart in the component’s
CDG (Figure 2, case 2). Hereinafter, a CS node stands for a
program point in the CDG of a component whose counterpart
source code has changed.

Find the Initial Impact Set (IIS): To estimate the ripple
effects of a modification in a component-based system, we
first need to detect the consequences of the source-changes
from the perspective of the component’s interface — here-
inafter called the the Initial Impact Set (IIS). By component
interface in this product family, we mean the set of input and
output ports of the component. As the IIS will later seed the
process of propagating ripple effects throughout the product
family, the accuracy of the IIS will have a great impact on the
final precision of our CIA. Therefore, considering the safety-
critical characteristic of our case study, we do not intend to

trade-off precision for scalability at the IIS level.
To this end, we slice through the fine-grained CDG of the

updated component, with each output port as the slicing cri-
terion. This step tracks the new intra-component information
flows, and at the same time, extracts the new set of CSEs and
their slice sizes. The following two cases will be included
in the IIS on the original component:

1) Any output port whose program slice has a non-null
intersection with the CS nodes (Figure 2, case 3).

2) Any difference between the new enriched CDG and the
previous one (with respect to component interface ports,
summary edges, and their slice size).

At a first sight, it might appear that the second item in the
above list makes the first item obsolete as all cases of the
first item are also included in the second one. However, a
more detailed look on the cases entails their differences in
the context of CIA, as exemplified in the following: Consider
the case of two component revisions (with input port I1
and output port O1), whose only difference is changing the
program statement: “O1 = I1 + 1;” to “O1 = I1 + 1000;”.
This source modification does not yield any difference in
the structure of the enriched CDG, nor does it change the
slice size of O1 between the two versions. Therefore it will
not be caught in the second item, while it will be caught
by the first one as the program point(s) that represent the
modified source line will result in a non-null intersection
with the backwards slice from O1. As a result, the first item
is needed for the purpose of a “safe” analysis. Likewise,
the second item is not a subset of the first item since the
modifications in the new version of the component, might
occur next to and disjoint to the previous code. (e.g. adding
a new pair of input and output ports to a component and not
changing code which belongs to previously-existing ports).

We emphasize that one component-wide slice is performed
for each port of a given component type (approximately 10-
30 ports for each component), and not for each component
instance (up to thousands of instances of each component).
Therefore, the scalability of our approach will not depend on
the size of the deployed systems or the number of component
instances, but on the number of component implementations
and the number of ports belonging to each component.

Find the Final Impact Set (FIS): Before discussing the
propagation rules, we remark that change requests that alter
the overall black-box behavior of a product (e.g. adding a
new actuator), are not considered in our CIA approach. Such
modifications are represented by a new cause & effect matrix
(Section III) by adding/removing sensors or actuators, and
definitely call for maintenance effort (e.g. testing and certifi-
cation). However, it is unlikely that the expected behavior of
all sensors/actuators are altered in an existing product. It is
in such cases where CIA can be especially valuable as it can
limit the maintenance effort to only the new sensor/actuators,
should the previously existing behavior of the system be
reckoned as intact by CIA.

C.V1

I1

I2

O1

O2
C.V2

I1

I2

O1

O2
C.V1

I1

I2

O1

O2
C.V2

I1

I2

O1

O2

C.V1

I1

I2

O1

O2
C.V2

I1

I2

O1

O2

C.V1

O1

O2
C.V2

I1

I2

O1

O2

wo1 wo2

C.V1

I1

I2

O1

O2
C.V2

I1

I2

O1

O2

C.V1

I1

I2

O1

C.V2

I1

I2

O1

O2

C.V1

I1

I2

O1

C.V2

I1

I2

O1

O2

C.V1

I1 O1

O2
C.V2

I1

I2

O1

O2

C.V1

O1

O2
C.V2

I1 O1

O2

I1

I2

wo1 wo2wi1wi1

wi2 wi3

wi1 wi1wo1

wiCSE Added

CSE Deleted Possible Network
Change

Forward Slice Size

Backward Slice Size
Slice Size Changed

wo

wo2

1

2

4

6

8

3

5

7

9

I1

I2

Version One V1
Version Two V2

Figure 3. IIS cases and propagation of ripple effects

Similar to most existing CIA techniques, we propagate the
prospective ripple effects of the detected IIS throughout all
products of our product family, by forward and backward
traversal of our intermediate system representation, i.e. the
FDG in our case. We call this impact set the Final Impact Set
(FIS), which contains all sensor-actuator pairs whose infor-
mation flows have been affected by the source modification.

To discuss different change propagation scenarios, we
distinguish several atomic IIS cases, graphically shown in as
pre-change (V1) and post-change (V2) versions in Figure 3:

1) Only the slice size of a CSE is changed (Figure 3, #1).
2) A CSE between a pair of component input and output

is added or removed (Figure 3, #2-3).
3) A component input or output port is added or removed

(Figure 3, #4-7).
Figure 3, #8-9 show refinements discussed later.

Realistic IIS cases can, and usually do, contain more than
one of the above-mentioned items at the same time. However,
we separate such compound cases into the atomic cases to
conduct impact analysis and aggregate the results afterwards.

Traversal of the FDG is done by a straightforward reach-
ability analysis on coarse-grained summary dependencies
(CSEs) and inter-component dependence graph (ICDG). For
clarity, we discuss the highlights with respect to two versions
of a hypothetical component (C.V1 and C.V2 in Figure 3).

Case 1 (Figure 3, #1) – Fine-grained slice sizes change
and coarse-grained dependencies are the same: we only need
to traverse the existing FGD (forwards and backwards), and
mark all reaching sensors and actuators as FIS. We take the
slice size as an approximation of impact, and rank the FIS
according to the (absolute) delta in the system-wide slice
sizes. In this scheme, a system-wide information flow whose

size is changed by V is considered equal to an information
flow whose size has changed by −V (with respect to impact),
and an information flow with size S1 is ranked higher than
one with size S2, provided that S1 > S2.

Case 2 (Figure 3, #2-3) – Intra-component information
flows are added/removed but the externally visible interface
remains the same: system-wide information flows might
change as a result of the changes and may yield different
dependence relations between sensor-actuator pairs. Given
that multiple instances of a component might participate
in a single system-wide information flow, it is not enough
to propagate the IIS only in the previous FDG as it only
contains the previous CSEs. In this case we need to conduct
two rounds of propagation: once with the previous enriched
CDG, and once with the new CDG of the component in the
FDG. The FIS will be the union of the results from the two
propagations, as we are interested in every change in the
externally-visible behavior of the system (e.g. an actuator
engaged due to a sensor that was previously ineffective,
and vice versa). Any differences in system-wide information
flows will be marked as cases with definite impact. The
remaining information-flows will be ranked as in case 1.

Case 3 (Figure 3, #4-7) – Externally-visible interface
of the components are changed: we should conduct the
propagation in two phases, similar to Case 2. However,
in case the inter-component connections (the ICDG in our
model) have also adapted to the component’s new interface,
we should conduct the second round of propagation with an
extra twist: with the new ICDG in place. We point out that
addition/removal of a component port does not necessarily
imply that the ICDG of the product will change, as it is not
uncommon to replace a component with a revision which
has an extended interface, while the product only uses the
previously existing interface. For instance, consider the case
of a revised component who contains a number of bug-
fixes and also introduces more optional capabilities into the
product family. In such cases we do not need to conduct the
second round of propagations with the new ICDG.

Refinement (Figure 3, #8-9) – Enriching the FDG with
forward component-wide slice sizes can improve the accu-
racy of change propagation in a number of cases: Figure 3,
#8, shows O1 being affected by I1 and I2 in version V1.
This could for example be the results of the following two
program statements: “O1 = I1 + 1;” and “O1 = I2 + 2;”. In
V2, we change the latter to “O1 = (I2 > 0) ? 0 : 1;”, and
the size of the backward slice from O1 changes from Wo1
to Wo2. This will put O1, I1, and I2 in the IIS. However,
considering that forward slices from I1 in the two versions
have not changed, we can conclude that the modifications
have only affected the information flow between O1 and I2,
and not I1. Therefore, we trim the IIS accordingly and avoid
propagating the changes from I1 as they would be false-
positives. Figure 3, #9, shows a more involved case of #8
in which the information flow between O1 and I2 have been

completely cut off. Likewise, by considering forward slice
sizes we are able reduce false positives.

Distinguishing atomic parts makes it easier to analyze
complex cases, but it does not affect the FIS, which is
computed by taking the union of the atomic cases. However,
some caution is needed for ranking based on slice size: when
two atomic changes affect the same system-wide information
flow respectively by size V1 and V2, we rank this flow once
with size |V 1|+ |V 2| to avoid reporting that flow more than
once with different impact scales.

V. PROTOTYPE IMPLEMENTATION

This section discusses the implementation of our approach
in a tool named Richter. In [7] we developed tooling to re-
verse engineer system-wide dependence graphs from source
artifacts of a single component-based system. Richter reuses
parts of this work to develop a homogeneous model from
source artifacts of a family of products, which will be
reported briefly in this section.

To enable flexible integration of individual models to build
our FDG, we use OMGs Knowledge Discovery Meta-model
(KDM) [24] as a foundation for representing the various
intra- and inter-component dependence graphs. KDM was
designed as a wide-spectrum intermediate representation for
describing existing software systems and their operating
environments. KDM is completely language- and platform
independent, making it an ideal match for the purpose of
modeling product families with heterogeneous artifacts.

We use Grammatech’s CodeSurfer [25]1 to create com-
ponent dependence graphs (CDGs) for the individual com-
ponents. The top portion of Figure 4 gives an overview
of the main information that we collect from component
implementations to build the CDGs. Next, these CDGs are
traversed using CodeSurfer’s API to inject them into KDM.
We refer to [7] for more details on the mapping between
program elements and KDM classes. The traversal uses
the Java Native Interface to drive KDM constructors in
the Eclipse Modeling Framework (EMF). For each program
point, we include a pointer to its origin in the source
code for traceability. We enrich the CDGs with additional
summary edges using a simple slicing tool in Java that
we have created as part of our earlier work. Alternatively,
we could have defined several “destructive” transformations
that create an additional new model for each CDG, but we
prefer to enrich our dependence model in order to reuse
information in multiple applications. To avoid keeping the
whole FGD in memory, we exploit EMF notions of Resource
and ResourceSet to compartment our model and to serialize
each compartment separately [26]. For each (version of)
a component implementation we need to build its fine-
grained CDG once, and save this model into a separate EMF
Resource. By activating the optional lazy-loading mechanism

1http://www.grammatech.com/

Source Code Information

Configuration Information

0..*

1..*

from

from
to

to

DataDependence

ControlDependence

ProgramPointPDG

CompilationUnit

Line#

SourceFile

PortInstance

Intercomponent
DataDependence

ConfigurationFile

PortType

declares
todeclares

from
declares

ComponentInstance

Figure 4. Meta-model describing the main elements used to track
information flow across a component-based system.

of EMF Resources, once a CDG is required to build a PSDG
for the first time, it will be automatically loaded into memory.

Next, we use Xalan-J to analyze and transform the system
configuration artifacts of each product (lower portion in
Figure 4) into its inter-component dependence graph (ICDG).
Finally, we use KDM container elements to add the com-
ponent summary nodes (CSNs) for each component that is
included in a product, and use a straightforward substitution
transformation to integrate the CSNs with the ICDG and
create the final PSDG. The edges between CDG and CSN
interface ports are easily mimicked by adding stereotyped
ActionRelationShips (a KDM wild-card meta-model class to
be extended by new meta-model classes).

Our prototype calls SVN “diff” to detect syntactic changes
in the source code, but similar tools can be used instead. With
the FDG constructed, we propagate changes throughout the
product family by slightly adapting our straightforward Java
slicing tool to traverse coarse-grained summary edges and
accumulating slice sizes along the way.

VI. EVALUATION

In the context of large-scale safety-critical systems, two
important factors for evaluating our approach are its accuracy
and scalability. Since our CIA technique largely depends on
the quality of the family-wide dependence model that is used
as the medium to both detect changes, and to propagate ripple
effects throughout the product family, we focus on evaluating
the accuracy and the scalability of our FDG.

Accuracy: One of the challenges in evaluating the accu-
racy of our cross-component approach is determining a gold
standard to compare our results to. This is due to the fact that
existing program analysis tools are typically confined to the
boundaries defined by the source code of a single component
as they can neither incorporate the component configuration
information, nor heterogeneous programming languages.

We address this challenge in the same way as we did
in [7] by increasing our level of control during the ex-

perimental evaluation. In short, we create two code bases
and compare the results of applying (a) our approach, and
(b) an existing reliable tool on these code bases: First, we
develop two simple in-house component based products that
closely resemble the architecture of the products described
in Section III. To simulate a product family, these two
products have one shared component. Each product mimics
the component composition framework of our real-world
case study by processing a number of external configuration
files and building the inter-component network. Port declara-
tions, component instantiations, and all component intercon-
nections are described using text-based configuration files.
The connection mechanism is simple, yet general enough
to represent most component-based systems, including our
case study. Second, we create another product family which
contains the same ingredients as the first one, but everything
is implemented as a homogeneous program. This is done by
replacing the component composition framework by hard-
coded connections in the program’s source code.

The components and configuration artifacts of the first
product family are analyzed using our slicer. Moreover,
since the second product family does not depend on external
configuration files and since all aspects are programmed in
C, it can be analyzed by CodeSurfer to set the gold standard
in our evaluation. We evaluate the accuracy by comparing
the slices obtained using our tool with the gold standard
computed by CodeSurfer, and looking for any differences in
the program points, component instances, and port instances
that are included in a slice. To maximize the fault-revealing
potential and test both system-wide and partial information
flow paths, we repeat this comparison for each system and
component output port as the slicing criteria.

Our comparisons show that for each configuration and
slicing criterion, both slicing tools generate the same output
for what concerns the components and their interactions.
The slices computed by CodeSurfer also contained the code
that was added to the variants to hard-code the component
connections. Since our approach abstracts from the frame-
work and directly captures the configuration, those program
points have no counterpart in our slices, as was expected.
We conclude that we achieve 100% accuracy.

Scalability: We discuss the scalability of our dependence
model and fine-grained system-wide slicing in reference to
the evaluation in [7] in recognition of the continuity in our
industrial collaboration. Afterwards, we discuss the effects of
coarse-grained dependencies on the FDG and system-wide
dependency analysis, which are specific to our current study.

As mentioned earlier, the System Dependence Graph
(SDG) introduce in [7] provided a fine-grained dependency
model for a single component-based system. We have devel-
oped our FDG based on the same principles and terminology
as in [7], but tailored the dependence model with respect to
shared vs. product-specific components. However, product-
specific components can be regard as a special product-

line asset which has been used in only one system so far.
According to [21], product-specific components can, and in
reality do, mature into core components once they enrich
their variabilities. In conclusion, if we build our FDG for
a hypothetical product whose components are all specific
to that product, the FDG becomes identical to our previous
SDG. Therefore, we developed our prototype tool (Richter)
by reusing our previous implementation reported in detail
in [7]. In that paper we demonstrated in detail that both
execution time and model size show linear growth with
respect to program size (measured by LOC). The growth
rate was shown to be constant from a number of industrial
code bases ranging from about 100LOC to 100KLOC in
size. To give an impression of the resulting model size, we
report that the (KDM) model for the mentioned system with
100KLOC is transformed into 600,000 lines of XMI (78MB),
once serialized on disk.

To efficiently represent components inside PSDGs, we
substitute fine-grained CDGs with CSNs which only con-
tain the externally-visible interface of a component. To
implement this scheme we need one node in the CSN for
each component port, and one edge (ActionRelationShip in
KDM) between the port nodes. Apart from that, we en-
rich each CDG with coarse-grained CSEs which summarize
component-wide information flows by using a single edge
for each component input-output pair that is connected by
program slicing. These two design choices make our system-
wide dependency analysis completely independent from the
components’ source code size once the FDG is built. The
efficiency of our dependency analysis is a linear function of
the number of component instances that participate in each
system-wide information flow, which is approximately in the
range of 12-20 in the product family we study. To traverse
across each competent instance we need to walk five edges:
two edges between port instances and port types in the CSN,
two for the edges between a port in CSN and its counterpart
node in CDG, and one for the summary edge inside the CDG.
Traversing such low number of dependencies in our model
takes a trivial time, in the order of milliseconds.

We would like to demonstrate the effectiveness of the
coarse-grained dependencies (i.e. CSNs and CSE) with re-
spect to the graph size. Table I reports graph size in four
randomly selected components from a subset of our industrial
partner’s software repository which was accessible to us to
evaluate our approach. The first row of the table shows the
number of CDG nodes and edges, corresponding to program

Table I
GRAPH SIZE: FINE-GRAINED VS. COARSE-GRAINED

Component 1 2 3 4

Fine-Grained Node # 3010 1864 2518 1592
Dependency# 10386 5915 8702 5220

Coarse-Grained Node # 23 13 23 21
Dependency# 44 26 50 50

points and data- and control dependencies in the component
source code. The second row shows the number of CSN
nodes and CSEs, corresponding to component ports (input
and output) and pairs of input-outputs that are connected
together by information flow. As a reference for comparison,
the component dependence graph for “Component 1” has
3010 program points and 10386 dependencies. Its corre-
sponding coarse-grained graph has only 23 nodes (for each
product that has an instance of “Component 1”), and 44
edges (each one connecting input to output directly).

Validity: The above-mentioned evaluation covers the ac-
curacy and scalability of the FDG and the underlying pro-
gram analysis technique, i.e. slicing. Although they are an
important determinant in the efficiency of our CIA approach,
we acknowledge that a thorough application of our CIA
approach is needed before we can assess its reliability. First
and foremost, the precision and recall factors of our CIA
needs to be demonstrated in practice using the software
repository of our industry partner. The mentioned repository
contains the actual evolution history of the product family for
almost two decades. We can put to test our CIA approach by
choosing a component revision whose actual ripple effects
are known in the repository, and compare our FIS against
that. Likewise, the intuition to associate the scale (severity)
of impact with program slice sizes, which was the basis of
our approximate ranking scheme, should be empirically put
to test before it can be adopted as a reliable measure. Both
of the mentioned tasks require long-term collaborations with
our industry partner, to closely monitor the applicability of
our approach in day-to-day maintenance tasks in the course
of time. This process, in return, requires integrating our
approach in the existing development environments of our
industry partner. We are currently planning and discussing
a number of prospective research avenues with our industry
partner to accomplish the mentioned goals.

Discussion: As described in Section IV, a single CDG is
built for every component in the product family, regardless of
being a shared or being a product-specific asset. Therefore,
all PSDGs are built by using a much more lightweight
Component Summary Node (CSN). Alternatively, we could
build an equally-expressive model without building separate
CDGs and CSNs for product-specific components. As such
components appear only once in the product family, we could
embed the original CDGs inside the PSDGs. One could argue
that having separate CSNs for product specific components
imposes extra nodes into the model, albeit only a handful
of nodes. We believe such (low) overheads in model space
are negligible given that we get a highly regular, and much
simpler, modeling of the domain in return. Also from a
technical point of view, having the heavy and fine-grained
CDGs in one model compartment (together with the lazy-
binding mechanism mentioned in Section V), makes PSDGs
extremely lightweight. This makes (potentially frequent)
executions of CIA even more cost-effective.

VII. CONCLUDING REMARKS

Integrated Control and Safety Systems (ICSSs) are com-
plex, large-scale, software-intensive systems to control and
monitor safety-critical devices and processes that are in-
creasingly pervasive in technical industry, such as oil and
gas production platforms, and process plants. These systems
are highly-configurable and for deployment in concrete sit-
uations they need to be adapted and configured to differ-
ent safety logic and installation characteristics. Component-
based development of product families is one of the main
approaches to cope with such a high variability space while
controlling quality, cost and time to market by maximizing
the reuse of components between products.

However, software evolution in such products families
is arguably more complex as a result of the increased
dependencies that are introduced via shared components.
Change Impact Analysis (CIA) can play a significant role
in this process by estimating the ripple effect of a change,
but the heterogeneity of software artifacts hinders a uniform
analysis in product families.

Contributions: This paper proposes a technique for
Change Impact Analysis in component-based product fami-
lies using a combination of Model-Driven Engineering with
well-established program analysis techniques, such as pro-
gram slicing. The contributions of this paper are the fol-
lowing: (1) we recover a Family Dependence Graph (FDG)
which balances the trade-off with precision and scalability,
for the purpose of change impact analysis; (2) we improve
the precision of change propagation by detecting the Ini-
tial Impact Set (IIS) using fine-grained dependence graphs;
(3) we compute the Final Impact Set (FIS) by propagating
the IIS throughout a family of products via traversal of
lightweight and coarse-grained dependencies — this choice
of where to draw the line between IIS and FIS, and move from
fine-grained to coarse-grained dependencies, is the key deci-
sion to balancing precision and efficiency in our approach —
(4) we propose a ranking scheme based on approximations of
the scale of impact using program slice sizes; (5) we present
the transformations that helped us to achieve these models,
and discuss how we developed a prototype tool (named
Richter) based on a standardized language-independent meta-
model (KDM) to ensure interoperability and generalizability.
The proposed approach is not limited to the proposed domain
and can be applied on systems with inputs and outputs other
than sensors and actuators. The evaluation indicates that it
scales well to the constraints of real-world product families.

Future Work: We see several directions for future work:
First, as mentioned in Section VI, we intend to empirically
assess our approach to evaluate the precision and recall
factors of our analysis in an industrial context. In addition,
our approximation of impact scale based on program slice
sizes, needs to be validated by closely monitoring how our
approach is used in practice, and by gathering feedback from

the so-called retrofit team (Section III). We also intend to
try out the effect of different weighting schemes on our
ranking mechanism, based on the type of the program points
involved in the slice. For instance, we can assign a larger
weight for a node in a condition clause than a node in an
assignment statement, assuming that a change in a condition
clause should take priority to another change with the same
size with no condition clause. These studies require long-
term close collaborations with our industry partner.

The externally-visible interface of the components in our
case study, is highly “data oriented”, i.e. components interact
by sending and receiving data to/from each other. This
characteristic makes them very amenable to information flow
analysis, which is the foundation for our impact analysis.
One line of future work is to investigate the application of
our approach in component-based system whose interaction
is via API calls. One main difference of such systems with
our case study is that component interactions follows a ”call-
and-return” scheme. The effect of such interaction schemes
on the homogeneous dependence model needs to be studied.

Apart from CIA techniques, another approach for es-
timating the effects of software change is investigating
how a given system has evolved in the past [27]. Several
studies have reported on cases that uncover co-evolution
trends among software artifacts, by applying data-mining
techniques on the previous versions of the artifacts and other
related historical data (e.g. bug reports and the meta-data in
version control software) [28]. There is an emerging trend
to integrate the two approaches to increase the precision
of software evolution estimations [27, 29]. It would be
interesting to investigate how our CIA-based estimations can
be enhanced using the historical evolution information from
our industrial partner’s software repository.

Acknowledgments: We thank the safety experts and soft-
ware engineers from Kongsberg Maritime that participated
in our workshop and interviews for their time and feedback.

REFERENCES

[1] M. Matinlassi, “Comparison of software product line archi-
tecture design methods: COPA, FAST, FORM, KobrA and
QADA,” in Int’l Conf. Softw. Eng. IEEE, 2004.

[2] M. Svahnberg and J. Bosch, “Evolution in software product
lines: two cases,” J. Software Maintenance: Research and
Practice, vol. 11, no. 6, 1999.

[3] S. Bohner and R. Arnold, Software Change Impact Analysis.
IEEE, 1996.

[4] S. Lehnert, “A taxonomy for software change impact anal-
ysis,” in Int’l Ws. Principles of Softw. Evolution (IWPSE-
EVOL). ACM, 2011.

[5] M. J. Harrold, D. Liang, and S. Sinha, “An Approach To
Analyzing and Testing Component-Based Systems,” in ICSE
Ws. Testing Distributed Component-Based Systems, 1999.

[6] A. Rountev, “Component-Level Dataflow Analysis,” in Int’l
Conf. Component-Based Softw. Eng. (CBSE). Springer, 2005.

[7] A. R. Yazdanshenas and L. Moonen, “Crossing the Boundaries
while Analyzing Heterogeneous Component-Based Software
Systems,” in IEEE Int’l Conf. Softw. Maintenance, 2011.

[8] X. Sun, B. Li, C. Tao, W. Wen, and S. Zhang, “Change
Impact Analysis Based on a Taxonomy of Change Types,”
in Computer Softw. and Applications Conf. IEEE, 2010.

[9] S. Lehnert, “A Review of Software Change Impact Analysis,”
Techn. Univ. Ilmenau, Report ilm1-2011200618, 2011.

[10] M. A. Chaumun, H. Kabaili, R. K. Keller, and F. Lustman,
“A change impact model for changeability assessment in
object-oriented software systems,” in European Conf. Softw.
Maintenance and ReEng. IEEE, 1999.

[11] Z.-j. Wang, X.-f. Xu, and D.-c. Zhan, “Agility Evaluation for
Component-based Software Systems,” J. Information Science
And Engineering, vol. 23, no. 6, 2007.

[12] L. Yan and X. Li, “An Interface Matrix Based Detecting
Method for the Change of Component,” in Int’l Symp. In-
formation Science and Eng. IEEE, 2008.

[13] C. Mao, J. Zhang, and Y. Lu, “Matrix-based Change Impact
Analysis for Component-based Software,” in Computer Softw.
and Applications Conf. IEEE, 2007.

[14] T. Feng and J. I. Maletic, “Applying Dynamic Change Impact
Analysis in Component-based Architecture Design,” in Int’l
Conf. Softw. Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing. IEEE, 2006.

[15] H. Cho, Y. Cai, S. Wong, and T. Xie, “Model-Driven Im-
pact Analysis of Software Product Lines,” in Model-Driven
Domain Analysis and Softw. Development: Architecture and
Functions. IGI, 2011.

[16] J. Dı́az, J. Pérez, J. Garbajosa, and A. L. Wolf, “Change
impact analysis in product-line architectures,” in European
Conf. Softw. Architecture, 2011.

[17] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, 2nd ed. AW, 2002.

[18] A. R. Yazdanshenas and L. Moonen, “Tracking and Visualiz-
ing Information Flow in Component-Based Systems,” in IEEE
Int’l Conf. Program Comprehension (ICPC), 2012.

[19] J. Bosch, Design and Use of Software Architectures: Adopting
and Evolving a Product-Line Approach. AW, 2000.

[20] L. Hatton, “Safer language subsets: an overview and a case
history, MISRA C,” Information and Software Technology
(IST), vol. 46, no. 7, 2004.

[21] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation
in software product families: a case study,” J. Systems and
Software, vol. 74, no. 2, 2005.

[22] M. Weiser, “Programmers use slices when debugging,” Com-
munications of the ACM, vol. 25, no. 7, 1982.

[23] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing
using dependence graphs,” ACM Transactions on Program-
ming Languages and Systems (TOPLAS), vol. 12, no. 1, 1990.

[24] OMG, “Architecture-Driven Modernization (ADM): Knowl-
edge Discovery Meta-Model (KDM) - v1.2,” 2010.

[25] P. Anderson, “90% Perspiration: Engineering Static Analysis
Techniques for Industrial Applications,” in IEEE Int’l Working
Conf. Source Code Analysis and Manipulation, 2008.

[26] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,
EMF: Eclipse Modeling Framework 2.0. AW, 2009.

[27] H. Kagdi and J. Maletic, “Software-Change Prediction: Esti-
mated+Actual,” in IEEE Int’l Ws. Softw. Evolvability, 2006.

[28] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and
taxonomy of approaches for mining software repositories in
the context of software evolution,” J. Software Maintenance
and Evolution: Research and Practice, vol. 19, no. 2, 2007.

[29] L. Hattori, S. Jr, F. Cardoso, and M. Sampaio, “Mining
Software Repositories for Software Change Impact Analysis :
A Case Study,” in Brazilian Symp. Databases (SBBD), 2008.

