
Does the Use of Fibonacci Numbers in Planning

Poker Affect Effort Estimates?
	

	

Ritesh Tamrakar1 & Magne Jørgensen2,3
1University of Kathmandu, 2Simula Research Laboratory, 3University of Oslo

ritesh.tamrakar@gmail.com
magnej@simula.no

	

	

Abstract	

Background: The estimation technique Planning Poker
is common in agile software development. The cards
used to propose an estimate in Planning Poker do not
include all numbers, but for example only the numbers
0, ½, 1, 2, 3, 5, 8, 13, 20, 40 and 100. We denote this,
somewhat inaccurately, a Fibonacci scale in this paper.
In spite of the widespread use of the Fibonacci scale in
agile estimation, we do not know much about how this
scale influences the estimation process. Aim: Better
understanding of the effect of going from a linear scale
to a Fibonacci scale in effort estimation. Method: We
conducted two empirical studies. In the first study, we
gave computer science students the same estimation
task. Half of the students estimated the task using the
Fibonacci scale and the other half a linear scale. The
second study included four estimation teams, each
composed of four software professionals, estimating the
effort to complete the same ten tasks. Two of the teams
estimated the first five tasks using the Fibonacci scale
and the last five using the linear scale. The two other
teams used the scales in the opposite sequence.
Results: We found a median decrease in the effort
estimates of 60% (first study) and 26% (second study)
when using a Fibonacci scale instead of the traditional
linear scale. The scale difference in the effort estimates
decreased as the developers’ skill increased.
Conclusion: The use of a Fibonacci scale, and possibly
other non-linear scales, is likely to affect the effort
estimates towards lower values compared to linear
scales. A possible explanation for this scale-induced
effect is that people tend to be biased towards toward
the middle of the provided scale, especially when the
uncertainty is substantial. The middle value is likely to
be perceived as lower for the Fibonacci than for the
linear scale.
Keywords:	
 effort	
 estimation,	
 Planning	
 Poker,	

regression	
 effect	

I . 	
 INTRODUCTION	

Agile processes have changed not only the way
many software development organizations develop
their software but also the way they estimate the effort
and plan their deliveries. An innovation proposed and
used by many agile teams is the estimation technique
Planning Poker. Planning Poker was introduced by
James Grenning in a short, but highly influential, paper
from 2002: “Planning Poker or How to Avoid Analysis
Paralysis While Release Planning” [1]. Planning Poker
was further developed by Mike Cohn in [2]. It may be
characterized as a judgment-based, structured, group-
based estimation method with elements from the Delphi
method; see, for example, the Wideband Delphi method
proposed by Barry Boehm [3].

When applying the Planning Poker method, a group
of developers meet and go through a sequence of steps
for each task, user story, or requirement to be
estimated. A possible sequence leading to an effort
estimate of a task is the following: i) Presentation of the
task. ii) The developers discuss the task. iii) The
developers produce independent estimates of the task.
The estimates are typically in work-hours, ideal days,
or story points. iv) The developers present their
estimates, by selecting the card with the appropriate
number, at the same time. v) The developers with the
lowest and highest estimates justify their estimates. vi)
If there is sufficient agreement on estimates, the
estimation process for the task stops here. If there is a
substantial disagreement or some developers have
gained new insight through the other developers’
justification or the discussion, then the steps are
repeated from step iii). This is done until sufficient
agreement is achieved or there is no change in
estimates from the previous round. The group’s
estimate may be calculated as the mean or median of

the individual estimates in the final round, or by
applying other ways of consensus making. Planning
Poker is believed to have several advantages compared
to individual estimation and less structured group-based
effort estimation, since
• Group-based effort estimation is on average more

accurate than individual estimation [4].
• Independent estimation before discussing in groups

is less exposed to so-called anchoring effects than
unstructured group estimation [5]. Independent
estimation avoids, for example, all developers
being strongly influenced by the level of effort
indicated by the most senior developer or the
project manager early in the group discussion.

The study in [6] documented the potential benefits
of Planning Poker compared to alternative
combination-based estimation methods.

One central and, as far as we know, innovative
element of Planning Poker, and the subject of this
paper, is the non-linear sequence of numbers used for
the estimation. Grenning [1] suggested that each
developer should have a deck of cards with the
numbers 1, 2, 3, 5, 7, 10, and “infinity,” where
“infinity” meant that the task was too large to be
estimated, and use only these numbers for the
estimation work. From his paper, it seems as if his
motivation was to speed up the estimation process in an
XP (eXtreme Programming) release planning context
and to use a scale that reflected that the higher the
estimates the less precise they are: “It is OK to be less
precise. Why invest in precision before it is needed?”
[1]. Grenning did not forbid the use of values in-
between the proposed values, e.g., through adding two
cards, but did warn against it: “I bet that the added
precision probably won’t help a lot” [1]. Later,
possibly influenced by Mike Cohn’s contributions to
agile estimation [2], this has evolved into a sequence
similar to the Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13,
21, 34, …). A typical example of the sequence of
numbers used by many software teams is the sequence
0, ½, 1, 2, 3, 5, 8, 13, 20, 40, 100. In this paper, we will
use the term Fibonacci sequence to denote sequences
that are similar but not necessarily identical to the first
numbers of the Fibonacci sequence.

There is empirical support for the claim that the
selected Fibonacci numbers reflect the average level of
precision of software development effort estimation.
An average precision of about +/- 30% [7], for
example, results in uncertainty intervals close to
covering the whole scale without too much overlap or
too many gaps1.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 More specifically, we get for the values ½, 1, 2, 3, 5, 8, 13, 20, and
40 the corresponding uncertainty intervals [0.35; 0.65], [0.7; 1.3],
[1.4; 2.6], [2.1; 3.9], [3.5; 6.5], [5.6; 10.4], [9.1; 16.9], [14; 26], and
[28; 52].

In a recent, large-scale survey of empirical studies
on judgment-based effort estimation in all types of
domains [8], we found no empirical studies comparing
the use of Fibonacci or other non-linear scales with
traditional linear scales. This suggests that, in spite of
the widespread use of this scale in agile estimation, we
do not possess much knowledge about how this scale
affects judgment-based effort estimates. More
knowledge about this technique may not only improve
agile estimation processes but also provide more
knowledge about the mental steps of judgment-based
effort estimation. In this paper, we present two studies
to gain more knowledge about possible scale-induced
estimation effects. The main research question is as
follows:

Does the use of the Fibonacci sequence lead to

different effort estimates than the use of a linear scale?

The studies are described in Section II, while the

limitations, possible explanations, and implications are
briefly discussed in Section III.

II . 	
 THE	
 EMPIRICAL	
 STUDIES	

The first study (Study 1) was conducted with
university students. The main purpose of that study was
to establish a context where it would be likely to find a
scale-induced effect if there were any, i.e., the purpose
was to demonstrate an effect rather than to examine
how large it is likely to be in a field setting. For this
purpose, we believe, student experiments are
meaningful. The second study (Study 2) was conducted
with software professionals, with realistic estimation
teams and a real-world requirement specification.

A. Study 1

Study design: The participants were 104 computer
science students following a course on software
engineering at the University of Oslo, Norway. All
participants received the same requirement
specification, consisting of a description of a simple
web-based system for registering for a summer party.
The developer who had programmed this quite small
and simple system had spent fewer than 8 work-hours.
However, he had much more relevant experience than
the typical student participant, so we would expect their
effort to be higher. The students were randomly divided
into two groups (Linear and Fibonacci) with exactly the
same instructions, except for the scale used for the
effort estimation responses. The participants were,
depending on the group they belonged to, asked to put a
circle around the number that best reflected what they
believed was the most likely number of work-hours
they would need to complete the task:

Linear Group: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, more
than 40 work-hours

Fibonacci Group: 1, 2, 3, 5, 8, 13, 20, 30, 40, more
than 40 work-hours

In addition to the estimated most likely use of effort,

the developers were asked to describe their skill in
solving the specified task on the scale: very good, good,
acceptable, poor. We excluded all developers who
responded with the skill category “poor” before
analyzing the data, to ensure that all participants had
sufficient skill for meaningful effort estimation work.
After this exclusion, 89 participants remained. None of
these participants used the category “more than 40
work-hours.”

Results: There was a large difference in the effort
estimates depending on the scale used. The median
effort estimate of those in the Linear Group was 20
work-hours, while the corresponding median value for
those using the Fibonacci scale was only 8 work-hours!
A Kruskal-Wallis test of the difference in the median
values gives p < 0.001. Interestingly, the median values
are also the “middle” values of the two sequences, i.e.,
20 work-hours is the middle value of the linear and 8
work-hours of the Fibonacci sequences. We will
discuss this finding as an input to a potential
explanation of the scale-induced effect in Section 3.
Clearly, the effect is too large to be attributed to
“rounding biases,” e.g., to a tendency toward rounding
the estimated effort down rather than up to the closest
Fibonacci number.

The effect of the scale diminished, as can be seen in
Figure 1, as the developers’ skill increased. The
difference in effort estimates is statistically significant,
p=0.06, for the one-sided Kruskal-Wallis test of median
values, even for those with the highest skill (“very
good” or “good”).

Figure 1: Estimates vs. Scale and Skill

B. Study 2
Design: Sixteen employees of a Nepal-based

software development company conducting offshore
development for a European parent company
participated in the study. The company develops web,
desktop, and mobile applications on ASP, .NET, and
Java platforms. The participants were selected, based
on their development and estimation competence, by
the management of the company and paid regular fees
for their work.

Following an introduction to the Planning Poker
estimation method, all participants received a real-
world requirement specification. The requirement
specification described the web-based management of
.pdf documents with scanned images. The part of the
requirement specification used in the study consists of a
subset of the specified requirements. In total, ten
requirements were estimated by each developer and
team. The estimated effort should include development
and unit testing for a requirement.

Before starting the Planning Poker (group-based)
estimation, all participants individually estimated the
effort required to develop software that meet the ten
requirements. These individual estimates were not
restricted by any scale format instruction, i.e., the
participants were just asked to write the number of
work-hours they would need to complete the tasks. This
session implies there was no difference in scale usage
for the initial, individual estimate, only for teams’
updates of the estimates in the Planning Poker sessions.
We may therefore expect weaker scale effects than in
Study 1, where the developers started with different
scales.

The sixteen participants were divided into four
estimation teams. Each team had four members with
the same platform background (ASP, .Net, or Java) and
applied the Planning Poker estimation method to their
group-based estimation work. If no consensus was
reached within three Planning Poker rounds, the mean
value of the estimates was used as the team’s final
effort estimate of a requirement.

The cards used for estimating a requirement had
numbers based on a Fibonacci or a linear scale:
• Fibonacci (11 cards to choose between): 0, ½, 1, 2,

3, 5, 8, 13, 20, 40, 100
• Linear (100 cards to choose between): 1, 2, 3,

……. 100
Two of the teams estimated Tasks 1 to 5 using the

Fibonacci-scale cards and Tasks 6 to 10 using the
linear-scale cards. The two other teams used the cards
in the opposite sequence. As can be seen, those using
the linear scale did not have the values 0 and ½
available. Since there were no estimates where it was
meaningful with 0 work-hours and only one instance of
a developer believing that ½ work-hour would be
sufficient, we do not consider this a limitation of the

comparison of the scales. Together with each individual
estimate, the developers assessed their skill in
completing the work on a scale from 1 (much lower
than average) to 5 (much higher than average).

Results: There was no significant difference
between the individual effort estimates of the
developers starting with a Fibonacci scale and those
starting with a linear scale, and the average skill level
of the different teams was about the same. This
suggests that any observed scale-induced difference in
effort estimates is not likely to be attributed to
systematic team differences in estimation optimism or
skill.

The median final team estimate of a requirement
was 6.75 work-hours when a team used the linear scale
and 5 work-hours when the team used the Fibonacci
scale. A Kruskal-Wallis, one-sided test of the
difference in the median values gives p=0.07. This
difference corresponds to a median 26% decrease in
effort estimates when using the Fibonacci scale. The
requirements were of different sizes and complexities,
so this analysis is likely to be only a rough indication of
the scale-induced effect.

A better analysis of the scale effects may be to rank
the team estimates for each requirement, i.e., give the
lowest estimate for a given requirement rank 1, the
second lowest rank 2, etc. If we compare the mean rank
of estimates based on the two scales, we get even
stronger evidence in favor of lower estimates when
using the Fibonacci scale. We find that the mean rank
of the Fibonacci scale is 1.8 while that of the linear
scale is 2.5; see Figure 2. An ANOVA test of the
difference in mean rank gives p=0.03.

In total, we find a systematic effect from the use of
the Fibonacci scale in Studies 1 and 2. This effect is
especially convincing in Study 2 since all initial
estimates were based on the same non-restricted scale
for the individual estimates. The difference in scale
usage could consequently affect only the teams’ update
of the estimates through the Planning Poker method.

Figure 2: Rank of Estimates vs. Scale

We separated the 40 Planning Poker team estimates
into “low” or “high” skill depending on whether the
team’s average skill level for a particular requirement
was below or above the average team skill level. We
found no difference in the median values for the team
estimates based on the highest level of skill (median of
5.5 work-hours for the Fibonacci and linear scale
estimates). The median team estimates differed,
however, significantly for those with low skill (4.75
work-hours for the Fibonacci scale and 8.0 work-hours
for the linear scale). This finding further supports that
the scale effects are mainly there when the estimation
uncertainty is high.

III . 	
 DISCUSSION	

A. Limitations
The results of Studies 1 and 2 should be interpreted

carefully and do not warrant strong claims about the
effect of the scale in more realistic effort estimation
contexts with, among other things, feedback and
learning. The most important limitations, we believe,
are the following:
• The estimation process applying the linear scale

format, as implemented in our studies, is unusual.
Our design is, we believe, nevertheless acceptable
to establish that the estimation response scale
matters and that we cannot expect to use non-linear
scales without side effects in situations with high
estimation uncertainty.

• Although the participants, especially in the second
experiment, had previous estimation experience,
they had no or little experience with the applied
estimation formats. Consequently, it is possible
that the effects will be weaker or even removed for
teams more experienced in the use of, for example,
Planning Poker.

• The tasks estimated were quite small, although
typical for agile estimation contexts. However, we
do not know much how the use of non-linear scale
affects the estimation of larger tasks and projects.

• We do not know how much effort the developers
would actually use. The frequently reported
tendency towards under-estimation of software
development effort suggests that the use of the
Fibonacci scale would contribute to increased
estimation error, but we need studies with
knowledge about the actual effort to provide strong
evidence for this.

The above limitations imply a need for further
studies to better understand how the use of non-linear
scales affects the effort estimates. Our studies should be
considered only as a first step toward better
understanding of a phenomenon that is not only
theoretically interesting but also may have practical

consequences for improved estimation accuracy in
agile and other contexts.

B. A Possible Explanation of the Effect

The perhaps most striking difference between the
formats of the Fibonacci scale and the linear scale is the
difference in “gravity,” i.e., that the Fibonacci sequence
has a much larger proportion of its values at the lower
end of the scale compared to the linear scale. Assume
that we, for example, stop the sequences at 40. The
linear scale would then have “20,” while the Fibonacci
sequence would have “8” as the middle number. The
middle, or “central” value, is well known to be
influential in quantitative estimation. Hollingworth
wrote the following in 1910 [9]: “Judgment of time,
weight, force, brightness, extent of movement, length,
area, size of angles, have all shown the same tendency
to gravitate toward a mean magnitude[.]” This
tendency is denoted “the central tendency of judgment”
and seems to be a robust phenomenon. Explanations of
the central tendency of judgment include “anchoring”
and “Bayesian updating-processes” [10]. An anchoring
effect may occur, for example, when the central value
is the starting hypothesis for the estimation and there is
an insufficient adjustment up or down from this value
[11]. The use of a Bayesian judgment-process implies
that people weight the average (the prior information
about the phenomenon) and the particular signal. If the
knowledge is good (the signal is reliable), then the
average is weighted less, but if the knowledge is poor,
the average is weighted more. When the skill level
increases, there is less reason for the middle value of
the scale to act as the central value that uncertain
estimates should regress toward. The finding that
increased skill led to less effect from the use of the
Fibonacci scale, therefore, seems to be consistent with
the above explanation.

C. Implications

Our studies suggest that the choice of scale may
have an effect on the effort estimates, especially when
the estimation uncertainty is high. This, in turn,
suggests that software developers should be careful
when applying non-linear scales, such as the Fibonacci
scale. Although using a Fibonacci scale may speed up
the estimation process and reflect the precision of the
effort estimates better than linear scales, a Fibonacci
scale may also bias the estimates toward too low effort
values. Especially in situations when there is a
tendency toward over-optimism and the estimation
uncertainty is high, it may be risky to use the Fibonacci
scale in effort estimation. More knowledge about the
tasks to be estimated may reduce the effect, and thus,
the first iterations or releases might have the highest
risk of under-estimation due to the use of the Fibonacci
scale.

If the central tendency of judgment is a valid
explanation for the finding, we hypothesize that similar
findings will be observed for other types of non-linear
scales. The exponential sequence, which is sometimes
recommended in agile estimation, for example, might
lead to an even stronger tendency toward lower values
than the Fibonacci scale.

REFERENCES:
1. Grenning, J., Planning Poker, 2002, Renaissance
Software
(/renaissancesoftware.net/files/articles/PlanningPoker-
v1.1.pdf).
2. Cohn, M., Agile estimation 2006, Englewood Cliffs,
New Jersey: Prentice Hall.
3. Boehm, B.W., Software engineering economics
1981, Englewood Cliffs, New Jersey: Prentice-Hall. XXVII,
767 s.
4. Moløkken-Østvold, K. and M. Jørgensen, Group
processes in software effort estimation. Empirical Software
Engineering, 2004. 9(4): p. 315-334.
5. Aranda, J. and S. Easterbrook, Anchoring and
adjustment in software estimation. Software Engineering
Notes, 2005. 30(5): p. 346-355.
6. Moløkken-Østvold, K., N.C. Haugen, and H.C.
Benestad, Using planning poker for combining expert
estimates in software projects. Journal of Systems and
Software, 2008: p. 2106-2117.
7. Jørgensen, M., A review of studies on expert
estimation of software development effort. Journal of Systems
and Software, 2004. 70(1-2): p. 37-60.
8. Halkjelsvik, T. and M. Jørgensen, From origami to
software development: A review of studies on judgment-based
predictions of performance time. To appear in Psychological
Bulletin, 2012.
9. Hollingworth, H.L., The central tendency of
judgment. Journal of Philosophy, Psychology and Scientific
Method, 1910. 7(17): p. 461-469.
10. Grieco, D. and R.M. Hogarth, Overconfidence in
absolute and relative performance: the regression hypothesis
and Bayesian updating. Journal of Economic Psychology,
2009. 30: p. 756-771.
11. Kahneman, D., P. Slovic, and A. Tversky,
Judgment under uncertainty: Heuristics and biases 1982,
Cambridge, United Kingdom: Cambridge University Press.

