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Abstract— Model-based testing (MBT) aims at automated, scalable, and systematic testing solutions for complex industrial 

software systems. To increase chances of adoption in industrial contexts, software systems should be modeled using well-

established standards such as the Unified Modeling Language (UML) and the Object Constraint Language (OCL). Given that test 

data generation is one of the major challenges to automate MBT, we focus on test data generation from OCL constraints in this 

paper. Though search-based software testing has been applied to test data generation for white-box testing (e.g., branch coverage), 

its application to the MBT of industrial software systems has been limited. In this paper, we propose a set of search heuristics 

targeted to OCL constraints to guide test data generation and automate MBT in industrial applications. We evaluate these heuristics 

for three search algorithms: Genetic Algorithms, (1+1) Evolutionary Algorithm, and Alternating Variable Method. We empirically 

evaluate our heuristics using complex artificial problems, followed by empirical analyses of the feasibility of our approach on one 

industrial system in the context of test data generation targeting robustness. Our approach is also compared with the most widely 

referenced OCL solver (UMLtoCSP) in the literature and shows to be significantly more efficient.  

Index Terms— OCL, Search-based testing, Test data generation, Empirical evaluation, Search-based software engineering  

——————————      —————————— 

1. INTRODUCTION 

odel-based testing (MBT) has recently received increasing attention in both industry and academia [1]. MBT leads to 

systematic, au tomated , and thorough system testing, which would  often not be possible without models.  However, 

the fu ll au tomation of MBT, which is a requirement for scaling up to real-world  systems, requires supporting many tasks, 

including preparing models for testing (e.g., flattening state machines), defining appropriate test strategies and coverage 

criteria, and generating test data to execute test cases. Furthermore, in order to increase chances of adoption, using MBT 

for industrial applications requires using well-established modeling standards, such as the Unified  Modeling Language 

(UML) and its associated  language to write constraints: the Object Constraint Language (OCL) [2]. 

OCL is a stand ard  langu age that is w idely accep ted  for w riting constraints on UML m odels. OCL is based  on first -

ord er logic and  set theory. The langu age allow s m od elers to w rite constraints at variou s levels of abstraction and  for 

variou s types of m od els. For exam ple, it can be u sed  to w rite class and  state invariants, gu ard s in state machines, 

constraints in sequ ence d iagram s, and  p re and  post cond itions of operations. A basic su bset of the langu age has been 

d efined  that can  be u sed  w ith  m eta -m od els d efined  in  Meta Object Facility (MOF) [3] (w hich  is a stand ard  defined  by 

Object Management Grou p  (OMG) for defin ing m eta -mod els). This subset of OCL has been larg ely u sed  in  the d efin i-

tion  of UML for constrain ing variou s elements of the langu age. Moreover, the langu age is also u sed  in  w riting co n-

strain ts w hile d efining UML profiles, w hich  is a stand ard  w ay of extend ing UML for variou s d om ains using p re -

d efined  extension  m echanism s. OCL has been u sed  in m any indu strial p rojects for variou s pu rposes su ch as for con-
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figu ration m anagem ent [4] and  test case generation  [5, 6]. OCL is also being u sed  as the langu age for w riting con-

strain ts on  m od els in m any com mercial MBT tools su ch as CertifyIt [7] and  QTron ic [8].  

Due to the ability of OCL to specify constraints for various purposes during modeling, for example when defining 

guard  conditions or state invariants in state machines, such constraints play a significant role when testing is driven by 

models. For example, in state-based testing, if the aim of a test case is to execute a guarded transition --where the guard  is 

written in OCL based on input values of the trigger and/ or state variables--to achieve fu ll transition coverage, then it is 

essential to provide input values to the event that triggers the transition such that the values satisfy the guard . Another 

example can be to generate valid  parameter values based on th e pre-condition of an operation. 

Test data generation is an important component of MBT automation. For UML models, with constraints in OCL, test d a-

ta generation is a non-trivial problem. A few approaches in the literature exist that address this issue. But most of them, as 

we will explain in more details in the paper, either do not handle important features of OCL such as collections or their 

operations [9, 10], are not scalable, or lack proper tool support [11]. This is a major limitation when it comes to the indus-

trial application of MBT approaches that use OCL to specify constraints on models.  

This paper provides and assesses novel heuristics for the application of search -based techniques, such as Genetic Algo-

rithms (GAs), (1+1) Evolutionary Algorithm (EA), and Alternating Variable Method (AVM), to generate test data from  OCL 

constraints [2]. We implemented  our test data generator in Java and evaluated  its application to robustness testing of in-

dustrial Video Conferencing Systems developed by Cisco Systems, Inc., Norway.  

This paper is an extended version of the conference paper presented  in [12]. The d ifferences of this paper from the con-

ference version include: 1) The handling of three-valued Boolean logic supported  by OCL 2.2 in contrast to the two-valued  

logic reported  earlier; 2) New heuristics such as heuristics for operations on collections, special operations (e.g., oclInState), 

and user-defined operations; 3) An augmented  empirical evaluation based on an industrial case study, which is extended 

with new constraints and an additional search algorithm (Alternating Variable Meth od); 3) The empirical evaluation of the 

individual heuristics on several artificial problems; 4) A comprehensive comparison w ith the existing work in the literature 

on test data generation from OCL constraints; 5) A detailed  empirical evaluation comparing our work with the most wide-

ly used  and referenced OCL constraint solver in the literature (UMLtoCSP [13]). Note that even though UMLtoCSP was 

developed for constraint solving, it can be applied  for test data generation. 

The rest of the paper is organized  as follows: Section 2 d iscusses the background  of our work and Section 3 d iscusses re-

lated  work. In Section 4, we first present the representation of our test data generation problem in the context of OCL fol-

lowed by the definition of d istance function s for various OCL constructs. Section 5 describes our tool support and presents 

a running example demonstrating test data generation in the context of MBT. Section 6 d iscusses our industrial case study, 
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a Video Conferencing System , and reports the results of the application of our approach, whereas Section 7 provides an 

empirical evaluation of heuristics on a set of artificial problems, and Section 8 provides an overall d iscussion of both em-

pirical evaluations presented  in Section 6 and Section 7. Section 9 addresses the threats to valid ity of our empirical study, 

and finally Section 10 concludes the paper. 

2. BACKGROUND 

In this section, we will provide background information on topics that will help  understanding the remainder of this pa-

per. 

2.1 Search-based Software Testing  

The main aim of software testing is to detect as many faults as possible, especially the most critical ones, in the system 

under test (SUT). To gain sufficient confidence that most faults are detected , testing should  ideally be exhaustive. Since in 

practice this is not possible, testers resort to test models and coverage/ adequacy criteria to define systematic and effectiv e 

test strategies that are fault revealing. A test case typically consists of test data and  the expected  output [14]. The test data 

can take various forms such as values for input parameters of a function and values of input parameters for a sequence of 

method calls.  

In order to perform test case generation, systematically and efficiently, au tomated  test case generation strategies should  

be employed. Bertolino [15] addresses the need for 100% automatic testing as a means to improve the quality of complex 

software systems that are becoming the norm of modern society. A comprehensive testing strategy must address a number 

of activities that should  ideally be automated: the generation of test requirements, test case generation, test oracle genera-

tion, test case selection, or test case prioritization . A promising strategy for tackling this challenge comes from the field  of 

search-based software engineering [16] [17, 18].  

Search-based software engineering attempts to solve a variety of software engineering problems by reformulating them 

as search problems [17]. A major research area in this domain is the application of search algorithms to test case generation  

[18]. Search algorithms are a set of generic algorithms that are used  to find  optimal or near optimal solu tions to problems 

that have large complex search spaces [17]. There is a clear match between search algorithms and software test case gener-

ation. The process of generating test cases can be seen as a search or an optimization process: there are possibly hundreds 

of thousands of test cases that could  be generated  for a particular SUT and from this pool we need to select, systematically 

and at a reasonable cost, those that comply to certain coverage criteria and are expected  to be fault revealing, at least for  

certain types of faults. Hence, we can reformulate the generation of test cases as a search that aims at finding the required  

or optimal set of test cases from the space of all possible test cases. When software testing problems are reformulated  into 

search problems, the resulting search spaces are usually very complex, especially for realistic or real-world  SUTs. For ex-

ample, in the case of white-box testing, this is due to the non -linear nature of software resulting from control structures 
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such as if-statements and loops [19]. In such cases, simple search strategies may not be sufficient and global search algo-

rithms may, as a result, become a necessity as they implement global search and are less likely to be trapped into local o p-

tima [20]. The use of search algorithms for test case generation is referred  to as search -based software testing (SBST) [21]. 

Mantere and Alander [22] d iscuss the use of search algorithms for software testing in general and McMinn [23] provides a 

survey of some of the search algorithms that have been used for test data generation.  

SBST has been shown to produce results that are comparable to human competence [24], and the field  has reached a 

state mature enough to obtain real-world  results of interest for practitioners. For example, there exist SBST tools (e.g., 

EvoSuite [25]) that have been succesfully used  to automatically generate test su ites for open source projects randomly se-

lected  from open source repositories (e.g., SourceForge), and not just small, artificial, hand -picked case studies [26].    

2.2 Description of a Selection of Search Algorithms 

The most common search algorithms that have been employed for search -based software testing are evolutionary algo-

rithms, simulated  annealing, hill climbing (HC), ant colony optimization, and particle swarm optimization [27]. Among 

these algorithms, HC is a simpler, local search algorithm. The SBST techniques using more complex, global search algo-

rithms are often compared w ith test case generation based on HC and random search to determine whether their comple x-

ity is warranted  to address a specific test case generation problem. The use of the more complex search algorithm may only 

be justified  if it performs significantly better than , for instance, random search. To use a search algorithm, a fitness function 

needs to be defined. The fitness function should  be able to evaluate the quality of a candidate solu tion (i.e., an element in  

the search space). The fitness function is problem dependent, and proper care needs to be taken for developing adequate 

fitness functions. The fitness function will be used  to gu ide the search toward  fitter solu tions . Below, we provide a brief 

description of the search algorithms that we used in this paper. 

2.2.1 Genetic Algorithms 

Genetic Algorithms (GAs) are the most well-known [28] and are inspired  by the Darwinian evolution theory. A popula-

tion of individuals (i.e., candidate solu tions) is evolved  through a series of generations, where reproducing individuals 

evolve through crossover and mutation operators. GAs are the most commonly used  algorithms and hence we do not pro-

vide further details; however an interested  reader may consult the following reference for more details [29]. 

2.2.2 (1+1) Evolutionary Algorithm 

(1+1) Evolutionary Algorithm (EA) [30] is simpler than GAs. In (1+1) EA, population size is one, i.e., we have only one 

individual in the population and the individual is represented  as a bit string. As opposed to GAs, we do not use the cross-

over operator but only rely on a bitwise mutation operator for exploring the search space. To produce an offspring, this 

operator independently flips each bit in the bit string with a probability (p) based  on the length of the string. If the fitness 
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of the child  is better than that of the parent (bit string of the child  before mutation), the child  is retained for the next gener-

ation.  

2.2.3 Alternating Variable Method 

Alternating Variable Method  (AVM) is a local search algorithm  first introduced by Korel [31]. The algorithm works in 

the following way: Suppose we have a set of variables {v
1
, v

2
, …, v

n
}, we then try to maximize fitness of v

1
, while keeping 

the rest of the variables constant, which are generated  randomly. The search is stopped if a solu tion is found; otherwise, if 

the solu tion is not found, bu t we found a minimum with respect to v
1
, we switch to the second variable. Now, we fix v

1
 at 

the found minimum value and try to minimize v
2
, while keeping the rest of the variables constant. The search continues in 

this way, until we find  a solu tion or we have explored  all the variables.  

3. RELATED WORK 

The Object Constraint Language is based  on first-order logic (FOL), but has some distinct features that d ifferentiate it 

from FOL, such as the internal object representation and support for three-valued logic (i.e., undefined, true, and false for constraint 

evaluation) [2, 9]. There are a number of approaches that have been proposed in the literature that deal with evaluation of 

OCL constraints and solving OCL constraints for various purposes such as for test data generation, model checking, and 

theorem proving. In this section, we analyze how these approaches relate to our approach , even though their objectives 

may differ. In Section 3.1, we relate our test data generator with OCL evaluators. In Section  3.2, we d iscuss related  OCL 

constraint solving approaches that may be used  for test data generation. In Section 3.3, we consider the approaches that 

specifically support test data generation from OCL constraints, whereas Section 3.4 d iscusses the use of search-based heu-

ristics for testing.  

3.1 Comparison with OCL Constraints Evaluation 

An OCL evaluator tells whether a constraint on a class d iagram satisfies an  instantiation of the class d iagram provided 

to it. Several OCL evaluators are currently available that can be used  to evaluate OCL constraints such as OCLE 2.0 [32], 

Eclipse OCL [33], Dresden OCL Toolkit [34], USE [35], EyeOCL [36], and the OCL evaluation in CertifyIt by Smartesting 

[7]. Our work requires an OCL evaluator for two reasons: 1) an evaluator tells if a constraint is solved, 2) an evaluator 

helps in calculating the fitness (e.g., using a branch d istance [29]) of an OCL expression to guide a search algorithm to-

wards a solu tion. Any of the abovementioned OCL evaluators can be extended with our proposed heuristics (Section 4) for 

test data generation since these heuristics are defined on standard  OCL constructs.  

3.2 OCL-based Constraint Solvers 

Table I and Table II present various approaches in the literature that may be used  for test data generation from OCL 
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constraints. In Table I, in the second column we present if an approach translates OCL into another formalism for solving 

followed by the name of the formalism (Intermediate Representation) in the third  coulumn (e.g., Alloy [37]). The fourth col-

umn presents the OCL subset supported  by an approach followed by the support of three -valued logic in the last column. 

In Table II, we present the following information about an approach; 1) tool support (second column); 2) type of approach 

for solving such as theorem proving (third  column); 3) support for test data generation.  

Table I: Summary of OCL constraint solving approaches 
Tech n iqu e  Trans lation  to  

Formalism  

In term ediate  

Represen tation  

OCL P arts  Miss ing  or Addition al Requ irem en ts  Th ree -Valu ed  

Logic 

Alloy Analyzer   [37]  Yes Alloy Real, Str ing, Enumerat ions, Limited opera t ions on  

collect ions, a t tr ibu tes 

No 

Aer t ryck & J ensen  [9] Yes SAT Collect ions, Real, Str ing, Enumerat ions No 

Diestefano et al. [38] Yes BOTL St r ing, rea l, enumerat ions No 

Clavel et al. [39] Yes FOL St r ing, Real, collect ions other  than  Set , Enumerat ion  No 

Bao-Lin et al. [11] No DNF Not discussed in  the paper  No 

Benat tou  et al. [10] No DNF Class Inher itance, Genera liza t ion , Associa t ion  No 

Aichern ig  [40] Yes CSP Handles a  small subset , collect ions itera tors, Bag, 

Sequence 

No 

UMLtoCSP  [13] Yes CSP Enumerat ions No 

Quera lt  et al [41] Yes FOL Opera t ions tha t  cannot  be conver ted to select () or  

size() opera t ions, e.g., collect .  

No 

Winkelmann  [42] Yes Graph  constra in ts Collect ion  opera t ions except  size(), isEmpty(). En u-

mera t ions 

No 

Kyas et al [43] Yes PVS Not discussed in  the paper  Yes 

Kreiger  [44] Yes SAT in CNF Adds a  non-standard extension , St r ing, Real, En u-

mera t ions 

Yes 

Weißleder  [45] No Test  Tree Collect ions, Enumerat ions No 

Gogolla   [46] Yes Formal Logic Desired proper t ies of snapshot to be specified in a  

language ASSL 

Yes 

HOL-OCL [47] Yes Higher -Order  

Logic (HOL) 

OclMessage, Enumerat ion, Tuple, OrderedSet, 

oclInSta te, itera te() 

Yes 

KeY Project  [48] Yes Typed dynamic 

logic 

Suppor ts OCL 1.4 No 

Table II: Summary of OCL constraint solving approaches 
Tech n iqu e  Tool Su pport Approach  Type  Tes t  Data  Gen eration  

Alloy Analyzer   [37]  Yes SAT Solver  No 

Aer t ryck & J ensen  [9] Yes SAT Solver  Yes 

Diestefano et al. [38] Yes  Model Checking No 

Clavel et al. [39] Yes SMT Solver  No 

Bao-Lin et al. [11] No Par t it ion  Analysis Yes 

Benat tou  et al. [10] No Par t it ion  Analysis Yes 

Aichern ig  [40] Yes CSP Solving No  

UMLtoCSP  [13] Yes CSP Solving, Instance 

Genera t ion  

No  

Quera lt  et al [41] No  Reasoning No 

Winkelmann  [42] No Instance Genera t ion  No  

Kyas et al [43] Yes  Theorem Proving, In -

teract ive 

No 

Kreiger  [44] Yes  SAT Solver  No 

Weißleder  [45] Yes Par t it ion  Test ing Yes 

Gogolla   [46] Yes In teract ive No 

HOL-OCL, HOL-TestGen 

[47] 

Yes In teract ive theorem 

proving 

Yes 

KeY Project  [48] Yes Symbolic program 

execut ion  

No 

Many approaches are proposed in the literature (Table I and Table II) to solve OCL constraints for various purposes 
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such as checking unsatifiability [39], model-checking [38], and reasoning about models [41]. These approaches usually 

translate constraints and associated  models into another formalism (e.g., Alloy [37], temporal logic BOTL [38], FOL [39], 

Prototype Verification System (PVS) [43], graph constraints [42], Higher-Order Logic (HOL) [47]), which can then be ana-

lyzed by a constraint analyzer (e.g., Alloy constraint analyzer [49], model checker [38], Satisfiability Modulo Theories 

(SMT) Solver [39], theorem prover [39], [43], [47]). Satisfiability Problem (SAT) solvers have also been used for evaluating 

OCL specifications ,e.g., OCL operation contracts (e.g., [50], [44]). The approaches listed  in Table II that do not support test 

data generation (Test Data Generation column) may normally be extended for test data generation. In Section 6.2, we com-

pare our approach with one such approach (UMLtoCSP), which is one of the most referenced works in the literature and 

for which a tool can be downloaded . The results showed that our approach is significantly better than UMLtoCSP when 

solving OCL constraints for generating test data. We do not compare our approach with the rest of OCL constraint solving 

approaches since their main aim is not test data generation.  

3.3 OCL Test Data Generation Approaches 

From all of the approaches listed  in Table I and Table II, only five approaches ( [9], [10], [11], [45], and [47]) are specifi-

cally developed for test data generation from OCL constraints and thus are d irectly related  to our approach. Below, we 

compare our approach with them based on the d ifferent criteria listed  in Table I and Table II. 

3.3.1 Translation to Formalism 

All the five approaches considered  solve OCL constraints to generate data by translating OCL into another formalism 

such as HOL [47] and SAT formulae [9]. Such translation is an additional overhead and our approach aims at avoiding 

such overhead by d irectly solving OCL constraints to generate test data. Moreover, in many cases it is not always possible 

to translate all features of OCL and associated  models into a given target formalism. In addition, such translation may re-

sult in combinatorial explosion. For example, the conversion of OCL to a SAT formula or a CSP instance can easily result in 

a combinatorial explosion as the complexity of the model and constraints increases (as d iscussed  in more details in [13]). 

For instance, one factor that could  easily lead  to a combinatorial explosion, when converting an OCL constraint i nto an 

instance of SAT formula, is when the number of variables and their ranges increase in a constraint. Conversion to a SAT 

formula requires that a constraint must be encoded into Boolean formulae at the bit-level and , as the number of variables 

increases in the constraint, chances of a combinatorial explosion therefore increase. For industrial scale systems, as in our 

case study, this is a major limitation since the models and constraints are generally quite complex.  

3.3.2 OCL Subset Supported 

As it can be seen in Table I, the five approaches considered  do not handle important features of OCL (e.g., Collections 

[9] [45], Associations [10],  Enumerations  [9] [47], three-valued logic [9] [10] [11] [45] ). Most of the OCL features that they 
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do not support are either used  in our industrial case study or are not solved by the existing approaches efficiently (we will 

d iscuss them in Section 5.2). In comparison, our approach supports a much more comprehensive subset of OCL. 

3.3.3 Approach Type 

The five approaches we consider here use various types of techniques for test data generation after translating OCL 

constraints into other formalisms, including SAT solving [9], partition testing [10] [11] [45], and theorem proving [47]. In 

contrast, we propose a new approach, which does not require translation and uses search-algorithms based on novel heu-

ristics to generate test data. As further d iscussed  in Section 3.3.1, such translation is an extra overhead and is a major lim i-

tation for large-scale industrial systems.  

3.3.4 Tool Support 

Automation is one of the key features for test data generation. From the five considered  approaches, no tool support is 

mentioned  in [10] and [11]. Our approach is automated  as detailed  in Section 5. 

3.3.5 Three-Valued Logic 

The OCL supports three-valued logic [2], i.e., each constraint in add ition to being true or false may evaluate to undefined. 

The undefined value is commonly used  to indicate an error in the evaluation of an expression such as d ivide by zero. 

Among the five considered  approaches, only one of them ([47]) handles the OCL three-valued logic, like we do. 

3.3.6 Summary 

To summarize, none of the five test data generation approaches entirely meet the requirements of large scale real-world  

industrial applications, such as the video conferencing case study d iscussed  in this paper  (Section 6). Automation is a fu n-

damental requirement for such adoption, which only three of these approaches support. None of these approaches support 

all OCL constructs, may of them (e.g., operations on collections) being  important for successfu l industrial adoption. All the 

five approaches translate OCL constraints into other formalisms to generate test data. Such translation is either not entirely 

possible or is not scalable for industrial systems as we d iscussed  in Section 3.3.1.        

3.4 Search-based Heuristics for Model Based Testing 

The application of search-based heuristics for MBT has received significant attention recently (e.g., [51], [52]). The idea 

of these techniques is to apply heuristics to guide the search for test data that shou ld  satisfy d ifferent types of coverage 

criteria on state machines, such as state coverage. Achieving such coverage criteria is far from trivial since guards on tra n-

sitions can be arbitrarily complex. Finding the right inputs to trigger these transitions is  not simple. Heuristics have been 

defined based  on common practices in white-box, search-based testing, such as the use of branch d istance and approach 

level [29]. Our goal is to tailor these heuristics for test data generation from OCL constraints.  
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There are several advances in the field  of SBST (especially for test data generation at the unit level) that can be adopted  

to solve OCL constraints and  integrated  in our tool. For example, Alshraideh and Bottaci provided fitness functions to 

handle constraints involving string comparisons [53]. McMinn et al used  web queries to further help the solving of con-

straints involving strings [54]. Fraser and Arcuri evaluated  d ifferent seeding strategies to boost the search by starting from 

fitter individuals [55]. Issues with variable length representations can be addressed  with bloat control techniques  [56]. 

When generating test data to obtain fu ll coverage on a state machine, instead  of trying to solve each constraint individua l-

ly, the whole test suite approach [57] could  be used  instead  to further improve performance. The probability of applying the 

d ifferent search operators can be updated  a trun time based on fitness feedback (e.g., as done by Poulding et al in [58]). 

Furthermore, search algorithms can be easily run in parallel, even on inexpensive Graphical Processing Units (GPUs) [59] . 

4. HEURISTICS FOR TEST DATA GENERATION 

In this section, we provide novel heuristics that are used  by search-algorithms to generate test data from OCL con-

straints. In Section 4.2.1, we provide representation of the problem followed by the definitions of fitness functions in Sec-

tion 4.2.2. 

4.1 Representation of Problem 

In the context of test data generation from OCL constraints, a problem is equivalent to an OCL constraint. An OCL con-

straint C (problem) is composed of a set of Boolean clauses {B
1
, B

2
, .. B

n
} joined using Boolean operations, i.e., {and, or, implies, 

xor, not}. Each Boolean clause B
i
 is defined  over a set of variables {B

i1
, B

i2
, .. B

im
}. The problem (C) to be solved by a search -

algorithm can be represented  as a set of variables: 𝐶 = ⋃ ⋃ {𝐵  }
  
   

 
   , where n is the number of clauses in a constraint and 

m
x
 is the number of variables involved in the x

th
 clause and m

x
 may be d ifferent for each x

th
 clause.   

In OCL, all data types are subtypes of OCLAny, which is categorized  into two subtypes: primitive types and collection 

types. Primitive types are Real, Integer, String, and  Boolean, whereas collection types include Collection as super type with 

subtypes Set, OrderedSet, Bag, and  Sequence. Therefore, a clause in an OCL constraint may use primitive data types or col-

lection-related  types. A constraint can be defined on variables of d ifferent types, such as equalities of integers and compar-

isons of strings. As an example, consider the UML class d iagram in Figure 1 consisting of two classes: University and  Stu-

dent. Constraints University and  Student are shown in Figure 2. 

 
Figure 1. Example class diagram 
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Figure 2. Example constraints 

The first constraint states that the age of every Student should  be greater than 15. Based  on the type of attribute age of the 

class Student, which is Integer, the comparison in the clause is determined to involve integers. The second constraint states 

that the number of students in the university should  be greater than 0. In this case, the size() operation, which is defined on 

collections in OCL and returns an  Integer denoting the number of elements in a collection, is called  on collection student 

(containing elements of the class Student). Even though an operation is called  on a collection, the comparison is between 

two integers (return value from operation size() and  0).  

4.2 Definition of the Fitness Function for OCL 

To guide the search for test data satisfying OCL constraints, it is necessary to define a set of heuristics. A heuristic ind i-

cates ‘how far ’ input data are from satisfying the constraint. For example, let us say we want to satisfy the constraint x=0, 

and  suppose we have two data inputs: x1:=5 and  x2:=1000. Both inputs x1 and  x2 do not satisfy x=0, but x1 is heuristically 

closer to satisfy x=0 than x2. A search algorithm would  use such a heuristic as a fitness function, to reward  input data that 

are closer to satisfy the target constraint. 

In this paper, to generate test data to solve OCL constraints, we use a fitness function that is adapted  from the work tar-

geting code coverage (e.g., for branch coverage in C code [29]). In particular, we use the so-called  branch d istance (a func-

tion d()), as defined in [29]. The function d() returns 0 if the constraint is solved, otherwise a positive value that heuristica l-

ly estimates how far the constraint was from being evaluated  to true. As for any heuristic, there is no guarantee that an 

optimal solu tion (e.g., in our case, input data satisfying the constraints) will be found  in reasonable time, but nevertheles s 

many successfu l results based  on such heuristics are reported  in the literature for various software engineering problems 

[60]. In cases where we want a constraint to evaluate to false, we can simply negate the constraint and find  data for which 

the negated  constraint evaluates to true. For example, if we want to prevent the firing of a guarded transition in a state 

machine, we can simply negate the guard  and find  data for the negated  guard .  

Following we will d iscuss branch d istance functions for d ifferent types of clauses in OCL. 

4.2.1 Primitive types 

Primitive types supported  by OCL includes Integer, Real, String, and  Boolean.  The Integer type represents a set of integer 

values, the Real type holds a set of real numbers, Boolean either true or false, and  String contains strings over a set of alpha-

bet. In the OCL, the domain of each of these data types also contains a special value called  undefined (⊥). According to the 

 

context Student inv ageConstraint: 
 self.age>15 

 

context University inv numberOfStudents: 
 self.student->size() > 0 
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OCL specifications [2] this value is used  for the following purposes; 1) An undefined value can be assigned to an attribute 

for which the value is currently unknown and may be assigned later, when it  is known; 2) An undefined value may be as-

signed to an attribute for a particular instance for which this attribute cannot have any value ; 3) An undefined value may 

represent an error in the evaluation of an expression such as d ivide by zero. In our context of test data generation, only the 

third  purpose is relevant, where an undefined evaluation of expression indicates an error. To resolve such situation s without 

stopping the search, we define specialized  heuristics, which are d iscussed  next.   

When a Boolean variable b is true then the branch d istance is 0, i.e., d(b)=0, when b is false then d(b) > 0 and d(b) < k, 

where k is an arbitrary positive constant, for example k=1, and  when b is ⊥, then d(b) is k. If a Boolean variable is obtained 

from an operation call, then in general the branch d istance would  take one of these three possible values. For example, 

when the operation isEmpty() is called  on a collection, the branch d istance would  take 0, a value between 0 and k, or k, unless 

a more fine grained specialized  d istance calculation is specified  (e.g., returning the number of elements in the collection). 

For some types of OCL operations (e.g., forAll()), we can provide more fine grained heuristics. We will provide more d e-

tails on these operations and their corresponding branch d istance calculations in Section 4.2.2. Note that OCL supports two 

other special values, which are null and  invalid. These two values have tru th tables identical to undefined (Section 7.4 in [2]), 

and  so these values are treated  exactly the same way as we treat undefined in our approach. In the rest of the paper, we only 

provide branch d istance calculations corresponding to a Boolean clause evaluating to true, false, or undefined. Whenever, a 

clause evaluates to invalid or null, the d istance is k, which is same as undefined.  

The operations defined in OCL to combine Boolean clauses are or, xor, and , not, if then else, and  implies. The three-valued  

tru th values for these operations are shown in  Table III. For these operations, branch d istances are adopted  from [29], but 

are extended to handle undefined (⊥). For example, for A and B, the branch d istance is calculated  as follows:  

d(A and B):=numberOfUndefinedClauses + nor (d(A)+d(B)) 

Notice that the standard  definition of d(A and  B) is d(A)+d(B) as specified  in [29], but this calculation only accounts for 

two tru th values, i.e., true and  false. By following the same definition to account for undefined (⊥), if B is undefined, then the 

branch d istance will be d(A) + k. However, in this case, there is no gradient in avoiding the undefined value, i.e., turning 

from ⊥ to either false or true. To provide a gradient for turning ⊥ to either true or false, we extended the standard  branch 

d istance calculation by adding numberOfUndefinedClauses. This variables holds the number of undefined clauses in an ex-

pression and we normalize d(A)+d(B) between 0 and 1, so that the search gives priority to minimize numberOfUnde-

finedClauses, i.e., turning ⊥ to false/ true. If the search manages to do that, the d istance will be decreased  by 1. In the same, 

way we extend the standard  branch d istance calculation of or as specified  in [29].  

Operations implies, and  xor are syntactic sugars that usually do not appear in programming languages such as C and Ja-
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va, and  can be re-expressed  using combinations of and and  or operators as shown in Table III. A side effect of our extended 

branch d istance for some Boolean operations such as implies and  xor is that an expression P may be evaluated  to true even if 

d(P)!=0. For example, A implies B, evaluates to true, when A  is false and  B is ⊥. In this case, d(A implies B) will be 1, but the 

expression is true. To deal with this, our implementation stops the search when an expression is true, even if its d istance is 

still not zero. The evaluation of d() on an expression composed by two clauses is specified  in Table IV and can simply be 

computed  for more than two clauses recursively. 

Table III. Truth values for Boolean operations [2]  

b1 b2 b1 an d b2 b1 or b2 b1 xor b2 b1 im plie s  b2 n ot  b1 

false false false false false true true 

false true false true true true true 

true false false true true false false 

true true true true false true false 

false ⊥ false ⊥ ⊥ true true 

true ⊥ ⊥ true ⊥ ⊥ false 

⊥ false false ⊥ ⊥ ⊥ ⊥ 

⊥ true ⊥ true ⊥ true ⊥ 

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 

Table IV. Branch distance calculations for OCL’s operations for Boolean 

Boolean  operations  Distan ce  fu n ction  

A if A is true  
          then d(A)=0 
else A is false 
          then d(A)>0 and d(A)< k 

else 

          then d(A)=k 
not A if A is false  

          then d(A)=0 
else A is true 
          then d(A)>0 and d(A)< k 

else 

          then d(A)=k 
A and B numberOfUndefinedClauses + nor (d(A)+d(B)) 
A or B numberOfUndefinedClauses + nor (min (d(A),d(B))) 
A implies B d(not A or B) 
if A then B 
else C 

d((A and B) or (not A and C)) 

A xor B d((A and not B) or (not A and B))  
* A and B are Boolean expressions or variables, nor(x)=x/x+1 

 

When an expression or one of its parts is negated , then the expression is transformed by moving the negation inward  to 

the basic clauses, e.g., not (A and B) would  be transformed  into not A  or not B. 

For the numeric data types, i.e., Integer and  Real, the relational operations that return Booleans (and so can be used  as 

clauses) are <, >, <=, >=, and  <>. For these operations, we extended  the branch d istance calculation from [29] for three-

valued logic as shown in Table V. 

In OCL, several other operations are defined on Real and  Integer such as +, -, *, /, abs(), div(), mod(), max(), and  min(). 

Since these operations are not used  to compare two numerical values in clauses, there is no need to define a branch d i s-
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tance for them. For example, considering a and  b of type Integer and  a constraint a+b*3<4, then the operations + and  * are 

used  only to define the constraint. The overall result of the expression a+b*3 will be an Integer and  the clause will be con-

sidered  as a comparison of two values of Integer type. For the String type, OCL defines several operations such as =, +, 

size(), concat(), substring(), and  toInteger(). There are only three operations that return a Boolean: equality operator =, inequal-

ity <> and  equalsIgnoreCase(). In these cases, instead  of using k if the comparisons are false, we can  return the value from 

any string matching d istance function to evaluate how close any two strings are. In our approach, we implemented  the 

edit d istance [53] function, but any other string matching d istance function can easily be incorporated .  

Table V. Branch distance calculations of OCL relational operations for numeric data 

Relation al operations  Distan ce  fu n ction  

x=y if not x.oclIsUndefined() and  not y.oclIsUndefined() and abs (x-y=0) 
          then 0 
else  not x.oclIsUndefined() and  not y.oclIsUndefined() and abs (x-y<>0) 
          then k*nor(abs(x-y)) 
else 
          then k 

x<>y if not x.oclIsUndefined() and not y.oclIsUndefined() and abs (x-y<>0) 
          then 0 
else not x.oclIsUndefined() and not y.oclIsUndefined() and abs (x-y=0) 
          then k*nor(abs(x-y)) 
else 
          then k 

x<y if not x.oclIsUndefined() and not y.oclIsUndefined() and abs (x-y < 0) 
          then 0 
else not x.oclIsUndefined() and not y.oclIsUndefined() and abs (x-y>=0) 
          then k*nor(abs(x-y)) 
else 
          then k 

x<=y if not x.oclIsUndefined() and not y.oclIsUndefined() and abs (x-y <= 0) 
          then 0 
else not x.oclIsUndefined() and not y.oclIsUndefined() and abs (x-y>0) 
          then k*nor(abs(x-y)) 
else 
          then k 

x>y if not x.oclIsUndefined() and not y.oclIsUndefined() and abs ((y-x) < 0) 
          then 0 
else not x.oclIsUndefined() and not y.oclIsUndefined() and abs ((y-x) >= 0) 
          then k*nor(abs(x-y)) 
else 
          then k 

x>=y if not x.oclIsUndefined() and not y.oclIsUndefined() and abs ((y-x) <= 0) 
          then 0 
else  not x.oclIsUndefined() and not y.oclIsUndefined() and abs ((y-x) > 0) 
          then k*nor(abs(x-y)) 
else 
          then k 

4.2.2 Collection-Related Types 

Collection types defined in OCL are Set, OrderedSet, Bag, and  Sequence. Details of these types can be found in the stan d-

ard  OCL specification [2]. OCL defines several operations on collections. An important point to note is that, if the return 

type of an operation on a collection is Real or Integer and  that value is used  in an expression, then the d istance is calculated 

in the same way as for primitive types as defined in Section 4.2.1. An example is the size() operation, which returns an Inte-

ger. In this section, we d iscuss branch d istances for operations in OCL that are specific to collections, and that u sually are 

not common in programming languages for expressing constraints/ expressions and  hence are not d iscussed  in the litera-
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ture. 

4.2.2.1 Equality of collections (=) 

In OCL constraints, we may need to compare the equality of two collections. We defined a branch d istance for compa r-

ing collections as shown in  Figure 3. The main goal is to improve the search process by providing a finer grained heuristic 

than using a simple heuristic which simply calculates 0 if the result of an evaluation is true, a value between 0 and k if the 

result is false, and  k otherwise. In  Figure 3, a branch d istance for equality (=) of collections is calculated  in one of the follow-

ing four ways.  

if (C1.oclIsUndefined() or C2.oclIsUndefined())  

 then d(C1=C2) := 1 

if not (C1.oclIsKindOf(C2)) 

 then d(C1=C2) >= 0.75 and d(C1=C2) < 1  

otherwise if C1→size() <> C2→size()  

 then d(C1=C2) := 0.5 + 0.25*nor(d (C1→size()=C2 → size())) 

otherwise 

        𝐭𝐡𝐞𝐧 d(C1 = C2) ≔ 0.5 ∗ ∑ nor(d(pair ))
       ()
   C1  size()⁄   

where, d(pairi) is the distance between elements in the ith position in the two 

sorted collections, e.g., d(C1.at(i)=C2.at(i)) and nor is a normalizing function 

[61] defined as nor(x)=x/(x+1). Suppose C1 and C2 are two OCL collections. 

Figure 3. Branch  dist ance equality for  collect ion s  

First, if any of Collections, i.e., C1 and  C2 are undefined; then the d istance is simply 1. Second, if collections C1 and  C2 

are not of the same kind, i.e., not (C1.oclIsKindOf(C2)) evaluates to true, then the d istance is a value from starting from 0.75 

and less than 1. Note that any other constant (e.g., k) could  have been used  to represent the maximum distance (1 in this 

case). Whenever, the d istance is less than 1 and  greater than equal to 0.75, it means that the collections are of d ifferent 

types, and the search algorithms must be guided to make the two collections of the same types. 

Once the second  condition is satisfied , the search algorithms must be guided such that the collections have equal nu m-

ber of elements. The third  condition in the formula checks if the collections, which are of the same type, h ave d ifferent siz-

es. In that case, the search is guided to generate collections of equal size, i.e., C1 → size()=C2 → size(). We compute d(C1 → 

size()=C2 → size()) and  since size() returns an integer, this d istance calculation is simply performed using the  equality oper-

ation on numerical data as shown in Table V. The maximum distance value that can be taken by d(C1=C2) in this case can 

be derived as follows: 

d(C1=C2)  0.5 + 0.25*nor(d (C1 → size()=C2 → size())) 

       0.5 + 0.25*nor(abs(C1 → size()-C2 → size())+k) [Using formula for equality for numerical data from Table V] 

       0.5 + 0.25*(Y/ (Y+1)) [Using the definition of nor(X), and assuming Y= abs(C1 → size()-C2 → size())+k] 

In the above equation, Y/(Y+1) always computes a value less than 1. Equation 0.5 + 0.25*(Y / (Y+1)) therefore always 

takes a value between 0.5 to and 0.75. Whenever, d(C1,C2) is greater than 0.5 and  less than 0.75, this means that collections 
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do not have the same number of elements.  

For the fourth condition, i.e., if collections are of the same type and have equal numbers of elements, the d istance is ca l-

culated  based on comparing elements in both collections. If the collections are either of kind  Set or Bag, we first sort both 

collections based on their elements. Sorting the two collections facilitates their equality evaluation by reducing the number 

of needed comparisons of elements. After sorting, we only need to compare each pair of elements from the two collections 

at the same index (C1→size() comparisons) instead  of comparing all elements from one collection with all elements in the 

other collection (C1→size()*C1→size() comparisons). For sorting, a natural order among the elements must be defined. For 

instance, if collections consist of integers, then we simply sort based  on the integer values. However, for other types of e l-

ements (e.g., enumerations), there is no pre-defined natural order and, in these cases, we sort using the name of the ident i-

fiers of elements (e.g., a sequence of enumerations {B, A , D, C} would  be sorted  into {A, B, C, D}). If a collection consists of 

collections, we recursively traverse the collection and  sort elements in each contrained collection that are of primitive 

types. Notice that how the sorting is done is not important. The important property that needs to be satisfied  is that, if two 

collections are equal (regard less of the type of collection), then the sorting algorithm should  produce the same paired  

alignment. For example, the set {B, A , C} is equal to {C, B, A} (the order in the sets has no importance), and their alignment 

using the name of enumeration elements produces the same sorted  sequence {A, B, C}. When a collection consists of ob-

jects, a similar process is followed except that we perform sorting based on the values of the instance variables of the o b-

jects.   

Table VI. Minimum and maximum distance values for distance calculation for equality of collections  

Con dition  Minimum  Maximu m  

C1.oclIsUndefined() or C2.oclIsUndefined() 1 1 
not (C1.oclIsKindOf(C2)) >=0.75 <1 
C1 →  size() <> C2 →  size() >=0.5 <0.75 

not (C1.oclIsKindOf(C2)) and C1 →  size() = C2 →  size() 0 <0.5 

Once the element of both collections are sorted , we sum the d istances between each pair of elements in the same posi-

tion in the collections (i.e., d istance between the i
th
 element of C1 with the i

th
 element of C2) and finally take the average by 

d ivid ing the sum with the number of elements in C1. When all elements of C1 are equal to C2, then d(pair) yields 0 and  as a 

result d(C1=C2) = 0. The maximum value d(C1=C2) can take in this case can be derived  as follows: 

d(C1 = C2) 0.5 ∗ ∑ nor(d(pair ))

       ()

   

C1  size()⁄   

 0.5 ∗ ( ∑ d(pair )/(d(pair ) + 1)

       ()

   

C1  size() )⁄  [Using definition of 𝑛𝑜𝑟] 

d(pair
i
)/ (d (pair

i
)+1) will always compute a value less than 1. Considering a simple example, in which collections con sist 

of Boolean values, u sing the formula from Table IV, d(pair
i
) can take k as the maximum value. So the formula will be re-
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duced to: 

 d(C1 = C2)  0.5 ∗ ( ∑ k/(k + 1)

       ()

   

C1  size() )⁄  

   0.5 ∗  (k/(k + 1))  

Since (k/(k+1)) computes a value below one, the above formula will always compute a value below 0.5. To further ex-

plain the computation of branch d istance, when condition not (C1.oclIsKindOf(C2)) and  C1 → size() = C2 → size() is true, we 

provide an example below: 

Example 1: Suppose C1= {2,1,3}, C2 = {5,4,9}, then the d istance will be calculated  as follows: 

d(C1 = C2) 0.5 ∗ ∑ nor(d(pair ))
       ()
   C1  size()⁄    

                       0.5 ∗ ∑ nor(d(pair ))
 
   3⁄   

 0.5 ∗ (nor(d(1 = 4)) + nor(d(2 = 5)) + nor(d(3 = 9))) 3⁄  [Sorted C1 and C2 will be {1,2,3} and {4,5,9}] 

 0.5*(nor(4)+nor(4)+nor(7))/3 [Using k=1 and formula of equality of two numeric values from Table V] 

 0.28 

Table VII. Branch distance calculation for operations checking objects in collections 

Operation  Distan ce  fu n ction  

includes (object:T): Boolean, where T is any OCL type min                () d(ob ect = self. at(i))  

excludes (object:T): Boolean, where T is any OCL type ∑ d(ob ect <>     .   (i))
         ()
     

includesAll (c:Collection(T)): Boolean, where T is any OCL 
type 

∑ min             () d(c. at(i) = self. at( ))
         ()
       

excludesAll(c:Collection(T)): Boolean, where T is any OCL 
type 

∑ ∑ d(c. at(i) <>     .   ( ))
         ()
   

         ()
      

isEmpty(): Boolean d(self  size() = 0)  
notEmpty():  Boolean d(self  size() <> 0) 

As illu strated  in Table VI the three conditions in Figure 3 match four d istinct value ranges, thus ensuring that the d is-

tance is always superior in the first case and the lowest in the fourth case; therefore properly guid ing the search. 

4.2.2.2 Operations checking existence of one or more objects in a collection 

OCL defines several operations to check the existence of one or more elements in a collection such as includes() and  ex-

cludes(), which check whether an object does or does not exist in a collection, respectively. Whether a collection is empty is 

checked with isEmpty() and  notEmpty(). Such operations can be further processed  for a more refined calculation of branch 

d istance than simply calculating a d istance 0 when an expression is true and  k otherwise. The refined calculations of 

branch d istances for these operations are described in Table VII.  

For includes(object:T), a branch d istance is the minimum distance in the set of all d istances (calculated  using the heuristic 

for equality as listed  in Table V) between object and  each element of the collection (self) on which includes is invoked. Get-

ting the minimum distance will effectively guide a search algorithm to generate data that will make an element in self 
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equal to the object. When any element of self is equal to object, the d istance will be 0, and  the overall d istance will therefore 

be 0. When none of the collection elements is equal to object, then we select the element in the collection with minimum 

distance. The example below  illustrates how branch d istance is calculated: 

Example 2: Suppose C= {1,2,3} and we have an expression C   includes(4), then the branch d istance will be calculated  as: 

d (C  includes(4))  min                () d(ob ect = self. at(i))  

                                         min
        

d(ob ect = C. at(i)) 

                                         min (d(1 = 4), d(2 = 4), d(3 = 4))) 

                                         min (4,3,2) [Using k=1, and formula of the equality of two integers from Table V] 

                                         2 

For excludes(object:T), a branch d istance is calculated  in a similar way as includes, except: (1) we use the d istance heuristic 

for inequality (<>); (2) sum up the d istances of all elements in the collection, which are equal to object in order to ensure 

that object is not present even once in self. The example below illustrates how a branch d istance is computed  using the fo r-

mula. 

Table VIII. Branch distance for forAll and exists 

Operation  Distan ce  fu n ction  

forAll(v1,v2, …vm|exp)
  

if (self→size()) = 0 then 0  
otherwise  

∑ ∑ ….∑  (     (    .  (  
         ()
    

         ()
    

         ()
    

),…    .  (  ))

(         ()) 
  

exists( v1,v2, …vm|exp) min  ,  …                  () d(expr(self. at(i ),…  self. at(i ))  

isUnique(v1|exp) ∑ ∑ d(expr(self. at(i)) <> expr(self. at( )))
(         ())
     

(         ()  )
   

((self  size()) ∗ (self  size()  1)) 2⁄
 

one( v1|exp) d(self  select(exp)  size()  =  1)  

Exam ple 3: Suppose C= {1,2,2} and we have an  expression  C →  excludes(2), t hen   

d(C  excludes(2))  ∑ d(ob ect <>     .   (i))

         ()

   

 

                                       ∑      d(ob ect <> 𝐶.   (i))

 

   

 

                                        d(1 <> 2) + d(2 <> 2) + d(2 <> 2) 

                                        0 + 1 + 1 [Using k=1, and formula from Table V] 

                                        2 

In a similar fashion, we calculate branch d istance of includesAll and  excludesAll (Table VII), where we check if all ele-

ments of one collection are present/ absent in another collection. For includesAll, we sum, over all elements of a collection, 

their minimum distance among all the elements of another collection as shown in the formula for includesAll in Table VII. 

For excludesAll, we sum all d istances between all possible pairs of elements across the two collections, as shown in the fo r-
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mula for excludesAll in Table VII. Branch d istance calculations for isEmpty and  notEmpty are also defined in Table VII. 

4.2.2.3 Branch distance for iterators 

OCL defines several operations to iterate over collections. Below, we will d iscuss branch d istances for these iterators.  

The forAll() iterator operation is applied  to an OCL collection and takes as input a boolean-expression, then it determines 

whether the expression holds for all elements in the collection. To obtain a fine grained branch d istance, we calcu late the 

d istance of the boolean-expression by computing the d istance on all elements in the collection and  summing the results. The 

d istances are summed up because boolean-expression must be true for all elements of the collection on which forAll is in-

voked. This means that more the elements for which boolean-expression is false, the higher will be the branch d istance. The 

function for forAll presented  in Table VIII is generic for any number of iterators. For the sake of clarity in the paper, we 

assume that function expr(v1,v2, …vm) in Table VIII evaluates an expression expr on a set of elements v1,v2, …vm. To ex-

plain expr, suppose we have a collection C={1,2,3} and  an expression C → forAll(x,y |  x*y >0), then expr(C.at(1),C.at(2)) en-

tails calculating “d(x*y>0)”, where x=C.at(1), i.e., 1 and  y= C.at(2), i.e., 2. The keyword self in the table refers to the collec-

tion on which an operation is applied , at(i) is a standard  OCL operation that returns the i
th
 element of a sequence or an or-

dered  set, and size() is another OCL operation that returns the number of elements in a collection. The denominator (self → 

size())
m
 is used  to compute the average d istance over all element combinations of size m since we have (self → size())

m
 d is-

tance computations. Notice that calculating the average d istance is important to avoid  bias towards decreasing the size of 

the collection. For example, since it is a minimization problem (i.e., we want to minimize the branch d istance), there would  

be a bias against larger collections as they would  tend to have a higher branch d istance (there is a number of branch d i s-

tance additions that is polynomial in the number of iterators and collection siz e). A search operator that removes one ele-

ment from the collection would  always produce a better fitness function, so it would  have a clear gradient toward  the 

empty collection. An empty collection would  make the constraint true, but it can have at least two kinds of side effects: 

first, if a clause is conjuncted  with other clauses that depend on the size (e.g., C → forAll(x| x>5) and C → size()=10), then 

there would  likely be plateaus in the search landscape (e.g., gradient to increase the size towards 10 would  be masked by 

the gradient towards the empty collection); second, because in our context we solve constraints to generate test data, we 

want to have useful test data to find  faults, and not always empty collections. In general, to avoid  side effects s uch as un-

necessary fitness plateaus, our branch d istance functions are designed in a way that, if there is no need to change the size 

of a collection to solve a constraint on it, then the branch d istances should  not have bias toward  changing its size in on e 

d irection or another.  

Below, we further illustrate the branch d istance for forAll with the help of examples: 

Example 4: Suppose we have a collection C= {1,2,3} and  the expression is C → forAll(x| x=0). In this example, we have 
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just one iterator x, and  therefore m=1. In this case, the formula will be: 

d(C  for ll(x|x = 0))  ∑ d(expr(C. at(i ))

      ()

    

/C  size() 

The branch distance in this case will be calculated as:  

d(C→forAll(x│x=0) )    (d(expr(C.at(1))+ d(expr(C.at(2))+ d(expr(C.at(3)))/3  

                                             (d(expr(1)+ d(expr(2)+ d(expr(3))/3 

                                             (2+3+4)/3[k=1, definition of expr and formulae from Table IV and Table V] 

                                             9/3 = 3 

Example 5: Suppose we have a collection C= {1,2} and  the expression is C → forAll(x,y| x*y >0). In this case, we have two 

iterators x and  y and  thus the formula will become: 

d(C  for ll(x, y|x ∗ y > 0))     
∑ ∑ d(expr(C. at(i ), C. at(i ))

      ()
    

      ()
    

(C  size()) 
 

The branch distance in this case will be calculated as:                            

                                  (d(expr(C.at(1), C.at(1)))+ d(expr(C.at(1), C.at(2)))+ d(expr(C.at(2), C.at(1)))+ d(expr(C.at(2),   

                                     C.at(2))))/4 C.at(2))))/4 

                                  (d(expr(1, 1))+ d(expr(1, 2))+ d(expr(2, 1))+ d(expr(2, 2)))/4 

                                  (d(1*1>0)+ d(1*2>0)+ d(2*1>0)+ d(2*2>0))/4 

                                  (0+0+0+0)/4 [Considering k=1 and using formulae from Table IV and Table V] 

                                  0 

In a similar fashion, the formula can be used  for any number of iterators (m). 

The exists() iterator operation determines whether a boolean-expression holds for at least one element of the collection on 

which this operation is applied . The generic d istance form for exists() is shown in Table VIII. The definition of exists() is 

very similar to forAll() except for two differences. First, instead  of summing distances across all element combinations of 

size m, we compute the minimum of these d istances, since any element satisfying exp makes exists() true. Second , we do 

not have a denominator since no average needs to be computed . The expr() function works in the same way as for forAll(). 

Below we further illustrate branch d istance calculation using two examples.  

Example 6: Suppose we have a collection C= {1,2,3} and  the expression is C → exists(x| x=0). In this example, we have just 

one iterator, i.e., x. The formula will be: 

 d(C  exists(x|x = 0)) min
        

d(expr(C. at(i )) 

The branch distance in this case will be calculated as:  

                                             min (d(expr(C.at(1)), d(expr(C.at(2)), d(expr(C.at(3)))  
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                                             min (d(expr(1), d(expr(2), d(expr(3)) 

                                             min (2,3,4) [Using k=1, expr, and formulae from Table IV and Table V ] 

                                             2            

Example 7: Suppose we have a collection C= {1,2} and  the expression is C → exists(x,y| x*y>1). In this case, we have two 

iterators x and  y and  thus the formula will become: 

d(C  exists(x, y|x ∗ y > 0)) min
  ,              ()

d(expr(C. at(i ), C. at(i )) 

The branch distance in this case will be calculated as:  

                                                        min (d(expr(C.at(1), C.at(1))), d(expr(C.at(1), C.at(2))), d(expr(C.at(2), 

C.at(1))), d(expr(C.at(2), C.at(2)))) 

                                                        min (d(expr(1, 1)), d(expr(1, 2)), d(expr(2, 1)), d(expr(2, 2))) 

                                                        min (d(1*1>1), d(1*2>1), d(2*1>1), d(2*2>1)) 

                                                        min (1,0,0,0) [Considering k=1, the definition of expr, and using formulae from Table IV and 

Table V ] 

                                                        0 

In a similar fashion, as explained with Example 6 and Example 7, the formula can be used  for any number of iterato rs 

(m). 

In addition, we also provide branch d istance for one() and  isUnique() operations in Table VIII. The one operation returns 

true only if exp evaluates to true for exactly one element of the collection. The isUnique() operation returns true if exp on 

each element of the source collection evaluates to a d ifferent value. In this case, the d istance is calculated  by computing 

and summing the d istances between each element of the collection and every other element in the collection. Since in this 

formula, we are computing (((self →  size())*(self →  size()-1)))/(2) d istances, we compute the average d istance by using this 

formula in the denominator. Again, calculating the average d istance is important to avoid  bias in the search towards d e-

creasing the size of the collection as we d iscussed  for forA ll. Below we provide an example of how we calculate branch d is-

tance for isUnique().  

Example 8: Suppose we have a collection C= {1,1,3} and  the expression is C → isUnique(x| x). In this example, we have 

just one iterator, i.e., x. Using the formula of branch d istance for isUnique(),  

d(C  isUnique(x|x))
        ∑ ∑ d(expr(C. at(i)) <>    𝑟(𝐶.   ( )))

(      ())
     

(      ()  )
   

((C  size()) ∗ (C  size()  1)) 2⁄
 

                                             (d(expr(C.at(1)) <> expr(C.at(2))) + d(expr(C.at(1) <> expr(C.at(3))) + d(expr(C.at(2)) <> 

expr(C.at(3))))/((3*2)/2) 

                                             (d(1 <> 1) + d(1 <> 3) + d(1 <> 3))/3 

                                             (1+0+0)/3 

                                             1/3 

Table IX. Special rules for Select() followed by Size() when exp is false 
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Operation  Distan ce  fu n ction  

>, >= d(exp)=    if C  →  size() <= z()    then  (z()-C → size()) +  k  
                  else                                     nor((z()- C → select(P) → size())+k  + nor(d(P))) 

<,<= d(exp) =   if C →  size() >= z()     then  (C → size()-z())+k 
                  else                                    nor(( C → select(P)→size()-z())+k + nor(d(not P))) 

<> d(exp) =   if   C →  select(P) →  size() = 0         then  d(P)   
                 if   C →  select(P) →  size() = C → size()        then  d(not P)    
                 if   0 <  C → select(P) → size() < C → size() then  min(d(P), d(not P)) 

= d(exp) =   if  C →  select(P) →   size() > z()     then  ( C → select(P) → size()-z())+k + nor(d(not P)) 
                 if C →  select(P) → size() < z()     then  (z()- C → size())+k  + nor(d(P)) 

* In the above table, k=1, nor(x)=x/(x+1) and d(P) is simply  the sum of d() over the elements in A 

Select, reject, collect operations select a subset of elements in a collection. The select() operation selects all elements of a 

collection for which a Boolean expression is true, whereas reject() selects all elements of a collection for which a Boolean ex-

pression is false. In contrast, the collect() iterator may return a subset of elements that does not belong to the collection on 

which it is applied . Since all these iterators (like the generic iterator operation) return a collection and  not a Boolean value, 

we do not need to define branch d istance for them, as d iscussed  in Section  4.2.1. However, an iterator operation (such as 

select()) followed by another OCL operation, for instance size(), can be combined to make a Boolean expression of the fol-

lowing form:    

exp = C → selectionOp (P) → size()  RelOp  z() 

Where C is a collection, selectionOp is either select, reject, or collect, P is a boolean-expression, RelOp is a relational opera-

tion from set {<,<=,=,<>,>,>=}, and z() is a function that returns a constant value. A simple way of calculating branch d is-

tance for the above example, when RelOp is =, and  selectionOp is select would  be as follows: 

exp := C → select (P) → size()  =  z() 

If  exp = true then 

d(exp)=0 

else 

d(exp)= | C → select(P) → size()-z()|+k 

An obvious problem of calculating branch d istance in this way is that it does not give any gradient at all to help search 

algorithms solve P, which can be arbitrarily complex. To optimize branch d istance calculation in this particular case, we 

need special ru les that are defined specifically for each RelOp.  

For > and  >=, when exp is false, this means that the size of resultant collection of the expression C →  select(P) is less than 

the size which will make the branch d istance 0. In this case, first we need a collection with size greater that z(), and  then we 

need to obtain those elements of C that increase the value of size() returned by C → select(P) →  size(). This can be achieved 

by the ru le shown in the first row of Table IX. The normalization function nor() is necessary because the branch d istance 

should  first reward  any increase in C →  size() until it is greater than z() regardless of the evaluation of P on its elements. 

Then, once the collection C has enough elements, we need to account for the number of elements for which P is true by 



 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  #,  NO.  #,    2012 

using ((z() – C → select(P) → size())+k). The function d(P) returns the sum of branch d istance evaluations of an expression P 

over all the elements in C and  provides additional gradient by quantifying how close are collection elements from satisfy-

ing P. Below, we further illustrate this case with an example: 

Example 9: Suppose we have a collection C= {1,1,3} and  the expression is C → select(x| x>1) → size()>=3. Using the for-

mula of branch d istance for the case when RelOp is >, >=. 

In this case, C→size() is 3, which is equal to z(), i.e., 3, so the formula for branch d istance calculation is: 

d(C → select(x|x>1) →size()>=3)  nor((z()- C → select(P) → size())+k  + nor(d(P))) 

                                                                      nor((3-1)+1  + nor(d(x>1))) [Assuming k=1] 

                                                                      nor(3  + nor(d(x>1))) 

                                                                      nor(3  + nor(d(1>1)+d(1>1)+d(3>1))) 

                                                                      nor(3  + nor(1+1+0)) [Using k=1, and formula from Table V] 

                                                                      nor(3  + 0.667) 

                                                                      0.78  

For < and  <=, when exp is false, this means that C →  select(P) →  size() is greater than the size which will make the 

branch d istance 0. Similar to the previous case, the d istance computation account for those elements of C that decrease the 

value of size() returned by C → select(P) → size(), and  uses nor(d(not P)) to provide additional gradient to the search, as 

shown in second row of Table IX.  

For the cases when the value of RelOp is inequality (<>), the ru le is shown in the third  row of Table IX. Recall that our 

expression is in the following format: exp = C → selectionOp (P) →  size()  RelOp  z(). For this ru le, there are three cases 

based  on the value of C →  select(P) →  size(). Recall that d(P) is simply the sum of all d() on all elements of C. The first case 

is when C →  select(P) →  size() = 0, where P does not hold  for any element in C. To guide the search towards increasing the 

size of the collection, d(exp) will be d(P) so as to minimize the sum of d istances of all elements with P. The second case is 

when P is true for all elements of C, which means that C → select(P) →  size() = C → size(). To guide the search in decreasing 

the size of the collection, for reasons that are similar to the first case, we define d(exp) as d(not P). When 0 < C →  select(P) →  

size() < C → size(), we can guide the search to either increase or decrease the size of the collection and thus define d(exp) as 

min(d(P), d(not P)). 

For the cases when the value of RelOp is equality (=), the ru le is shown in the fourth row of Table IX. There are two im-

portant cases, which work in a similar way as the first and second cases as reported  in Table IX. The first case is when C → 

select(P) →  size() > z(), where we need to decrease C → select(P) →  size(), which can be achieved by minimizing (C →  se-

lect(P) →  size()-z())+k + nor(d(not P)). The second case is when C →  select(P) →  size() < z(). For this case, we need to in-

crease the number of elements in C for which P holds and  must minimize (z()-C →  select(P) →  size())+k  + nor(d(P)). 
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Note that we only presented  formulae in Table IX for the cases when the iterator operation considered  selectionOp is se-

lect, however, the formulae can simply be extended for other iterator operations. The collect operation works in the same 

way as select, and  hence the formulae in Table IX can simply be adapted  by replacing select with collect in the formulae. For 

instance, for the case when RelOp is > or >=, formula for collect would  be:  

d(exp) =  (z()- C → collect(P) → size())+k  + nor(d(P)) 

The reject operation works in a d ifferent way than select since it rejects all those elements for which a Boolean expression 

is true, but reject(P) can be simply transformed into select(not P). 

In addition to the ru les for an iterator followed by size(), we defined two new rules when a select() is followed by forAll() 

or exists() that are shown in Table X.  For example, C → select(P1) →  forAll(P2) (first row in Table X) implies that for all el-

ements of C for which P1 holds, P2 should  also hold . In other words, P1 implies P2. Therefore, C →  select(P1) →  forAll(P2) 

can simply be transformed into C →  forAll(P1 implies P2). Similarly, a select(P1) followed by an exists(P2) can simply be 

transformed into exists(P1 and P2). This means that there should  be at least one element in C for which P1 and  P2 holds. 

Notice that a sequence of selects can be simply combin ed, e.g., C →  select(P1) → select (P2)  is equivalent to C →  se-

lect(P1and P2). 

The effectiveness of all these ru les for calculating branch d istance is empirically evaluated  in Section 7.   

4.2.3 Tuples in OCL 

In OCL several d ifferent values can be grouped together using tuples. A tuple consists of d ifferent parts separated  by a 

comma and each part specifies a value. Each value has an associated  name and type. For example, consider the following 

example of a tuple in OCL: 

Tuple{firstName = "John", age= 29} 

This tuple defines a String firstName of value “John” and  an Integer age of value 29. Each value is accessed  via its name. 

For example, Tuple{firstName = “John”,age= 29}.age returns 29. There are no operations allowed on tuples in OCL because 

they are not subtypes of OCLAny. However, when a value in a tuple is accessed  and compared, a branch d istance is calcu-

lated  based on the type of the value and the comparison operation used . For example, consider the following constraint:   

Tuple{String: firstName = “John”, Integer: age= 29}.age > 20 

In this case, since age is an Integer and  comparison operation is >, we use the branch d istance calculation of numerical 

data for the case of > as defined in Table V. 

4.2.4 Special Cases 

In this section, we will d iscuss branch d istance calculations for some special cases inclu ding enumerations and other 

special operations provided by OCL, such as oclInState. 
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Table X. Special rules for Select() followed by forALL and exists 

Operation  Distan ce  fu n ction  

C → select(P1) →  forAll(P2) d(C →  forAll(P1 implies P2)) 
C → select(P1) →  exists(P2) d(C →  exists (P1 and P2)) 

 
Figure 4. A dummy example to explain oclInState() 

4.2.5 Enumerations 

Enumerations are data types in OCL that have a name and a set of enumeration literals. An enumeration can take any 

one of the enumeration literals as its value. Enumerations in OCL are treated  in the same way as enumerations in pr o-

gramming languages such as Java. Because enumerations are objects with no specific order relation, equality comparisons 

are treated  as basic Boolean expressions, whose branch d istance is 0, a value between 0 and k, or k. 

4.2.6 oclInState 

The oclInState(s:OclState) operation returns true if an object is in a state represented  by s, otherwise it returns false. This 

operation is valid  in the context of UML state machines to determine if an object is in a particular state of the state m a-

chine. OclState is a data type similar to enumeration. This data type is only valid  in the context of oclInState and  is used  to 

hold  the names of all possible states of an object as enumeration literals. In this particular case, the states of an object are 

not precisely defined , i.e., each state of the object is uniquely identified  based on the names of the states. For example, a 

class Light having two states: On and  Off, is modeled  as an enumeration with two literals On and  Off. In this example, 

s:OclState takes either On or Off value and the branch calculation is the same as for enumerations. However, if the states 

are defined as state invariants, which is a  common way of defining states in a UML state machine as an OCL constraint [2], 

then the branch d istance is calculated  based on two special cases depending on whether we can d irectly set the state of an 

object by manipulating the state variables or not. Below, we will d iscuss each case separately.  

The first case is when the state of an object can be manipulated  by d irectly setting its state defining attributes (or pro p-

erties) to satisfy a state invariant. In this case, state invariants― which are OCL constraints―can be satisfied  by solving the 

constraints based  on heuristics defined in  the previous sections. Note that each state in a state machine is uniquely ident i-

fied  by a state invariant and there is no overlapping between state invariants of any two states (strong state invariants 

[62]). For instance, in our industrial case study, we needed to emulate faulty situations in the environment for the purpose 

of robustness testing, which were modeled  as OCL constraints defined on the properties of the environment. In this case, it 

was possible to d irectly manipulate the properties of the environment emulator based  on which state of the environment is 

defined and each state was uniquely identified  based on its state invariant. A simple example of such state invariant for the  
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environment is given below: 

self.packetLoss.value > 5 and self.packetLoss.value <=10 

The above state invariant defines a faulty situation in the environment, when the value of packet loss in the environment 

is greater than 5% and less or equal to 10%. This constraint can easily be solved using the heuristics defined in the previous 

sections and the value of packetLoss generated  can be d irectly set for the environment. 

In the second case, when it is not possible to d irectly set the state of an object, the approach level heuris tic [29] can be 

used  in conjunction with branch d istance to make the object reach the desired  state. We will explain this case using a  

dummy example of a UML state machine shown in  Figure 4. The approach level calculates the minimum number of transi-

tions in the state machine to reach the desired  state from the closest executed  state. For instance, in Figure 4, if the desired  

state is S3 and  currently we are in S1, then the approach level is 1. By calculating the approach level for the states that the 

object has reached, we can obtain a state that is closest to the desired  state (i.e., it has the minimum approach level). In our 

example, the closest state based  on the approach level is S1. Now, the goal is to transition in the d irection of the desired  

state in order to reduce the approach level to 0. This goal is achieved with the help of branch d istance. The branch d istance 

is used  to heuristically score the evaluation of the OCL constraints on the path from the current state to the desired  state 

(e.g., guards on transitions leading to the desired  state). The d istance is calculated  based on the heuristics defined in thi s 

paper. The branch d istance is used  to guide the search to find  test data that satisfy these OCL constraints. An event corre-

sponding to a transition can occur several times but the transition is only triggered  when the guard  is true. The branch 

d istance is calculated  every time the guard  is evaluated  to capture how close  the values used  are from solving the guard . 

In the example, we need to solve the guard  ‘a>0’ so that whenever e4() is triggered  we can reach S3. Since the guards are 

written in OCL, they can be solved using the heuristics defined in the previous sections.  In the case of MBT, it is not always 

possible to calculate the branch d istance when the related  transition has never been triggered . In these cases, we assign to 

the branch d istance its highest possible value. More details on this case can be found for example in [6]. 

4.2.7 Miscellaneous Operations 

OCL defines several special operations that can be used  with all types of objects: oclIsTypeOf(), oclIsKindOf(), oclIsNew(), 

oclIsUndefined(), and  oclIsInvalid(). The oclIsTypeOf(t:Classifier) returns true if t and  the object on which this operation is 

called  have the same type. The oclIsKindOf(t:Classifier) operation returns true if t is either the d irect type or one of the super  

types of the object on which the operation is called . The operation oclIsNew() returns true if the object on which the opera-

tion is called  is just created . These three operations are defined to check the properties of objects and hence are not used  for 

test data generation; therefore we do not explicitly define branch d istance calculation for these operations. However, 

whenever these operations are used  in constraints, the branch d istance is calculated  as follows: if the invocation of an o p-
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eration evaluates to true, then the branch d istances is 0, if the operation evaluates to false then the branch d istance is a val-

ue between 0 and k, and  k when the operation evaluates to undefined. We deal with oclIsUndefined() and oclIsInvalid opera-

tions in the same way.   

4.2.8 User-defined Operations 

Apart from the operations defined in the standard  OCL library, OCL also provides a facility for the users to define new 

operations. The pre and post conditions of these operations are written using OCL expressions and may call the standard  

OCL library operations. As we d iscussed  in Section 4, we only provide specialized  branch d istance calculations for the op-

erations defined in the standard  OCL library. For user-defined operations, we calculate a branch d istance according to the 

return types of these operations. If a user-defined operation returns a Boolean, to provide more fine grained fitness func-

tions, it is possible to use testability transformations on those operations, as for example in search -based software testing of 

Java software [63]. In our tool, we have not implemented  and  evaluated  this type of testability transformations, and fu r-

ther research would  be needed to study their applications in  OCL. For any other return type but Boolean, we define a 

branch d istance using the ru les defined in Section 4.2.4. For instance, consider a user-defined OCL operation named opera-

tion1(), which is defined on a collection and returns a collection, and is used  in the following constraint: 

 c1 → operation1() → isEmpty()  

In this case, the branch d istance is calculated  based on the heuristic for isEmpty() as defined in Section 4.2.2.  

5. TOOL SUPPORT AND RUNNING EXAMPLE 

In this section, we present our implementation of search -based test data generation and a running example to demonstrate 

how the generated  data is used  by our Model-based testing tool TRUST [64] to generate executable test cases. 

5.1 Tool Support 

To efficiently generate test data from OCL constraints, we implemented  a search-based approach. Figure 5 shows the ar-

chitecture d iagram for our search-based test data generator. We developed a tool in Java that interacts with an existing l i-

brary, an OCL evaluator, called  the EyeOCL Software (EOS) [36]. EOS is a Java component that provides APIs to parse and  

evaluate an OCL expression based  on an object model. Our tool only requires interacting with EO S for the evaluation of 

constraints. We use EOS as it is one the most efficient evaluators cur rently available; however any other OCL evaluator 

may be used . Our tool implements the calculation of branch d istance (DistanceCalculator) for various expressions in OCL as 

d iscussed  in Section 4, which aims at calculating how far are the test data values from satisfying constraints. For a co n-

straint, the search space is defined by those attributes that are used  in the constraint. This is determined  by statically pars-

ing a constraint before solving it  and improves the search efficiency in a similar fashion to the concept of input size redu c-

tion [65]. The search algorithms employed are implemented  in Java as well and include Genetic Algorithms, (1+1) Evol u-
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tionary Algorithm, and Alternating Variable Method (AVM). Note that our implementation of branch d istance calculation 

corresponds to OCL semantics as specified  in [2]. As a result, any other OCL evaluator can be plugged into our implemen-

tation without affecting our implementation of branch d istance calculation.   

 

Figure 5. Architecture diagram for the search-based test data generator 

5.2 Running Example of Test Data Generation 

In this section, we present a running example to demonstrate how the generated  test data is used  in the test cases gen-

erated  using our model-based testing tool, called  TRUST [64]. Figure 6 shows a class d iagram for a very simplified  version 

of the Video Conferencing System (VCS) class d iagram, with one class VideoConferencingSystem. This class has one attribute 

NumberOfActiveCalls, which holds the number of current participants in a videoconference. The class has two operations 

dial(Number:Integer), which is used  to d ial to a particular VCS using an Integer Number (valid  values range from 4000 to 

5000). The state machine in Figure 6 models the behavior of VCS, where it d ials to another VCS using dial() subject to 

guard  (Number>=4000 and Number<=5000) evaluating to true, before transiting to the Connected state. From Connected, 

when disconnect() is called  the VCS transits to Idle. Notice that in this example, we need to solve the guard  and generate 

data for Number. Each state in Figure 6 has a state invariant written in OCL, which serves as a test oracle. 

  

Figure 6. A small running example for Video Conferencing System 

 

TRUST works in a series of steps to generate executable test cases including test data. For test case generation, TRUST 

manipulates models in three sequential steps as shown in  Table XI and Figure 7. In the first step (implemented  as a set of 

Kermeta [66] model-model transformations), TRUST flattens UML state machines with hierarchy and concurrency. Details 

and algorithms for this step can be found in [64]. In our running example, the state machine does not have hierarchy or 

concurrency, so the input and output for this step are the same. In Step 2, the flattened  state machine produced by Step 1 is 

converted  into an instance of TestTree ([64]) representing a set of abstract test paths based  on coverage criteria , such as All 
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Transitions and  All States coverage. In our running example, using All States coverage, we obtain an abstract test path 

shown in Row 3 of the Output column in Table XI. Notice that the actual representation of an abstract test path is in XML, 

but to demonstrate the test case generation process and  for readability reasons, we show it as text. Step 2 is also imple-

mented  as a set of Kemeta transformations. In the third  step (Test case generation), each abstract test path is transformed t o 

an executable test case using a set of model-to-text transformations implemented  in MOFScript [67]. For this step , as it can 

be seen in Figure 7, TRUST uses our test data generator by passing it the guard  written in OCL (Number>=4000 and Number 

<=5000) and obtains a valid  value for Number, which in our running example is 4005 as shown in Line 3 of the test script in 

Row 3, Output column in Table XI. This value is used  in dial() to d ial to another VCS in Line 4. Line 2 and Line 6 of the test 

script checks the current state of the VCS with the state invariant (OCL constraint) passed  as a String in checkState() (Line 2 

and Line 6). These state invariants are evaluated  using EyeOCL [36] at run time and the result of the evaluation (true or 

false) tells whether the VCS was in an incorrect state or not.  

Table XI. Steps for test case generation using TRUST 

Test  Case  Gen e r-

ation  Step  

In pu ts  Ou tput 

State  m ach ine  

flatten in g  

Class diagram and st ate machine 

(F ig.5) 

Class diagram and sta te machine (F ig.5) 

Abstract tes t  path  

ge n e ration  

Class diagram and st ate machine 

(F ig.5), All sta tes coverage 

Idle->[Number>=4000 and Number  <=5000].dia l(Number :Integer )->Connected 

Te st case  ge n era-

tion  

Idle->[Number>=4000 and Number  

<=5000].dia l(Number :Integer )-

>Connected 

1. # Check sta te invar iant  for  Idle 

2. boolean result  = checkSta te(“self.NumberOfAct iveCalls =0”) 

3. n um ber = 4005 

4. dia l(number) 

5. wait (20sec) 

6. result  = checkState(“self.NumberOfAct iveCalls =1”) 

 

 

 
Figure 7. Integration of TRUST with the Search-based Test Data Generator 

 

6. CASE STUDY: ROBUSTNESS TESTING OF VIDEO CONFERENCE SYSTEM 

This case study is part of a project aiming to support automated , model-based robustness testing of a core subsystem of 

a video conference system (VCS) called  Saturn [64], developed by Cisco Systems, Inc., Norway. Saturn is modeled  as a 

UML class d iagram meant to capture information about APIs and system (state) variables, which are required  to generate 

executable test cases in our application context. The standard  behavior of the system is modeled  as a UML 2.0 state m a-

chine. In addition, we used Aspect-oriented  Modeling (AOM) and more specifically the AspectSM profile [68] to model 

robustness behavior separately as aspect state machines. The robustness behavior is modeled  based on d ifferent functional 
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and non-functional properties, whose violations lead  to erroneous states. Such properties can be related  to the SUT or its 

environment such as the network and other systems interacting with the SUT. A weaver subsequently weaves robustness 

behavior into the standard  behavior and generates a standard  UML 2.0 state machine. Some details and  models of the case 

study, including a partial woven state machine, are provided in [68]; however, due to confidentiality reasons, we cannot 

provide further details. Interested  readers may also visit the official website of the system we tested  for more information 

[69]. The woven state machine produced by the weaver is used  for test case generation. In the current, simplified  case 

study, the woven state machine has 12 states and 103 transitions. Out of these 103 transitions, only 83 transitions model 

robustness behavior as change events and 57 transitions out of these 83 have identical change conditions, including 42 

constraints using select() and  size() operations. A change event is defined with a ‘when’ keyword  and associated  condition, 

and is triggered  when this condition is met during the execution of a syst em. An example of such a change event is shown 

in Figure 8. This change event is fired  during a videoconference when the synchronization between audio  and  video pass-

es the allowed threshold . The non-functional property synchronizationMismatch is defined using the MARTE profile [70], 

and measures the synchronization between audio and  video over time. In order to traverse these transitions appropriate 

test data is required  that satisfies the constraints specified  as guards and when conditions (in case of change events). The 

characteristics of these constraints, in terms of number of conjuncted  clauses and their frequency of occurrence are  report-

ed  in Table XII. Most constraints contain between 6 and 8 clauses. The d ifferent OCL data types used  in these constraints 

are shown in Table XIII and we can see that most of the primitive types are being used  in our case study. Notice that in our 

industrial case study, we needed to generate test data only for guards and change events of UML state machines. Due to 

the nature of the case study, the number of objects for each class were fixed  (i.e., fixed  upper limit of multiplicity) since 

objects corresponds to actual hardware features of a VCS such as audio and video channels.  

Table XII. Characteristics of constraints 

# of Con jun cted  Clau ses  Frequ en cy  

8 1 

7 8 

6 23 

5 10 

2 6 

1 9 

Table XIII. OCL data types used in constraints 

OCL Data  Types  Used  Frequ en cy  

In teger  13 

Boolean 2 

In teger  and Enumerat ion  31 

In teger , Enumerat ion, and Boolean  11 
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Figure 8. A constraint checking synchronization of audio and video in a videoconference 

In our case study, we target test data generation for model-based robustness testing of the VCS. Testing is performed at 

the system level and we specifically target robustness faults, for example related  to faulty situations in the network and 

other systems that comprise the environment of the SUT. Test cases are generated  from the system state machines using the 

TRUST tool [64]. To execute test cases, we need appropriate data for the state variables of the system, state variables of the 

environment (network properties and in certain cases state variables of other VCS), and input parameters that may be used  

in the following UML state machine elements: (1) guard  conditions on transitions, (2) change events as triggers on trans i-

tions, and (3) inputs to time events. We have successfu lly used  the TRUST tool to generate test cases using d ifferent cove r-

age criteria on UML state machines, such as all transitions, all round trip, modified  round trip strategy [5].  

6.1 Empirical Evaluation 

This section d iscusses the experiment design, execution, and analysis of the evaluation of the proposed OCL test data 

generator on the VCS case.  

6.1.1 Experiment Design 

We designed our experiment using the guidelines proposed in [28, 71]. The objective of our experiment is to assess the 

efficiency of the selected  search algorithms to generate test data by solving OCL constraints. In our experiments, we co m-

pared  four search techniques: AVM, GA, (1+1) EA, and RS (Section 4). AVM was selected  as a representative of local search 

algorithms. GA was selected  since it is the most commonly used  global sear ch algorithm in search-based software engi-

neering [28]. (1+1) EA is simpler than GAs, but in previous software testing work we found that it can be more effective in 

some cases (e.g., see [61]). We used RS as the comparison baseline to assess the d ifficulty of the addressed  problem [28].  

From this experiment, we want to answer the following research questions. 

RQ1: Are search-based techniques effective and efficient at solving OCL constraints? 

RQ2: Among the considered  search algorithms (AVM, GA, (1+1) EA), which one fares best in solving OCL constraints 

and how do they compare to RS?  

6.1.2 Experiment Execution 

We ran experiments for 57 OCL expressions from the VCS industrial case study that we d iscussed  earlier. The number 

of clauses in each expression varies from one to eight and the median value is six. The characteristics of the problems are 

summarized  in Table XII, where we provide details on the d istribution of numbers of clauses. In Table XIII, we summa-

rized  the data types used  in the problems.  

Fitness evaluations are computationally expensive, as they require the instantiation of models on which the constraints 

are evaluated . Each algorithm was run 100 times to account for the random variation inherent to randomized algorithms 

context Saturn inv synchronozationConstraint:  

   self.media.synchronizationMismatch.value  > self.media.synchronizationMismatchThreshold.value 
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[72], which for our case study was enough to gain enough statistical confidence on the valid ity of our results. We ran each 

algorithm up to 2000 fitness evaluations for each problem and collected  data on whether an algorithm found a solu tion or 

not. On our machine (Intel Core Duo CPU 2.20 GHz with 4 GB of RAM, running Microsoft Windows 7 operating system), 

running 2000 fitness evaluations takes on average 3.8 minutes for all algorithms. The number of fitness evaluations should  

not be too high to enable enough runs on all constraints within feasible time, but should  still represent a reasonable 

“budget” in an industrial setting (i.e., the time the software testers are willing t o wait when solving constraints to generate 

system level test cases).     

  Though putting a limit on the number of fitness evaluations is necessary for experimental purposes, in practice one 

would  instead  put a limit on time depending on practical constra ints. This mean we can run a search algorithm with as 

many iterations as possible and stop once a predefined time threshold  is reached if the constraint was not yet solved. For 

example, the choice of this threshold  could  be driven by the testing budget. However, though adequate in practice, in an 

experimental context, using a time threshold  would  make it significantly more d ifficult and less reliable to compare d iffe r-

ent search algorithms (e.g., accurately monitoring the passing of time, side effects of oth er processes running at same time, 

inefficiencies in implementation details). 

A solu tion is represented  as an array of variables, the same variables that appear in the OCL constraint we want to 

solve. We selected  steady state GA with a population size of 100 and a crossover rate of 0.75, with a 1.5 bias for rank selec-

tion. We used  a standard  one-point crossover, and mutation of a variable is done with the standard  probability 1/n, where 

n is the number of variables. Different settings would  lead  to d iffer ent performance of a search algorithm, but standard  

settings usually perform well [72]. As we will show, since our search-based test data generator is already very effective in 

solving OCL constraints, we d id  not feel the need  for tuning to improve the performance even further.   

To compare the algorithms, we calculated  their success rates. The success rate of an algorithm is defined as the number 

of times it was successfu l in finding a solu tion out of the total number of runs.  In our context, it is the success rate in solv-

ing constraints.  

 
Figure 9. Success rates for various algorithms 
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Table XIV . Success rates for individual problems 

P roblem  Id # of con jun cted  clauses  AVM (1+1)EA GA RS 

0 8 1 0,98 0,21 0,02 

1 5 1 1 0,95 0,83 

2 7 1 0,91 0,17 0,01 

3 7 1 0,95 0,15 0,01 

4 7 1 0,92 0,1 0,01 

5 7 1 0,96 0,11 0 

6 6 1 1 0,87 0,68 

7 6 1 0,99 0,88 0,59 

8 5 1 0,98 0,84 0,53 

9 5 1 1 0,83 0,45 

10 5 1 1 0,81 0,33 

11 5 1 0,98 0,78 0,39 

12 7 1 1 0,29 0,07 

13 6 1 1 0,54 0,3 

14 6 1 0,95 0,3 0,06 

15 6 1 0,95 0,25 0,1 

16 6 1 1 0,19 0,02 

17 6 1 0,98 0,24 0,04 

18 7 1 0,96 0,34 0,11 

19 6 1 1 0,6 0,12 

20 6 1 0,98 0,25 0,04 

21 6 1 0,97 0,23 0,04 

22 6 1 0,99 0,18 0,04 

23 6 1 1 0,17 0,05 

24 6 1 1 0,91 0,67 

25 5 1 1 1 0,93 

26 5 1 0,99 0,88 0,42 

27 5 1 1 0,75 0,51 

28 5 1 1 0,77 0,4 

29 6 1 0,99 0,16 0,08 

30 7 1 0,96 0,37 0,13 

31 6 1 1 0,55 0,15 

32 6 1 0,96 0,19 0,02 

33 6 1 0,93 0,21 0,07 

34 6 1 0,96 0,21 0,02 

35 6 1 0,98 0,23 0,04 

36 6 1 1 0,95 0,93 

37 5 1 1 0,99 1 

38 5 1 0,99 0,89 0,76 

39 5 1 1 0,86 0,7 

40 6 1 1 0,9 0,59 

41 5 1 1 0,84 0,65 

42 1 1 1 1 1 

43 1 1 1 1 1 

44 1 1 1 1 1 

45 1 1 1 1 1 

46 1 1 1 1 1 

47 1 1 1 1 1 

48 2 1 1 1 1 

49 1 1 1 1 1 

50 1 1 1 1 1 

51 2 1 1 1 1 

52 2 1 1 1 1 

53 1 1 1 1 1 

54 2 1 1 1 1 

55 1 1 1 1 1 

56 2 1 1 1 1 
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6.1.3 Results and Analysis 

Figure 9 shows a box plot representing the success rates of the 57 problems for AVM, (1+1) EA, GA, and RS. For each 

search technique, the box-plot is based  on 57 success rates, one for each constraint . The results show that AVM not only 

outperformed all the other three algorithms, i.e., (1+1) EA, RS, and GA, but in addition achieved a consistent success rate 

of 100%. (1+1) EA outperformed GA and RS and achieved an average success rate of 98%. Finally, GA outperformed RS, 

where GA achieved an average success rate of 65% and RS attained an average success rate of 49%.  We can observe that, 

with an upper limit of 2000 iterations, (1+1) EA achieves a median success rate of 98% and GA exceeds a median of roug h-

ly 80%, whereas RS could  not exceed a median of roughly 45%. We can also see that all success rates for (1+ 1) EA are above 

90% and most of them are close to 100%. 

Table XIV shows success rates for individual problems to further analyze the results. We observe that problems 42 to 56 

were solved by all the algorithms. The reason is that these problems are composed of just one or two clauses, as it can be 

seen from the number of conjuncted  clauses column in Table XV. The problems with higher number of clauses are the most 

d ifficult to solve for GA and RS, as shown in Table XV. As the number of conjuncted  clauses is increasing, the success rates 

of GA and RS are decreasing. However, in the case of AVM and (1+1) EA, we do not see a similar pattern. AVM managed  

to maintain an average success rate of 100% even for problems with higher numbers of conjuncted  clauses. In the case of 

(1+1) EA, the minimum average success rates are for the problems with seven clauses, which is 95%. Based on these r e-

sults, we can see that our approach is effective and efficient, and therefore practical, even for d ifficult constraints (RQ1) 

which are likely to be encountered  in industrial systems.  

Table XV . Average success rates for problems of varying characteristics 

# of con jun cted  

c lauses  

AVM (1+1) EA GA RS 

1 1 1 1 1 

2 1 1 1 1 

5 1 0,995 0,86 0,60 

6 1 0,98 0,43 0,20 

7 1 0,95 0,21 0,04 

8 1 0,98 0,21 0,02 

Table XVI. Results for the paired Mann-Whitney U-test at significance level of 0.05 

P air of approach es  p-Valu e  

AVM vs. (1+1) EA 2.653988e-05  

AVM vs. GA 2.507670e-08  

AVM vs.  RS 2.485853e-08  

(1+1) EA vs. GA 2.506828e-08  

(1+1) EA vs. RS 2.480008e-08  

GA vs. RS 1.822280e-08 

To check the statistical significance of the results, we carried  out a paired  Mann -Whitney U-test (paired  per constraint) 

at the significance level () of 0.05 on the d istributions of the success rates for the four algorithms. In all the four d istrib u-

tion comparisons, p -values were very close to 0, as shown in Table XVI. This shows a strong statistical significance in the 
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differences among the four algorithms when applied  to all 57 constraints in our case study. In addition, we performed a 

Fisher ’s exact test with =0.05 between each pair of algorithms based on their success rates for the 57 constraints. The r e-

sults for the Fisher ’s exact test are shown in Table XVII and  Table XVIII. In addition to statistical significance, we also as-

sessed  the magnitude of the improvement by calculating the effect size in a standardized  way. We used odds ratio [71] for 

this purpose, as the results of our experiments are d ichotomous. Table XVII and Table XVIII also show the odds ratios for 

various pairs of approaches for all 57 problems. For AVM vs. (1+1) EA, we d id  not observe practically significant d iffer-

ences for most of the problems, except for Problem 2 and Problem 33, where AVM performed significantly better than 

(1+1) EA. In addition, odds ratios between AVM and (1+1) EA for 23 problems are greater than 1, implying that AVM has 

more chances of success than (1+1) EA. For 35 problems out of 57, the odds ratio is 1 suggesting that there is no d ifference 

between these two algorithms. For AVM vs. GA, for 38 problems AVM performed significantly better than GA as p -values 

are below 0.05 (our chosen significance level). The odds ratios for most of the problems, except for the problems with 1 or 2  

clauses, are greater than one, thus suggesting that AVM has more chances of success than GA. Similar results were o b-

served for (1+1) EA, where for 38 problems it significantly outperformed GA. For AVM vs. RS, for almost all of the pro b-

lems except the ones with one or tw o clauses, AVM performed significantly better than RS. Similar results were observed  

for (1+1) EA vs. RS and GA vs. RS.    

Table XVII. Results for the Fisher’s Exact test at significance level of 0.05 

ID 

AVM vs. (1+1) 

EA AVM vs. GA AVM vs. RS  (1+1 EA) vs . GA (1+1) EA vs . RS GA vs. RS 

p-Valu e  OR p-Valu e  OR p-Valu e  OR p-Valu e  OR p-Valu e  OR p-Valu e  OR 

0 0,49 5 3,75E-36 743 1,14E-55 7919 8,33E-33 146 5,41E-52 1552 2,50E-05 1 

1 1 1 0,059 12 7,26E-06 42 0,05 12 7,26E-06 42 0,01 3 

2 0,003 21 2,64E-39 959 2,23E-57 13333 5,39E-28 46 7,96E-45 639 7,48E-05 13 

3 0,059 12 5,29E-41 1108 2,23E-57 13333 1,15E-33 96 1,95E-49 1151 0,0003 12 

4 0,006 18 1,04E-45 1732 2,23E-57 13333 7,47E-35 94 6,70E-46 722 0,009 8 

5 0,12 9 1,05E-44 1564 2,21E-59 40401 2,01E-38 167 1,02E-52 4310 0,0007 26 

6 1 1 0,0001 31 2,41E-11 95 0,0001 31 2,41E-11 95 0,002 3 

7 1 3 0,0003 28 5,03E-15 140 0,002 9 1,35E-13 46 4,85E-06 5 

8 0,49 5 1,59E-05 39 1,11E-17 178 0,0007 8 5,69E-15 35 3,59E-06 5 

9 1 1 7,26E-06 42 1,59E-21 245 7,26E-06 42 1,59E-21 245 2,91E-08 6 

10 1 1 1,48E-06 48 4,05E-28 405 1,48E-06 48 4,05E-28 405 6,86E-12 8 

11 0,49 5 1,30E-07 57 1,12E-24 312 1,21E-05 11 1,14E-21 61 3,17E-08 5 

12 1 1 1,33E-30 487 5,76E-49 2505 1,33E-30 487 5,76E-49 2506 7,42E-05 5 

13 1 1 3,17E-17 171 5,77E-30 465 3,17E-17 171 5,77E-30 465 0,0009 2 

14 0,059 12 5,77E-30 465 3,77E-50 2922 2,68E-23 40 2,01E-42 252 1,26E-05 6 

15 0,059 12 2,87E-33 595 1,04E-45 1732 2,26E-26 51 3,71E-38 150 0,008 3 

16 1 1 1,08E-37 840 1,14E-55 7919 1,08E-37 840 1,14E-55 7919 0,0001 9 

17 0,49 5 5,75E-34 627 1,02E-52 4310 1,13E-30 123 4,47E-49 844 5,87E-05 7 

18 0,12 9 1,60E-27 387 1,05E-44 1564 4,57E-22 41 2,01E-38 167 0,0001 4 

19 1 1 1,34E-14 134 9,76E-44 1423 1,34E-14 134 9,76E-44 1423 9,47E-13 11 

20 0,49 5 2,87E-33 595 1,02E-52 4310 5,40E-30 116 4,47E-49 845 2,99E-05 7 

21 0,24 7 1,11E-34 663 1,02E-52 4310 4,93E-30 92 1,42E-47 597 0,0001 7 

22 1 3 1,73E-38 896 1,02E-52 4310 1,22E-36 296 9,48E-51 1422 0,002 5 

23 1 1 2,64E-39 959 2,13E-51 3490 2,64E-39 959 2,13E-51 3490 0,01 4 

24 1 1 0,003 20 9,76E-12 99 0,003 21 9,76E-12 100 4,55E-05 5 

25 1 1 1 1 0,01 16 1 1 0,01 16 0,01 16 

26 1 3 0,0003 28 4,54E-23 276 0,002 9 1,90E-21 91 6,44E-12 10 

27 1 1 1,07E-08 68 1,32E-18 193 1,07E-08 68 1,32E-18 193 0,0007 3 

28 1 1 5,71E-08 61 3,90E-24 300 5,71E-08 61 3,90E-24 300 1,67E-07 5 
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Based on the above results, we recommend using AVM for as many iterations as possible (RQ2). We can see from the r e-

sults that, even when we set the number of iterations to 2000, AVM managed to achieve a 100% success rate with 26 iter a-

tions on average. Note that in case studies with more complex problems, a larger number of iterations may be required  to 

eventually solve the problems. 

Table XVIII. Results for the Fisher’s Exact test at significance level of 0.05 

ID 

AVM vs. (1+1) EA AVM vs. GA AVM vs. RS  (1+1 EA) vs . GA (1+1) EA vs . RS GA vs. RS 

p-Valu e  OR p-Valu e  OR p-Valu e  OR p-Valu e  OR p-Valu e  OR p-Valu e  OR 

29 1 3 3,84E-40 1029 7,78E-48 2187 2,82E-38 339 6,70E-46 721 0,12 2 

30 0,12 9 8,62E-26 340 8,48E-43 1302 1,89E-20 36, 1,39E-36 138 0,0001 3 

31 1 1 8,93E-17 164 5,29E-41 1108 8,93E-17 164 5,29E-41 1108 3,55E-09 6 

32 0,12 9 1,08E-37 840 1,14E-55 7919 1,09E-31 89 4,47E-49 844 0,0001 9 

33 0,01 16 3,75E-36 743 5,76E-49 2505 5,21E-27 46 5,69E-39 155 0,007 3 

34 0,12 9 3,75E-36 743 1,14E-55 7919 3,22E-30 79 4,47E-49 844 2,50E-05 10 

35 0,49 5 1,11E-34 662 1,02E-52 4310 2,27E-31 129 4,47E-49 84 0,0001 6, 

36 1 1 0,059 11 0,01 16 0,05 11 0,01 16 0,76 1 

37 1 1 1 3 1 1 1 3 1 1 1 0,3 

38 1 3 0,0007 25 2,48E-08 64 0,004 8 3,64E-07 21 0,02 2 

39 1 1 7,49E-05 33 1,43E-10 86 7,49E-05 33 1,43E-10 86 0,009 3 

40 1 1 0,001 23 5,03E-15 140 0,001542052 23 5,03E-15 140 6,14E-07 6 

41 1 1 1,59E-05 39 1,56E-12 108 1,59E-05 39 1,56E-12 108 0,003 3 

42 1 1 1 1 1 1 1 1 1 1 1 1 

43 1 1 1 1 1 1 1 1 1 1 1 1 

44 1 1 1 1 1 1 1 1 1 1 1 1 

45 1 1 1 1 1 1 1 1 1 1 1 1 

46 1 1 1 1 1 1 1 1 1 1 1 1 

47 1 1 1 1 1 1 1 1 1 1 1 1 

48 1 1 1 1 1 1 1 1 1 1 1 1 

49 1 1 1 1 1 1 1 1 1 1 1 1 

50 1 1 1 1 1 1 1 1 1 1 1 1 

51 1 1 1 1 1 1 1 1 1 1 1 1 

52 1 1 1 1 1 1 1 1 1 1 1 1 

53 1 1 1 1 1 1 1 1 1 1 1 1 

54 1 1 1 1 1 1 1 1 1 1 1 1 

55 1 1 1 1 1 1 1 1 1 1 1 1 

56 1 1 1 1 1 1 1 1 1 1 1 1 

 

 
Figure 10. Condition for a change event which is fired when synchronization between audio and video is within threshold 

6.2 Comparison with UMLtoCSP 

UMLtoCSP [13] is the most widely used  and referenced  OCL constraint solver in the literature. To assess the perfo r-

mance of UMLtoCSP to solve complex constraints such as the ones in our current industrial case study, we conducted  an 

experiment. We repeated  the experiment for 57 constraints from our industrial application, whose characteristics are sum-

marized  in Table XII. An example of such constraint, modeling a change event on a transition of Saturn’s state machine, is 

shown in Figure 10. This change event is fired  when Saturn is successfu l in recovering the synchronization between audio 

context Saturn inv synchronizationConstraint:  

      self.systemUnit.NumberOfActiveCalls  > 1 and   

      self.systemUnit.NumberOfActiveCalls  <= self.systemUnit.MaximumNumberOfActiveCalls and   

      self.media.synchronizationMismatch.unit = TimeUnitKind::s and (self.media.synchronizationMismatch.value >= 0 and  

      self.media.synchronizationMismatch.value  <= self.media.synchronizationMismatchThreshold .value) and  

      self.conference.PresentationMode = Mode::Off and  

      self.conference.call→select(call |  call.incomingPresentationChannel.Protocol <> VideoProtocol::Off)→size()=2 and 

      self.conference.call→select(call |   call.outgoingPresentationChannel.Protocol <> VideoProtocol::Off)→size()=2 
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and video. Since UMLtoCSP does not support enumerations, we converted  each enumeration into an Integer and  limited  

its bound to the number of literals in the enumeration. We also used  the MARTE profile to model d ifferent non -functional 

properties, and since UMLtoCSP does not support UML profiles, we explicitly modeled  the used  subset of MARTE as part 

of our models. In addition, UMLtoCSP does not allow writing constraints on inherited  attributes of a class, so we modified  

our models and modeled  inherited  attributes d irectly in the classes. We set the range of Integer attributes from 1 to 100. 

Since the UMLtoCSP tool d id  not support UML 2.x d iagrams, we also needed to recreate our models in a UML 1.x mode l-

ing tool. 

Table XIX. Results of comparison with UMLtoCSP 

P roblem  # # of Clauses  OCL Data  Type  Used  

(Num ber of variable  is  1) 

Search -based  Solver 

w ith  (1+1)EA (Secon ds) 

Search -based  Solver 

w ith  AVM (Secon ds) 

UMLtoCSP  

(Secon ds) 

I43 1 Boolean 0.26 0.07 0.01 

I44 1 Boolean 0.10 0.07 0.01 

I45 1 In teger  0.07 0.03 0.01 

I46 1 In teger  0.07 0.03 0.01 

I47 1 In teger  0.07 0.03 0.01 

I48 1 In teger  0.13 0.04 0.01 

I49 2 In teger  1.41 0.26 0.01 

I50 2 In teger  1.56 0.4 0.01 

I51 1 In teger  0.12 0.04 0.01 

I52 2 In teger  1.76 0.25 0.01 

I53 2 In teger  1.72 0.26 0.01 

I54 1 In teger  0.09 0.04 0.01 

I55 2 In teger  1.25 0.24 0.01 

I56 1 In teger  0.08 0.04 0.01 

I57 2 In teger  1.48 0.23 0.01 

We ran the experiment on the same machine as we used in the experiments reported  in the previous section. Though we 

let UMLtoCSP attempt to solve each of the selected  constraints for one hour each, it was not successfu l in finding any valid  

solu tion for the 42 problems comprising of 5-8 clauses. A plausible explanation is that UMLtoCSP is hampered  by a com-

binatorial explosion problem because of the complexity of the constraints in the model. However, such constraints must be 

expected  in real-world  industrial applications as our Cisco example is in no way particularly complex by industrial stan d-

ards. In contrast, our test data generator managed to solve each constraint within at most 2.96 seconds using AVM and 99 

Seconds using (1+1) EA, as shown in Table XX. For the remaining 15 problems comprising of either one or two clauses, 

UMLtoCSP managed to find  solu tions. Each of these constraints has one variable of either Integer or Boolean type. The re-

sults of the comparison of UMLtoCSP with our tool for these simple clauses (problems 42-56) are shown in Table XIX. We 

provide the time taken by UMLtoCSP to solve each problem in seconds, which is reported  by the tool itself and  is 0.01 sec-

ond (maximum precision) for all fifteen constraints. For these same 15 problems, we ran our tool 100 times and also report 

the average time taken by our tool to solve each problem over 100 runs in Table XIX. Since we used the same machine to 

run experiments for both tools, it is clear that for all fifteen problems comprising of one or two clauses, UMLtoCSP took 

less time than our tool (which is on  average less than one second and in the worst case less than two seconds). But consid-
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ering that UMLtoCSP fails to solve the more complex problems and  its issues regard ing limited  support of OCL constructs 

(as already d iscussed), we conclude it is not practical to apply UMLtoCSP in large systems having complex constraints. 

Table XX. Average time took by algorithms to solve the problems 

Algorithm  Average  Tim e  to  Solve  Constra ints  (Seconds) 

AVM 2.96 

(1+1) EA 99 

GA 182 

RS 423 

7. EMPIRICAL EVALUATION OF OPTIMIZED FITNESS FUNCTIONS 

In this section, we empirically evaluate the fine-grained fitness functions that we defined in Section 4 for various OCL 

operations. Our goal is to determine if they really improve the performance of search algorithms as compared to using 

simple branch d istance functions, yield ing 0 if an expression is true and  k otherwise. 

7.1 Experiment Design 

To empirically evaluate whether the functions defined in Section 4 really improve the branch d istance, we carefully d e-

fined  artificial problems to evaluate each heuristic since not all of the OCL constructs were used  in the industrial case 

study. The model we used for the experiment consists of a very simple class d iagram with one class X . X  has one attribute 

y of type Integer. The range of y was set to -100 to 100. We populated  10 objects of class X . The use of a single class with 10 

objects was sufficient to create complex constraints. For each heuristic, we created  an artificial problem, which was suff i-

ciently complex (with small solu tion space) to remain unsolved by random search. We checked this by running all the art i-

ficial problems (100 times per problem) using random search for 20,000 iterations per problem, and random search could  

not manage to solve most of the problems most of the times, except for problems A9 and A10. Table XXI lists the artificial 

problems and the corresponding heuristics that we used in the experiments. We prefixed each problem with A to show 

that it is an artificial problem. For the evaluation, we used  th e best search algorithms among the ones used  in the industrial 

case study (Section 5 and in other works [61]): (1+1) EA and AVM. In this experiment, we address the following research 

question: 

RQ3: Do optimized branch d istance calculations improve the effectiveness of search over simple branch d istance calcu-

lations?  

To answer this research question, we compared branch d istance calculations based on heuristics defined in Section 4 

and without heuristics (i.e., branch d istance calculations either return 0 when a constraint is solved or k-1 otherw ise). We 

will refer to them here as Optimized (Op) and Non-Optimized (NOp) branch d istance calculations, respectively. 

7.2 Experiment Execution 

We ran experiments 100 times for (1+1) EA and AVM, w ith Op and  NOp, and  for each problem listed  in Table XXI. We 
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let (1+1) EA and AVM run up to 2000 fitness evaluations on each problem and collected  data on whether the algorithms 

found solu tions for Op and  NOp. We used a PC with Intel Core Duo CPU 2.20 GHz with 4 GB of RAM, running Microsoft 

Windows 7 operating system for the execution of experiment. To compare the algorithms for Op and  NOp, we calculated  

the success rate, which is defined as the number of times a solu tion was found out of the to tal number of runs (100 in this 

case). 

Table XXI. Artificial problems for heuristics 

P roblem  # Heu rist ic  Exam ple  

A1 forAll() X.allInstances() → forAll(b|b.y=47) 

A2 exists() X.allInstances() → select(b|b.y > 90) → size() > 4 and X.allInstances() → select(b|b.y > 

90) → exists(b|b.y=92) 

A3 isUnique() X.allInstances() → select(b|b.y > 90) → size() > 4 and X.allInstances() → select(b|b.y > 

90) → isUnique(b|b.y) 

A4 one() X.allInstances() → select(b|b.y > 90) → size() > 4 and X.allInstances() → select(b|b.y > 
90) → one(b|b.y=95) 

A5 select()size() X.allInstances() → select(b|b.y=0) → size()>6 

A6 select()size() X.allInstances() → select(b|b.y=0) → size()<=1 

A7 select()size() X.allInstances() → select(b|b.y > 90) → size() > 4 and X.allInstances() → select(b|b.y > 
90) → select(b|b.y=92) → size() <> 0 

A8 select()size() X.allInstances() → select(b|b.y=0) → size() = 5 

A9 includes() X.allInstances() → collect(b|b.y) → includes(17) 

A10 excludes() X.allInstances() → collect(b|b.y) → excludes(0) 

A11 includesAll() let c = Set{-1,87,19,88} in X.allInstances() → collect(b|b.y) → includesAll(c) 

A12 excludesAll() let c = Set{0,1,2,3} in X.allInstances() → select(b|b.y>0 and b.y<5) → size()>=5 and 
X.allInstances() → select(b|b.y>0 and b.y<5) → collect(b|b.y) → excludesAll(c) 

A13 select()forAll() X.allInstances() → select(b|b.y<>47) → forAll(b|b.y*b.y=-100) 

7.3 Results and Analysis 

Table XXII shows the results of success rates for Op and  NOp for each problem and both algorithms ((1+1) EA and  

AVM). To compare if the d ifferences of success rates among Op and  NOp are statistically significant, we performed the 

Fisher‘s exact test [73] with =0.05. We chose this test since for each run of algorithms the result is binary, i.e., either the 

result is ‘found’ or ‘not found’ and  this is exactly the situation for which the Fisher ’s exact test is defined. We performed  

the test only for the problems having success rates greater than 0 and not equal to each other for both Op and  NOp (i.e., for 

problems A2, A3, and A4 in the case of 1+1 (EA) and problem A9 for AVM)). For 1+1 (EA), the p -values for all the three 

problems (A2, A3, and A4) are 0.0001, thus indicating that the success rate of Op is significantly higher than NOp. For prob-

lems A1, A5, A6, A7, A8, A12, and A13, the results are even more extreme as Op shows a 100% success rate, whereas NOp 

has 0% success rate. For the problems A9 and A10, the success rates are 100% for both Op and  NOp. For these problems, we 

further compared the number of iterations taken by (1+1) EA for Op and  NOp to solve the problems. We used Mann-

Whitney U-test [73], with =0.05, to determine if significant d ifferences exist between Op and  NOp. We chose this test 

based  on the guidelines for performing statistical tests for randomized algorithms [71]. Table XXIII shows the results of the 

test and  p-values are bold-faced when results are significant. In Table XXIII, we also show the mean d ifferences for the 

number of iterations and execution time between Op and  NOp to show the d irection in which the results are significant. In 

addition, we report effect size measurements using Vargha and Delaney’s Â12 statistics, which is a non -parametric effect 
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size measure. We chose this effect size measure using again the guidelines reported  in [71]. In our context, the value of Â12 

tells the probability for Op to find  a solu tion in more iterations than NOp. This means that the higher the value of Â12, the 

higher the chances that Op will take more iterations to find  a solu tion than NOp. If Op and  NOp are equal then the value of 

Â12 is 0.5. With 1+1 (EA), for A9 and A10, Op took significantly less iterations to solve the problems (Table XXIII) as both 

p-values are below 0.05. In addition, for A9 and A10, values of Â12 are 0.19 and 0.46, respectively, thus showing that Op 

took more iterations to solve the problem than NOp in 19% and 46% of the time  

Table XXII. Results of Fisher Exact Test for success rate of Optimized and Non-Optimized at =0.05 

P roblem 

# 

Su ccess  Rate  

(1+1)EA  (NOp ) 

in  % 

Su ccess  Rate  for 

(1+1)EA  (Op ) in  

% 

Fish er Exact  Tes t  

for (1+1)EA (p -

valu e )  

Su ccess  Rate  

for AVM  (NOp ) 

in  % 

Su ccess  Rate  

for AVM  (Op ) 

in  % 

Fish er Exact  

Tes t  for AVM 

(p-valu e ) 

A1 0 100 - 0 100 - 

A2 2 100 0,0001 0 59 - 

A3 1 95 0,0001 0 99 - 

A4 3 100 0,0001 0 100 - 

A5 0 100 - 0 100 - 

A6 0 100 - 0 100 - 

A7 0 100 - 0 100 - 

A8 0 100 - 0 100 - 

A9 100 100 - 16 100 0,0001 

A10 100 100 - 100 100 - 

A11 0 94 - 0 99 - 

A12 0 100 - 0 34 - 

A13 0 100 - 0 100 - 

Table XXIII. Results of t-test at =0.05 ((1+1)EA) 

P roblem  # Mean  Differen ce  (OP -NOP ) Â12 p-valu e  

A9 -654,38 0,19 0,0001 

A10 -1,01 0,46 0,004 

Table XXIV. Results of t-test at =0.05 (AVM) 

P roblem  # Mean  Differen ce  (OP -NOP ) Â12 p-valu e  

A10 -0,23 0,52 0,04 

For AVM, the results of success rates for A10 were tied  between Op and  NOp (Table XXII). Therefore, we further com-

pared  Op and  NOp for these problems based on the number of iterations AVM took to solve these problems. As d iscussed  

before, we applied  Mann-Whitney U-test [73] with =0.05 to determine if significant d ifferences exist between Op and  

NOp. Table XXIV shows mean d ifferences, p -values, and Â12 values. We observed that for these problems Op took less 

iterations to solve them and significant d ifferences were observed for A10.    

Based on the above results, we can clearly see that (1+1) EA and AVM with optimized branch d istance calculations sig-

nificantly improve the success rates. In the worst cases, when there is no d ifference in success ra tes between Op and  NOp, 

(1+1) EA and AVM took significantly less iterations to solve the problems. 

8. OVERALL DISCUSSION 

In this section, we provide an overall d iscussion based on the results of the experiments on the industrial case study 
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and the artificial problems. Based on the results from the industrial case study, we observe that AVM and (1+1) EA perform 

better than GA and RS since the algorithms achieve 100% and 98% success rates for all 57 constraints on average, respe c-

tively (Section 6.1). For the experiments based  on artificial problems (Section 7.3), we observe that AVM and (1+1) EA with 

optimized branch d istance calculations outperform non -optimized branch d istance calculations. However, we notice that 

for certain artificial problems, the performance of (1+1) EA is significantly bette r than that of AVM. For instance, in  Table 

XXII for A2, (1+1) EA manages to find  solu tions for all 100 runs, whereas AVM could  only manage to find  solu tions for 59 

runs. We performed a Fisher ’s exact test to determine if the d ifferences are statistically significant with =0.05 between 

these two algorithms. We obtain a p -value of 0.001 suggesting that (1+1) EA is significantly better than AVM for A2. Since 

AVM is a local search algorithm and A2 is a complex problem, AVM can be expected  to be less efficient than (1+1) EA. Sim-

ilar results are obtained for A12. Conversely, for other problems, i.e., for A3 and A11, AVM seems more successfu l than 

(1+1) EA. For A3, AVM manages to find  solu tions 99 times, whereas (1+1) EA manages to find  solu tions 95 times (Table 

XXII). In this case, we obtain a p -value of 0.21 when we apply the Fisher ’s exact test, hence suggesting that the d ifferences 

are not statistically significant between the two algorithms. Similarly, for A11, AVM found solu tions 99 times, whereas 

(1+1) EA found solu tions for 94 times (Table XXII). In this case, we obtain again a p -value of 0.11, which is lower than our 

chosen significance level (0.05); hence suggesting that the d ifferences are not significant between these two algorithms.  

Based on the results of our empirical analysis, we provide the following recommendations about using AVM and (1+1) 

EA: If the constraints need to be solved quickly, we recommend using AVM, since it is quicker in finding solu tions as we 

d iscussed  in Section 7, even though its performance was worse than (1+1) EA for two artificial problems. If we are flexible 

with time budget (e.g., the constraints need to be solved  only once, and the cost of doing that is negligible compared to 

other costs in the testing phase), we rather recommend running (1+1) EA for as many iterations as possible as we notice 

that the success rate for (1+1) EA was 98% on average for th e industrial case study, whereas for the artificial problems, it 

either fares better or equal to AVM. 

The d ifference in performance between AVM and (1+1) EA has a clear explanation. AVM works like a sort of greedy l o-

cal search. If the fitness function provides a clear gradient towards the global optima, then AVM will quickly converge to 

one of them. On the other hand, (1+1) EA puts more focus on the exploration of the search landscape. When there is a clear 

gradient toward  global optima, (1+1) EA is still able to reach those optima in reasonable time, but will spend some time in 

exploring other areas of the search space. This latter property becomes essential in d ifficult landscapes where there are 

many local optima. In these cases, AVM gets stuck and has to  re-start from other points in the search landscape. On the 

other hand, (1+1) EA, thanks to its mutation operator, has always a non -zero probability of escaping from local optima. 
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9. THREATS TO VALIDITY 

To reduce construct valid ity threats, we chose as an effectiveness measure the search success rate, which is comparable 

across all four search algorithms (AVM, (1+1) EA, GA and RS). Furthermore, we used the same stopping criterion for all 

algorithms, i.e., number of fitness evaluations. This criterion is a comparable measure of efficiency across all the algorithms 

because each iteration requires updating the object d iagram in EyeOCL and evaluating a query on it  as we d iscussed  in 

Section 6.1 and Section 7.1.  

The most probable conclusion valid ity threat in experiments involving  randomized algorithms is due to random varia-

tions. To address it, we repeated  experiments 100 times to reduce the possibility that the results were obtained by chance. 

Furthermore, we performed Fisher exact tests to compare proportions and determine the s tatistical significance of the re-

sults. We chose this test since it is appropriate for d ichotomous data where proportions must be compared [71], thus 

matching our situation. To determine the practical significance of the results obtained , we measured  the effect size using 

the odds ratio of success rates across search techniques. 

A possible threat to internal valid ity is that we have experimented  with only one configuration setting for the GA p a-

rameters. However, these settings are in accordance with the common guidelines in the  literature and our previous experi-

ence on testing problems. Parameter tuning can improve the performance of GAs, although default parameters often pr o-

vide reasonable results [72].   

We ran our experiments on an industrial case study to generate test data for 57 d ifferent OCL constraints, ranging from 

constraints having just one clause to complex constraints having eight clauses. Although the empirical analysis is based  on 

a real industrial system our results might not generalize to other case studies. However, such threat to external valid ity is 

common to all empirical studies and such industrial case studies are nevertheless very rarely reported  in the research lite r-

ature. In addition to the industrial case study, we also cond ucted  an empirical evaluation of each proposed  branch d istance 

calculation using small yet complex artificial problems to demonstrate that the effectiveness of our heuristics holds even 

for more complex problems. In addition, empirically evaluating all pro posed branch d istance calculations on artificial 

problems was necessary since it was not possible to evaluate them for all features of OCL in the industrial case study due 

to its inherent characteristics.   

In the empirical comparisons with UMLtoCSP, we might also have wrongly configured  the tool. To reduce the probabil-

ity of such an event, we contacted  the authors of UMLtoCSP who were very helpful in ensuring its proper use. From our 

analysis of UMLtoCSP, we cannot generalize our results to traditional con straint solvers in general when applied  to solve 

OCL constraints. However, empirical comparisons with other constraints solvers were not possible since UMLtoCSP is not 

only the most referenced OCL solver but also the only one that is publically available.  However, because the problems 
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encountered  with UMLtoCSP are due to the translation to a lower -level constraint language, we expect similar issues with 

the other constraint solvers.  

10. CONCLUSION 

In this paper, we presented  a search -based test data generator for constraints written in the Object Constraint Language 

(OCL). The goal is to achieve a practical, scalable solu tion to support test data generation for Model -based Testing (MBT) 

when this is relying on the UML modeling standard  or extensions, as it is often the case in industrial contexts. Existing 

approaches in the literature have one or more of the following problems that make them difficult to use in industrial appl i-

cations: (1) they miss key features of OCL such as collections, which are common in industrial problems; (2) they translate 

OCL into formalisms such as first order logic, temporal logic, or Alloy, and thus often result into combinatorial explosion 

problems that limit their practical adoption in industrial settings.  

To overcome the abovementioned problems, we defined  a set of heuristics based  on OCL constraints to guide search -

based algorithms (Genetic Algorithms (GAs), (1+1) Evolutionary Algorithm (EA), Alternating Variable Method (AVM)) 

and implemented  them in our search-based test data generator. More specifically, we defined branch d istance functions for 

various types of expressions in OCL to guide search algorithms. We demonstrated  the effectiveness and efficiency of our 

search-based test data generator in the context of the model-based , robustness testing of an industrial case study of a video 

conferencing system. Even for the most d ifficult constraints, with research prototypes and no parallel computations, we 

obtain test data within 2.96 seconds on average.  

As a comparison, we ran 57 constraints from the industrial case study on one well-known, downloadable OCL solver 

(UMLtoCSP) and the results showed that, even after running it for one hour, no solu tions could  be found for most of the 

constraints. Similar to all existing OCL solvers, because it could  not handle all OCL constructs and UML features, we had  

to transform our constraints to satisfy UMLtoCSP requirements.  

We also conducted  an empirical evaluation in which we compared four search algorithms using two statistical tests: 

Fisher ’s exact test between each pair of algorithms to test their d ifferences in success rates for each constraints and a paired  

Mann-Whitney U-test on the d istributions of the success rates (paired  per constraint). Results showed that AVM was si g-

nificantly better than the other three search algorithms, followed by (1+1) EA, GA and RS, respectively. We also empirically 

evaluated  each proposed branch d istance calculation using small yet complex artificial problems. The results showed that 

the proposed branch d istance calculations significantly improve the performance of solving OCL constraints for the pu r-

pose of test data generation when compared to standard  and simple branch d istance calculations. Based on the results of 

our empirical analyses, we recommend usin g AVM if the constraints need to be solved quickly since it is quicker in finding 

solu tions, even though its performance was worse than (1+1) EA for two complex artificial problems with d ifficult search 
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landscapes. In other cases, if we are flexible with t ime budget (e.g., the constraints need to be solved only once), we rather 

recommend using (1+1) EA for as many iterations as possible since (1+1) EA has 98% success rate on average for the indu s-

trial case study, whereas for the artificial problems, it eith er fares better or equal to AVM.  
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